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Low-frequency fluctuations in semiconductor lasers with optical feedback are induced with noise
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Semiconductor lasers with optical feedback present a regime in which irregular dropout events are observed
~low-frequency fluctuations!. This phenomenon has been interpreted in terms of a purely deterministic model.
Recently, it was proposed that these lasers behave as an excitable medium and that the low frequency fluc-
tuations are anticipated by noise. We study analytically and numerically the statistics of the firing processes
predicted by this dynamical scenario and discuss how it compares with the results reported in the literature.
@S1063-651X~98!02207-7#

PACS number~s!: 05.45.1b
ed
-
g
-

e

ee
a

i
-

hi
t
e
a

th

he
s
n
th

s.
er
, i

f
th

as
pa
e

th

s
-
s

stic
nry

at
tion

es
cit-
g

na-
we
d in
lts

re-
he
nse
his
bil-
y

a-
ose
ake
re-
ty,
ow
t in

on
the

rs
ce.
or
I. INTRODUCTION

The dynamics of semiconductor lasers with optical fe
back has been extensively studied@1#. The dynamical behav
ior observed when these devices are studied can be rou
classified in the following way:~1! Time-independent inten
sity, ~2! low frequency fluctuations~LFF!, and ~3! coherent
collapse regime. The LFF regime is characterized by the
istence of irregular pulses at large time intervals~large com-
pared to the typical time scales of the system!.

The analysis of the behavior of this system has b
mostly carried out in terms of a single mode model th
assumes low levels of feedback~the Lang and Kobayash
model!. In this model, the dynamical origin of the low fre
quency fluctuations is of a purely deterministic nature@2,3#.
Recently, a different dynamical scenario was proposed
account for the appearance of the LFF. According to t
scenario, there is a range in parameter space in which
semiconductor laser with optical feedback behaves as an
citable system, and the noise plays a crucial role in anticip
ing the LFF@4#.

Refuting one of the two interpretation paradigms on
onset of LFF is not trivial. The system presents noise~spon-
taneous emission! and there are different time scales in t
problem, making some of the common strategies propo
from the field of nonlinear dynamics truly hard to impleme
@5#. On the other hand, there is a natural observable in
measurements: the time interval between dropout event
the LFF regime, these time intervals are irregular, and th
fore a statistical description should be performed. In fact
a work by Sacher, Elsasser, and Gobel@6# a most interesting
experimental result has been reported: the dependence o
average time between dropout events as a function of
parameters of the system. It is then only natural to
whether the recently proposed dynamical scenario is com
ible with the previously reported measurements. Are th
compatible within a region of the parameter space? Can
eventual departure be used in order to refute either of
proposed scenarios?

The purpose of this paper is to answer those question
studying the dynamics of a ‘‘normal form’’ of excitable dy
namics in the presence of noise and studying the statistic
time intervals between dropout events.
PRE 581063-651X/98/58~2!/2636~4!/$15.00
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The idea of computing escape rates from a determini
model driven by noise was already implemented by He
and Kazarinov, in the context of a particular model@7#. We
will build a dynamical picture that is consistent with th
idea and enlightens the dynamical nature of the reinjec
within a recently proposed framework@4#.

This paper is organized as follows. Section II describ
the equations under study, and how they give rise to ex
able behavior. Section III deals with the statistics of firin
events when noise is applied to our dynamical model. A
lytical and numerical results are obtained. In Sec. IV
compare our results with the experimental results reporte
the literature. Section V contains a summary of our resu
and our conclusions.

II. EXCITABLE SYSTEMS

A system is characterized as excitable whenever its
sponse to an excitation has the following feature: if t
stimulus is larger than a certain threshold value, the respo
of the system is independent of the size of excitation. T
somewhat vague definition allows us to recognize excita
ity in a wide variety of systems, most remarkably in biolog
@8#.

It is a typical strategy in nonlinear dynamics to find par
digmatical equations, if possible the simplest ones, wh
solutions present a desired feature. This allows one to m
predictions about the behavior of a particular problem,
gardless of its intrinsic details. In order to study excitabili
it is usual to study the phase space organization of the fl
of a dynamical system close in parameter space to a poin
which an Andronov bifurcation takes place. This bifurcati
is a saddle-node one in which the unstable manifolds of
saddle are stable manifolds of the node.

A simple model with the desired features is

x85y, ~2.1!

y85x2y2x31xy1e11e2x2, ~2.2!

with (x,y)PR2, ande1 , e2PR1.
In Fig. 1 we display the qualitatively different behavio

of the flow in the different regions of the parameter spa
Those regions are limited by curves in which either local
2636 © 1998 The American Physical Society
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global bifurcations take place. Within region II, the unstab
manifold of the saddle is the stable manifold of the node, a
the saddle is connected to the repulsive fixed point. Ther
no limit cycle in this region. Notice that crossing the sepa
trix in parameter space from region II to region IV implie
undergoing an Andronov bifurcation. As mentioned, the s
tem described by Eqs.~2.1!–~2.2! with parameter values
within what we have called region II behaves as an excita
one @9#. The response of the system to a perturbation of
initial state located at the node will be independent of
size of the perturbation, provided that it places the sys
beyond the stable manifold of the saddle. As the unsta
manifold of the saddle is attractive, the system will evol
close to it no matter the size of the perturbation.

III. THE STATISTICS OF THE DROPOUT EVENTS

Let us follow the dynamics of an initial condition in th
neighborhood of the attractor for parameter values wit
region II. Under the influence of noise, this state might
eventually taken beyond the stable manifold of the sad
Associating the large excursion in the phase space along
unstable manifold of the saddle with a dropout event,
recover the behavior described in@4# for the onset of the LFF
regime.

We derive an analytic expression for the rate of drop
events in our model, as a function of the parameters, follo
ing the seminal work by Kramers@10#. Although his theory
was originally developed for the Brownian motion of a pa
ticle in a double potential well, we will be able to map o
dynamical system to this problem. In Kramers’ picture t
particle is placed in a potential well and it may escape o
the potential barrier due to the action of noise. Its avera
rate of escape is

FIG. 1. Bifurcation diagram and phase portraits for the syst
described by Eqs.~2.1! and ~2.2!. In regions I, II, and III there are
three fixed points: a node, a saddle, and a repulsor. Crossing
separatrix to region IV, the saddle and the attractor collapse.
three lower regions display qualitatively different behavior. In
gions I and III the unstable manifold of the saddle approache
limit cycle. In region II the unstable manifold of the saddle is t
stable manifold of the node and the system behaves as an exc
one.
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^r &5
AU9~xmin!uU9~xmax!u

2ph
expF2

U~xmax!2U~xmin!

Dh G ,
~3.3!

wherexmin andxmax are the coordinates of the bottom of th
well and the barrier for potentialU(x). The viscosity is de-
noted byh andD stands for the diffusive constant associat
to the Brownian motion.

Let us consider the equations~2.1! and ~2.2! in the spirit
of Kramers’ theory. We can associate the escape from
well over the potential barrier with the dropout event in o
model. The node corresponds to the bottom of the poten
well whereas the barrier is located at the saddle point. He
we may define a potential in a neighborhood of the no
such asU(x)5x4/42e2x3/32x2/22e1x. Moreover, to take
into account the nonlinearxy term and the linear damping
2y in this region, we introduce an effective viscosityheff
512xmin . This choice is justified since we are taking a
average of thex variable within the potential well. With the
potential given above and adding a noise term, Eqs.~2.1! and
~2.2! are completely analogous to the equations of motion
a particle undergoing a Brownian motion in a potential we
The noise term is taken with zero mean and variance 2D.

Now we derive an analytic expression for the Krame
rate formula near the separatrix in parameter space. We
e2 and study the dependence of the mean rate one1 andD.
To this end we define:f (x)5x32e2x22x. From Eqs.~2.1!
and~2.2!, we obtain the coordinates of the potential well a
the barrier as the two roots off (x)2e150 of smaller value,
while the saddle node curve corresponds to the double ro
x5x0 . As we are slightly below the saddle node separa
we can approximatef (x)' f (x0)1 1

2 f 9(x0)(x2x0)2. This
allows us to express the coordinates of the potential well
the barrier as a function ofx0 , f (x0), and f 9(x0) ~note that
these are explicit functions ofe2 only!.

Using thate12 f (x0)! f 9(x0) near the separatrix and ne
glecting terms of second order, the form in the Krame
equation~3.3! becomes

^r &~e1!5
A2 f 9~x0!@e12 f ~x0!#

2pheff~e1!

3expF2
4@ f ~x0!2e1#3/2

3Dheff~e1!u f 9~x0!/2u1/2G , ~3.4!

heff~e1!512x01A2@e12 f ~x0!#/ f 9~x0!. ~3.5!

In order to obtain results for our excitable system, E
~2.1! and~2.2! were integrated numerically. After each inte
gration step, thex variable was perturbed by a noise ter
A2Ddtf, with dt the time step andf a Gaussian white
noise with zero mean and variance one. For a given valu
D and takinge250.7, we simulated our system in the wa
described above for various values ofe1 . In Fig. 2 we com-
pare, in a double logarithmic plot, the mean period of t
dropout eventŝT& obtained numerically with the analytica
result in Eq.~3.4!–~3.5!, for different values ofD. The mean
period was obtained by averaging up to 10 000 drop
events. It is clear that the theoretically predicted mean pe
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fits the data extremely well. As expected, if we move
wards the lower values ofe1 , the mean period rises faster a
the level of noise decreases.

IV. COMPARISON WITH THE RESULTS REPORTED
IN THE LITERATURE

The parameter dependence of the time intervals betw
dropout events in semiconductor lasers with optical feedb
was reported for the first time in 1989 by Sacher, Elssa
and Gobel. They fitted their results with the following e
pression: ^T&;(I 2I threshold/I threshold)

2l, where I threshold
stands for the threshold of the solitary laser~measured! andl
is a fitted parameter~in their reported observations,l5
21.05!. In principle, it seems that there is a serious disagr
ment between the functional form of thêT& dependence
with the parameters derived under the excitability scena
and the fitted function reported in@6#. Indeed, in the dynami-
cal picture under study, it would not be appropriate to
clude a threshold value for theI 5const regime, since nois
can always trigger dropout events for a sufficiently long o
servation time. Yet, we will show that finite measureme
give rise to compatible results.

We integrated our dynamical model in the presence
noise for different amounts of time. Once a total integrat
time was fixed, we searched for the loweste1 value in which
dropout events were found. Several numerical integrati
were performed~for a fixed value of the total time of inte
gration! in order to estimate this ‘‘virtual threshold’’ value
In other words, we are dealing with a dynamical scenario
which the threshold is not well defined, but we are trying
reproduce an experimental observation~the existence of a
threshold value! as a consequence of a finite observat
time.

Now we are able to try to reproduce the reported obs
vations@6# in the framework of our dynamical scenario. F
a finite integration time, the ‘‘virtual threshold’’ is a we

FIG. 2. Average time between dropout events^T& plotted
againste1 in a log-log scale for three different noise levels ande2

50.7. The symbols represent numerical data and the solid cu
are the analytical results derived in Eqs.~3.4!–~3.5! from Kramers’
rate theory. The values ofD are chosen within the validity range o
Kramers’ formula~3.3!.
-

en
k
r,

-

io

-

-
s

f
n

s

n

r-

defined quantity, and we might want to display and fit t
^T& dependence with the model parameters following
analytical expression derived in the previous section. In F
3~a! we display the result for a specific integration time. W
also foundl521.079, withx25231025. This dependence
holds beyond the Andronov bifurcation~region IV in Fig. 1!,
which also corresponds to the LFF regime.

In Fig. 3~b! we display thê T& dependence with the pa
rameters as predicted by our analytical results in the sa
scale in which, for finite integration times, we fitted a pow
law. Clearly, there is a departure between those curves.
suggestive that a departure from the power law, qualitativ
similar to the one found in our simulations and analytic c
culations has been presented in the literature@11,12#.

V. CONCLUSIONS

In this work, we studied a dynamical scenario recen
proposed by Giudici@4# to account for the onset of LFF in
semiconductor lasers with optical feedback. It has be
claimed that these systems can behave as excitable m
Under that hypothesis, noise can eventually trigger large
cursions in phase space. We derived an expression for
parameter dependence of the rate of excursion for a sim
model of this dynamical scenario, and showed that these
sults are not incompatible with previously reported measu
ments. These pointed to the existence of a power law rela
the average time interval between dropouts and a rang
properly scaled parameters. The excitability scenario imp

FIG. 3. Average time between dropout events^T& as a function
of the normalized parameter (e12ethreshold/ethreshold) in a double
logarithmic plot. ~a! Power-law scaling region with slopel5
21.079. The arrow indicates the parameter value at which the
dronov bifurcation takes place. The left side corresponds to
region II in Fig. 2.~b! Departure from the power-law dependence
lower values ofe1 . The solid curve is the analytic result~3.4!–
~3.5!.
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a dependence of the rate of events with the parameters th
given by the product of rational functions and exponentia
we showed that there is a range in parameter space clo
the ones in which the Andronov bifurcation takes place
which the power law is a good approximation, but a dep
ture when the events are rare~i.e., when the saddle and th
node are well apart! is predicted. This departure has be
measured and reported in@12#, and therefore those measur
ments are consistent with the claims in@4# and the predic-
tions in @7#.

Finally, the functional form for the departure will depen
on the details of the underlying model, but following Kram
,
i-

ra

J.
t is
:
to

r-

ers it is clear that the excitability hypothesis explains in
elegant and simple way why the power law is bounded to
valid only within a region of the parameter space.
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