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Finite-size scaling of the quasispecies model
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~Received 16 March 1998; revised manuscript received 4 May 1998!

We use finite-size scaling to study the critical behavior of the quasispecies model of molecular evolution
in the single-sharp-peak replication landscape. This model exhibits a sharp threshold phenomenon at
Q5Qc51/a, whereQ is the probability of exact replication of a molecule of lengthL, anda is the selective
advantage of the master string. We investigate the sharpness of the threshold and find that its characteristics
persist across a range ofQ of orderL21 aboutQc . Furthermore, using the data collapsing method, we show
that the normalized mean Hamming distance between the master string and the entire population, as well as the
properly scaled fluctuations around this mean value, follow universal forms in the critical region.
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PACS number~s!: 87.10.1e, 64.60.Cn
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Although the so-called error threshold phenomen
which limits the lengthL of competing self-reproducing mol
ecules, is acknowledged as one of the main outcome
Eigen’s quasispecies model@1,2#, the full characterization of
the error threshold transition for finiteL has not been satis
factorily carried out yet. In fact, similarly to the definition o
the critical temperature for finite lattices, there is no gen
ally accepted definition of the term error threshold for fin
L @3#. Nevertheless, the study of systematic deviations fr
the infinite length limit behavior introduced by finite-siz
effects, besides being practically independent of the de
tion adopted, gives valuable information on the behavior
the relevant macroscopic quantities near the critical reg
@4,5#.

In the quasispecies model, a molecule is represented
string of L digits sW5(s1 ,s2 ,...,sL), with the variablessa
allowed to take onk different values, each representing
different type of monomer used to build the molecule. F
the sake of simplicity, in this work we will consider onl
binary strings, i.e.,sa50,1. The concentrationsxi of mol-
ecules of typei 51,2,...,2L evolve in time according to the
differential equations@1,2#

dxi

dt
5(

j
Wi j xj2@Di1F~ t !#xi , ~1!

where the constantsDi stand for the death probability o
molecules of typei, andF(t) is a dilution flux that keeps the
total concentration constant. This flux introduces a non
earity in Eq. ~1!, and is determined by the conditio
( idxi /dt50. More pointedly, assumingDi50 for all i and
( ixi51, yields

F5(
i , j

Wi j xj . ~2!

The elements of the replication matrixW are given by

Wii 5Aiq
L ~3!

and

Wi j 5Ajq
L2d~ i , j !~12q!d~ i , j !, iÞ j , ~4!
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where Ai is the replication rate or fitness of molecules
type i, andd( i , j ) is the Hamming distance between stringi
and j. Here 0<q<1 is the single-digit replication accuracy
which is assumed to be the same for all digits.

In this work we will consider the simplest and probab
most studied replication landscape, namely the single-sh
peak replication landscape, in which we ascribe the repl
tion ratea.1 to the so-called master string~0,0,...,0!, and
the replication rate 1 to the remaining strings. In this conte
the parametera is termed the selective advantage of the m
ter string. As the replication accuracyq decreases, two dis
tinct regimes are observed in the population composition:
quasispecies regime characterized by the master string
its close neighbors, and the uniform regime where theL

strings appear in the same proportion. The transition betw
these regimes occurs at the error thresholdqc . To study this
transition for largeL, it is more convenient to introduce th
probability of exact replication of an entire string, namely

Q5qL, ~5!

so that forL→` the transition occurs at@1,2#

Qc5
1

a
. ~6!

Although there is a consensus that a thermodyna
order-disorder phase transition occurs in the limitL→` only
@6–8#, there is some disagreement on the order of the tra
tion. On the one hand, the mapping of the steady-state s
tion of the chemical kinetic equations~1! into the surface
properties of a semi-infinite two-dimensional lattice syste
in thermodynamic equilibrium indicates that the relevant
der parameter, namely, the mean normalized Hamming
tanced between the master string and the entire populati
vanishes continuously atQc @7#. However, due to the enor
mous difficulty of solving the self-consistent equations th
describe the equilibrium surface properties, that analysis
restricted toL520 @7#. On the other hand, a thorough inve
tigation of an alternative mapping of Eqs.~1! into a problem
of directed polymers in a random medium indicates that
2664 © 1998 The American Physical Society
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concentration of master strings presents a discontinuity
Q5Qc @8#. Since this mapping allows for the exact solutio
of the quasispecies model in the single-sharp-peak rep
tion landscape for generic lengthsL, that result implies that
the transition forL→` is definitely of first order@8#.

The aim of this work is to investigate the finite-size e
fects near the error threshold transition. Of particular inter
is the determination of the sharpness of the thresh
namely, the range ofQ aboutQc , where the threshold char
acteristics persist. As we expect that the size of this reg
shrinks to zero likeL21/n as L→`, our goal is to estimate
the value of the exponentn>0 using finite-size scaling or
more precisely, the data collapsing method@5#. Our approach
is in the same spirit of the finite-size scaling of combinato
problems@9#, for which there is no geometric criterion fo
defining a quantity analogous to the correlation lengthj, and
so the success of the method in accounting for the size
pendence of the order parameters cannot be attributed to

FIG. 1. Normalized mean Hamming distance between the m
ter string and the whole populationd as a function of the normal
ized probability of exact replicationQ/Qc for a510, andL570
~h!, 100 ~s!, 120 ~n!, and 150~3!.
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divergence ofj and the consequent onset of a second or
phase transition. In fact, instead of attempting to map
chemical kinetic equations~1! into an equilibrium statistical
mechanics problem, we resort to a simpler and more di
approach, namely, the exact numerical solution of th
equations in the steady-state regime for molecule lengths
to L5150.

As pointed out by Swetina and Schuster@10#, for the
single-sharp-peak replication landscape the 2L molecular
concentrationsxi can be grouped intoL11 distinct classes
according to their Hamming distances to the master str
This procedure allows the description of the chemical kin
ics by the following L11 coupled first-order differentia
equations@10#

dYP

dt
5 (

R50

L

M PRYR1~a21!Y0M P02YP@11Y0~a21!#,

~7!

whereYP denotes the concentrations of molecules in cl
P50,...,L. Clearly,(PYP51. HereM PR stands for the prob-
ability of mutation from a molecule of typeR to a molecule
of type P, and is given by

M PR5 (
I 5I t

I u S R
I D S L2R

P2I DqL2P2R12I~12q!P1R22I , ~8!

whereI l5max(0,P1R2L) and I u5min(P,R).
The procedure to obtain the steady-state solut

dYP /dt50 of Eqs.~7! is straightforward. The steady-sta
concentrationsYP for P50,...,L can be easily found by solv
ing by iterations the following set of equations

YP5
(R50

L M PRYR1~a21!Y0M P0

11Y0~a21!
. ~9!

s-
to
FIG. 2. Variances2 as a function of the normalized probability of exact replicationQ/Qc . The inset illustrates the procedure used
estimate the ratiog/n. The parameters and convention are the same as for Fig. 1.
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Interestingly, the iteration of these equations is identica
the dynamics of a recently proposed population gene
model based on the neglect of the linkage disequilibrium
the population level@11#.

The relevant quantities to describe the structure of
population are the normalized mean Hamming distance
tween the master string and the whole population, defined

d5
1

L
(
P50

L

PYP , ~10!

and the average of the squared deviations aroundd ~vari-
ance!,

s25L2 (
P50

L S P

L
2dD 2

YP . ~11!

Clearly,d ands2 are the analogous to the magnetization a
susceptibility in a system of Ising spins. In Figs. 1 and 2

FIG. 3. Normalized mean Hamming distance as a function
the scaled reduced probability of exact replication. The parame
are 1/n51 and~from bottom to top! a510, 20, and 50. The con
vention is the same as for Fig. 1.

FIG. 4. Scaled variance as a function of the scaled redu
probability of exact replication. The parameters are 1/n51 and
g/n51.958, and~from top to bottom at the peak location! a510,
20, and 50. The convention is the same as for Fig. 1.
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presentd ands2, respectively, as functions of the proper
normalized probability of exact replicationQ/Qc . As ex-
pected, the results of Fig. 1 show the sharpening of the t
sition with increasingL. Furthermore, all curves intersect at
unique point, namely, the critical pointQ5Qc . This some-
what unexpected result has proved very useful to locate
threshold in the case when its location is not knowna priori
@9#. The curves shown in Fig. 2 indicate that the height of
peak ofs2, denoted bysmax

2 , increases with increasingL like
Lg/n. As illustrated in the inset, the ratiog/n is given by the
slope of the straight line fitting the data points in a plot
ln smax

2 versus lnL. The resultg/n51.96 is in good agree-
ment with the analytical prediction that the rms amplitude
a quasispecies around the master string (As2) is found to
diverge algebraically with the exponent 1 asQ→Qc @8#.

The exponent 1/n is estimated using the standa
data collapsing method@5#, as illustrated in Figs. 3 and 4
where we plotd and L2g/ns2, respectively, versusL1/ne.
Here e5(Q2Qc)/Qc is the reduced probability of exac
replication. The collapse of the curves for differentL was
achieved with the exponents 1/n51 andg/n51.958 regard-
less of the value of the selective advantage parametera, in-
dicating then the universal character of these expone
Sincen51, we note that the characteristics of the thresh
transition persist across a range ofQ of order L21 about
Qc51/a. Although, as shown in these figures, the univer
forms ~i.e., scaling functions!, followed by the rescaled orde
parameters in the critical region, seem to depend ona, this
dependence may disappear by properly incorporating the
rametera into the rescaling of the axes. This procedure
illustrated in Fig. 5, where we show the collapse of the d
of Fig. 3 into ana-independent scaling function. Howeve
we have not succeeded in achieving a similar, high-qua
data collapse for the data shown in Fig. 4. This difficulty w
expected since, contrary to the molecule lengthL that goes to
infinity, the parametera may be small and so, in principle
all powers ofa must contribute to the rescaling terms.

As in the case of combinatoric problems@9#, it is surpris-
ing that finite-size scaling is so effective to characterize
error threshold transition of the quasispecies model in

f
rs

d

FIG. 5. Data collapse of thea-dependent scaling functions de
picted in Fig. 3. The convention and parameters are the same a
Fig. 3.
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single-sharp-peak replication landscape, which is known
be of first order@8#. The collapse of the data for differentL
into a single, universal curve presented in Figs. 3 and
however, is incontestable evidence of the usefulness of
finite-size scaling method to investigate threshold pheno
ena. In fact, the existence of the universal forms presente
a

to
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-
in

those figures together with the characterization of the sh
ness of the error threshold are the main results of this pa
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