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Low-frequency fluctuations in semiconductor lasers with optical feedback are induced with noise
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Semiconductor lasers with optical feedback present a regime in which irregular dropout events are observed
(low-frequency fluctuations This phenomenon has been interpreted in terms of a purely deterministic model.
Recently, it was proposed that these lasers behave as an excitable medium and that the low frequency fluc-
tuations are anticipated by noise. We study analytically and numerically the statistics of the firing processes
predicted by this dynamical scenario and discuss how it compares with the results reported in the literature.
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I. INTRODUCTION The idea of computing escape rates from a deterministic
model driven by noise was already implemented by Henry
The dynamics of semiconductor lasers with optical feed-and Kazarinov, in the context of a particular mo@ig]. We
back has been extensively stud[dd. The dynamical behav- Will build a dynamical picture that is consistent with that
ior observed when these devices are studied can be roughi§ea and enlightens the dynamical nature of the reinjection
classified in the following wayt1) Time-independent inten- Within a recently proposed framewofK].
sity, (2) low frequency fluctuationéLFF), and(3) coherent This paper is organized as follows. Section Il describes
collapse regime. The LFF regime is characterized by the exthe equations under study, and how they give rise to excit-
istence of irregular pulses at large time intervéddsge com-  able behavior. Section Il deals with the statistics of firing
pared to the typical time scales of the system events when noise is applied to our dynamical model. Ana-
The analysis of the behavior of this system has beefytical and numerical results are obtained. In Sec. IV we
mostly carried out in terms of a single mode model thatcompare our results with the experimental results reported in
assumes low levels of feedba¢the Lang and Kobayashi the literature. S(_action V contains a summary of our results
mode). In this model, the dynamical origin of the low fre- @nd our conclusions.
quency fluctuations is of a purely deterministic nati2¢S].
Recently, a different dynamical scenario was proposed to Il. EXCITABLE SYSTEMS
account for the appearance of the LFF. According to this A system is characterized as excitable whenever its re-
scenario, there is a range in parameter space in which the y o . o
semiconductor laser with optical feedback behaves as an exPOnse to an excitation has_ the following feature: if the
citable system, and the noise plays a crucial role in :;1nticipat§t'mu'us IS Iarg_er_than a certain thresht_)ld value, Fhe_ response
ing the LFF[4]. of the system is mdepgndent of the size of excitation. Th.IS
somewhat vague definition allows us to recognize excitabil-

Refuting one of the two interpretation paradigms on theit in a wide variety of systems, most remarkably in biolo
onset of LFF is not trivial. The system presents nd&eon- [g] y y ' y 9y

taneous emissiorand there are different time scales in the It is a tvoical strateqy in nonlinear dvnamics to find para-
problem, making some of the common strategies proposed. ap . 9y ; y! P
igmatical equations, if possible the simplest ones, whose

from the field of nonlinear dynamics truly hard to implement : . .

[5]. On the other hand, there is a natural observable in thgolutlons present a desired feature. This allows one to make

méasurementS' the tim'e interval between dropout events r%redlcnons .abc_)ut.th(.e behaylor of a particular prob_Iem_,. re-
s 'egardless of its intrinsic details. In order to study excitability,

the LFF regime, these time intervals are irregular, and ther s usual to study the phase space ordanization of the flow
fore a statistical description should be performed. In fact, in y P P 9

a work by Sacher, Elsasser, and Galdla most interesting of a dynamical SySte“.“ C'OS‘? in parameter space t(.) a poi_nt in
experimental result has been reported: the dependence of tW@'Ch an Andronov blfurcat!on takes place. This .b|furcat|on
average time between dropout events as a function of ths @ saddle-node one in which the unstable manifolds of the
parameters of the system. It is then only natural to asl?a%jﬁn?rfesfﬁgéeelmmfﬂgs doefsti?ee dnfce):ifﬁres is

whether the recently proposed dynamical scenario is compat- P

ible with the previously reported measurements. Are they X' =y (2.1
compatible within a region of the parameter space? Can an
eventual departure be used in order to refute either of the Y =X—y—xX3+Xy+ e+ %2, (2.2)

proposed scenarios?

The purpose of this paper is to answer those questions byith (x,y) e R?, ande;, e;e R™.
studying the dynamics of a “normal form” of excitable dy- In Fig. 1 we display the qualitatively different behaviors
namics in the presence of noise and studying the statistics aff the flow in the different regions of the parameter space.
time intervals between dropout events. Those regions are limited by curves in which either local or
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] whereX,i, andX,,x are the coordinates of the bottom of the
— 0.204 well and the barrier for potentidl (x). The viscosity is de-
w T noted by» andD stands for the diffusive constant associated
0.15 7 to the Brownian motion.
1 Let us consider the equatio®.1) and(2.2) in the spirit
0'10“_ of Kramers’ theory. We can associate the escape from the
well over the potential barrier with the dropout event in our
0.05 .
| 11 model. The node corresponds to the bottom of the potential
P N N S well whereas the barrier is located at the saddle point. Hence,
0.00 0.25 050 0.75 1.00 1.25 1.50 1.75 2.00 we may define a potential in a neighborhood of the node
c such asU (x) =x*4— e,x3/3—x?/2— e;x. Moreover, to take
9 into account the nonlineary term and the linear damping

—vy in this region, we introduce an effective viscosi
FIG. 1. Bifurcation diagram and phase portraits for the system:]'_xmi“' This ChQ'Ce IS !US_tIerd since yve are ta!<|ng an
described by Eqs2.1) and(2.2). In regions I, II, and IIl there are average of thex variable within the potential well. With the

three fixed points: a node, a saddle, and a repulsor. Crossing ttROtential given above and adding a noise term, Ezj4) and
separatrix to region IV, the saddle and the attractor collapse. Thé2.-2) are completely analogous to the equations of motion for
three lower regions display qualitatively different behavior. In re- particle undergoing a Brownian motion in a potential well.
gions | and Il the unstable manifold of the saddle approaches dhe noise term is taken with zero mean and variaride 2

limit cycle. In region Il the unstable manifold of the saddle is the  Now we derive an analytic expression for the Kramers’
stable manifold of the node and the system behaves as an excitabiate formula near the separatrix in parameter space. We fix
one. €, and study the dependence of the mean ratejoandD.
global bifurcations take place. Within region II, the unstableTo this end we definef(x) =x3— e,x>—x. From Egs.(2.1)
manifold of the saddle is the stable manifold of the node, an&nd(2.2), we obtain the coordinates of the potential well and
the saddle is connected to the repulsive fixed point. There ithe barrier as the two roots ¢{x) — e;=0 of smaller value,

no limit cycle in this region. Notice that crossing the separa-while the saddle node curve corresponds to the double root at
trix in parameter space from region Il to region IV implies x=X,. As we are slightly below the saddle node separatrix
undergoing an Andronov bifurcation. As mentioned, the syswe can approximatef (x)~f(Xo) + 3 f"(Xo) (X—Xo). This

tem described by Eqs2.1)—(2.2) with parameter values allows us to express the coordinates of the potential well and
within what we have called region Il behaves as an excitablehe barrier as a function ofy, f(Xg), andf”(xy) (note that
one[9]. The response of the system to a perturbation of anhese are explicit functions af, only).

initial state located at the node will be independent of the Using thate; — f(xo) <f”(X,) near the separatrix and ne-
size of the perturbation, provided that it places the systenglecting terms of second order, the form in the Kramers
beyond the stable manifold of the saddle. As the unstablequation(3.3) becomes

manifold of the saddle is attractive, the system will evolve

close to it no matter the size of the perturbation. V2 £ (xo)[ €1~ F(Xo)]

(r)(e))=

27 Ner( €1)

F{ 4[f(Xo)— 61]3/2
xXexg — " 172|»
3D e €1)] " (%0)/2]

Ill. THE STATISTICS OF THE DROPOUT EVENTS

Let us follow the dynamics of an initial condition in the (3.9
neighborhood of the attractor for parameter values within
region Il. Under the influence of noise, this state might be
eventually taken beyond the stable manifold of the saddle. e €1)=1—Xo+ V2[e1—F(x0) 1/ f"(X0). (3.5
Associating the large excursion in the phase space along the
unstable manifold of the saddle with a dropout event, we In order to obtain results for our excitable system, Egs.
recover the behavior described[#] for the onset of the LFF  (2.1) and(2.2) were integrated numerically. After each inte-
regime. gration step, the variable was perturbed by a noise term
We derive an analytic expression for the rate of dropouty2D dt¢, with 6t the time step andp a Gaussian white
events in our model, as a function of the parameters, follownoise with zero mean and variance one. For a given value of
ing the seminal work by Kramefd.0]. Although his theory D and takinge,=0.7, we simulated our system in the way
was originally developed for the Brownian motion of a par- described above for various valuesef. In Fig. 2 we com-
ticle in a double potential well, we will be able to map our pare, in a double logarithmic plot, the mean period of the
dynamical system to this problem. In Kramers’ picture thedropout eventgT) obtained numerically with the analytical
particle is placed in a potential well and it may escape overesult in Eq.(3.4)—(3.5), for different values oD. The mean
the potential barrier due to the action of noise. Its averageg@eriod was obtained by averaging up to 10 000 dropout
rate of escape is events. It is clear that the theoretically predicted mean period
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FIG. 2. Average time between dropout everf) plotted =
againste, in a log-log scale for three different noise levels and
=0.7. The symbols represent numerical data and the solid curves

are the analytical results derived in E¢3.4—(3.5 from Kramers’ | ' T ' T .
rate theory. The values & are chosen within the validity range of 35 30 25 20 1.5
Kramers’ formula(3.3). 108, 1€ reqnond”® trestotd

FIG. 3. Average time between dropout eve(if as a function
of the normalized parametere{— €nreshold €hreshold 1IN @ double
logarithmic plot. (a) Power-law scaling region with slopa=
—1.079. The arrow indicates the parameter value at which the An-
dronov bifurcation takes place. The left side corresponds to the
IV. COMPARISON WITH THE RESULTS REPORTED region Il in Fig. 2.(b) Departure from the power-law dependence at

IN THE LITERATURE lower values ofe;. The solid curve is the analytic resul8.4)—

The parameter dependence of the time intervals betwee(|§|5)
dropout events in semiconductor lasers with optical feedbaclefined quantity, and we might want to display and fit the
was reported for the first time in 1989 by Sacher, ElssaseqT) gependence with the model parameters following the
and Gobel. They fitted their results with the following ex- analytical expression derived in the previous section. In Fig.
pression: (T)~ (Il ieshold lthreshod "+ Where luresnod  3(a) we display the result for a specific integration time. We
stands for the threshold of the solitary lageeasurefland\ 5150 foundk = — 1.079, withy?=2x 10~5. This dependence
is a fitted parametefin their reported observation$,=  holds beyond the Andronov bifurcatigregion IV in Fig. 3,
—1.05. In principle, it seems that there is a serious disagreeghich also corresponds to the LFF regime.
ment between the functional form of thd) dependence In Fig. 3(b) we display the(T) dependence with the pa-
with the parameters derived under the excitability scenariQameters as predicted by our analytical results in the same
and the fitted function reported [6]. Indeed, in the dynami-  scale in which, for finite integration times, we fitted a power
cal picture under study, it would not be appropriate to in-jaw, Clearly, there is a departure between those curves. It is
clude a threshold value for the=const regime, since noise syggestive that a departure from the power law, qualitatively

can always trigger dropout events for a sufficiently long ob-simijlar to the one found in our simulations and analytic cal-
servation time. Yet, we will show that finite measurementscy|ations has been presented in the literafate12].
give rise to compatible results.

fits the data extremely well. As expected, if we move to-
wards the lower values af;, the mean period rises faster as
the level of noise decreases.

We mtegrated our dynamlcgl model in the presence of V. CONCLUSIONS
noise for different amounts of time. Once a total integration
time was fixed, we searched for the lowestvalue in which In this work, we studied a dynamical scenario recently

dropout events were found. Several numerical integrationproposed by Giudicf4] to account for the onset of LFF in
were performedfor a fixed value of the total time of inte- semiconductor lasers with optical feedback. It has been
gration in order to estimate this “virtual threshold” value. claimed that these systems can behave as excitable media.
In other words, we are dealing with a dynamical scenario inJnder that hypothesis, noise can eventually trigger large ex-
which the threshold is not well defined, but we are trying tocursions in phase space. We derived an expression for the
reproduce an experimental observatighe existence of a parameter dependence of the rate of excursion for a simple
threshold valug as a consequence of a finite observationmodel of this dynamical scenario, and showed that these re-
time. sults are not incompatible with previously reported measure-
Now we are able to try to reproduce the reported obserments. These pointed to the existence of a power law relating
vations[6] in the framework of our dynamical scenario. For the average time interval between dropouts and a range of
a finite integration time, the “virtual threshold” is a well properly scaled parameters. The excitability scenario implies
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a dependence of the rate of events with the parameters thatéss it is clear that the excitability hypothesis explains in an

given by the product of rational functions and exponentialselegant and simple way why the power law is bounded to be

we showed that there is a range in parameter space close Yalid only within a region of the parameter space.

the ones in which the Andronov bifurcation takes place in

which the power law is a gopd approximation, but a depar- ACKNOWLEDGMENTS
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