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Synchronization of coupled time-delay systems: Analytical estimations

K. Pyraga%
Semiconductor Physics Institute, LT-2600 Vilnius, Lithuania
(Received 19 March 1998

The synchronization threshold of coupled time-delay chaotic systems is estimated by two different analytical
approaches. One of them is based on the Krasovskii-Lyapunov theory that represents an extension of the
second Lyapunov method for delay differential equations. Another approach uses a perturbation theory of large
delay time. The analytical expression relating synchronization threshold to the maximal Lyapunov exponent of
uncoupled driving and response subsystems is derived. The analytical results are compared with the numerical
simulations for two coupled Mackey-Glass systefi®&l063-651X98)11809-3

PACS numbe(s): 05.45+b

I. INTRODUCTION In this paper, we consider the problem of synchronizing
hyperchaotic systems described by the coupled delay differ-
Cooperative behavior of coupled dynamical systems is agntial equations. The time-delay systems represent a special,
important field of nonlinear dynamics. Synchronization ef-relatively simple case, of spatially extended systems de-
fects in systems with periodic behavior are widely used inscribed by partial differential equations. Thus the problem
engineering science. In recent years, chaotic synchronizatigiPnsidered here sheds light on a more general problem of
has become an area of active resedrtf?], especially in  Synchronizing spatiotemporal chaos. Here we develop two
light of its potential application to secure communicationanalytical approaches for estimating the synchronization
[3—6]. This problem has aroused considerable interest in théhreshold of coupled time-delay systems.
construction of synchronized directionally couplésnder-
receiver or drive-response configuratiprthaotic systems. Il. NUMERICAL EXAMPLE
The first examples of secure communicatj@h were based
on simple low-dimensional chaotic systems having only on
positive Lyapunov exponent. However, it was later realize
that such simple systems do not ensure a sufficient level of
security[4]. To improve security, high-dimensional systems
with multiple positive Lyapunov exponentdyperchaotic .
systemg are preferable, but at the same time, it is desired to y="f(y,) —cy+K(x-y), (1b)
achieve the synchronization by transmitting just a single sca-
lar variable. These opposite requirements complicate thwhere f(x,)=ax,/(1+x2) and x,=x(t—7). The term
problem essentially. Some idefdd on how to construct syn- K(x—y) in Eq. (1b) represents a dissipative coupling, where
chronized hyperchaotic systems for the case of coupled oK is the coupling strength. AK=0, both the driving[Eq.
dinary differential equations were proposed in R&f. Be- (18] and respons¢Eq. (1b)] subsystems represent a stan-
cause these systems have a finite-dimensional phase spadard Mackey-Glass delay differential equatiofi. Initially
the number of positive Lyapunov exponents is limited by thethis equation has been introduced as a model of blood gen-
dimension of the phase space. eration for patients with leukemia. Later this model became
Recently chaotic time-delay systems have been suggest@dpular in chaos theory as a model for producing high-
as good candidates for secure communicafibh These dimensional chaos to test various methods of chaotic time-
infinite-dimensional systems are described by delay differenseries analysis, controlling chaos, etc. The electronic analog
tial equations and can produce chaotic attractors with an aef this system has been proposed in Réf.
bitrarily large number of positive Lyapunov exponents. A  Usually (e.g.,[8]) the parametera, b, andc are fixed at
typical example of this type is the Mackey-Glass sysf@in a=0.2, b=10, andc=0.1, and the delay time is varied.
in which the number of positive Lyapunov exponents in-The number of parameters in Eqd) can be reduced by
creases linearly with increasing delay tifr&g. dividing these equations by and changing the time scale
In most publications the problem of synchronization istc—t. The parameters, a, andk are transformed as fol-
considered numerically either by direct solution of underly-lows: rc— 7, a/c—a, andK/c—K. As a result, the given
ing dynamical equations or by calculating the maximal transset of parameters becomas-2, b=10, andc=1, andr is
verse Lyapunov exponent of the synchronization manifoldten times smaller than that of RéB].
Due to the lack of analytical theory, the regular way of con- The changes in the qualitative behavior of the driving
structing synchronized hyperchaotic systems is still un-attractor as the parameteiis varied are as followf8]. The
known. instability occurs atr=7,=0.471. For 0.474 7<<1.33,
there is a stable limit cycle attractor. A period-doubling bi-
furcation sequence is observed at k33<1.68. For 7
*Electronic address: pyragas@kesO0.pfi.lt >1.68, numerical simulations show chaotic attractors at

We start our analysis with the specific example of two
0d|rect|onally coupled Mackey-Glass systems,

x=f(x,)—CX, (13
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K FIG. 2. Synchronization threshold, as a function of delay
time 7. The dashed line corresponds to analytical estimaftiton

FIG. 1. The rms deviatiowr as a function of coupling strength (18)] obtained in a singular perturbation limt-os.

K for different values of delay time.

most parameter values. The number of positive Lyapuno&ience of the synchronization threshélg on delay timer is

exponents and information dimension of the strange at’[ractot hgvgghlgvli:cl)? lo?ltg:?;es rgz\L/jiI;Stig;e ;gsaer?t?a %dir??:rf enlwent L
increase linearly with an increase af Specifically, atr P 9. L.

=10 there are five positive Lyapunov exponents and the in'sianc()ati,éggrSvyanr?;t;fegl\fgsc:rq t’ﬁeagglseevg?ﬁagmggngn?
formation dimension is of the order of ten. 9 9

To identify synchronization in Eq41) we introduce the coupled su_b_systems have multiple positive Lyapunov_exp_o-
o _\/ﬁ h indicates the fi nents. _In_twtlvely, one can expect _th_at synchronization is
rms deviationo = v((y—x)?), where() indicates the time 5re gifficult to achieve when the driving and response sub-

average. This parameter is finite for an unsynchronized Sta’@ystems have a large number of positive Lyapunov expo-
and vanishes for a synchronized state. In Fig. 1,dh&s K nents; since more unstable directions are needed to be stabi-
dependence, obtained by the numerical integration of EQ§zed. The above example demonstrates that this intuition is
(1), is presented. Here and below we use the second-ordgteorrect: for larger the synchronization threshol, is in-
Runge-Kutta method with the step sire=0.01. With an  gependent ofr but the number of positive Lyapunov expo-
increase ofr, the synchronization threshol, increases and  ents of the Mackey-Glass system increasesiasncreased.
then_ saturates to a finite v_alue equal app_roximately t0 0.7. Thus the number of positive Lyapunov exponents is not the
Similar results are obtained from the linear theory basegppropriate parameter to define the condition of synchroni-
on a calculation of the maximal transverse Lyapunov expOzation for coupled time-delay systems. In Sec. IV we show
nent A(K) of the identity synchronization manifolgl=x.  that the parameter responsible for the synchronization condi-

Small deviationsA=y—x from the identity manifold are jon is the product of the maximal Lyapunov exponent
governed by a variational equation and delay timer.

A=1"(x,)A,~(K+1)A, ¥
I1l. KRASOVSKII-LYAPUNOV THEORY
wheref’ denotes the derivative of the functidn If one is

. ; ; . X _ ) The analytical estimation of the synchronization threshold
interested in the solutions of this equation at timheg), it

: : . A for coupled time-delay systems can be obtained in the frame-
is necessary to define the initial(t) for the entire interval o1 of the Krasovskii-Lyapunov theorji0]. This theory

[- 70l A(9)=4y(9), —7<F<0, where Aj(9) is @ opresents an extension of the second Lyapunov method for
given continuous initial function in a suitable function space,o case of delay differential equations. Consider a rather

C. The state of delay system at timean be described by an ganera| form of the identical, one-way coupled scalar time-
extended state vectoA;e(C constructed in the interval delay systems

[t—7,t] according to the prescriptiod\(J)=A(t+ ),
—7<9=<0. The norm of this vector igA]|={/° A%t

+9)d9}Y2 By analogy with the systems described by ordi- x=F(X.X:.,Po), (48
nary differential equations, we define the maximal transverse _
Lyapunov exponent as y=F(y.y,,po+K(y—x)). (4b)

0 2 1/2
A(K)=lim Em =A%+ 3)dd} 3) Here we suppose that the system has a paramedeailable

e U (S A% D)2 for external perturbations. For the driving systg&y. (4a)],
this parameter is fixed to a valyg=p,. For the response
For K=0, this exponent coincides with the maximal system[Eq.(4b)], it is varied proportionally to the deviation
Lyapunov exponenik, of uncoupled driving and response y—X, p=py+K(y—x) so that in the synchronized staye
subsystems) o=\ (0). Thesynchronization threshold corre- =x it takes the same value=p, as for the driving system.
sponds to the coupling strengkh=K, at which the trans- Small deviationsA =y —x are governed by a linear delay
verse Lyapunov exponent vanishegK,)=0. The depen- differential equation
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A=— r(A+s(t)A (5) IV. SYNCHRONIZATION THRESHOLD
FOR LARGE DELAYS

where - —r(t)=(dx+Kdp)F(X.X7.Po),  S(t) =dx F(x.X, Here we consider the case of a large delay timex. To

Po). The symbolsiy, dy , andd, denote the partial deriva- make our description more transparent, we restrict ourselves
tives of the functiorF(x,x,,p) with respect to the variables to the specific example of coupled Mackey-Glass systems
X, X,, and parametep, respectively. The driving and re- [Egs.(1)]. The solution of Eq(1a can be presented as a
sponse subsystems, described by Ed).are synchronized successive mapping of the functiomg_,(6)—x,(6) de-

if the origin of Eq. (5) is stable. Following the Krasovskii fined on the unity interval & <1, so that for any time

theory, we introduce a positively defined functioisimilar = r(n—1+ 6), the outputx(t) is expressed as(t) =x,(6)
to a Lyapunov function in the case of ordinary differential with the integem=floor(t/7)+1 and=t/7—n+1, where
equationy floor(t/ ) denotes the largest integer not larger than The

mappingx,_1(6) —x,(6) is governed by an ordinary differ-

0 . A
V(t) = %Azﬂif A2(t+ 9)dd ential equation

1.
to estimate a sufficient condition of stability. Hete>0 is ~Xn=T(Xn-2) = Xn, (7)
an arbitrary positive parameter. The origin of E&) is
stable if the derivative of the functional(t) along the tra-  \yith the boundary conditiorx,(0)=x,_1(1). Herex, de-

jectory of Eq.(5), notes the derivative ok,(6) with respect tod. The initial
. ) ) ) functionxy(6), #<[0,1] corresponds to the initial condition
V()=—r()A+s()AA+ uA—pA7, of delay differential Eq(1a).

In a similar manner, one can rewrite Eqéb) and (2).
aHereafter, we use only the variational EE). In the map-
ping notion, it takes the form

is negative. The right-hand side of this equation is a neg
tively defined function of the variabled and A, if s%(t)
+4u[p—r(t)]<0 or r(t)>s(t)/4u+u=e(s,u). For
anys, ¢(s,u) as a function ofu has an absolute minimum

1.
emin=9 at p=1s|/2. Thus ¢(s,u)=[s| for any s and —An=F"(Xq-1) A1 = (K+ DA, ®
>0, and we obtain the stability condition of E() in the T
form

with the boundary conditionr,,(0)=A,,_1(1). Equation(3)
r(t)>|s(t)]. (6) Eieevf\;:}![?gntgcse maximal transverse Lyapunov exponent can be

If this inequality holds for alk>0, the identity synchroniza-

tion manifold of Egs(4) is asymptotically stable. Generally, ( flAz( G)de} 12

this condition requires a knowledge of the solutir(t), 1 o "

since the parametergt) ands(t) are the functions of this A7=lim —In T 9
variable. However, in some cases one can do without any n—ee N f A2(6)de

knowledge of the explicit solutior(t). Let us demonstrate 0 °

this for the case of coupled Mackey-Glass systems consid-

ered in Sec. Il. Here we haw(x,x.,p)=f(x,)—x—p with  Equations7) and(8) can be easily integrated, since they are
po=0 and we obtairr (t)=1+K=const,|s(t)|=|f'(x,)|. linear with respect tx, andA,, respectively. Taking into

The stability condition [Eq. (6)] takes the form K account the boundary conditions, we obtain the mapping ex-
>maxf’(x,)|—1, where the maximum is defined on the tra- pressions in the integral form,

jectory of the driving system. This maximum can be replaced ,
by the absolute maximum of the functiofi (x,)| obtained _ INTar(0 — 0) 4 o1 -

atx,=[(b+1)/(b—1)]**. As a result, \;te obtrllin the ana- X”(G)_Tfo fxo-1(6)]e™"7d6" +xq-1(L)e” ™,
lytical criterion of synchronization,K>a(b—1)%/4b—1 (10)
=K,. For given values of parametes=2, b=10, this

leads to an estimate of the synchronization threstioyd An(0)=Tfaf’[xn,l(9')]An71(9')97('(”)(0,_0)019’
=3.05. The result differs significantly from the valilg, 0

~0.7 numerically obtained in Sec. Il, because the second B

L : - i +A,_1(1)e” TKFDI, (11
yapunov method gives a sufficient, but not a necessary con n-1

dition of stability. The method assures synchronizatioK at .

= . - o These expressions are exact. Now we take advantage of the
>K2, but does not forbid a possibility of synchronization at large delays. For large, the exponents in the integrals of
K<Ky. Nevertheless, this theory gives the analytical proofggs. (10) and (11) have sharp peaks at the upper lingit
for the statement that the number of positive Lyapunov ex— g, Moving in front of the integrals the corresponding func-
ponents is not responsible for the synchronization conditionions evaluated at the poirt = 6 and integrating the expo-
since the analytical threshol, is independent of. Below,  nents, we derive approximate expressions
we consider another analytical approach that gives a more
accurate estimate of the synchronization threshold. Xn(0)=Ff[Xp_1(0)](1—e ") +x,_1(1)e ™ (12
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FIG. 4. The dependence of the prodigt- on delay timer. The
squares correspond to the exact values obtained from(8q$10),
and(11). The circles correspond to approximate E®s, (12), and
(13). The dashed line corresponds to E¢kr), (14), and (15) or
Egs.(19) and(14) obtained in a singular limit—co.

FIG. 3. Maximal transverse Lyapunov exponants In(1+K)
for different values of delay time.

1
An(0)=mf'[xn_l(9)]An_l(9)(1_e—r(|<+1)g) 1

)\Oz I|m —

+A,-4(1)e" T, (13 nr

n—oo

n—1 12
Iterating these maps for arbitrary initial functiong(6), fl exp(ZZ In|f’[xi(0)]|>A(2)( 0)do
Aq(6), 6[0,1] we obtain continuous-time solutiongt) 0 i=0

and A(t) for anyt>0. For larger, there is a thin layer of X1In 1 2

time #o1/7 near the boundaryy=0 in which x,(6) and [f AS( g)dg]

A,(6) change rapidly, and the boundary conditiong0) 0

=X,-1(1) andA,(0)=A,_,(1) are satisfied. In a singular (17)

limit 7—oo, the thickness of this layer vanishes and the so-

lutions x(t), A(t) become discontinuous at the poirtts

=nr. In this limit, Egs.(12) and(13) reduce to To confirm this relationship numerically, we calculated xhe
vs In(K+1) dependence for various values of delay time
using exact Eq99), (10), and(11) (Fig. 3). For larger, this

Xn(0)=f[X,-1(0)], (14 dependence becomes a straight line with the slope equal to
—1/7.
1 Equation(16) leads to a simple expression for the syn-
A (6)= K+1f’[xn—1( 0)1A,_1(6). (15) chronization threshold
KO:eXF()\()’T)_l, (18)

Formally, these equations can be derived from Ed@sand

(8) by setting derivatives;, and A,, equal to zero. Using hich sh hat th hronizati dition s d
these equations one can find a relationship between the tran&" chts) O‘r’]"s that 1 Ie synchronization confmon ISI Zter-
verse Lyapunov exponent(K) and the maximal Lyapunov gﬂ_ng y(tj € maxima L%/apunov expkc:nérg 0 l;]ncm;‘ple
exponentx o=\ (0) of uncoupled driving and response sub- riving and response su systems rather t ?‘”t € whole spec-
: trum of positive Lyapunov exponents. Besides, this expres-
systems. From Eq15) it follows . . o
sion explains why the synchronization threshkiigisaturates
to a finite value whenr is increased. The reason is that for
A n-1 large 7, the maximal Lyapunov exponenti, decays as ¥/
EY € .
(K+1)nex E In|f'[xi(6)]]]. and the produch,r saturates to a finite value. Figure 4
=0 shows the dependence of this productocalculated from
the exact Eqgs(9), (10), and(11), the approximate Eqg9),
Substituting this in Eq(9), we derive the desired relationship 83 :Rg((ig and in a singular limit defined by Eqél?),
The last estimate based on Ed.7) can be simplified.
1 According to Eq.(14), different points of functionx,(6)
MK)=Ao— —In(K+1), (160 transform independently. Thus for a fixed value ®fEQ.
(14) can be considered as a conventional one-dimensional
map that transforms the points rather than functions. The
where Lyapunov exponent

|An(0)|=
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n—-1

- 1
Ko=lim — EO In[f'[x;(6)]]

n—o =

19

of this map is independent of initial conditiox, (), and
hence ofé. For largen, the sum=!_¢ In|f'[x(6)] in Eq.
(17) can be replaced b¥,nr. This leads to the equality
Ao=M\o. Thus in a singular limit7—o, the maximal
Lyapunov exponenk can be calculated from Ed19) as
the Lyapunov exponent of the one-dimensional niag).
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of a large delay time, we have derived an analytical expres-
sion relating the synchronization threshold to the maximal

Lyapunov exponent of uncoupled subsystems. This result is
useful for constructing synchronized time-delay systems
with a possible application to secure communication. An-

other possible application of this result is related to an ex-

perimental diagnosis of time-delay systems. Using the idea
of system synchronization with its prerecorded histf2y

and the relationship between the maximal Lyapunov expo-
nent and the synchronization threshold, one can experimen-

We checked this statement numerically by calculating thea|ly measure the maximal Lyapunov exponent in the follow-

product A\g7 from Eq. (17) for different initial functions
Xo(6), and the produck o7 from Eq.(19) for different initial
conditions Xo. In all cases the result was the sammgr
~\o7~0.51. Substituting this into Eq18) we obtain the
estimate of the synchronization threshdk}~0.67. For

ing way. The system’s output must be collected in memory
and used to synchronize the current and past states of the
system. Varying the coupling strength, one can determine the
synchronization threshold and reconstruct the maximal
Lyapunov exponent.

comparison with the numerical results of Sec. Il, this value is Note that the approach based on the transverse Lyapunov
shown in Fig. 2 by a dashed line. A good quantitative agree€Xponent calculated along the chaotic traject@®gc. IV)

ment is obtained for>5. Thus the analytical relation&gs.
(16) and (18)], obtained in a singular limit—oo, are valid
starting fromr~5.

V. CONCLUSIONS

gives just a necessary synchronization condition and does
not guarantee a high-quality synchronizatidr]. If there

are transversally unstable periodic orbits or fixed points em-
bedded in a chaotic set of synchronized motions, even very
small disturbances from noise or inaccuracies from param-
eter mismatch can cause synchronization to break down and

We have developed two analytical approaches to definkead to substantial amplitude excursion from the synchro-
the synchronization condition for one-way coupled time-nized state. These brief desynchronization events may be un-
delay systems and illustrated them for the specific exampldesirable in some applications. By contrast, the approach
of coupled Mackey-Glass equations. Our analysis shows thdtased on the second Lyapunov meth@&ec. Ill) gives a
the synchronization is possib{by transmitting a single sca- sufficient but not a necessary condition of synchronization
lar variable for an arbitrarily large number of positive [12]. It assures that all transverse perturbations decay with-
Lyapunov exponents of uncoupled driving and response sulsut transient growth for all time. Although this method gives
systems. Moreover, the synchronization condition is detera rather rough estimate of the synchronization threshold, it
mined by the maximal Lyapunov exponent, rather than theguarantees a high-quality synchronization that is stable to
whole spectrum of positive Lyapunov exponents. In the limitperturbations caused by noise or slight parameter mismatch.
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