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Structural precursor to freezing in the hard-disk and hard-sphere systems
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We show that the simplest model fluids in two and three dimensions, namely, the hard-disk and hard-sphere
fluids, exhibit a structural precursor to the freezing transition, which manifests itself as a shoulder in the second
peak of the radial distribution function. This feature is not present in the radial distribution function of the
low-density fluid. Close examination of the two-dimensional fluid configurations in the vicinity of the freezing
transition reveals that the shoulder corresponds to the formation of a distinct structural motif, identifiable as a
four-particle hexagonally close-packed arrangement. As the dense fluid approaches the freezing transition, the
ordered arrangements form large embryonic domains, commensurate with those seen in the crystal at the
melting point. Contrary to the notion that the split second peak is a signature of the amorphous solid, our
results support the idea that it is a precursor to the development of long-range order.@S1063-651X~98!00109-3#

PACS number~s!: 61.20.Ne, 61.20.Ja, 64.70.Dv
li
an
e
e-
9
f

ha

th
le
3
d

e,
d

th
a

ys
c
rs

n
id
e-
s
ul

um
ica
on

s is
D

rder

ge-
e
la-
lib-
u-

g
ous
a

er.
tinu-
of
in-
s-
-
port

-

pe-
less

al
he

ed
lloi-
I. INTRODUCTION

Phenomenological rules associated with the liquid-so
phase transition can be found for systems in both two
three dimensions@1–3#. Perhaps the most successful crit
rion for determining the freezing transition in thre
dimensional~3D! monatomic liquids was introduced in 196
by Hansen and Verlet@4#. They noticed that the amplitude o
the first peak in the liquid structure factorS(k) is nearly 2.85
at the freezing line, a seemingly universal feature that
been verified both by simulations@4–7# and experiments@8–
12#. Nonetheless, studies of 2D liquids@13–15# reveal that
the peak in the liquid structure factor is much larger at
freezing line, indicating that the simple Hansen-Verlet ru
does not carry over to arbitrary spatial dimension. For the
monatomic crystal, one can appeal to the celebrated Lin
mann melting criterion@16#, which states that, on averag
the root-mean-square~rms! displacement of the atoms scale
by their interparticle separation is approximately 0.15 at
melting line. Proposed in 1910, the Lindemann criterion h
been found to be valid for a variety of real and model cr
tals @17#, quite independent of the specific atomic intera
tions. Preliminary studies by Stillinger and co-worke
@18,19# suggest that areverseLindemann criterion holds for
the displacement of liquid atoms about theirinherent struc-
tures@20,21# at the freezing line, indicating that the criterio
provides a somewhat symmetric description of the liqu
solid equilibrium. It is worth noting that the rms displac
ment diverges logarithmically with system size in 2D cry
tals and thus the Lindemann criterion is not a suitable r
for melting in two dimensions@22#.

Two-dimensional systems have provided a fertile medi
for the study of phase transitions. Indeed, the topolog
simplification relative to three dimensions has allowed c
siderable theoretical and computational progress@3,23#. Un-

*Electronic address: torquato@matter.princeton.edu
PRE 581063-651X/98/58~3!/3083~6!/$15.00
d
d

-

s

e

D
e-

e
s
-
-

-

-
e

l
-

derlying the physics of low-dimensional condensed phase
the role of long-wavelength fluctuations. Most notably, 2
crystals do not possess long-range translational o
@24,25#; rather, the translational order isquasi-long-ranged,
with a density-density correlation function that decays al
braically to zero@26,22#. However, there is true long-rang
bond-orientational order in the crystal, while both trans
tional and orientational order are short ranged in the equi
rium fluid. The defect-mediated theory of Kosterlitz, Tho
less, Halperin, Nelson, and Young@27–30# addresses the
effect of long-wavelength fluctuations on the 2D meltin
transition. It predicts that the crystal undergoes a continu
melting transition via the unbinding of dislocations into
~possibly metastable@31#! hexatic phase, with short-range
translational order and quasi-long-range orientational ord
The hexatic phase is predicted to undergo a second con
ous transition to the equilibrium fluid via the unbinding
disclinations. Of course, the Kosterlitz-Thouless-Halper
Nelson-Young~KTHNY ! scenario does not rule out the po
sibility of a first-order melting transition occurring by an
other mechanism. In fact, there is strong evidence to sup
a first-order phase transition in the hard-disk system@32–34#.
While the validity of the KTHNY theory is still an interest
ing open question~see, e.g.,@3,23#!, many of its predictions
have been verified by simulations and experiments. Of s
cial relevance here is the prediction that the dimension
combinationK[4m̃(m̃1l̃)/(2m̃1l̃) is equal to 16p on the
melting line, wherem̃ and l̃ are reduced Lame´ constants. It
has been recognized@35# that while the KTHNY melting
criterion is found to hold for 2D solids@14,36#, there is no
analog in three dimensions.

More recently, Lo¨wen, Palberg, and Simon@7# introduced
a dynamical criterion for the freezing of three-dimension
colloidal fluids. It states that the ratio of the long-time to t
short-time diffusion coefficientDL /D0 in the liquid is'0.1
at the freezing line. The criterion has been verified by forc
Rayleigh scattering experiments on charged-stabilized co
3083 © 1998 The American Physical Society
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3084 PRE 58THOMAS M. TRUSKETTet al.
dal suspensions and Brownian dynamics simulations@7# for
varying interparticle interactions. Furthermore, Lo¨wen @35#
has shown that the criterion does reasonably well for
colloidal fluids, making the Lo¨wen-Palberg-Simon rule th
only freezing criterion to hold simultaneously in two an
three dimensions. Clearly, such a rule is not applicable
atomic liquids, which are governed by Newtonian dynam
and are therefore characterized by a single diffusion coe
cient.

The criteria presented above are useful because they
vide a means for locating the liquid-solid transition witho
resorting to free-energy calculations. Of course, such con
nience is obtained at the cost of rigor, since thermodynam
dictates the equality of pressure, temperature, and chem
potential as the only criteria to be satisfied for coexist
bulk phases in equilibrium. Nevertheless, these rules sug
that some features of the freezing transition, at least
simple fluids, are universal in character. This is not surp
ing in light of the fact that dense liquids can be treated a
perturbation on the hard-sphere fluid@37,38#, which itself
~most likely @39#! exhibits an entropy-driven freezing trans
tion in both two and three dimensions@40–42#. In fact,
Longuet-Higgins and Widom@43# demonstrated that th
freezing parameters for argon could be obtained from an
tended van der Waals treatment of the hard-sphere fluid.
line of reasoning was instrumental in motivating the ea
order-parameter~density-functional! theories of freezing
@13,44,45#.

In this paper we present evidence that the simplest mo
fluids, namely, the hard-disk and hard-sphere fluids, exhib
structural precursor to the freezing transition. This feat
manifests itself as a shoulder just before the second pea
the fluid-phase radial distribution function~RDF! at densities
close to~but below! to the freezing transition~see Figs. 1 and
2!. The shoulder first becomes visible at aD-dimensional
packing fractionh;0.67 for hard disks andh;0.47 for
hard spheres. TheD-dimensional packing fraction is define
as

h5rv~s/2!, ~1!

wherer is the number density andv(r ) is the volume of a
D-dimensional sphere of radiusr ,

FIG. 1. Radial distribution functiong(r ) for hard disks plotted
versus distancer ~in units of diameters!. Curves represent the fluid
phase withh50.65, 0.67, 0.68, and 0.69~freezing point!.
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For example, forD51, 2, and 3,v(r )52r , pr 2, and
4pr 3/3, respectively.

The onset of this significant structural change appe
within 5% of the freezing transition, which occurs ath f'
0.69 in two dimensions andh f' 0.494 in three dimensions
Unlike the familiar split second peak that occurs in the RD
of the dense, metastable hard-sphere system~see, e.g.,
@46,47#!, the appearance of the shoulder in the stable fl
phase is, for the most part, unrecognized. Labı´k and
Malijevský @48# noticed the shoulder in their Monte Carl
simulations of the hard-sphere fluid. Upon further investig
tion @49,50#, it was concluded that the shoulder marked t
onset of the supercooled liquid, whose structure is simila
that of the amorphous solid. Giarritta, Ferrario, and G
aquinta@51# noted the shoulder in their curved space sim
lations of dense, hard-disk systems. It is interesting to n
that both subpeaks and shoulders have appeared on th
perimentally measured RDFs of several simple liquids. Th
presence was originally attributed to finite truncation of t
Fourier inversion integral of the structure factor. Howev
Fehder@52# has suggested, based on his study of Lenna
Jones disks, that the subsidiary features may actually re
from alternative patterns of local ordering in the fluid.

In the present work we demonstrate that the appearanc
the shoulder in the hard-disk and hard-sphere fluid co
sponds to a salient structural feature that is not present in
low-density fluid. Furthermore, the data suggest that
structural motif is indeed a precursor of the crystalline so

II. RESULTS AND DISCUSSION

For our study of the fluid phase, molecular dynam
simulations were performed for systems of 500 particles
both two and three dimensions. The systems were eq
brated for a period of 5000N collisions, which was sufficient
to guarantee reproducible thermodynamic properties.
slightly larger system of 780 particles was chosen to simu

FIG. 2. Radial distribution functiong(r ) for hard spheres plot-
ted versus distancer ~in units of diameters!. Curves represent the
fluid phase withh50.42, 0.45, 0.47, and 0.494~freezing point!.
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FIG. 3. Hard-disk fluid configurations are shown with second peak bonds (r 51.95–2.17)~a! h50.63,~b! h50.67, and~c! h50.69 and
with next-nearest-neighbor bonds (r 5A3 –1.95) ~d! h50.63, ~e! h50.67, and~f! h50.69 referred to in the text.
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3086 PRE 58THOMAS M. TRUSKETTet al.
the hard-disk solid at the melting point, i.e., at a volum
fraction of hs50.716@53#.

We have focused on the two-dimensional system, whe
is possible to easily visualize the configurations. Close
amination of the RDF reveals that the shoulder spans f
r'A3 to r'1.95 ~in units of diameters!. These values cor
respond to the next-nearest-neighbor distances in the t
gular lattice at the close-packed density (hc5p/2A3) and at
the melting point density (hs50.716), respectively. This in
dicates that the shoulder corresponds to the development
distinct next-nearest-neighbor shell. To illustrate the str
tural change accompanying this feature in the RDF,
present in Fig. 3 a series of dense fluid configurations wi

FIG. 4. Hard-disk crystal at its melting point (hs50.716)
shown with ~a! second peak bonds (r 51.95–2.17) and~b! next-
nearest-neighbor bonds (r 5A3 –1.95) referred to in the text.
it
-

m

n-

f a
-
e

bonds drawn between pairs of disks separated by dista
r 5A3 –1.95. Typical fluid configurations ath5 0.63, 0.67,
and 0.69 are shown. Bonds corresponding to an equiva
interval around the second peak (r 51.95–2.17! are also
shown. The comparison is striking. It is apparent that
next-nearest neighbors compose ordered, hexagonal dom
that increase in size appreciably as the freezing transitio
approached. In stark contrast, the bonds representing the
ond peak interval lack coherent orientational order.

Inspection of the ordered domains reveals that the bo
in the so-called shoulder interval (r'A3 –1.95) correspond
to a distinct structural motif: the four-particle hexagona
close-packed configuration. In other words, the bonds c
nect pairs of particles that straddle another pair of particle
~or near! contact. Perhaps more surprising is the degree
orientational order that is exhibited at this length scale. T
bond network associated with the equilibrium crystal at
melting point ~Fig. 4! clearly supports the claim that th
shoulder is a signature of ordered, crystalline domains ra
than of the amorphous solid. Thus far, there is no numer
evidence for a kinetically stabilized extension of the flu
branch in the one-component hard-disk system. The non
istence of a metastable fluid branch would remove the p
sibility that the shoulder corresponds to a precursor of
supercooled liquid or glass.

The hexagonal-close-packed motif and the correspond
shoulder that appear in the RDF should not be affected by
increase in system size if indeed the observed phenomen
real. As a check, a system of 2000 disks was also simula
There were no distinguishable differences in the radial d
tribution function or in the configuration snapshots. Th
might have been expected since the box size is many ti
larger than the length scale associated with the obse
shoulder.

A similar picture is expected to hold for the thre
dimensional system, although it is more difficult to visualiz
Here we draw attention to the fact that the shoulder in the
RDF is not as pronounced as its 2D counterpart. This
related to the fact that, as the dimensionality of space

FIG. 5. Radial distribution functiong(r ) for the hard-disk sys-
tem plotted versus distancer ~in units of diameters!. The solid line
represents the fluid at the freezing point (h f50.69) and the dashed
line represents the crystal at the melting point (hs50.716).
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PRE 58 3087STRUCTURAL PRECURSOR TO FREEZING IN THE . . .
creases, more shells~with varying occupation numbers! are
being formed between the first and second peaks in the R
For example, the fcc solid has a second-neighbor she
A2a and a third-neighbor shell atA3a, where a is the
nearest-neighbor spacing. The RDF of the equilibrium fl
and crystal are shown in Figs. 5 and 6 for the hard-disk
hard-sphere systems, respectively. In both cases, the pos
of the shoulder in the fluid-phase RDF suggests local c
talline ordering.

The idea that the dense, equilibrium fluid contains orde
domains is not surprising. In fact, it is strongly suggested
other investigations of repulsive 2D liquids, e.g
@3,14,51,54–56#. An impressive example of this feature wa
put forth by Glaser and Clark@3,54,55#, where it was dem-
onstrated that the structure of a 2D Weeks-Chand
Andersen fluid can be described as a tiling of squares
equilateral triangles. These studies motivated a provoca
generalized tiling model@3# for melting in two dimensions.
Remarkably, these structural features are not captured
many of the best available theories of the hard-disk and h
sphere fluids. For hard spheres, the RDFs consistent with
Percus-Yevick@57,58# approximation and the generalize
mean-spherical approximation@59# show no sign of a shoul
der in the second peak. Perhaps this is expected since ne
theory contains information about the freezing transitio
Apparently the shoulder can be produced using parametr
bridge functions@48–50#. However, this approach is empir

FIG. 6. Radial distribution functiong(r ) for the hard-sphere
system plotted versus distancer ~in units of diameters!. The solid
line represents the fluid at the freezing point (h f50.494) and the
dashed line represents the crystal at the melting point (hs50.545).
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cal and its physical implications remain unclear. We propo
that the ability to reproduce the detailed structure of
hard-sphere and hard-disk fluids near the freezing transi
and in particular the shoulder in the second peak of the R
is a sensitive test of the accuracy of future theories of t
important class of systems.

III. CONCLUSIONS

We have found evidence of a structural precursor to
freezing transition in the hard-disk and hard-sphere flu
This feature can be identified with the development o
shoulder in the second peak of the radial distribution fu
tion of the fluid within 5% of the freezing transition. Inspe
tion of the configurations of the hard-disk fluid near t
freezing transition reveals that pairs of disks separated
distances in the shoulder interval straddle pairs of disks
contact. In other words, the shoulder in the RDF correspo
to the formation of a four-particle hexagonally close-pack
motif. At the freezing transition the ordered regions for
appreciably large embryonic domains. Examination of
structural features of the equilibrium crystal at the melti
density reveals that the shoulder interval is indeed a sig
ture of the equilibrium solid. It is not known if such a pre
cursor holds for monatomic fluids in general, although t
structural characteristic does appear to be associated with
onset of freezing in the 2D Lennard-Jones fluid@60#.

Finally, we note that it would be instructive to study th
size distribution of the ordered domains that exist near
freezing transition via large-scale simulations, i.e., syst
sizes that are much larger than the correlation length
orientational order in the fluid. Glaser and Clark@3# report
that the ordered domains in the 2D Weeks-Chand
Andersen system near freezing follow closely the size dis
bution predicted by the Fisher droplet model@61#. Further
studies along this line should provide a benchmark for te
ing the classical nucleation theory.
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