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State-space prediction model for chaotic time series
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A simple method for predicting the continuation of scalar chaotic time series ahead in time is proposed. The
false nearest neighbors technique in connection with the time-delayed embedding is employed so as to recon-
struct the state space. A local forecasting model based upon the time evolution of the topological neighboring
in the reconstructed phase space is suggested. A moving root-mean-square error is utilized in order to monitor
the error along the prediction horizon. The model is tested for the convection amplitude of the Lorenz model.
The results indicate that for approximately 100 cycles of the training data, the prediction follows the actual
continuation very closely about six cycles. The proposed model, like other state-space forecasting models,
captures the long-term behavior of the system due to the use of spatial neighbors in the state space.
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Measured time series are usually the basis for charactereconstructed in the state spd@20,27. A total of n dif-
izing a dynamical system. In practical cases, however, it igerent points on the attractor located in the state space are
not possible to observe all relevant dynamical variables perknown. These points aré(1),P(2),...,P(n). With respect
taining to the system. The most common case is limited to 40 a fixed reference frame, a point is representednayum-
scalar time evolution of a variable for a finite duration of bers,m being the dimension of the state space. There are two
time. One of the most challenging endeavors is to predict thguestions{i) Can one determine the poiRi(n+1), and(ii)
continuation of the time evolution of the scalar variableif (i) is achieved, how far can the consecutive poiR{s
monitored. A finite-dimensional linear system produces at+1),P(n+2),...,P(n+n*) be found, that is, what is the
signal that can be characterized by a finite number of fremaximum value fom*?
guencies. Based upon this fact, either in frequency or in time We first postulate that for any poif(n), the succeeding
domain there are methods for time series predickidnFor  point P(n+1) can be found using the preceding points of
nonlinear processes, however, these methods become indp¢n+1) and the time evolution information of the spatial
propriate since a global model cannot be applied to the entiraeighbors ofP(n) that are located within a certain cutoff
state space where the signal lij&s3]. distance (Fig. 1). Note thatP(n) is a column vector withm
Eckmann and Ruellpt] suggested first the idea of finding rows. The preceding points &(n+1) may be expressed in
the relation between the delay coordinatgs7] of a point  a (dm) dimensional vectoP_(n+1) as
and the points that appear at some time later in the state
space. This idea was followed immediatg8~11 and also ~ P-(n+1)=[PT(n)PT(n—1)PT(n—2)---PT(n—d+1)],
found an application in the solution of a so-called inverse Q)
problem in iterated function systeris2]. A competition was
also arranged to test the success of prediction algorith
proposed until 199313]. Among those registered for the
competition, two methods prove to be the most successful P(n+1)=CP_(n+1), )
[14,15. One uses a connectionist neural netwftK] and
the other utilizes the delay coordinate embedding baseg/hereC is an[mx (dm)] coefficient matrix that contains an
methodology{15] based upon the Eckmann-Ruelle proposi-ayerage time evolution information of the spatial neighbors
tion. More recently, wavelet§16] and genetic algorithms of p(n). In Fig. 1, P(k;) denotes these spatial neighbors.
[17] have also been suggested for nonlinear predictiongerei can take values from 1 tp, which is the number of
And, a methodology based upon a nonlinear prediction techhejghpors that fall into the sphere whose center i®@t)
nique[18] has been proposed to probe dynamical couplingyng radius is the cutoff distance The entries of the coeffi-
[19] among nonlinear systems. In what follows we propose gjent matrix C, therefore, depend on the location Bfn)

state-space prediction model whose success will be shown 1,4 its topological neighborhood. TI@ matrix can be ob-
be comparable with those of Sauef¥5] and Wan's[14],  tained from the following equation:

although present methodology is simpler and easier to imple-
ment. C=BA 1, 3
The prediction problem may be formulated as follows:

Suppose that the time evolution of the system behavior isvhereA is a[ (dm) X p] matrix whosd th column consists of
P_(k;+1) andB is an (mXp) vector whosdth column is
made of P(k;+1). The generalized inverse & can be

* Author to whom correspondence should be addressed. found using the singular value decomposition techni@2.

m\g/hered is referred to as the model dimension. According to
our conjecture, the following equation may be written:
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and between the top cold and the bottom hot surface the
temperature is held constant. The partial differential equa-
tions were transformed to a set of three ordinary differential
equationg23]. Later Lorenz described the way he derived
the model both physically and mathematicall®4]. The
three ordinary differential equations are

P(n+1)

Plk;+1) X=—oX+ oy,

y=—XZ+rx—y, (5)

z=xy—bz

wherex is the amplitude of the convection motiopn,is the
temperature difference between the ascending and descend-
ing currents,z is the distortion of the vertical temperature
profile from linearity, ando, r, and b are dimensionless
parameters. The Lorenz system has been studied extensively
and Egs(5) was recently shown to be isomorphic to a Dop-
pler broadened optically pumped laser modz8]. The pa-
o ) , _rameters in Eqgs(5) are most commonly selected to be
_FIG. 1. A sche_mgtlc view |.IIusFrat|ng the collection of spatial o=10,r =28, andb=8/3 for a rich dynamical behavi¢26].
neighbors and their time evolution in the state space. Helenotes For generating the data, the Lorenz equations displayed in
the radius of the cutoff spherd,the number of consecutive points Egs.(5) are integrated for é104 time steps with a step size
preceding in the time history of a trajectori(n) represents the of 5'>< 10-3. The Bulirsch-Stoer methof27] is used to ob-
last point in the training data arféi(k;) (any of the filled circlesis . L .
a spatial neighbor within the cutoff sphere of the last point. tain _the time evolution of the parametersy, a.ndz whose
starting values arg(0)=y(0)=2z(0)=10. The time-delayed

The same scheme may be followed to calcul(@+2), e_mbedding tog_e_ther with the false nearest neighbor_ tech-
which follows the last point, which is no®(n+1). mque[?l] is utilized to reconstruct the state space ymh

We need to define an error between the predicted and the S USing the convection amplitude The objective is to
actual trajectory of the system so as to monitor the accurac§@Pture the actual time continuation of the amplitude
of the prediction model within the range of locality assump- Five different time series with different end point indices,
tion. Root-mean-squarems) error, which calculates the root 16 000, 18 000, 20 000, 22 000, and 24 000 are prepared as
mean square of the differences between the predicted and tf&ining data for prediction. Continuation of the amplitude
actual data at all points, gives a single number about thgata is predicted for ftime steps for each initial conqmon_.
error. Instead, we need the evolution of the error along thékesults are then compared with the actual continuation,
prediction horizor{15]. Therefore, plotting the rms errors of Which is calculated by integrating the Lorenz equations fur-
neighboring pI'EdiCtiOHS within a window Iength 't\fl of ther in time with the Bulirsch-Stoer method. The parameter

each point would be more meaningful. This is referred to a$€t Of the algorithm is identical for all five runs. The model
the moving rms error. The error of this nature may be exdimensiond, which represents the number of consecutive

I’(n-d+1)O//

Pl-d+1)”
’ 0
[#] .

.

’

pressed as points in a trajectory whose linear combinations determine
the succeeding point, is set to 3. The radius of the sphere

k=i+ly/2 12 which controls the number of spatial neighbors collected

[x(k)—x(k)]? from the adjacent trajectories is set to 0.2. Comparison stud-

e(i)= k=i—ly/2+1 , @) ies are placed in Fig. 2. The moving rms error obtained by

averaging over five sets is displayed in Fig. 3.

The results indicate that predictions with different starting
where i=1,/2,..n* —1,/2. Here n* is the total number points contribute to the accumulation of error differently.
points predicted, ane(k) andx(k) are the actual and pre- However, the averaged error demonstrates that the error
dicted data, respectively. We now would like to test the pro-starts growing considerably after around 600 time steps, then
posed methodology for a benchmark case. fluctuates within an interval about 200 steps. The later steps

Complex signals were commonly assumed to be the outhowever, diverge significantly from the actual continuation.
put of a complicated system with a large number of activet is observed that the predictions follow the actual trajectory
degrees of freedom. However, realization of nonlinear sysfor a certain period of time. The predicted results then start
tems with a relatively small number of degrees of freedomdiverging from the actual one. This is observed whenever the
while deterministic in principle, can create output signalstrajectory approaches zero where the number of spatial
that look complex and mimic stochastic signals, such as thaeighbors increases enormously. Therein the sensitivity to
Lorenz model[23,24]. This model describes the Rayleigh- the initial conditions is so critical that the error accumulated
Benard convection arising from the two-dimensional Navier-by the prediction algorithm also grows exponentially. The
Stokes equation, which is formulated for a fluid slab of finite predicted trajectory gets away slightly from the true continu-
thickness subjected to gravity loading, heated from belowation first, and as it comes near zero once more, this slight
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FIG. 3. The moving rms error of the prediction for thecoor-
dinate of the Lorenz model. The error is obtained by averaging over
five different predictions exhibited in Fig. 2.

model for long-term predictions.

One can enlarge the cutoff radiu®f the sphere in order
to include the far neighbors. This may invalidate the local
linear model assumption. Using a sphere with smaller radius,
on the other hand, may increase the effect of ndiks.
Therefore, one needs to find an optimum radius in the spec-
trum.

The simple prediction algorithm proposed herein uses
both spatial and temporal information about the trajectories
in the state space. The relative weight of these two compo-
nents depends on the parameters selected. The model dimen-
siond and the cutoff radius are the free parameters that
determine the weight. For example, decreasing the model
dimension and increasing the cutoff radius, one can formu-
late an algorithm in which spatial information is more domi-
20 0 2(I)0 4(;0 6(;0 80'0 1000 nant.

Time step An additional measure to scale the relative contributions
of the neighbors with respect to their locations in the cutoff

FIG. 2. Predicted(dashed lingsand the actual continuation sphere may be considerédl5]. In the algorithm proposed
(solid lines of the time evolution for the& coordinate of the Lorenz  here, we do not limit the number of spatial neighbors coming
model for five different initial conditions. These figures illustrate from a trajectory. Thus, the nearest trajectories can contrib-
the dependence of prediction performance on the starting points. yte to the neighboring set with more than one point. This

. . , . __results in an increased weighting of the contribution coming
difference results in a shift to a completely different regions.om the nearest trajectories.

of the attractor. However, the predicted trajectory catches the

actual continuation with a time lag, as the method utilizes the The authors gratefully acknowledge partial support from
state space neighbors for predictions. This fact is an advarBogazici University Research Funds, Project No. 97A0401,
tage of the state-space prediction methods over neural nesnd from The Boeing Company, Project No. PO FR-513570-
works[13] and would serve a good starting point to create aD7LLN.
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