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Finite-size scaling of the quasispecies model
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We use finite-size scaling to study the critical behavior of the quasispecies model of molecular evolution
in the single-sharp-peak replication landscape. This model exhibits a sharp threshold phenomenon at
Q=Q.=1/a, whereQ is the probability of exact replication of a molecule of lengthanda is the selective
advantage of the master string. We investigate the sharpness of the threshold and find that its characteristics
persist across a range @ of orderL ~* aboutQ, . Furthermore, using the data collapsing method, we show
that the normalized mean Hamming distance between the master string and the entire population, as well as the
properly scaled fluctuations around this mean value, follow universal forms in the critical region.
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Although the so-called error threshold phenomenonwhere A; is the replication rate or fitness of molecules of
which limits the lengthL of competing self-reproducing mol- typei, andd(i,j) is the Hamming distance between strings
ecules, is acknowledged as one of the main outcomes afndj. Here O<q=1 is the single-digit replication accuracy,
Eigen’s quasispecies moddl,2], the full characterization of which is assumed to be the same for all digits.
the error threshold transition for finite has not been satis- In this work we will consider the simplest and probably
factorily carried out yet. In fact, similarly to the definition of most studied replication landscape, namely the single-sharp-
the critical temperature for finite lattices, there is no generpeak replication landscape, in which we ascribe the replica-
ally accepted definition of the term error threshold for finitetion ratea>1 to the so-called master strir(@,0,...,0, and
L [3]. Nevertheless, the study of systematic deviations fronthe replication rate 1 to the remaining strings. In this context,
the infinite length limit behavior introduced by finite-size the parametea is termed the selective advantage of the mas-
effects, besides being practically independent of the definiter string. As the replication accuracydecreases, two dis-
tion adopted, gives valuable information on the behavior otinct regimes are observed in the population composition: the
the relevant macroscopic quantities near the critical regiomuasispecies regime characterized by the master string and
[4,5]. its close neighbors, and the uniform regime where the 2

In the quasispecies model, a molecule is represented bysirings appear in the same proportion. The transition between
string of L digits §=(s;,S,,...,5.), with the variabless, these regimes occurs at the error threstpld To study this
allowed to take ork different values, each representing atransition for largel, it is more convenient to introduce the
different type of monomer used to build the molecule. Forprobability of exact replication of an entire string, namely,
the sake of simplicity, in this work we will consider only
binary strings, i.e.s,=0,1. The concentrations, of mol-
ecules of type=1,2,...,2 evolve in time according to the
differential equation$1,2]

Q=d", (5

q so that forL —cc the transition occurs dtl,2]
X.
dt =2 Wi~ [Di+ @), (1) 1
Qc:a- (6)
where the constant®; stand for the death probability of
molecules of type, and®(t) is a dilution flux that keeps the  Although there is a consensus that a thermodynamic
total concentration constant. This flux introduces a nonlinprder-disorder phase transition occurs in the limit o only
earity in Eq. (1), and is determined by the condition [g—g] there is some disagreement on the order of the transi-
Z;dx;/dt=0. More pointedly, assumin®;=0 for alli and  tjon. On the one hand, the mapping of the steady-state solu-
Zixj=1, yields tion of the chemical kinetic equatiorfd) into the surface
properties of a semi-infinite two-dimensional lattice system
o= WX - (2)  inthermodynamic equilibrium indicates that the relevant or-
i der parameter, namely, the mean normalized Hamming dis-
tanced between the master string and the entire population,

The elements of the replication mat\¥ are given by vanishes continuously @, [7]. However, due to the enor-

W, =Aq- (3 ~Mous difficulty of solving the self-consistent equations that
S describe the equilibrium surface properties, that analysis was
and restricted toL=20[7]. On the other hand, a thorough inves-
tigation of an alternative mapping of Eq4) into a problem
Wi =A;g- 40D —q)d0D ], (4)  of directed polymers in a random medium indicates that the
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' ' ' ' T ' T ' ' divergence of¢ and the consequent onset of a second order
0.5 ' - phase transition. In fact, instead of attempting to map the
] chemical kinetic equation@l) into an equilibrium statistical
7 mechanics problem, we resort to a simpler and more direct
044 *Se ] approach, namely, the exact numerical solution of those
. 558, ; equations in the steady-state regime for molecule lengths up
- 0.3 4 to L=150.
<520, As pointed out by Swetina and Schustdi0], for the
X 2a%, fag ] single-sharp-peak replication landscape tHe rAolecular
0.2 X i8a000, %0 concentrations; can be grouped inth +1 distinct classes
x”xxxxyf\ig ] according to their Hamming distances to the master string.
This procedure allows the description of the chemical kinet-
. . . . ics by the followingL+1 coupled first-order differential
0.90 0.95 1.00 1.05 1.10 equations[lO]

L
FIG. 1. Normalized mean Hamming distance between the mas- dYe _ . _ _

ter string and the whole populatiahas a function of the normal- dt _RE—:O MprYR+ (2= 1)YoMpo—Yp[1+Yo(a—1)],

ized probability of exact replicatio®/Q. for a=10, andL=70 (7)

(0), 100(0), 120(A), and 150(X).

concentration of master strings presents a discontinuity aN€re Yp denotes the concentrations of molecules in class
Q=0Q, [8]. Since this mapping allows for the exact solution P=0.-..L.. Clearly,2pYp=1. HereMpg stands for the prob-

of the quasispecies model in the single-sharp-peak repncdﬁlblllty of mutat_lon _from a molecule of typR to a molecule
tion landscape for generic lengths that result implies that  ©f type P, and is given by
the transition forL — o is definitely of first ordef8].

The aim of this work is to investigate the finite-size ef- lu R\/L-R
fects near the error threshold transition. Of particular interest ~ Mpg= >, ( | )( P
is the determination of the sharpness of the threshold, =1t
namely, the range dD aboutQ., where the threshold char-
acteristics persist. As we expect that the size of this regioivherel,=max(OP+R—L) andl,=min(P,R).

shrinks to zero likel "' asL—¢, our goal is to estimate  The procedure to obtain the steady-state solution
the value of the exponent=0 using finite-size scaling or, dY,/dt=0 of Eqgs.(7) is straightforward. The steady-state
more precisely, the data collapsing metfibi Our approach concentrationy for P=0,...L can be easily found by solv-

is in the same spirit of the finite-size scaling of combinatoricing by iterations the following set of equations

problems[9], for which there is no geometric criterion for

defining a quantity analogous to the correlation lengjtand

)qLPR+2I(1_q)P+R2I, (8)

L —
so the success of the method in accounting for the size de- :ER=O'V|PRYR+(a 1)YoMpo )
pendence of the order parameters cannot be attributed to the P 1+Yo(a—1) '
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FIG. 2. Variances? as a function of the normalized probability of exact replicatiQ. . The inset illustrates the procedure used to
estimate the ratio/v. The parameters and convention are the same as for Fig. 1.
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FIG. 3. Normalized mean Hamming distance as a function of k| 5 pata collapse of the-dependent scaling functions de-
the scaled reduced probability of exact replication. The parameterﬁicted in Fig. 3. The convention and parameters are the same as for
are 1=1 and(from bottom to top a=10, 20, and 50. The con- Fig. 3.

vention is the same as for Fig. 1.

. . . i . ) presentd and o2, respectively, as functions of the properly
Interestingly, the iteration of these equations is identical % ormalized probability of exact replicatio@/Q,. As ex-
c-

thedd?/gam'gs Oftk? recelntlyt/ r;r?hpo?eg popdqIatloryl_g(.anetlcEected’ the results of Fig. 1 show the sharpening of the tran-
modetl based on the neglect of the finkage diSequilibrnium ki, \ith increasingd.. Furthermore, all curves intersect at a

the population level11]. unigue point, namely, the critical poiQ= Q.. This some-

The relevant quantities to describe the structure of the que point, Y, PoIR =T .

population are the normalized mean Hamming distance bev_vha’[ unexpected result has proved very useful to locate the
reshold in the case when its location is not kncavpriori

tween the master string and the whole population, defined b?.‘ L e _
9]. The curves shown in Fig. 2 indicate that the height of the

1t peak ofo?, denoted byrfna,o increases with increasiriglike
d=— E PYp, (10 L”". As illustrated in the inset, the ratig'v is given by the

L P=o slope of the straight line fitting the data points in a plot of
In 02, versus InL. The resulty/»v=1.96 is in good agree-
ment with the analytical prediction that the rms amplitude of
a quasispecies around the master strigg3) is found to
p 2 diverge algebraically with the exponent 1 @s- Q. [8].
——d) Yp. 11 The exponent I/ is estimated using the standard
L data collapsing methofb], as illustrated in Figs. 3 and 4,

where we plotd and L™ ”"¢?, respectively, versus"e.

2 . .
Clearly,d ando“ are the analogous to the magnetization andHere e=(Q—0Q,)/Q. is the reduced probability of exact

susceptibility in a system of Ising spins. In Figs. 1 and 2 Wereplication. The collapse of the curves for differdntwas

achieved with the exponentsi 1 andy/v=1.958 regard-
less of the value of the selective advantage paranagtier
0034 7 dicating then the universal character of these exponents.
i Sincev=1, we note that the characteristics of the threshold
transition persist across a range @fof order L~! about
Q.=1/a. Although, as shown in these figures, the universal
forms(i.e., scaling functions followed by the rescaled order
parameters in the critical region, seem to dependh,othis
dependence may disappear by properly incorporating the pa-
rametera into the rescaling of the axes. This procedure is
] e ) illustrated in Fig. 5, where we show the collapse of the data
nonaRRAAAAAS . . ; . X
0.00 1 4 of Fig. 3 into ana-independent scaling function. However,
we have not succeeded in achieving a similar, high-quality
7 M y T ' T y T data collapse for the data shown in Fig. 4. This difficulty was
expected since, contrary to the molecule lerigthat goes to
infinity, the parametea may be small and so, in principle,
FIG. 4. Scaled variance as a function of the scaled reducedll powers ofa must contribute to the rescaling terms.
probability of exact replication. The parameters are=i1 and As in the case of combinatoric problerf®, it is surpris-
vlv=1.958, and(from top to bottom at the peak locatipa=10, ing that finite-size scaling is so effective to characterize the
20, and 50. The convention is the same as for Fig. 1. error threshold transition of the quasispecies model in the

and the average of the squared deviations aradirfdari-
ance,
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single-sharp-peak replication landscape, which is known tdhose figures together with the characterization of the sharp-
be of first ordef{8]. The collapse of the data for differeht ness of the error threshold are the main results of this paper.
into a single, universal curve presented in Figs. 3 and 4, _

however, is incontestable evidence of the usefulness of the The work of J.F.F. was supported in part by Conselho
finite-size scaling method to investigate threshold phenomNacional de Desenvolvimento Ciefitp e Tecnolgico
ena. In fact, the existence of the universal forms presented itfcNPg. P.R.A.C. is supported by FAPESP.
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