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Different routes to chaos via strange nonchaotic attractors in a quasiperiodically forced system

A. Venkatesan and M. Lakshmanan
Centre for Nonlinear Dynamics, Department of Physics, Bharathidasan University, Tiruchirapalli 620 024, India

~Received 3 October 1997!

This paper focuses attention on the strange nonchaotic attractors~SNAs! of a quasiperiodically forced
dynamical system. Several routes, including the standard ones by which the strange nonchaotic attractors
appear, are shown to be realizable in the same model over a two-parameterf -e domain of the system. In
particular, the transition through torus doubling to chaos via SNAs, torus breaking to chaos via SNAs and
period doubling bifurcations of the fractal torus are demonstrated with the aid of the two-parameterf -e phase
diagram. More interestingly, in order to approach the strange nonchaotic attractor, the existence of several
bifurcations on the torus corresponding to the hitherto unreported phenomenon of torus bubbling are described.
Particularly, we point out the new routes to chaos, namely,~i! two-frequency quasiperiodicity→torus
doubling→torus merging followed by the gradual fractalization of torus to chaos, and~ii ! two-
frequency quasiperiodicity→torus doubling→wrinkling→SNA→chaos→SNA→wrinkling→inverse torus
doubling→torus→torus bubbles followed by the onset of torus breaking to chaos via SNA or followed by the
onset of torus doubling route to chaos via SNAs. The existence of the strange nonchaotic attractor is confirmed
by calculating several characterizing quantities such as Lyapunov exponents, winding numbers, power spectral
measures, and dimensions. The mechanism behind the various bifurcations are also briefly discussed.
@S1063-651X~98!00409-7#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

In nonlinear dynamical systems strange nonchaotic att
tors ~SNAs! are considered as complicated structures
phase space, which is a property usually associated with
otic attractors. The pioneering work of Grebogiet al. @1#
revealed that there are some possibilities of strange attra
in certain types of dynamical systems that are not chao
These strange attractors are strange in the spirit that
metrically they are strange~fractal dimensional! objects in
phase space. On the other hand, they would not exhibit
sitivity to initial conditions ~for example, Lyapunov expo
nents are negative! and hence are not chaotic. These stran
nonchaotic attractors can arise in physically relevant sit
tions such as a quasiperiodically forced pendulum@2–4#,
quantum particles in quasiperiodic potentials@5#, biological
oscillators @6#, Duffing-type oscillators@7–10#, velocity-
dependent oscillators@11#, electronic circuits@12,13#, and in
certain maps@14–22#. Also, these exotic attractors were co
firmed by an experiment consisting of a quasiperiodica
forced, buckled magnetoelastic ribbon@23#, in analog simu-
lations of a multistable potential@24#, and in a neon glow
discharge experiment@25#.

While the existence of strange nonchaotic attractors
been firmly established, a question that remains interestin
what the possible routes are by which they arise and u
mately become chaotic and how these attractors are born
system~mechanism!. Several routes have been identified
recent times and for a few of them typical mechanisms h
also been found for the creation of SNAs. The major rou
by which the SNAs appear may be broadly classified as
lows:

~i! the route of Ding et al. @6#, two-frequency
quasiperiodicity→three-frequency quasiperiodicity→strange
nonchaotic attractor→chaos;~ii ! the route of Kapitaniak and
Wojewoda @10#, two-frequency quasiperiodicity→strange
PRE 581063-651X/98/58~3!/3008~9!/$15.00
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nonchaotic attractor→three-frequency quasiperiodicity→
chaos; ~iii ! the route of Heagy and Hammel@14#, two-
frequency quasiperiodicity→torus doubling→wrinkling→
strange nonchaotic attractors→chaos;~iv! the route of Feudal
et al. @17#, two-frequency quasiperiodicity→wrinkling→
strange nonchaotic attractors→chaos;~v! the route of Ya-
lencinkaya and Lai @9#, two-frequency quasiperiodicity
→strange nonchaotic attractor~on-off intermittency type
attractor!→chaos;~vi! the route of Venkatesan and Laks
manan@11#, two-frequency quasiperiodicity→torus doubling
→torus merging→wrinkling→strange nonchaotic attractor→
chaos; ~vii ! the route of Kapitaniak and Chua@13#, two-
frequency quasiperiodicity→strange nonchaotic trajectorie
on torus→chaos; and~viii ! the route of Nishikawa and
Kaneko@21#, two-frequency quasiperiodicity→ strange non-
chaotic attractors→chaos.

Different mechanisms have been identified for some
the above routes. In particular, it has been shown that
birth of SNAs in the Heagy-Hammel@14# route is due to the
collision between a period doubled torus and its unsta
torus. Feudalet al. @17# explained in their route that the SNA
also appears a result of a collision of stable and unstable
in a dense of set of points. However, Nishikawa and Kane
@21# discussed in their route that the SNA emerges with
an interaction of stable and unstable tori. Moreover, the l
of transverse stability of the torus can also lead to the birth
SNAs, as in the case of the Yalencinkaya-Lai route@9#
above. To our knowledge, for other routes mechanisms h
not yet been found. Also, most studies of strange noncha
attractors have focused on their characterization using
spectral properties@2,5#, geometrical properties@6#, local di-
vergence of trajectories@10#, phase sensitivity and rationa
bifurcations @15–18#, and functional maps and invarian
curves@20–21#.

In this paper we demonstrate the existence of at least
different routes to chaos via strange nonchaotic attractor
3008 © 1998 The American Physical Society
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PRE 58 3009DIFFERENT ROUTES TO CHAOS VIA STRANGE . . .
a single dynamical system, namely, a quasiperiodic
forced velocity-dependent nonpolynomial oscillator syst
over a two-parameterf -e space. To start with, the birth o
the strange nonchaotic attractors associated with two im
tant routes, namely,~i! torus breaking and~ii ! torus doubling,
has been studied in our model. In low dimensions, Bier a
Bountis have shown that a dynamical system that underg
one or more period doublings need not complete the en
infinite Feigenbaum cascade, but it may be possible to h
only a finite number of period doublings, followed by, fo
example, undoublings or other bifurcations@28#. The possi-
bility of such a different remerging bifurcation phenomen
of the torus doubling sequence in the quasiperiodica
forced system has not yet been reported. Since the sy
that we consider possesses more than one control param
and remains invariant under the reflection symmetry, the
mergence is likely to occur as in the case of low-dimensio
systems@28,29#. To confirm such a possibility, our numeric
studies show that in some regions of thef -e parameter
space, a torus doubled orbit emerges and remerges fro
single torus orbit at two different parameter values ofe to
form a torus bubble. Such a remerging bifurcation can ret
the growth of the torus doubled trees and the developmen
the associated universal route to chaos further. However
nature of remerging torus doubled trees or, more specifica
torus bubbling ensures the existence of different routes
the creation of SNAs when the full range of parameters
taken into account. To illustrate these possibilities in o
system, we enumerate two hitherto unreported types
routes as ~i! two-frequency quasiperiodicity→torus
doubling→torus merging followed by the gradua
fractalization of torus to chaos@11# and ~2! two-
frequency quasiperiodicity→torus doubling→
wrinkling→SNA→chaos→SNA→wrinkling →inverse torus
doubling→torus→torus bubbles followed by the onset o
torus breaking to chaos via SNAs or followed by the onse
torus doubling route to chaos via strange nonchaotic att
tor. Finally, we also show the occurrence of period doubl
bifurcations of the destroyed torus~strange nonchaotic at
tractor! in our model.

This paper is organized as follows. Section II describ
the system and the salient features of its dynamics. Sec
III describes some of the characteristic quantities of stra
nonchaotic attractors in comparison with chaotic attract
such as Lyapunov exponents, winding number, power sp
tral analysis, and dimensions. These quantities have b
used to distinguish between quasiperiodic, strange non
otic, and chaotic attractors. The birth of strange noncha
attractors from the transitions of the two-frequency qua
periodic attractors is observed in the five different rou
mentioned in Sec. IV. The first one is that of torus break
to chaos via SNAs. The second one is through torus bubb
followed by the gradual fractalization to chaos. The th
route is the transition from torus doubling to chaos v
strange nonchaotic attractor. The next one is the possib
of torus doubling to chaos via SNAs followed by the i
versely advancing type of torus. The last one we observ
the period doubling bifurcation of the destroyed torus.
nally, in Sec. V we summarize our results.

II. QUASIPERIODICALLY FORCED
VELOCITY- DEPENDENT SYSTEM

Let us consider briefly the dynamics of a damped a
driven rotating parabola system and discuss some of its
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eral properties as reported in Ref.@11#. A mechanical model
describing the motion of a freely sliding particle of unit ma
on a parabolic wire (z5Alx2) rotating with a constant an
gular velocityV (V25V0

252v0
21gAl andg is the accel-

eration due to gravity! can be associated with a velocity
dependent Lagrangian@27#

Ł5 1
2 @~11lx2!ẋ22v0

2x2#. ~1!

Here the overdot stands for a derivative with respect to tim
The corresponding equation of motion is

~11lx2!ẍ1lxẋ21v0
2x50. ~2!

Whenv0
2.0, Eq.~2! can be integrated in terms of ellipti

integrals. Interesting bifurcations and different routes
chaos occur in the above model when the system is a
upon by additional damping and external forcing@11#. In this
case, Eq.~2! gets modified to

~11lx2!ẍ1lxẋ21v0
2x1a ẋ5 f cosvt. ~3!

The familiar period doubling bifurcations, preceded by
symmetry breaking bifurcation, intermittency, and antimon
tonicity, have been identified by us earlier in Ref.@11#.

Another interesting physical situation is the case in wh
there is an additional parametric modulation in the angu
velocity

V5V0~11e cosvpt !,

so that we can replacev0
25gAl2V0

2 in Eqs. ~1!–~3!
by gAl2V25v0

22V0
2@2e cosvpt10.5e2(11cos 2vpt)#.

Then the equation of motion becomes~see, for example, p
351 in Ref.@27# and also Ref.@11#!

~11lx2!ẍ1lxẋ21v0
2x2V0

2@2e cosvpt

10.5e2~11cos 2vpt !#x1a ẋ5 f cosvet, ~4!

wheree is a small parameter.
We have already noted an interesting quasiperiodic ro

to chaos, namely, two-frequency quasiperiodicity→torus
doubling→torus merging→wrinkling→strange nonchaotic
attractor→chaos in the system~4! in Ref. @11#. In this paper
we make a detailed study of this and many other quasip
odic routes to chaos that can occur in this model in a rang
f -e parameter values and compare them. For our analysis
rewrite the system~4! as
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ẋ5y, ẏ5F2lxy22$v0
22V0

2@2e cosf10.5e2~11cos 2f!#%x2ay1 f cosu

~11lx2!
G ,

~5!
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We note that the system~5! remains invariant under th
reflection symmetry (x,y, f )→(2x,2y,2 f ) @or, equiva-
lently, Eq. ~4! under the transformation (x, f )→(2x,2 f )#.
In analogy to low-dimensional systems involving more th
one control parameter when period bubbles occur@28#, one
may expect a remerging of torus doubling sequences to o
in this model, which we indeed show to be true in the f
lowing.

III. CHARACTERIZATION OF THE QUASIPERIODIC,
STRANGE NONCHAOTIC, AND CHAOTIC

ATTRACTORS

There are several quantities to characterize the attrac
which are useful to distinguish strange nonchaotic from c
otic and quasiperiodic attractors. We briefly review so
that we will use in our study.

A. Lyapunov exponents

For the system~5!, there are two Lyapunov exponents th
are trivial in the sense that they are identically zero by vir
of the two excitation frequencies. Let the Lyapunov exp
nentsl i be ordered by their valuesl1>l2>l3>l4. We
then have the following possibilities:~i! two-frequency qua-
siperiodic attractorsl15l250.l3 ,l4; ~ii ! three-frequency
quasiperiodic attractorsl15l25l350.l4; ~iii ! strange
chaotic attractors, at leastl1.0; and~iv! strange nonchaotic
attractors, the same as two-frequency quasiperiodic att
tors.

B. Winding number

The winding number for the orbit of Eq.~5! is defined by
the limit

W5 lim
t→`

H a~ t !2a~ t0!

t J , ~6!

where (x,ẋ)5(r cosa,r sina). For the two-frequency qua
siperiodic attractors, the winding number satisfies
ur
-
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-

e
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W5
l

n
vp1

m

n
ve , ~7!

wherel, m, andn are integers. Combining the winding num
ber and the Lyapunov exponents, we can distinguish
strange nonchaotic attractors from the other nonchaotic
tractors as noted in Table I.

C. Power spectrum analysis

To quantify the changes in the power spectrum~obtained
using the fast Fourier transform technique! one can compute
the so-called spectral distribution functionN(s), defined to
be the number of peaks in the Fourier amplitude spectr
larger than some value, say,s. Scaling relations have bee
predicted forN(s) in the case of two- and three-frequenc
quasiperiodic and strange nonchaotic attractors. These
ing relations areN(s); ln 1/s, N(s); ln2 s, and N(s)
;s2b, respectively, corresponding to two- and thre
frequency quasiperiodic and strange nonchaotic attractor
the studies of Romeiras and Ott@2#, the power law exponen
was found empirically to lie within the range 1,b,2 for
the strange nonchaotic attractor. Thus the above charact
tics allow us to distinguish the strange nonchaotic attrac
from other nonchaotic attractors as seen in Table I.

D. Dimensions

To quantify geometric properties of attractors, seve
methods have been used to compute the dimension of
attractors. Among them, what we have used is the correla
dimension~introduced by Grassberger and Procaccia@26#!,
which may be computed from the correlation functionC(R)
defined as

C~R!5 lim
N→`

F 1

N2 (
i , j 51

N

H~R2uxi2xj u!G ,

where xi and xj are points on the attractor,H(y) is the
Heaviside function~1 if y>0 and 0 if y,0!, andN is the
number of points randomly chosen from the entire data
sions
TABLE I. Characteristics of attractors.

Types of attractors Winding number Lyapunov exponents Power law relations Dimen

three-frequency
quasiperiodic WÞ

m

n
vp1

l

n
ve

l1,0,l25l35l450 N(s)5 ln2 s integers

two-frequency
quasiperiodic W5

m

n
vp1

l

n
ve

l1 ,l2,0,l35l450 N(s)5 ln
1
s

integers

strange nonchaotic
attractor WÞ

m

n
vp1

l

n
ve

l1 ,l2,0,l35l450
N(s)5s2b

1 ,b, 2
fractals
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The Heaviside function simply counts the number of poi
xi within the radiusR andC(R) gives the average fraction o
points. Now the correlation dimension is defined by t
variations ofC(R) with R:

C~R!;Rd as R→0.

Therefore, the correlation dimensiond is the slope of a graph
of ln C(R) versus lnR. Once one obtains the dimensions
the attractors, it will be easy to quantify strange properties
the attractors as seen in Table I.

IV. DIFFERENT ROUTES TO CHAOS VIA STRANGE
NONCHAOTIC ATTRACTORS

Now we consider the combined effect of both the exter
and parametric forcings in Eq.~5!. To be concrete, we con
sider the dynamics of Eq.~5! and numerically integrate i
using the fourth-order Runge-Kutta algorithm with adapt
step size with the values of the parameters fixed atv0

2

50.25, l50.5, a50.2, V0
256.7, vp51.0, andve50.991.

Various characteristic quantities such as the winding nu
bers, Lyapunov exponents, power spectral measures, an
mensions, as discussed in the preceding section, have
used to distinguish quasiperiodic, strange nonchaotic,
chaotic attractors. Further, to identify the different attracto
the dynamical transitions are traced out by two scanning p
cedures:~i! varying f at a fixede and~ii ! varyinge at a fixed
f. The resulting phase diagram in thef -e parameter space i
shown in Fig. 1. The various features indicated in the ph
diagram are summarized and the dynamical transitions
elucidated in the following.

A. Torus breaking bifurcations and the birth of strange
nonchaotic attractors

For low f and low e values, the system exhibits two
frequency quasiperiodic oscillations denoted by 1T in Fig. 1.

FIG. 1. Phase diagram of the two-parameterf -e space exhibited
by the system~5!. Regions of different attractors are denoted as 1T,
two-frequency quasiperiodicity attractor; 2T, torus doubled attrac-
tor; W1, wrinkled attractor of period one;W2, wrinkled attractor of
period two; S, strange nonchaotic attractor;S2, period doubled
strange nonchaotic attractor; andC, chaotic attractor.
s
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When the value ofe exceeds a certain critical value for
fixed low f, a transition from two-frequency quasiperiod
(1T) to chaotic attractor (C) via a strange nonchaotic attrac
tor (S) occurs on increasinge. For example, we fix the
strength of the external forcing parameter value asf
50.302 and vary the modulation parametere. For e50.03,
Fig. 2~a! of the attractor has smooth branches and this in
cates that the system is in a two-frequency quasiperio
state. As e increases, the branches in Fig. 2~b! start to
wrinkle (W1). As e increases further, the attractor becom
extremely wrinkled and has several sharp bends. The s
bends appear to become actual discontinuities ate50.0419
and ultimately result in a fractal phenomenon. Such a p
nomenon is essentially the result of the collision of sta
and unstable tori in a dense set of points, as was shown
Feudalet al. in their route to chaos via SNAs@17#. At such
values, the nature of the attractor is strange@Fig. 2~c!# even
though the largest Lyapunov exponent in Fig. 3 rema
negative. For this attractor, the correlation dimension is 1.
while the Fourier amplitude scaling constants is 1.54. The
winding numberW does not satisfy the relation~7! for this
attractor. Hence these studies confirm further that the att

FIG. 2. Projection of the two-frequency quasiperiodic attract
of Eq. ~5! for f 50.302, with the Poincare´ plot with f mod 2p in
the (x,f) plane: ~a! two-frequency quasiperiodic attractor a
e50.030, ~b! torus wrinkled attractor fore50.0405, ~c! strange
nonchaotic attractor fore50.0419, ~d! chaotic attractor for
e50.042. The other parameters arev0

250.25, l50.5, a50.2, vp

51.0, V0
256.7, andve50.991.

FIG. 3. Largest Lyapunov exponentlmax vs e corresponding to
Fig. 2.
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tor shown in Fig. 2~c! is strange nonchaotic. Ase increases
further, an attractor visibly similar to Fig. 2~c! appears@see
Fig. 2~d! for f 50.042]. However, it has a positive Lyapuno
exponent and hence it corresponds to a chaotic attractor

B. Remerging torus doubling bifurcations: The torus bubble
and its consequences

1. Torus bubbling

On increasing the forcing parameterf further, 0.305, f
, 0.325, the fascinating phenomenon of torus bubble
pears within a range of values ofe. Within this range off, on
increasing the value ofe along the same line, the onset
chaos is realized via a strange nonchaotic attractor. To
more specific, the parameterf is fixed at 0.32 ande is varied.
For e50.03, the attractor is a two-frequency quasiperio
attractor@Figs. 4~a! and 5~a!#. As e is increased toe50.0317,

FIG. 4. Projection of the two-frequency quasiperiodic attract
of Eq. ~5! for f 50.302, with the Poincare´ surface of section in the
(x,y) plane:~a! torus ate50.03 and~b! torus doubled attractor a
e50.0317. The other parameters arev0

250.25,l50.5, a50.2, vp

51.0, V0
256.7, andve50.991.

FIG. 5. Projection of the two-frequency quasiperiodic attract
of Eq. ~5! for f 50.302, with the Poincare´ surface of section with
f mod 2p in the (x,f) plane:~a! two-frequency quasiperiodic at
tractor fore50.03,~b! torus doubled attractor ate50.0317, and~c!
and ~d! same as~a! and ~b! exceptf mod 4p during integration.
The other parameters arev0

250.25, l50.5, a50.2, vp51.0, V0
2

56.7, andve50.991.
p-

be

c

the attractor undergoes a torus doubling bifurcation@Figs.
4~b! and 5~b!#. The corresponding period doubled torus a
tractor is denoted as 2T in Fig. 1. We note from Figs. 4 and
5 that the two strands in the (x,f) projection become four
strands when torus doubling bifurcation occurs. When
computef mod 4p instead of 2p during integration, we no-
tice from Fig. 5 that the two bifurcated strands of length 2p
are actually a single strand of length 4p. As a result, it can be
concluded that the torus doubling is nonetheless a len
doubling bifurcation. Further, it may be noted that this bifu
cation is geometrically very similar to that of the period do
bling bifurcation in three-dimensional flows. One then e
pects that ase is increased further the doubled attractor h
to continue the doubling sequence as in the case of a pe
doubling phenomenon. Instead, in the present case, inte
ingly, the strands of the length doubled attractor begin
merge into that of a single attractor ate50.0353, as shown in
Fig. 6~a!, leading to the formation of a torus bubble~see Fig.
1!, reminiscent of period bubbles in low-dimensional sy
tems@28,29#. On increasing the value ofe further, the tran-
sition from two-frequency quasiperiodicity to chaos via
strange nonchaotic attractor takes place due to torus brea
bifurcations as discussed in Sec. IV A@see Figs. 6~b!–6~d!
and 7#.

It has been argued in the case of period bubbling in lo
dimensional systems@28# that the cause of formation of th
period bubbles is essentially due to the presence of a re
tion symmetry combined with more than one control para
eter present in the system. It appears that a similar argum
holds for the case of higher dimensions for the formation
torus bubbles.

2. Formation of multibubbles

As the forcing parameterf is increased further in the re
gion 0.325, f , 0.332, the evolution of the attractor unde
goes the following transition to chaos, wherein more th
one bubble is formed on increasing the value ofe: two-
frequency quasiperiodicity→torus doubling→wrinkling
→inverse torus doubling~doubled torus!→merged torus→
torus bubble→merged torus→wrinkling→SNA→ chaos. To
illustrate this possibility, let us fix the forcing paramet
value asf 50.328 and vary thee value. Fore50.03 the at-

s

s

FIG. 6. Projection of the two-frequency quasiperiodic attract
of Eq. ~5! for f 50.32, with the Poincare´ plot with f mod 2p in the
(x,f) plane:~a! merged attractor fore50.0353,~b! wrinkled attrac-
tor for e50.0399,~c! strange nonchaotic attractor fore50.041, and
~d! chaotic attractor fore50.0413. The other parameters arev0

2

50.25,l50.5, a50.2, vp51.0, V0
256.7, andve50.991.
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tractor is two-frequency quasiperiodic. Ase is increased to
e50.0313, the attractor undergoes a torus doubling bifur
tion. The doubled attractor begins to wrinkle when thee
value is increased. However, this wrinkled attractor appe
to become again a torus doubled attractor instead of
proaching the SNA while thee value is increased further
This doubled attractor merges into a single torus throu
inverse bifurcation on increasing the value ofe. The merged
torus again forms a torus bubble and then finally transits
chaos via wrinkling and SNA’s as the value of thee is in-
creased further.

On increasing the forcing parameterf further, 0.332, f
, 0.335, the transition from two-frequency quasiperiodic
to chaos via SNAs takes place through the following rou
wherein more than two bubbles are formed ase increases:
two-frequency quasiperiodicity→torus doubling→wrinkling
→inverse torus doubling→merged torus→torus bubble→
torus→torus bubble→torus→wrinkling→ SNA→chaos.

C. Strange nonchaotic and chaotic attractors within and
outside the main torus bubble

On increasingf further, f .0.335, inside the main toru
bubble we observe interesting possibilities of strange n
chaotic and chaotic attractors via wrinkling ase increases.
Then two interesting possibilities arise inside the m
bubble. The dynamics outside the main bubble more or
follows the previous case in Sec. III B. The details are
follows.

1. SNA within the main torus bubble

In a narrow region off, 0.335, f , 0.339, the SNA un-
dergoes an inverse bifurcation scheme leading to a t
frequency quasiperiodic attractor ase increases through th
following route: two-frequency quasiperiodicity→torus
doubling→wrinkling→SNA→wrinkling→inverse torus dou-
bling ~doubled torus!→merged torus. For example, the for
ing parameterf is fixed at f 50.337 ande is varied. For
e50.03 the attractor is a two-frequency quasiperiodic o
@Fig. 8~a!#. As e is increased toe50.031, the attractor under
goes a torus doubling bifurcation@as seen in Fig. 8~b!#. In

FIG. 7. Largest Lyapunov exponentlmax vs e corresponding to
Figs. 4–6.
a-

rs
p-

h

o

,

-

ss
s

o-

e

lower-dimensional systems, the period doubling occurs in
infinite sequence until the accumulation point is reached,
yond which chaotic behavior appears. However, with tori,
the present case, the truncation of the torus doubling be
when the two strands become extremely wrinkled (W2)
when thee value is increased, as shown in Fig. 8~c!. These
strands lose their continuity as well as smoothness and
come strange ate50.0339. At such values, the attractor po
sesses a geometrically strange property but does not obe
sensitivity to the initial conditions~the maximal Lyapunov
exponent is negative as seen in Fig. 9! and so it is called a
strange nonchaotic attractor@Fig. 8~d!#. The emergence o
such a SNA is due to the collision of stable doubled to
and its unstable parent as was shown by Heagy and Ham

FIG. 8. Projection of the two-frequency quasiperiodic attract
of Eq. ~5! for f 50.337, with the Poincare´ plot with f mod 2p in
the (x,f) plane:~a! two-frequency quasiperiodic torus ate50.03,
~b! doubled torus attractor fore50.0312,~c! wrinkled doubled at-
tractor fore50.0335,~d! strange nonchaotic attractor fore50.0342,
~e! strange nonchaotic attractor fore50.0345,~f! wrinkled attractor
for e50.03461~g! doubled torus attractor fore50.0347, and~h!
merged attractor fore50.036. The other parameters arev0

250.25,
l50.5, a50.2, vp51.0, V0

256.7, andve50.991.

FIG. 9. Largest Lyapunov exponentlmax vs e corresponding to
Fig. 8.
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@14# in their route. Interestingly, the SNA@Fig. 8~e!#, instead
of approaching a chaotic attractor as the value ofe increases,
becomes wrinkled@Fig. 8~f!# and then torus doubled attracto
@Fig. 8~g!#. The doubled attractor again merges into a sin
torus @Fig. 8~h!# on increasing the value ofe further.

2. Chaotic attractor within the main torus bubble

In a rather large region off, f . 0.339, the SNA as
formed above transits into a chaotic attractor on increas
the value of e further through the following route: two
frequency quasiperiodicity→torus doubling→wrinkling→
SNA→chaos→SNA→wrinkling→inverse torus doubling
~doubled torus!→merged torus. To illustrate this possibility
let us choose the parameterf 50.342 and vary the value ofe.
For e50.03 the attractor is a two-frequency quasiperio
attractor @Fig. 10~a!#. As e is increased toe50.0309, the
attractor undergoes a torus doubling bifurcation@Fig. 10~b!#.
As e is increased further the strands of the doubled attra
begin to wrinkle (W2), as shown in Fig. 10~c!. The forma-
tion of sharp bends in the strand of the attractor is now c
ase is increased further. These bends tend to become ac
discontinuities ate50.0337, as shown in Fig. 10~d!. The
emergence of such discontinuities on the torus is due to
collision of a stable doubled torus and its unstable ‘‘paren
which is similar to the one found by Heagy and Hamm
@14#. At such values, the attractor loses smoothness and
comes ‘‘strange.’’ The attractor shown in Fig. 10~d! is noth-
ing but strange nonchaotic as the maximum Lyapunov ex
nent turns out to bel520.012 13 ~Fig. 11!. Further the
correlation dimension is 1.49, the scaling constants is 1.38,
and the winding numberW does not satisfy the relation~7!
for this attractor. Hence these characteristic studies con
further that the attractor shown in Fig. 10~d! is strange but
nonchaotic. On increasinge further, for a narrow range ofe

FIG. 10. Projection of the two-frequency quasiperiodic attr
tors of Eq.~5! for f 50.342, with the Poincare´ plot with f mod 2p
in the (x,f) plane: ~a! two-frequency quasiperiodic torus a
e50.03, ~b! doubled torus attractor fore50.0309, ~c! wrinkled
doubled attractor fore50.033,~d! strange nonchaotic attractor fo
e50.0337,~e! chaotic attractor fore50.034,~f! strange nonchaotic
attractor fore50.0345,~g! doubled torus attractor fore50.0347,
and ~h! merged attractor fore50.036. The other parameters a
v0

250.25,l50.5, a50.2, vp51.0, V0
256.7, andve50.991.
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values, period doubling bifurcation of the SNA is also n
ticed, which will be discussed in detail in the following su
section. On increasing the value ofe further to 0.034, we find
the emergence of a chaotic attractor@Fig. 10~e!#, which,
though visibly similar to the nonchaotic strange attractor
Fig. 10~d!, has a positive Lyapunov exponent~see Fig. 11!.
The chaotic attractor again becomes a SNA whene is in-
creased further@Fig. 10~f!#. As the value ofe is still in-
creased, the SNA becomes a torus doubled attractor@Fig.
10~g!# via wrinkling. This doubled attractor then merges in
a single torus@Fig. 10~h!# when the valuee is continuously
increased.

3. Dynamics outside the main torus bubble

Two additional interesting transitions exist outside t
main torus bubble, namely,~i! torus breaking to chaos via
SNA and~ii ! torus doubling to chaos via a SNA. The deta
are as follows.

In a narrow region off, 0.335, f , 0.345, the transition
from two-frequency quasiperiodicity to chaos via a SN
takes place outside the main bubble through the follow
route ase increases beyonde50.0361: torus→torus bubble
→torus→torus bubble→torus→wrinkling→SNA→chaos.
However, in the region 0.345, f ,0.352, one also observes
transition from a wrinkled two torus (W2) to a wrinkled one
torus (W1).

A further increase of the value off beyond 0.352, fore
values greater than 0.0362, introduces yet another kind
transition beyond the main bubble as torus→torus doubling
→wrinkling→inverse torus doubling→merged torus→ torus
doubling→wrinkling→strange nonchaotic attractor→ chaos.

D. Period doubling bifurcations of destroyed torus„SNA…
within the main torus bubble

In the previous subsections, we have seen that the pe
doubling bifurcation of a torus has been truncated by
destruction of the torus leading to the emergence of a stra
nonchaotic attractor in certain regions of thef -e parameter
space. However, we observe in the present system tha
some cross sections of thef -e parameter space, the perio

- FIG. 11. Largest Lyapunov exponentlmax vs e corresponding to
Fig. 10.
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doubling bifurcation phenomenon still persists in the d
stroyed torus, even though the actual doubling sequenc
the torus has been terminated. Such a route has also
observed recently in coupled Duffing oscillators@8# and in
certain maps@22#. The doubling of a destroyed torus ha
been observed in the present model in a rather long rang
f, 0.338, f , 0.358 and for a narrow range ofe values de-
noted byS2 in Fig. 1. For example, let us choosef 50.345
and vary the value ofe. For e50.03, the attractor is a two
frequency quasiperiodic torus@Fig. 12~a!#. As e is increased
to e50.0305, the system undergoes torus doubling bifur
tions @Fig. 12~b!#. On increasing the value ofe further, the
attractor begins to wrinkle and finally ends up with frac
nature ~a SNA! @Fig. 12~c!#. On increasing the value ofe
further, the fractal torus undergoes doubling bifurcation@Fig.
12~d!#. If the parametere is still increased, the doubled frac
tal torus merges into a single fractal torus and finally tran
into the chaotic attractor.

V. CONCLUSION

In this paper we considered the dynamics of the spec
example of the quasiperiodically forced velocity-depend
nonpolynomial oscillator system~5! that illustrates many of
the typical routes to chaos via strange nonchaotic attrac

FIG. 12. Projection of the two-frequency quasiperiodic attr
tors of Eq.~5! for f 50.345, with the Poincare´ plot with f mod 2p
in the (x,f) plane: ~a! two-frequency quasiperiodic torus a
e50.03, ~b! doubled torus attractor fore50.0305,~c! strange non-
chaotic attractor fore50.0334, and~d! doubled strange nonchaoti
attractor fore50.0337. The other parameters arev0

250.25,l50.5,
a50.2, vp51.0, V0

256.7, andve50.991.
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It was found that the first two routes can be realized in
following ways: ~i! two-frequency quasiperiodicity→ torus
doubling→wrinkling→strange nonchaotic attractor→chaos,
where the birth of the SNA is due to the collision of stab
doubled orbit and its unstable parent torus@14#, and~ii ! two-
frequency quasiperiodicity→wrinkling→strange nonchaotic
attractor→chaos, where the emergence of the SNA is ess
tially the result of interaction of stable and unstable torus
a dense set of points@17#.

More interestingly, we have pointed out the possibility
the torus bubbling. That is, torus doubling bifurcations
dynamical systems can, under suitable circumstances, f
finite sequence that ‘‘merge’’ in some cross sections of
parameters space, inhibiting the onset of torus doubling ro
to chaos. Such remerging bifurcations having a finite num
of ‘‘bubbles’’ occur only within some range of the param
eters values. An important consequence of such remergin
that the orbits become again stable and relatively large
gions reappear around them, where the motion is regular
predictable. To illustrate such merging torus doubling bifu
cations, in our present study, we have shown two m
routes: ~a! two-frequency quasiperiodicity→torus doubling
→torus merging followed by the gradual fractalization
torus to chaos via a SNA and~b! two-frequency
quasiperiodicity→torus doubling→wrinkling→SNA→
chaos→SNA→wrinkling→inverse torus doubling→torus→
torus bubbles followed by the onset of torus breaking
chaos via a SNA or followed by the onset of torus doubli
route to chaos via a SNA. From these routes it can be c
cluded that, prior to standard routes for the transition to
strange nonchaotic attractor, the possibilities of several bi
cations on the torus can be realized. Finally, the period d
bling bifurcations of the destroyed torus have also been
served in our model in a narrow region of thef -e parameter
space: two-frequency quasiperiodicity→torus doubling→
wrinkling→destroyed torus→period doubling of destroyed
torus→merged destroyed torus→chaos.
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