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Effective magnetic Hamiltonian and Ginzburg criterion for fluids
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We develop further the approach of Hubbard and Schofield@Phys. Lett.40A, 245 ~1972!#, which maps the
fluid Hamiltonian onto a magnetic one. We show thatall coefficients of the resulting effective Landau-
Ginzburg-Wilson~LGW! Hamiltonian may be expressed in terms of the compressibility of a reference fluid
containing only repulsive interactions and its density derivatives; we calculate the first few coefficients in the
case of the hard-core reference fluid. From this LGW Hamiltonian we deduce approximate mean-field relations
between critical parameters and test them on data for Lennard-Jones, square-well, and hard-core Yukawa
fluids. We estimate the Ginzburg criterion for these fluids.@S1063-651X~98!07806-4#

PACS number~s!: 64.60.Fr, 05.20.2y, 05.70.Jk, 64.70.Fx
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The modern theory of critical phenomena based on
renormalization group~RG! technique has demonstrated
impressive success in a variety of fields@1#. However, most
of the studies using the RG approach have addressed
criticality of the Ising-like systems. Some effective comp
tational schemes based on the RG technique have bee
veloped for fluids@2#, but they are not as convenient for th
general analysis of criticality as those based on the so-ca
Ginzburg-Landau-Wilson~LGW! Hamiltonian. Effective
magnetic Hamiltonians for fluids have been derived in a
riety of ways. In Ref.@3# the fluid Hamiltonian was reduce
to the magnetic one by means of coarse graining. In@4# the
coefficients in an effective LGW Hamiltonian were obtain
by comparing the critical amplitudes for the order parame
compressibility, correlation length, etc., calculated with
generalized mean-spherical approximation, with those
rived from the LGW Hamiltonian. In@5# the functional gen-
eralization of the Mayer expansion for the single-compon
fluid was used; the attractive interactions were treated on
second-virial level and a few different approximation we
adopted for the repulsive~hard-core! contribution to the free
energy. Within these approximations Fisher and Lee ev
ated the coefficients for the effective LGW Hamiltonian for
single-component fluid@5#; somewhat different approxima
tions were employed to derive the LGW coefficients for t
restricted primitive model of electrolytes@5#.

Hubbard and Schofield@6# derived the effective LGW
Hamiltonians for fluids by anexactmapping, based on th
transformation of variables. Although they did not compu
the coefficients of the effective Hamiltonian, they argued t
fluids belong to the Ising universality class. In the pres
study we develop this approach further, showing in particu
that all the coefficients of the effective LGW Hamiltonia
may be expressed in terms of the known properties of
reference~hard-core! system: the compressibility and its de
sity derivatives. We find explicit expressions for the first fe
coefficients. Applying the mean-field conditions for the cri
cal point of the effective magnetic Hamiltonian, we form
late simple relations between some critical parameters
check them for some fluids; for these fluids we also estim
the parametertG of the Ginzburg criterion.

We start from the fluid Hamiltonian
PRE 581063-651X/98/58~2!/2628~4!/$15.00
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v~r i j !5HR1HA . ~1!

Heref(r ) denotes the repulsive part of the interparticle
teraction potential, while2v(r ) denotes the attractive par

$rW j% are coordinates of the particles andrW i j 5rW i2rW j . The
attractive part of the Hamiltonian,HA , may be written in
terms of the Fourier components of the density fluctuatio
nkW5(1/AV)( j 51

N e2 ikW•rW j and the Fourier transform of the a

tractive potentialvk5*v(r )e2 ikW•rWdrW as @6,7#

HA52
1

2(kW
vknkWn2kW1

1

2
v~0!N, ~2!

whereN is the number of particles,V is the volume of the
system, and summation over the following set ofkW is im-
plied: kl5(2p/L)nl with L5V1/3, l 5x,y,z, andnl50,61,
62, . . . ; thethermodynamic limitL→` is assumed. Letm
be the chemical potential of the system with the total Ham
tonian ~1! and mR the chemical potential in the referenc
system having the HamiltonianHR , which includes only re-
pulsive interaction. Then the grand partition functionJ, may
be expressed in terms of that of the reference fluidJR , as
@6#

J5JRK expH bm8N1
1

2
b(

kW
vknkWn2kWJ L

R

, ~3!

where m8[m2mR1 1
2 v(0) and ^ &R denotes an averag

over configurations of the reference system, at the temp
ture T with chemical potentialmR . Note that the reference
system~with only repulsive interactions! does not have a
liquid-gas transition; i.e., its grand partition functionJR is
regular in the vicinity of the critical point of the fluid o
interest. Following Hubbard and Schofield@6#, we use the

identity exp(12a
2x2)5(2pa2)21/2*2`

1`exp(21
2y

2/a21xy)dy and
after some algebra obtain the ratioQ5J/JR of the grand
partition functions@6#
2628 © 1998 The American Physical Society
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Q}E )
kW

dskWexpH m8

v0
V1/2s02

1

2
b21(

kW
vk

21skWs2kWJ
3K expH(

kW
skWn2kWJ L

R

; ~4!

here integration is to be performed under the restrict
s2kW5skW

* ~the complex conjugate ofskW); s05sk for k50
and we omit a factor regular at the critical point since it do
not affect the subsequent analysis. Applying the cumu
theorem@8# to the factor̂ exp$(kWskWn2kW%&R one obtains@6#

Q}E )
kW

dskWexp$2H%, ~5!

with

H52h8s0V1/21 (
n52

`
1

Vn/2 21

3 (
kW1 , . . . ,kWn

un8~kW1 , . . . ,kWn!skW1
•••skWn

,

h85@m2mR1v~0!/2#v0
211r,

u28~kW1 ,kW2!5
1

2!
dkW11kW2,0$b

21vk
212^nkW1

n2kW1
&cR%,

un8~kW1 , . . . ,kWn!52
Vn/2 21

n!
^nkW1

•••nkWn
&cR , n>3.

Herer5N/V is the fluid density and̂ &cR denotes thecu-
mulantaverage calculated in the reference system. In Eq.~5!
Q has been written in the same way as the partition func
for a magnetic system having an Ising-like Hamiltonian:skW

are the Fourier components of the ‘‘spin field’’s(rW) andh8
is the ‘‘magnetic field.’’

The coefficients of the effective Hamiltonian depend
the correlation functions of the reference fluid having on
repulsive interactions. Using the definitions of the parti
correlation functions of fluids@9# and definitions of the cu-
mulant averages@8#, one candirectly evaluatê nkW1

•••nkWn
&cR

and thus the coefficientsun8(kW1 , . . . ,kWn). It is straightforward
to show thatun8 may be expressed in terms of the Four
transforms of the correlation functionsh1, h2 . . . , hn of the
reference system, defined ash1(rW1)[d(rW1), h2(rW1 ,rW2)
[g2(rW1 ,rW2)21, h3(rW1 ,rW2 ,rW3)[g3(rW1 ,rW2 ,rW3)2g2(rW1 ,rW2)
2g2(rW1 ,rW3)2g2(rW2 ,rW3)12, etc., wheregl(rW1 , . . . ,rW l) are
l -particle correlation functions@9#. In particular, the first few
coefficients read

u285d1,2 rFkBT

v0r
2~11rh̃2~kW1!#G , ~6!

u3852d1,2,3 r$11r@ h̃2~kW1!1h̃2~kW2!1h̃2~kW3!#

1r2h̃3~kW1 ;kW2!%, ~7!
n

s
nt

n

r

where h̃l are the Fourier transforms ofhl and we use the
shorthand notationd1,2, . . . ,n5dkW11kW21•••1kWn,0 /n!.

Now we consider the small-k expansion of the coeffi-
cients. First we note that the functionh̃2(kW ) may be ex-
pressed in terms of the Fourier transform of the direct co
lation function c̃2(kW ), as h̃2(kW )5 c̃2(kW )/@12r c̃2(kW )# and its
zero k value in terms of the isothermal compressibilityxR
5r21(]r/]PR)b ~wherePR is the pressure of the referenc
fluid! as 11rh̃2(0)5rkBTxR[z0. Using the expansions

vk5v02v09k
21••• @10# and c̃2(k)5 c̃2(0)2 c̃2(0)9k21

•••, one obtains foru28 , omitting terms ofO(k4),

u285d1,2@a281b28k
21•••#,

a285~bv0!212rz0, ~8!

b285r2@z0
2c̃29~0!1bv09~rbv0!22#. ~9!

The LGW Hamiltonian does not have terms with powers ok
higher thank2; moreover, the only term of orderk2 is pro-
portional to}k2skWs2kW . Thus only zeroth order terms shou
be kept in the expansion ofun8 for n.2. Hence we may write
the contribution of such terms using this approximation:

u3852d1,2,3r@113rh̃2~0W !1r2h̃3~0W !#, ~10!

u4852d1,2,3,4r@117rh̃2~0W !16r2h̃3~0W !1r3h̃4~0W !#,

etc., whereh̃l(0W )[h̃l(0, . . . ,0).There exists a relation be
tween successive correlation functions@9#

xr2
]

]r
r lgl5br lF l gl1rE drW l 11~gl 112gl !G , ~11!

from which follows a relation between the functionsh̃l(0W ):

xr2
]

]r
r l h̃l~0W !5br l@ l h̃ l~0W !1rh̃l 11~0W !#, ~12!

expressing eachh̃l 11(0W ) in terms of h̃l(0W ) and its density
derivative. Using Eq.~12! iteratively one finally finds each
h̃l(0W ) expressed in terms of the reference system compr
ibility xR and its density derivatives. Explicitly, we obtain

u38[d1,2,3rcu352d1,2,3rz0~z01z1!, ~13!

u48[d1,2,3,4rcu4

52d1,2,3,4rz0@z1
21z0~z014z11z2!#, ~14!

definingun , whererc is the critical density,z0[rxR /b as
before,z15r]z0 /]r, andz25r2]2z0 /]r2. In this way one
can evaluateall the coefficients of the effective LGW Hamil
tonian of the fluid and express them in terms of the co
pressibility of the reference system and its density deri
tives. This solves the problem of finding the effective LG
Hamiltonian provided the compressibility of the referen
system is sufficiently well known.

For the reference system with only repulsive interactio
one can often usefully adopt the hard-sphere system with
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appropriately chosen hard-core diameter@11,12#. For soft
~not impulsive! repulsive forces a simple relation@12# d
5dBH5*0

s$12exp@2f(r)/kT#% gives the effective diamete
d of the hard-sphere system corresponding to a repul
potential f(r ) that vanishes atr>s. For the hard-sphere
system one has the fairly accurate Carnahan-Starling e
tion of state@12#, for which

z05~12h!4~114h14h224h31h4!21, ~15!

where h5 (p/6) d3r. The value ofc̃2(0)9 may be found
from the Wertheim-Thiele solution@13# for the direct corre-
lation function, which gives

c̃2~0!952~pd5/120! ~16211h14h2!~12h!24.
~16!

To recast the effective Hamiltonian in the conventional for
we perform a transformation from the variablesskW to
‘‘field’’ variable s(rW). Under this transformation integratio
over the set$skW% becomes field integration overs(rW) and the
term;k2skWs2kW transforms into;@¹s(rW)#2. Usingrc

21/3 as
a scaling factor for the length we finally arrive at the effe
tive LGW Hamiltonian

H5E drWF2hs1
a2

2
s21

u3

3!
s31

u4

4!
s41•••1

b2

2
~¹W s!2G ,

~17!

where h5@m2mR1v(0)/2#(v0rc)
211r/rc , a25

kBT /rcv02z0(r/rc), andu3 ,u4 are given by Eqs.~13! and
~14!. The coefficientb2 reads

b25
1

80S 36

p2hc
D 1/3F leff

2

beeff
2BG , ~18!

where B54h2(12h)4(16211h14h2)/(114h14h2

24h31h4)2 and constantseeff andleff characterize zeroth
orderv0 and second-orderv095 1

6 *r 2v(r )drW moments of the
attractive potential:

4pd3

3
eeff5E v~r !drW5v0 , ~19!

leff
2 d25

5

3
v0

21 E v~r !r 2drW. ~20!

This effective LGW Hamiltonian may be used for the ana
sis of the critical behavior, using, for example, the RG te
nique.

Now we perform a mean-field~MF! level analysis based
on the effective Hamiltonian. To do so we first remove t
cubic term by making the shifts→s1s̄, with s̄ chosen to
make the cubic term vanish; this leads to new coefficie
h̄5h1a2u3 /u42u3

3/3u4
2 and ā25a22u3

2/2u4 with ū350,

ū45u4 , and b̄25b2. Then the MF condition at the critica
point ~CP! ā250 andh̄50 gives the approximate relation
e

a-

,

-

-
-

ts

kBTc

rcv0
5Fz01

u3
2

2u4
G

CP

, ~21!

v0rcF11
u3

3

6u4
2G

CP

52@m2mR1v~0!/2#CP . ~22!

Equation~21! relates the critical density and the critical tem
perature of the system; Eq.~22! relates the difference of the
chemical potentialsm2mR at the critical point to the critical
density. We have tested these relations using simulation
for Lennard-Jones~LJ! @14#, hard-core Yukawa~HCY! @15#,
and square-well ~SW! @16–18# fluids. The Weeks–
Chandler–Andersen~WCA! partition@11# of the LJ potential
uLJ(r )54eLJ@(s/r )122(s/r )6# gives, for the attractive part

v~r !5H eLJ r<21/6s

2uLJ~r !, r>21/6s,
~23!

which is perfectly smooth in the core region. This partitio
gives the best estimates for the thermodynamic function
the WCA perturbation scheme@11#. The repulsive part
f(r )5uLJ(r )1v(r ) is then used to find the effective hard
core diameter using the expression quoted above. Simila
we use the WCA partition for the SW and HCY fluids. Th
square-well fluid has the interaction potentialf(r )2v(r )5
1` if r ,d, 2e if d<r ,ld, and 0 ifr>ld; the reference
system is the hard-sphere system with the diameterd. We
take the attractive part of the potential asv(r )50 for r
>ld and v(r )5e for 0,r ,ld. For the HCY potential,
f(r )2v(r )51` if r ,d and 2eYexp@2k(r2d)#/r for r
>d; the WCA partition givesv(r )5eY /d for r ,d and
v(r )5eYexp@2k(r2d)#/r for r>d.

Table I gives the ratio of the right- to the left-hand side
the MF Eq.~21! asWc and that of Eq.~22! asYc . As one
can see from the table, these MF relations hold rather sa
factorily except for HCY fluids with short-ranged attractiv
potentials, where the MF description and Monte Carlo~MC!
results appear to differ. In Table I we also give some co
ficients of the LGW Hamiltonian at the critical point.

Using coefficients of the effective LGW Hamiltonian ob
tained, one can also estimate the Ginzburg parametertG @1#.
This defines the domain of validity of the classical critic
behavior: The classical description fails forutu[uT/Tc21u
!tG . Following @5#, we write for this parameter

tG5
1

32p2

u4
2

a2b2
3

, ~24!

whereā25a2t. From Eqs.~18! and ~24! it follows that for
the infinite-range Kac-Baker potentialleff→` @with eeff}v0
finite; see Eqs.~19! and ~20!#, b2→` and thustG→0 as
expected~cf. @5#!.

To estimatea2 we use the MF condition~21! and ap-
proximatez0(r/rc)1 u3

2/2u4 by its value at the critical point
kBTc /rcv0 . This yields:

ā2'
kBT

rcv0
2

kBTc

rcv0
5a2t. ~25!



PRE 58 2631BRIEF REPORTS
TABLE I. The Ginzburg criteriontG , the ratio of the right- to the left-hand side of Eq.~21! asWc and
that of Eq.~22! as Yc , and coefficients of the effective LGW Hamiltonianb2,c ,u4,c ,a2 . Here leff is the
effective range of the attractive potential (leff5l for the SW fluid!. T* 5kBT/eeff andrc* 5rcd

3 are, respec-
tively, the reduced critical temperature and density. The critical data for the SW fluid are from@17#, @16# ~for
leff51.5), and@18# ~for leff53.0); for the HCY fluid from@15#; and for the LJ fluid from@14#.

leff Tc* rc* tG Wc Yc

b2,c

~units of 1022)
u4,c

~units of 1022)
a2

~units of 1022)

SW
1.25 0.391 0.370 0.272 1.07 1.21 0.62 25.2
1.375 0.375 0.355 0.259 1.06 1.55 0.88 25.2
1.500 0.370 0.329 0.301 1.06 1.01 2.00 1.46 26.9
1.75 0.338 0.284 0.407 1.12 2.89 2.96 28.4
2.00 0.346 0.225 0.334 1.09 4.58 6.10 36.7
3.00 0.433 0.181 0.012 0.87 15.7 9.02 57.0

HCY
1.396 0.298 0.377 0.336 1.45 0.56 1.91 0.52 18.8
1.579 0.307 0.375 0.096 1.39 0.62 1.70 0.55 19.5
2.137 0.328 0.313 0.054 1.16 0.95 4.40 1.91 25.0

LJ
2.215 0.347 0.320 0.027 1.06 0.94 5.09 1.70 25.9
r

st

LJ
c-
s

nd
om
Thusa25kBTc /rcv0 5kBTc/8hceeff . Using this value ofa2
and u4 ,b2 given by Eqs.~14!, and ~18! ~the coefficients in
this relation computed at the critical point!, we calculate an
approximate Ginzburg parametertG for some of the SW,
HCY, and LJ fluids. The results are given in Table I@19#.

As we see in Table I, the derived value oftG is of the
order of 1021 for most of the fluids studied in compute
simulations and lies within the range oftG values predicted
in Ref. @5#. On the other hand, for the SW fluid with the mo
long-ranged attraction (leff53), tG'1022 is much smaller
and may explain the MF-like behavior observed@18#. For the
or

r

en

t

LJ fluid, with an attractive potential proportional tor 26,
similar to that of real fluids,tG is of the order of 1022; real
simple fluids are supposed to have similar values oftG @20#.
However, it may be noted that in MC simulations of the
fluid @14# ~where a cutoff of the LJ potential and tail corre
tions were used! Ising-like behavior was observed to value
of utu, at least a few times larger than thetG given in
Table I.
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