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Structural precursor to freezing in the hard-disk and hard-sphere systems
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We show that the simplest model fluids in two and three dimensions, namely, the hard-disk and hard-sphere
fluids, exhibit a structural precursor to the freezing transition, which manifests itself as a shoulder in the second
peak of the radial distribution function. This feature is not present in the radial distribution function of the
low-density fluid. Close examination of the two-dimensional fluid configurations in the vicinity of the freezing
transition reveals that the shoulder corresponds to the formation of a distinct structural motif, identifiable as a
four-particle hexagonally close-packed arrangement. As the dense fluid approaches the freezing transition, the
ordered arrangements form large embryonic domains, commensurate with those seen in the crystal at the
melting point. Contrary to the notion that the split second peak is a signature of the amorphous solid, our
results support the idea that it is a precursor to the development of long-rangg 8dd¥§3-651X98)00109-3

PACS numbes): 61.20.Ne, 61.20.Ja, 64.70.Dv

I. INTRODUCTION derlying the physics of low-dimensional condensed phases is
the role of long-wavelength fluctuations. Most notably, 2D
Phenomenological rules associated with the liquid-soliccrystals do not possess long-range translational order
phase transition can be found for systems in both two an@24,25; rather, the translational order éaiastlong-ranged,
three dimension§1-3]. Perhaps the most successful crite-with a density-density correlation function that decays alge-
rion for determining the freezing transition in three- praically to zero[26,22. However, there is true long-range
dimensional3D) monatomic liquids was introduced in 1969 hond-orientational order in the crystal, while both transla-
by Hansen and Verl¢#]. They noticed that the amplitude of tional and orientational order are short ranged in the equilib-
the first peak in the liquid structure factsk) is nearly 2.85  rjym fluid. The defect-mediated theory of Kosterlitz, Thou-
at the frggzing line, a'seem'ingly universal fea_lture that hagsg, Halperin, Nelson, and Youri@7-3Q addresses the
been verified both by simulatiod—7] and experimentl8—  gffect of long-wavelength fluctuations on the 2D melting
12]. Nonetheless, studies of 2D liquis3—19 reveal that  yanition. It predicts that the crystal undergoes a continuous
the peak in the liquid structure factor is much larger at theyeying transition via the unbinding of dislocations into a
freezing line, indicating that the S|r_nple. Hans_en—VerIet rule possibly metastablé31]) hexatic phase, with short-range
does not carry over to arbitrary spatial dimension. For the 3 ranslational order and quasi-long-range orientational order.

monatomic crystgl, one can appeal to the celebrated I‘mdel:he hexatic phase is predicted to undergo a second continu-
mann melting criterior{ 16], which states that, on average, . o L o
ous transition to the equilibrium fluid via the unbinding of

the root-mean-squaiems) displacement of the atoms scaled . linati of the Kosterlitz-Thoul Haloeri
by their interparticle separation is approximately 0.15 at th&lisclinations. Of course, the Kosterlitz-Thouless-Halperin-

melting line. Proposed in 1910, the Lindemann criterion hadV€/Son-YoungKTHNY) scenario does not rule out the pos-

been found to be valid for a variety of real and model crys-SiPility of a first-order melting transition occurring by an-
tals [17], quite independent of the specific atomic interac-Other mechanism. In fact, there is strong evidence to support

tions. Preliminary studies by Stilinger and co-workers 2 first-order phase transition in the hard-disk sysf8-34.
[18,19 suggest that aeverseLindemann criterion holds for V/hile the validity of the KTHNY theory is still an interest-
the displacement of liquid atoms about thiziherent struc- "9 OPen questiotsee, e.9.[3,23)), many of its predictions
tures[20,21] at the freezing line, indicating that the criterion N@ve been verified by simulations and experiments. Of spe-
provides a somewhat symmetric description of the liquid-Cial rélevance here is the prediction that the dimensionless
solid equilibrium. It is worth noting that the rms displace- combinationK=4xu(u+N\)/(2u+X) is equal to 16r on the
ment diverges logarithmically with system size in 2D crys-melting line, wherq?l andX are reduced Lameonstants. It
tals and thus the Lindemann criterion is not a suitable ruléhas been recognizef®5] that while the KTHNY melting
for melting in two dimension$22]. criterion is found to hold for 2D solidf14,34], there is no
Two-dimensional systems have provided a fertile mediumanalog in three dimensions.
for the study of phase transitions. Indeed, the topological More recently, Loven, Palberg, and Simdi7] introduced
simplification relative to three dimensions has allowed con-a dynamical criterion for the freezing of three-dimensional
siderable theoretical and computational progf&s23]. Un- colloidal fluids. It states that the ratio of the long-time to the
short-time diffusion coefficienb, /D in the liquid is=0.1
at the freezing line. The criterion has been verified by forced
*Electronic address: torquato@matter.princeton.edu Rayleigh scattering experiments on charged-stabilized colloi-
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FIG. 1. Radial distribution function(r) for hard disks plotted 00,5 5 o5 35
versus distance (in units of diameters Curves represent the fluid r

phase withn=0.65, 0.67, 0.68, and 0.6%eezing point.
FIG. 2. Radial distribution functiog(r) for hard spheres plot-
dal suspensions and Brownian dynamics simulat{@iigor ted versus distance (in units of diametens Curves represent the
varying interparticle interactions. Furthermorewen [35]  fluid phase withy=0.42, 0.45, 0.47, and 0.49#reezing point.
has shown that the criterion does reasonably well for 2D
colloidal fluids, making the Lwen-Palberg-Simon rule the _ r
only freezing criterion to hold simultaneously in two and v(r)= r'(1+D/2)" @
three dimensions. Clearly, such a rule is not applicable for
atomic liquids, which are governed by Newtonian dynamicsFor example, forD=1, 2, and 3,v(r)=2r, «r? and
and are therefore characterized by a single diffusion coeffidr?/3, respectively.
cient. The onset of this significant structural change appears
The criteria presented above are useful because they prw4thin 5% of the freezing transition, which occurs gt~
vide a means for locating the liquid-solid transition without 0.69 in two dimensions ang;~ 0.494 in three dimensions.
resorting to free-energy calculations. Of course, such convednlike the familiar split second peak that occurs in the RDF
nience is obtained at the cost of rigor, since thermodynamicef the dense, metastable hard-sphere systese, e.g.,
dictates the equality of pressure, temperature, and chemick#6,47), the appearance of the shoulder in the stable fluid
potential as the only criteria to be satisfied for coexistingphase is, for the most part, unrecognized. katand
bulk phases in equilibrium. Nevertheless, these rules suggebtalijevsky [48] noticed the shoulder in their Monte Carlo
that some features of the freezing transition, at least fosimulations of the hard-sphere fluid. Upon further investiga-
simple fluids, are universal in character. This is not surpristion [49,50, it was concluded that the shoulder marked the
ing in light of the fact that dense liquids can be treated as @nset of the supercooled liquid, whose structure is similar to
perturbation on the hard-sphere fliid7,3g, which itself that of the amorphous solid. Giarritta, Ferrario, and Gi-
(most likely[39]) exhibits an entropy-driven freezing transi- aquinta[51] noted the shoulder in their curved space simu-
tion in both two and three dimensiorjg0—-47. In fact, lations of dense, hard-disk systems. It is interesting to note
Longuet-Higgins and Widon{43] demonstrated that the that both subpeaks and shoulders have appeared on the ex-
freezing parameters for argon could be obtained from an experimentally measured RDFs of several simple liquids. Their
tended van der Waals treatment of the hard-sphere fluid. Thigresence was originally attributed to finite truncation of the
line of reasoning was instrumental in motivating the earlyFourier inversion integral of the structure factor. However,
order-parameter(density-functional theories of freezing Fehder[52] has suggested, based on his study of Lennard-
[13,44,48. Jones disks, that the subsidiary features may actually result
In this paper we present evidence that the simplest moddtom alternative patterns of local ordering in the fluid.
fluids, namely, the hard-disk and hard-sphere fluids, exhibit a In the present work we demonstrate that the appearance of
structural precursor to the freezing transition. This featuréhe shoulder in the hard-disk and hard-sphere fluid corre-
manifests itself as a shoulder just before the second peak sponds to a salient structural feature that is not present in the
the fluid-phase radial distribution functi¢RDF) at densities low-density fluid. Furthermore, the data suggest that the
close to(but below to the freezing transitiofsee Figs. 1 and structural motif is indeed a precursor of the crystalline solid.
2). The shoulder first becomes visible atDadimensional
packing fractionn~0.67 for hard disks andy~0.47 for Il. RESULTS AND DISCUSSION
hard spheres. The-dimensional packing fraction is defined
as

7TD/2 D

For our study of the fluid phase, molecular dynamics

simulations were performed for systems of 500 patrticles in

n=pv(cl2), (1) both two and three dimensions. The systems were equili-
brated for a period of 5000 collisions, which was sufficient

wherep is the number density ang(r) is the volume of a to guarantee reproducible thermodynamic properties. A

D-dimensional sphere of radius slightly larger system of 780 particles was chosen to simulate
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FIG. 3. Hard-disk fluid configurations are shown with second peak band4.05-2.17)@) »=0.63,(b) »=0.67, andc) »=0.69 and
with next-nearest-neighbor bonds= \/3—1.95) (d) »=0.63,(e) »=0.67, and(f) »=0.69 referred to in the text.
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FIG. 5. Radial distribution functiog(r) for the hard-disk sys-
tem plotted versus distance(in units of diametens The solid line
represents the fluid at the freezing point; € 0.69) and the dashed
line represents the crystal at the melting point€0.716).

bonds drawn between pairs of disks separated by distances
r=/3-1.95. Typical fluid configurations at= 0.63, 0.67,

and 0.69 are shown. Bonds corresponding to an equivalent
interval around the second peak=(1.95-2.17 are also
shown. The comparison is striking. It is apparent that the
next-nearest neighbors compose ordered, hexagonal domains
that increase in size appreciably as the freezing transition is
approached. In stark contrast, the bonds representing the sec-
ond peak interval lack coherent orientational order.

Inspection of the ordered domains reveals that the bonds
in the so-called shoulder intervat £ /3-1.95) correspond
to a distinct structural motif: the four-particle hexagonal-
close-packed configuration. In other words, the bonds con-
nect pairs of particles that straddle another pair of particles at
(or neaj contact. Perhaps more surprising is the degree of
orientational order that is exhibited at this length scale. The
bond network associated with the equilibrium crystal at the
melting point (Fig. 4) clearly supports the claim that the
shoulder is a signature of ordered, crystalline domains rather
than of the amorphous solid. Thus far, there is no humerical
(b) evidence for a kinetically stabilized extension of the fluid
branch in the one-component hard-disk system. The nonex-
istence of a metastable fluid branch would remove the pos-
sibility that the shoulder corresponds to a precursor of the
supercooled liquid or glass.

The hexagonal-close-packed motif and the corresponding
the hard-disk solid at the melting point, i.e., at a volumeshoulder that appear in the RDF should not be affected by an
fraction of 7s=0.716[53]. increase in system size if indeed the observed phenomena are

We have focused on the two-dimensional system, where ifeal. As a check, a system of 2000 disks was also simulated.
is possible to easily visualize the configurations. Close exThere were no distinguishable differences in the radial dis-
amination of the RDF reveals that the shoulder spans fronribution function or in the configuration snapshots. This
r~+/3 tor~1.95(in units of diameters These values cor- might have been expected since the box size is many times
respond to the next-nearest-neighbor distances in the triafarger than the length scale associated with the observed
gular lattice at the close-packed density, € w/2y/3) and at  shoulder.
the melting point density #s=0.716), respectively. This in- A similar picture is expected to hold for the three-
dicates that the shoulder corresponds to the development ofdimensional system, although it is more difficult to visualize.
distinct next-nearest-neighbor shell. To illustrate the strucHere we draw attention to the fact that the shoulder in the 3D
tural change accompanying this feature in the RDF, weRDF is not as pronounced as its 2D counterpart. This is
present in Fig3 a series of dense fluid configurations with related to the fact that, as the dimensionality of space in-

FIG. 4. Hard-disk crystal at its melting pointy{=0.716)
shown with (a) second peak bondg £ 1.95-2.17) andb) next-
nearest-neighbor bonds £ \3—-1.95) referred to in the text.
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6.0 . cal and its physical implications remain unclear. We propose
that the ability to reproduce the detailed structure of the
hard-sphere and hard-disk fluids near the freezing transition
and in particular the shoulder in the second peak of the RDF
is a sensitive test of the accuracy of future theories of this
important class of systems.

IIl. CONCLUSIONS

We have found evidence of a structural precursor to the
freezing transition in the hard-disk and hard-sphere fluid.
This feature can be identified with the development of a
shoulder in the second peak of the radial distribution func-
tion of the fluid within 5% of the freezing transition. Inspec-
tion of the configurations of the hard-disk fluid near the
freezing transition reveals that pairs of disks separated by

r ' ' distances in the shoulder interval straddle pairs of disks at
contact. In other words, the shoulder in the RDF corresponds

FIG. 6. Radial distribution functiory(r) for the hard-sphere tg the formation of a four-particle hexagonally close-packed
system plotted versus distancein units of diameters The solid  motif. At the freezing transition the ordered regions form
line reprt_esents the fluid at the freezing poin;tf_(zo.494) and the appreciably large embryonic domains. Examination of the
dashed line represents the crystal at the melting pojgt0.545).  gtryctural features of the equilibrium crystal at the melting

) ) ) density reveals that the shoulder interval is indeed a signa-
creases, more shellith varying occupation numbersire  yre of the equilibrium solid. It is not known if such a pre-

being formed between the first and second peaks in the RDizyrsor holds for monatomic fluids in general, although this
For example, the fcc solid has a second-neighbor shell aictural characteristic does appear to be associated with the
V2a and a third-neighbor shell af3a, wherea is the  onset of freezing in the 2D Lennard-Jones fi[6@)].
nearest-neighbor spacing. The RDF of the equilibrium fluid  Finally, we note that it would be instructive to study the
and crystal are shown in Figs. 5 and 6 for the hard-disk andjze distribution of the ordered domains that exist near the
hard-sphere systems, respectively. In both cases, the positi@ezing transition via large-scale simulations, i.e., system
of the shoulder in the fluid-phase RDF suggests local cryssjzes that are much larger than the correlation length for
talline ordering. orientational order in the fluid. Glaser and Cl4f{ report
The idea that the dense, equilibrium fluid contains ordereghat the ordered domains in the 2D Weeks-Chandler-
domains is not surprising. In fact, it is strongly suggested byandersen system near freezing follow closely the size distri-
other investigations of repulsive 2D liquids, e.g., pution predicted by the Fisher droplet modélL]. Further

[3,14,51,54-5p An impressive example of this feature was stydies along this line should provide a benchmark for test-
put forth by Glaser and Clar[G,54,55, where it was dem- |ng the C|assica| nuc'eation theory_

onstrated that the structure of a 2D Weeks-Chandler-
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