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Synchronization of coupled time-delay systems: Analytical estimations

K. Pyragas*
Semiconductor Physics Institute, LT-2600 Vilnius, Lithuania

~Received 19 March 1998!

The synchronization threshold of coupled time-delay chaotic systems is estimated by two different analytical
approaches. One of them is based on the Krasovskii-Lyapunov theory that represents an extension of the
second Lyapunov method for delay differential equations. Another approach uses a perturbation theory of large
delay time. The analytical expression relating synchronization threshold to the maximal Lyapunov exponent of
uncoupled driving and response subsystems is derived. The analytical results are compared with the numerical
simulations for two coupled Mackey-Glass systems.@S1063-651X~98!11809-3#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

Cooperative behavior of coupled dynamical systems is
important field of nonlinear dynamics. Synchronization
fects in systems with periodic behavior are widely used
engineering science. In recent years, chaotic synchroniza
has become an area of active research@1,2#, especially in
light of its potential application to secure communicati
@3–6#. This problem has aroused considerable interest in
construction of synchronized directionally coupled~sender-
receiver or drive-response configurations! chaotic systems
The first examples of secure communication@3# were based
on simple low-dimensional chaotic systems having only o
positive Lyapunov exponent. However, it was later realiz
that such simple systems do not ensure a sufficient leve
security@4#. To improve security, high-dimensional system
with multiple positive Lyapunov exponents~hyperchaotic
systems! are preferable, but at the same time, it is desired
achieve the synchronization by transmitting just a single s
lar variable. These opposite requirements complicate
problem essentially. Some ideas@5# on how to construct syn
chronized hyperchaotic systems for the case of coupled
dinary differential equations were proposed in Ref.@5#. Be-
cause these systems have a finite-dimensional phase s
the number of positive Lyapunov exponents is limited by
dimension of the phase space.

Recently chaotic time-delay systems have been sugge
as good candidates for secure communication@6#. These
infinite-dimensional systems are described by delay differ
tial equations and can produce chaotic attractors with an
bitrarily large number of positive Lyapunov exponents.
typical example of this type is the Mackey-Glass system@7#
in which the number of positive Lyapunov exponents
creases linearly with increasing delay time@8#.

In most publications the problem of synchronization
considered numerically either by direct solution of under
ing dynamical equations or by calculating the maximal tra
verse Lyapunov exponent of the synchronization manifo
Due to the lack of analytical theory, the regular way of co
structing synchronized hyperchaotic systems is still
known.
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In this paper, we consider the problem of synchronizi
hyperchaotic systems described by the coupled delay dif
ential equations. The time-delay systems represent a spe
relatively simple case, of spatially extended systems
scribed by partial differential equations. Thus the proble
considered here sheds light on a more general problem
synchronizing spatiotemporal chaos. Here we develop
analytical approaches for estimating the synchronizat
threshold of coupled time-delay systems.

II. NUMERICAL EXAMPLE

We start our analysis with the specific example of tw
directionally coupled Mackey-Glass systems,

ẋ5 f ~xt!2cx, ~1a!

ẏ5 f ~yt!2cy1K~x2y!, ~1b!

where f (xt)5axt /(11xt
b) and xt[x(t2t). The term

K(x2y) in Eq. ~1b! represents a dissipative coupling, whe
K is the coupling strength. AtK50, both the driving@Eq.
~1a!# and response@Eq. ~1b!# subsystems represent a sta
dard Mackey-Glass delay differential equation@7#. Initially
this equation has been introduced as a model of blood g
eration for patients with leukemia. Later this model beca
popular in chaos theory as a model for producing hig
dimensional chaos to test various methods of chaotic tim
series analysis, controlling chaos, etc. The electronic ana
of this system has been proposed in Ref.@9#.

Usually ~e.g.,@8#! the parametersa, b, andc are fixed at
a50.2, b510, andc50.1, and the delay timet is varied.
The number of parameters in Eqs.~1! can be reduced by
dividing these equations byc and changing the time scal
tc→t. The parameterst, a, and k are transformed as fol
lows: tc→t, a/c→a, andK/c→K. As a result, the given
set of parameters becomesa52, b510, andc51, andt is
ten times smaller than that of Ref.@8#.

The changes in the qualitative behavior of the drivi
attractor as the parametert is varied are as follows@8#. The
instability occurs att5t150.471. For 0.471,t,1.33,
there is a stable limit cycle attractor. A period-doubling b
furcation sequence is observed at 1.33,t,1.68. For t
.1.68, numerical simulations show chaotic attractors
3067 © 1998 The American Physical Society
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most parameter values. The number of positive Lyapu
exponents and information dimension of the strange attra
increase linearly with an increase oft. Specifically, att
510 there are five positive Lyapunov exponents and the
formation dimension is of the order of ten.

To identify synchronization in Eqs.~1! we introduce the
rms deviations5A^(y2x)2&, where^ & indicates the time
average. This parameter is finite for an unsynchronized s
and vanishes for a synchronized state. In Fig. 1, thes vs K
dependence, obtained by the numerical integration of E
~1!, is presented. Here and below we use the second-o
Runge-Kutta method with the step sizeh50.01. With an
increase oft, the synchronization thresholdK0 increases and
then saturates to a finite value equal approximately to 0.

Similar results are obtained from the linear theory ba
on a calculation of the maximal transverse Lyapunov ex
nent l(K) of the identity synchronization manifoldy5x.
Small deviationsD5y2x from the identity manifold are
governed by a variational equation

Ḋ5 f 8~xt!Dt2~K11!D, ~2!

where f 8 denotes the derivative of the functionf . If one is
interested in the solutions of this equation at timest>0, it
is necessary to define the initialD(t) for the entire interval
@2t,0#, D(q)5D in(q), 2t<q<0, where D in(q) is a
given continuous initial function in a suitable function spa
C. The state of delay system at timet can be described by a
extended state vectorDtPC constructed in the interva
@ t2t,t# according to the prescriptionDt(q)5D(t1q),
2t<q<0. The norm of this vector isiDti5$*2t

0 D2(t
1q)dq%1/2. By analogy with the systems described by or
nary differential equations, we define the maximal transve
Lyapunov exponent as

l~K !5 lim
t→`

1

t
ln

$*2t
0 D2~ t1q!dq%1/2

$*2t
0 D2~q!dq%1/2 . ~3!

For K50, this exponent coincides with the maxim
Lyapunov exponentl0 of uncoupled driving and respons
subsystems,l05l(0). Thesynchronization threshold corre
sponds to the coupling strengthK5K0 at which the trans-
verse Lyapunov exponent vanishes,l(K0)50. The depen-

FIG. 1. The rms deviations as a function of coupling strengt
K for different values of delay timet.
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dence of the synchronization thresholdK0 on delay timet is
shown in Fig. 2. These results are in a good agreement
the behavior of the rms deviations presented in Fig. 1.

Note that synchronization is achieved~by transmitting a
single scalar variable! even in the case of larget when un-
coupled subsystems have multiple positive Lyapunov ex
nents. Intuitively, one can expect that synchronization
more difficult to achieve when the driving and response s
systems have a large number of positive Lyapunov ex
nents, since more unstable directions are needed to be s
lized. The above example demonstrates that this intuitio
incorrect: for larget the synchronization thresholdK0 is in-
dependent oft but the number of positive Lyapunov expo
nents of the Mackey-Glass system increases ast is increased.
Thus the number of positive Lyapunov exponents is not
appropriate parameter to define the condition of synchro
zation for coupled time-delay systems. In Sec. IV we sh
that the parameter responsible for the synchronization co
tion is the product of the maximal Lyapunov exponentl0
and delay timet.

III. KRASOVSKII-LYAPUNOV THEORY

The analytical estimation of the synchronization thresh
for coupled time-delay systems can be obtained in the fra
work of the Krasovskii-Lyapunov theory@10#. This theory
represents an extension of the second Lyapunov method
the case of delay differential equations. Consider a rat
general form of the identical, one-way coupled scalar tim
delay systems,

ẋ5F~x,xt ,p0!, ~4a!

ẏ5F„y,yt ,p01K~y2x!…. ~4b!

Here we suppose that the system has a parameterp available
for external perturbations. For the driving system@Eq. ~4a!#,
this parameter is fixed to a valuep5p0 . For the response
system@Eq. ~4b!#, it is varied proportionally to the deviation
y2x, p5p01K(y2x) so that in the synchronized statey
5x it takes the same valuep5p0 as for the driving system

Small deviationsD5y2x are governed by a linear dela
differential equation

FIG. 2. Synchronization thresholdK0 as a function of delay
time t. The dashed line corresponds to analytical estimation@Eq.
~18!# obtained in a singular perturbation limitt→`.
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Ḋ52r ~ t !D1s~ t !Dt , ~5!

where 2r (t)5(]x1K]p)F(x,xt ,p0), s(t)5]xt
F(x,xt ,

p0). The symbols]x , ]xt
, and]p denote the partial deriva

tives of the functionF(x,xt ,p) with respect to the variable
x, xt , and parameterp, respectively. The driving and re
sponse subsystems, described by Eqs.~4!, are synchronized
if the origin of Eq. ~5! is stable. Following the Krasovski
theory, we introduce a positively defined functional~similar
to a Lyapunov function in the case of ordinary different
equations!

V~ t !5 1
2 D21mE

2t

0

D2~ t1q!dq

to estimate a sufficient condition of stability. Herem.0 is
an arbitrary positive parameter. The origin of Eq.~5! is
stable if the derivative of the functionalV(t) along the tra-
jectory of Eq.~5!,

V̇~ t !52r ~ t !D21s~ t !DDt1mD22mDt
2,

is negative. The right-hand side of this equation is a ne
tively defined function of the variablesD and Dt if s2(t)
14m@m2r (t)#,0 or r (t).s2(t)/4m1m[w(s,m). For
any s, w(s,m) as a function ofm has an absolute minimum
wmin5usu at m5usu/2. Thus w(s,m)>usu for any s and m
.0, and we obtain the stability condition of Eq.~5! in the
form

r ~ t !.us~ t !u. ~6!

If this inequality holds for allt.0, the identity synchroniza
tion manifold of Eqs.~4! is asymptotically stable. Generally
this condition requires a knowledge of the solutionx(t),
since the parametersr (t) and s(t) are the functions of this
variable. However, in some cases one can do without
knowledge of the explicit solutionx(t). Let us demonstrate
this for the case of coupled Mackey-Glass systems con
ered in Sec. II. Here we haveF(x,xt ,p)5 f (xt)2x2p with
p050 and we obtainr (t)511K5const, us(t)u5u f 8(xt)u.
The stability condition @Eq. ~6!# takes the form K
.maxuf8(xt)u21, where the maximum is defined on the tr
jectory of the driving system. This maximum can be replac
by the absolute maximum of the functionu f 8(xt)u obtained
at xt5@(b11)/(b21)#1/b. As a result, we obtain the ana
lytical criterion of synchronization,K.a(b21)2/4b21
[K̃0 . For given values of parametersa52, b510, this
leads to an estimate of the synchronization thresholdK̃0
53.05. The result differs significantly from the valueK0
'0.7 numerically obtained in Sec. II, because the sec
Lyapunov method gives a sufficient, but not a necessary c
dition of stability. The method assures synchronization aK

.K̃0 , but does not forbid a possibility of synchronization
K,K̃0 . Nevertheless, this theory gives the analytical pro
for the statement that the number of positive Lyapunov
ponents is not responsible for the synchronization condit
since the analytical thresholdK̃0 is independent oft. Below,
we consider another analytical approach that gives a m
accurate estimate of the synchronization threshold.
l
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IV. SYNCHRONIZATION THRESHOLD
FOR LARGE DELAYS

Here we consider the case of a large delay timet→`. To
make our description more transparent, we restrict ourse
to the specific example of coupled Mackey-Glass syste
@Eqs. ~1!#. The solution of Eq.~1a! can be presented as
successive mapping of the functionsxn21(u)→xn(u) de-
fined on the unity interval 0<u<1, so that for any timet
5t(n211u), the outputx(t) is expressed asx(t)5xn(u)
with the integern5floor(t/t)11 andu5t/t2n11, where
floor(t/t) denotes the largest integer not larger thant/t. The
mappingxn21(u)→xn(u) is governed by an ordinary differ
ential equation

1

t
ẋn5 f ~xn21!2xn , ~7!

with the boundary conditionxn(0)5xn21(1). Here ẋn de-
notes the derivative ofxn(u) with respect tou. The initial
functionx0(u), uP@0,1# corresponds to the initial condition
of delay differential Eq.~1a!.

In a similar manner, one can rewrite Eqs.~1b! and ~2!.
Hereafter, we use only the variational Eq.~2!. In the map-
ping notion, it takes the form

1

t
Ḋn5 f 8~xn21!Dn212~K11!Dn ~8!

with the boundary conditionDn(0)5Dn21(1). Equation~3!
defining the maximal transverse Lyapunov exponent can
rewritten as

lt5 lim
n→`

1

n
ln

H E
0

1

Dn
2~u!duJ 1/2

H E
0

1

D0
2~u!duJ 1/2. ~9!

Equations~7! and~8! can be easily integrated, since they a
linear with respect toxn and Dn , respectively. Taking into
account the boundary conditions, we obtain the mapping
pressions in the integral form,

xn~u!5tE
0

u

f @xn21~u8!#et~u82u!du81xn21~1!e2tu,

~10!

Dn~u!5tE
0

u

f 8@xn21~u8!#Dn21~u8!et~K11!~u82u!du8

1Dn21~1!e2t~K11!u. ~11!

These expressions are exact. Now we take advantage o
large delays. For larget, the exponents in the integrals o
Eqs. ~10! and ~11! have sharp peaks at the upper limitu8
5u. Moving in front of the integrals the corresponding fun
tions evaluated at the pointu85u and integrating the expo
nents, we derive approximate expressions

xn~u!5 f @xn21~u!#~12e2tu!1xn21~1!e2tu, ~12!
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Dn~u!5
1

K11
f 8@xn21~u!#Dn21~u!~12e2t~K11!u!

1Dn21~1!e2t~K11!u. ~13!

Iterating these maps for arbitrary initial functionsx0(u),
D0(u), uP@0,1# we obtain continuous-time solutionsx(t)
and D(t) for any t.0. For larget, there is a thin layer of
time u}1/t near the boundaryu50 in which xn(u) and
Dn(u) change rapidly, and the boundary conditionsxn(0)
5xn21(1) andDn(0)5Dn21(1) are satisfied. In a singula
limit t→`, the thickness of this layer vanishes and the
lutions x(t), D(t) become discontinuous at the pointst
5nt. In this limit, Eqs.~12! and ~13! reduce to

xn~u!5 f @xn21~u!#, ~14!

Dn~u!5
1

K11
f 8@xn21~u!#Dn21~u!. ~15!

Formally, these equations can be derived from Eqs.~7! and
~8! by setting derivativesẋn and Ḋn equal to zero. Using
these equations one can find a relationship between the t
verse Lyapunov exponentl(K) and the maximal Lyapunov
exponentl05l(0) of uncoupled driving and response su
systems. From Eq.~15! it follows

uDn~u!u5
uD0u

~K11!n expS (
i 50

n21

lnu f 8@xi~u!#u D .

Substituting this in Eq.~9!, we derive the desired relationsh

l~K !5l02
1

t
ln~K11!, ~16!

where

FIG. 3. Maximal transverse Lyapunov exponentl vs ln(11K)
for different values of delay timet.
-

ns-

l05 lim
n→`

1

nt

3 ln

H E
0

1

expS 2(
i 50

n21

lnu f 8@xi~u!#u D D0
2~u!duJ 1/2

H E
0

1

D0
2~u!duJ 1/2 .

~17!

To confirm this relationship numerically, we calculated thel
vs ln(K11) dependence for various values of delay timet
using exact Eqs.~9!, ~10!, and~11! ~Fig. 3!. For larget, this
dependence becomes a straight line with the slope equ
21/t.

Equation~16! leads to a simple expression for the sy
chronization threshold

K05exp~l0t!21, ~18!

which shows that the synchronization condition is det
mined by the maximal Lyapunov exponentl0 of uncoupled
driving and response subsystems rather than the whole s
trum of positive Lyapunov exponents. Besides, this expr
sion explains why the synchronization thresholdK0 saturates
to a finite value whent is increased. The reason is that f
large t, the maximal Lyapunov exponentl0 decays as 1/t
and the productl0t saturates to a finite value. Figure
shows the dependence of this product ont calculated from
the exact Eqs.~9!, ~10!, and~11!, the approximate Eqs.~9!,
~12!, and ~13!, and in a singular limit defined by Eqs.~17!,
~14!, and~15!.

The last estimate based on Eq.~17! can be simplified.
According to Eq.~14!, different points of functionxn(u)
transform independently. Thus for a fixed value ofu, Eq.
~14! can be considered as a conventional one-dimensio
map that transforms the points rather than functions. T
Lyapunov exponent

FIG. 4. The dependence of the productl0t on delay timet. The
squares correspond to the exact values obtained from Eqs.~9!, ~10!,
and~11!. The circles correspond to approximate Eqs.~9!, ~12!, and
~13!. The dashed line corresponds to Eqs.~17!, ~14!, and ~15! or
Eqs.~19! and ~14! obtained in a singular limitt→`.



th

i
ee

fin
e
p
th
-
e
u

te
th

i

es-
al

lt is
ms
n-

ex-
dea

po-
en-

w-
ory
f the
the
al

nov

oes

m-
ery
m-
and
ro-
un-

ach

ion
ith-

es
, it
to

tch.

PRE 58 3071SYNCHRONIZATION OF COUPLED TIME-DELAY . . .
l̃05 lim
n→`

1

nt (
i 50

n21

lnu f 8@xi~u!#u ~19!

of this map is independent of initial conditionx0(u), and
hence ofu. For largen, the sum( i 50

n21 lnuf8@xi(u)#u in Eq.

~17! can be replaced byl̃0nt. This leads to the equality
l05l̃0 . Thus in a singular limit t→`, the maximal
Lyapunov exponentl0 can be calculated from Eq.~19! as
the Lyapunov exponent of the one-dimensional map~14!.
We checked this statement numerically by calculating
product l0t from Eq. ~17! for different initial functions
x0(u), and the productl̃0t from Eq.~19! for different initial
conditions x0 . In all cases the result was the samel0t

'l̃0t'0.51. Substituting this into Eq.~18! we obtain the
estimate of the synchronization thresholdK0'0.67. For
comparison with the numerical results of Sec. II, this value
shown in Fig. 2 by a dashed line. A good quantitative agr
ment is obtained fort.5. Thus the analytical relations@Eqs.
~16! and ~18!#, obtained in a singular limitt→`, are valid
starting fromt'5.

V. CONCLUSIONS

We have developed two analytical approaches to de
the synchronization condition for one-way coupled tim
delay systems and illustrated them for the specific exam
of coupled Mackey-Glass equations. Our analysis shows
the synchronization is possible~by transmitting a single sca
lar variable! for an arbitrarily large number of positiv
Lyapunov exponents of uncoupled driving and response s
systems. Moreover, the synchronization condition is de
mined by the maximal Lyapunov exponent, rather than
whole spectrum of positive Lyapunov exponents. In the lim
.
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of a large delay time, we have derived an analytical expr
sion relating the synchronization threshold to the maxim
Lyapunov exponent of uncoupled subsystems. This resu
useful for constructing synchronized time-delay syste
with a possible application to secure communication. A
other possible application of this result is related to an
perimental diagnosis of time-delay systems. Using the i
of system synchronization with its prerecorded history@2#
and the relationship between the maximal Lyapunov ex
nent and the synchronization threshold, one can experim
tally measure the maximal Lyapunov exponent in the follo
ing way. The system’s output must be collected in mem
and used to synchronize the current and past states o
system. Varying the coupling strength, one can determine
synchronization threshold and reconstruct the maxim
Lyapunov exponent.

Note that the approach based on the transverse Lyapu
exponent calculated along the chaotic trajectory~Sec. IV!
gives just a necessary synchronization condition and d
not guarantee a high-quality synchronization@11#. If there
are transversally unstable periodic orbits or fixed points e
bedded in a chaotic set of synchronized motions, even v
small disturbances from noise or inaccuracies from para
eter mismatch can cause synchronization to break down
lead to substantial amplitude excursion from the synch
nized state. These brief desynchronization events may be
desirable in some applications. By contrast, the appro
based on the second Lyapunov method~Sec. III! gives a
sufficient but not a necessary condition of synchronizat
@12#. It assures that all transverse perturbations decay w
out transient growth for all time. Although this method giv
a rather rough estimate of the synchronization threshold
guarantees a high-quality synchronization that is stable
perturbations caused by noise or slight parameter misma
nce
on-

.
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