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We construct a family of chaotic dynamical systems with explicit distributions with broad tails, which
always violate the central limit theorem. In particular, we show that the superposition of many statistically
independent, identically distributed random variables obeying such a chaotic process converge in density to
Lévy's stable laws in a full range of index parameters in a unified manner. The theory related to the connection
between deterministic chaos and non-Gaussian distributions gives us a systematic view of the purely mechani-
cal generation of [ey’s stable laws[S1063-651X98)08408-G

PACS numbe(s): 05.45+b, 05.20-y, 05.40+]

Levy’s stable laws are the most famous class of distribu-This is an explanation of the mechanical origin of the
tions violating the central limit theoreCLT). These arise Cauchy distributior(3). Note that the Cauchy distribution is
in such diverse fields as astronomy, physics, biology, ecoa simple case of a lvy stable distribution with the charac-
nomics, and communication engineering, under broad condieristic = 1. Measurg3) is absolutely continuous with re-
tions [1-4]. Our primary interest here is to elucidate the spect to the Lebesgue measure, which implies that the
mechanism by which lwg/’s stable laws are generated. In the Kolmogorov-Sinai entropyh(x) is equivalent to the
1980s, several studies clarified the relation between Levy’skyapunov exponent of In2 from the Pesin identity; the mea-
law-like broad distributions and intermittent periodic map- sure is a physical one in the sense that, for almost all initial
ping and anomalous diffusiofb,6]. Random-walk models conditionsx,, the time averages lig...(1/n) =3 8(x—x;)

[7] and combinations of several random number generatorgproduce the invariant measytédx) [10]. Our next step is
[8,9] are also utilized to generate s stable laws. How-  to generalize exactly solvable chatly to capture the full
ever, the approximations made or the nondeterministic nadomain of Lery’s stable laws. Now let us consider the map-
ture of the models themselves, or thei[ generation methodgsing

are only applicable to a special class ofvigls stable laws,

because few examples of s stable distributions are ex- X, 1=|2(|X,|%— 1/ X, |Y¥sgr (X, — LX) 1= o(X,),
plicitly known. The purpose of the present paper is to present

an explicit implementation for exact and purely mechanical

generation of stable laws with arbitrary indices using conwhere 0<«<2, and sgnX)=1 for x>0 and sgnf)=—1
crete chaotic dynamical systems. Let us consider a ondor x<0. We prove here that this chaotic dynamids also

dimensional dynamical system has a mixing property similar to mappiri@), as well as an
exact invariant density function given by
1 1
xn+1=§( X X—n)=f<xn> (1) B G T
Pa(X) 5 || or [x|[—e. (5
T (1+[x[5) T

on the infinite support<{ <, + ). Note that for this mapping

f(X) can be seen to be the doubling formula-o€ot(f) as  Note that the chaotic system given by H@) is a special
—cot(26)=f[—cot(f)]. Thus the system has the exact solu-case of Eq(4) with «=1. We remark here that this system
tion X,=—cot((7/2)2"6;). Using a diffeomorphismx  can also be seen as a doubling forms(@6)=f[s(6)],

= ¢ 1(6)=—[1tan((m/2)8)] of #<[0,2] into ]—,+o[, where

we derive the piecewise-linear map?)(6) = ¢ofop ()

® sof {5

g?(6)=26, 6e[0,1), S(g)z_ﬁ_.
tar(—e)
g?(6)=260-2, 60e[1,2). 2) 2

Because maf2) has the mixing propertyand thus is clearly Using the relations

ergodig and preserves the Lebesgue measuté of [0,2],

mapf preserves the measure s(20)=1,[s(0)] for 6<[0.D),

1 do(x) dx s(20—-2)=f,[s(6)] for 60e[1,2] (6)

M(dX)=p(X)dX=§ ax

3

X= .
m(1+x?) and defining the diffeomorphism
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a In this case, the topological conjugacy relatigft)(6)
sg ta"(gﬁ) = ¢aofao¢>;1(0) yields the piecewise-linear map
x=¢ (0=~ T—7—ma %
o r 2
tar(§0> 360, 0Ge 0,—)
3
of 6e[0,2] into ]—o0,+0co[, we obtain the piecewise-linear (3)( g\ — ) E f)
mapg®(6) = b, f,- ¢, (6) as gm(0)= 36=2. 0¢i3.3 =
4
g(z) _ 20, 6€[0,1 @® \ 30—-4, 6fe 5,2}.
20-2, 9e[1,2]

In general, the same kind of topological conjugacy relation
with the invariant measurédé of [0,2]. Thus, the map of g(P)(@):qﬁaof(lod);l(g) holds for a p-to-one piecewise-
Eq. (4) preserves linear mappingg®®(#). Let us consider slightly modified

) dynamical system¥,1="f, 5(Xn)=(1/8)f,(5X,), with a
|*~

do, a |x change of variabld(x)= éx for a constant5>0. Thus this
p(dx)=pa(X)dx= 5 —=dx=— (1 P dx. (9 modified dynamics,
B X ! 12
rametera also has a mixing propertthus is ergodit with 59 @ - (12
the Lyapunov exponent In 2.

More generally, from the family of Chebyshev mapshas an invariant measure p, s(X)dx= p,(5x)dx
Yn.1=f(Y,) defined by the addition formulas of the form =(a8%|x|*~1dx)/w(1+ 5%%|x|2*) with a slightly modified

Therefore, the class of dynamical syste(s with the pa- fa,a(x)=‘§(x|a— 1/ 82X|%)

sirf(pg)=f[sir’(6)], where p=2,3, ..., with the unique power-law tail given by

density o(y)=[1/7vy(1—Yy)] of the logistic mapY,,,

=4Y,(1-Y,) (which corresponds to the casp=2) a 1

[11,12, we may construct infinitely many chaotic dynamical Pa,5(X)= o Ix for x— oo, (13

systems X, 1="f,(X,) with the unique density function
pa(X) given by Eq.(5) [13]. For example, an explicit map- \ye wiil show that this power-law tail of the density is suf-

ping with the Lyapunov exponent In3 is given by ficient for generating arbitrary symmetric stable laws. The
canonical representation of stable laws obtained byyland
Khintchine[14,15 is

xn+l: fa(xn) =

[ Xal “( X/ 22— 3)[ r{xndxnlh—s)
(3]Xp|2—1)
(10

(3|Xq2*~1) |

P(x;a,B)= %flexp(izx) P(z)dz, (14

which has the density5) from the triplication formula of
s(6). where the characteristic functiofi(z) is given by
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FIG. 2. Densities of the superpositi@&=[=_,X(i) — Ay]/By of dy-
FIG. 1. Densities of the superpositi@ =[N, X(i)—Ay]/By of dy- ~ namical variables X(i) generated by chaotic systems, (i)
namical variablesX(i) generated by chaotic systems.,(i)=f2 ¢ :f512:)1.5,§l:1,§2:0.5{xj(i)]! with N different initial  conditions
X[X(i)], with N different initial conditionsXy(i)|;=1... , are plotted for Xo(i)|i=1, ... n, are plotted forN=1, 10, 100, 100’0, and 10 000. In this
N=1,10,100,1000, and 10 000. In this case, the limit density converges tease, the limit density converges to the asymmetrieylsestable law with
the symmetric Ley’s stable law with the indicea=1.5 and3=0. the indicesa=1.5 andB=—[(9—42)/7].
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P(z)=exp[—iyz—n|z|*[1+iB sgnz)w(z,a)]}, (15
a, B, y, and  being real constants satisfyingcv<2,—1
<pB<1,y=0, and

w(z,a)=tan 7wal2) for a#1,

o(z,a)=(2/m)In|z| for a=1. (16

Note that explicit forms of [ey’s distributions(14) are not
known for general parameters and 8 except for a few
cases such as the Cauchy distributian<1,8=0). Accord-
ing to the generalized central limit theore@CLT), it is
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An=N(x), By=NYe,

m(ci+c_)

= - for 1<a<2.
2a?sin(mal2)T (a—1)

In the case of the symmetric long tail of EG), c.
=c_=(alws%), B=0, andy is determined by

1
n= for O<a<l,

5“sm( )F(a)

known [16] that if the density function of a stochastic pro-
cess has a long tall,

1
a5“sin<7>I‘(a—l)
p(X)=c,|[x|"*®  for x— +oo, 17
then the superpositioBy= [EN 1X(i) — Ay]/By of indepen- Thus, according to the GCLT, the superposition of statis-
dent |dent|ca||y distributed random variables tlca”y Independent |dentlca"y distributed random variables
X(1), ... X(N) with the densityp(x) converges in density 9generated bN chaotic systems of Ed4) is guaranteed to
toa Le/ys stable lawP(x; «,8), with converge in distribution to an arbitrary symmetric wés
stable lawP(x;«,B8=0). Figure 1 shows that the conver-
B=(c,—c_)l(c,+c_), gence in distribution to a lwy's stable distribution with pa-
y rameterse=1.5 andB=0, as predicted by the GCLT, is
An=0, By=N"¢, clearly seen forlN=10000. Similar results hold for more
( ) general stable distributions, including asymmetric stable
_ m(C,+C_ laws. In particular, let us consider a family of dynamical
7 2asinmal(@ O 0Tt 09 systemsX, = f, 5 5, (%), Where
(lallea_1>l/a ; . 1
or -
Sx|\ 2 8
1 (1_lglx|20) {/a ] 0<x< 1
- or —
] oaslxll 2 )
fa.5,.8,(X)=1% L [1=|8x]e| e f ) o (20)
5 5ZIX|\ 2 TS,
/I |2a )l/a 1
for X<-—.
S 2 5,
|
We can show that this dynamical systenX,,; Because the power-law tail is asymmetric as
=fa,51,52(xn) has the asymmetric invariant measure
wu(dx)=p(X;a,d;,8,)dX, WherEpa’(gl’&z(X) is given by
Pasy6)(X)= "7 X+,
TO1X
i~ aé‘fx“_l . 0
Pa,dy,0)\X) = 5 Tor x>0,
m(1+ 87%%x°%) .« .
! pa,ﬁl,ﬁz(x)_ 7753|X|a+1' X— (22)
ady|x|*t _— .
Pasy,5,(X)=———>——— for x<0. (21) for 6,# 6,, the GCLT guarantees that the limiting distribu-

m(1+ 85%|x|%*) tion would be a Lgy’s canonical formP(x;a,8) with the
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skewness parameteB=[(455—
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59)1(85+53)1#0. Thus,

one can generate an arbitraryvyés stable lawsP(x; «, 8)

for 0<a<2 and —1<pB<1 [17] using the chaotic map-
pingsf, s 5,(X) with proper parameters, 61, andé,. Fig-
ure 2 illustrates convergence to an asymmetrigyl®stable
distribution with indicese=1.5 andg= —[(9—4+/2)/7] as
clearly seen foN=10 000, as predicted by the GCLT. To
show the exactness of the asymmetric den&ty, we must
check that the invariant measupgyﬁlyﬁz(x)dx satisfies the

probability preservation relatiofiPerron-Frobenius equatipn

[18]

Pay.5,(¥)= >

Pa, 2% 62()()

-1
X:fayglygz(y)

:
dy|’

(23

We note thatf, 5 5(X) =, 5(X) and p, s, .5,(X) = pa,s,(X)

for x>0 and pa,(;l,,;z(x)zpa,,sz(x) for x<0, which also

have the Perron-Frobenius equations

Pas (V= 2 Pas(X)| 7o

x:f;,f;‘(y)

dx
dy

i=1,2.

(24

Here we define two preimageg—f;{s 5 (y)<0 andxy

a51

also deflne two prelmageya—fa‘

5, (y)>0 for y>0. In the casefm; (x)=y>0, we
l(y)<0 and x;
f L 5, (Y)(=xp)>0 fory=f, 5 (x)>0. It is easy to check

that 52xa 81X; . From the Perron-Frobenius equatiq@s)

and(24), we have the relation

1
pa,ﬁz(xa) d fayﬁl,éz(x)

dx

We note that the validity of Eq25) can be checked under
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dent, identically distributed dynamical variables obeying cer-
tain chaotic processes in a unified manner. Owing to the
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