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Effective magnetic Hamiltonian and Ginzburg criterion for fluids
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We develop further the approach of Hubbard and Schofflys. Lett.40A, 245(1972], which maps the
fluid Hamiltonian onto a magnetic one. We show tladit coefficients of the resulting effective Landau-
Ginzburg-Wilson(LGW) Hamiltonian may be expressed in terms of the compressibility of a reference fluid
containing only repulsive interactions and its density derivatives; we calculate the first few coefficients in the
case of the hard-core reference fluid. From this LGW Hamiltonian we deduce approximate mean-field relations
between critical parameters and test them on data for Lennard-Jones, square-well, and hard-core Yukawa
fluids. We estimate the Ginzburg criterion for these flu[®1063-651X98)07806-4

PACS numbgs): 64.60.Fr, 05.20-y, 05.70.Jk, 64.70.Fx

The modern theory of critical phenomena based on the
renormalization grougRG) technique has demonstrated an H:;, d’(rij)_; v(rij)=Hg+Ha. 1)
impressive success in a variety of field§. However, most . .

of the studies using the RG approach have addressed th . . .
criticality of the Ising-like systems. Some effective compu- Here ¢(r) denotes the repulsive part of the interparticle in-

tational schemes based on the RG technique have been &g_ractlon potential, while-v(r) denotes the attractive part,

veloped for fluidg2], but they are not as convenient for the {'j} are coordinates of the particles ang=r;—r;. The
general analysis of criticality as those based on the so-calledttractive part of the Hamiltoniarki,, may be written in
Ginzburg-Landau-Wilson(LGW) Hamiltonian. Effective terms of the Fourier components of the density fluctuations,
magnetic Hamiltonians for fluids have been derived in a vang=(1/JQ)=_ e~ i and the Fourier transform of the at-
riety of ways. In Ref[3] the fluid Hamiltonian was reduced tractive potentiabk=fv(r)e“k'rdf as[6,7]

to the magnetic one by means of coarse grainind4lrthe

coefficients in an effective LGW Hamiltonian were obtained 1 1
by comparing the critical amplitudes for the order parameter, Ha=— _E vNn_g+ =v(0)N, 2
compressibility, correlation length, etc., calculated within 2% 2

generalized mean-spherical approximation, with those de-

rived from the LGW Hamiltonian. 1h5] the functional gen-  whereN is the number of particle€) is the volume of the
eralization of the Mayer expansion for the single-componentysiem  and summation over the following setkofs im-
fluid was used; the attractive interactions were treated on thﬁlied: k = (27/L)n, with L=Q3 |=x,y,z, andn,=0,+1,
second-virial level and a few different approximation Were+ o - thethermodynamic limit.— o is assumed. Leg

adopted for the repulsivéhard-corg contribution to the free o the chemical potential of the system with the total Hamil-
energy. Within these approximations Fisher and Lee evalugnian (1) and g the chemical potential in the reference
a_ted the coefficients fpr the effective LG_W Hamlltonlan for asystem having the Hamiltoniarg, which includes only re-
single-component Auids]; somewhat different approxima- pulsive interaction. Then the grand partition functinmay
?:;fig:éepﬁmﬁ:egerﬁgge?%rflvsetsﬁoll_ﬁivg]coemuems for thebe expressed in terms of that of the reference fHig, as
Hubbard and Schofieldl6] derived the effective LGW (6]
Hamiltonians for fluids by arexactmapping, based on the
transformation of variables. Although they did not compute E=ER< exp{ Bu'N+ EBE Uk”lZ”—lZJ > ’ ®)
the coefficients of the effective Hamiltonian, they argued that 27
fluids belong to the Ising universality class. In the present
study we develop this approach further, showing in particular . 1
that all the coefficients of the effective LGW Hamiltonian Wheré u'=u—pug+30v(0) and ()r denotes an average
may be expressed in terms of the known properties of th@Ve" cor!flguratlops of the r(_eference system, at the tempera-
referencghard-coré system: the compressibility and its den- turé T with chemical potentiaur . Note that the reference
sity derivatives. We find explicit expressions for the first few SyStém(with only repulsive interactions does not have a
coefficients. Applying the mean-field conditions for the criti- liquid-gas transition; i.e., its grand partition funct@h_ is
cal point of the effective magnetic Hamiltonian, we formu- régular in the vicinity of the critical point of the fluid of
late simple relations between some critical parameters angjterest. Following Hubbard and Schofielfl], we use the
check them for some fluids; for these fluids we also estimatédentity expga®?®)=(2ma?) Y2[  Zexp(—3y%a®+xy)dy and
the parametetg of the Ginzburg criterion. after some algebra obtain the rat@p=Z=/Zg of the grand
We start from the fluid Hamiltonian partition functiong 6]

R
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H i un' 12 1 _12 1 whereh, are the Fourier transforms &f and we use the
Qe : dogex U_OQ o058 - Uk Ok0 -k shorthand notatiomy » .. n= &k +&,+---+k,,0/N!.

Now we consider the smakl-expansion of the coeffi-
cients. First we note that the functidm(k) may be ex-
X < exp{ > ‘TIZ”—IZJ > ; (4 pressed in terms of the Fourier transform of the direct corre-
“ R lation functionc,(K), ash,(K)=¢,(K)/[1— pc,(K)] and its
here integration is to be performed under the restrictionzercllf value in terms of the isothermal compressibily,
o= ‘TE (the complex conjugate afy); o= o for k=0 =p ~(dplIPR) s (WherePg is the pressure of the reference

and we omit a factor regular at the critical point since it doedtid) as I+ ph,(0)=pkgTxr=2,. Using the expansions

not affect the subsequent analysis. Applying the cumulantk=vo—vok®+--- [10] and Cy(k)=C,(0)—Cc,(0)"k*+

theorem[8] to the factor{exp{Zon_iH)g one obtaing 6] .-, one obtains fouy, omitting terms ofO(k*),
up= 381 Jaz+hbik%+- -],
roJ II dogexp{—H}, (5)
X a;=(Bvo) = p2o, ®
with
by=p?[25C5(0) + Bug(pBro) 2. )
H=—h'o QY+ 2 The LGW Hamiltonian does not have terms with power& of
n=2 Qn2-1 higher thank?; moreover, the only term of ordée is pro-
portional toxk?ozo_i. Thus only zeroth order terms should
x> uh(Kg, - .. Kn)og. o, be kept in the expansion af, for n>2. Hence we may write
K, .- kn ! " the contribution of such terms using this approximation:
h'=[u—prtv(0)/2Jve*+p, uz=—381290[1+3phy(0)+p%h3(0)], (10

e e L - Uy=— 81231+ 7ph2(0) +6p°hs(0) +p°h,(0)],
Us(ky,ka) = Z5|21+|22,0{B Yoy 1_<n|21n7|21>cR}v ¢
etc., whereh,(0)=h,(0, . .. ,0). There exists a relation be-
Qn2-1 tween successive correlation functidig

ul(Ke, ... k) =— (Mg "N Jerr  N=3.

n!
, (1D

J -

_ _ _ XPZ(;—PIQF,BPI | gﬁPJ driy1(9i+1—9)
Here p=N/Q is the fluid density and ).g denotes theu- p
mulantaverage calculated in the reference system. In(&q.
Q has been written in the same way as the partition functio
for a magnetic system having an Ising-like Hamiltoniam: 0 B ~ R
are the Fourier components of the “spin field{(r) andh’ sza—p'h|(0)=/3p'[| hi(0)+ph;41(0)], (12
is the “magnetic field.” P

The coefficients of the effective Hamiltonian depend Onexpressing eacﬁ,ﬂ(ﬁ) in terms Oth(G) and its density

the correlation functions of the reference fluid having only 4o i\ o4 e Using Eq(12) iteratively one finally finds each
repulsive interactions. Using the definitions of the particle-

correlation functions of fluidg9] and definitions of the cu- T)I(IO) expresasgd ljn ter_ms dof_the_ refergnc?? ?{Stem cgmpress—
mulant averagegg], one cardirectlyevaluate(ngl---nlgn)cR ibility xr and its density derivatives. Explicitly, we obtain

{rom which follows a relation between the functioﬁg{@):

and thus the coefficients, (K, . . . k). Itis straightforward UL= 81 p U= — 81 2. 9pZ0(Zo+ Z1), (13)
to show thatu/, may be expressed in terms of the Fourier
transforms of the correlation functiomhs, h, . . ., h,, of the U= 123 4cUs

reference system, defined as;(ry)=5(ry), ho(ry.rp)

- S Lo - =—6 2 3+ 2o(2+ 421+ 2,) ], 14
592(21{2)_]” ) hg(rl'rzars)Egs(rl:rz{s)_92(f1,f2) 123420l 21+ 20(Z 112)] a4
—02(r1,rs) —0a(ra,rs) +2, etc., wheregy(ry, ... 1) are  definingu,, wherep, is the critical densityz,=pxr/B as
|-particle correlation function9]. In particular, the first few  pefore,z,=pdzy/dp, andz,= p?9°zy/dp?. In this way one
coefficients read can evaluatall the coefficients of the effective LGW Hamil-

tonian of the fluid and express them in terms of the com-
6) pressibility of the reference system and its density deriva-
tives. This solves the problem of finding the effective LGW
Hamiltonian provided the compressibility of the reference
us=—51,3 p{1+ p[hp(Ky) +Py(Kyp) +hy(Ks) ] system is sufficiently well knovyn. o _
For the reference system with only repulsive interactions
+ pZhs(ky 1K)}, (7)  one can often usefully adopt the hard-sphere system with an

, KeT oo
Upy=012p @_(1+Ph2(k1)] ,
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appropriately chosen hard-core diameféf,12. For soft keTe u3

(not impulsive repulsive forces a simple relatioi2] d =2t o] (21

=dgn=J3{1—exd — ¢(r)/KT]} gives the effective diameter Pclo 4lcp

d of the hard-sphere system corresponding to a repulsive 3

potential ¢(r) that vanishes at=o¢. For the hard-sphere Uz o

system one has the fairly accurate Carnahan-Starling equa- vope| 1+ 6uZ| (1= wrto(0)/2ce. (22
CP

tion of state[12], for which

Equation(21) relates the critical density and the critical tem-
perature of the system; E(R2) relates the difference of the

- chemical potentialg.— ug at the critical point to the critical
where 5= (7/6)d*p. The value ofc,(0)" may be found density. We have tested these relations using simulation data
from the Wertheim-Thiele solutiofi.3] for the direct corre-  for Lennard-JoneflJ) [14], hard-core YukawdHCY) [15],

2o=(1—-n)*(1+4n+4n°—4n3+ %1, (15

lation function, which gives and square-well (SW) [16-18 fluids. The Weeks—
B Chandler—AndersefWCA) partition[11] of the LJ potential
C,(0)"=—(7d%120) (16— 11p+47%)(1— 7). u y(r)=4e (a/r)>—(alr)®] gives, for the attractive part,
(16)

ELJ rSZlIG(T
To recast the effective Hamiltonian in the conventional form, v(r)= —u(r), r=2%q (23)
we perform a transformation from the variables; to

“field” variable o(r). Under this transformation integration which is perfectly smooth in the core region. This partition

over the sefoi} becomes field integration ove1(F) andthe gives the best estimates for the thermodynamic functions in

term ~ k200 transforms int0~[Va(F)]2. Usingpc_m as the WCA perturba.tion scheméll]..The repulsiye part

a scaling factor for the length we finally arrive at the effec-¢(r)=.uLJ(r)+U(r.) is then used to find the effective hqrd—

tive LGW Hamiltonian core diameter using the expression quoted above. Similarly,
we use the WCA partition for the SW and HCY fluids. The

square-well fluid has the interaction potenti#(r) —v(r)=

H:f drl —ho+ %02+ u_?g3+ u_‘|‘04+...+ %(60)2 , +o jf r<d, —eif d<r<d, and 0 ifr=Ad; the reference
2 3! 4! 2 system is the hard-sphere system with the diameétéVe
(17)  take the attractive part of the potential a¢r)=0 for r
e 1 _ =\d andv(r)=¢€ for 0<r<Ad. For the HCY potential,
where  h=[p—pptv(0)/2(vope) “tplpe,  @2= 4y _p(r)=+e if r<d and —esexd—(r—d)Jir for r
KeT/pcvo—2o(p/pc), andus,u, are given by Eqsi13) and  ~ 4. jhe WCA partition givesv(r)=ey/d for r<d and
(14). The coefficiento, reads v(r) = evexy — k(r—d)Jr for r=d.
13 o Table | gives the ratio of the right- to the left-hand side of
_ 1) 36 Nett B 18 the MF Eq.(21) asW, and that of Eq(22) asY.. As one
27gp w2y Béost ' can see from the table, these MF relations hold rather satis-

factorily except for HCY fluids with short-ranged attractive

where B=472(1— )4 (16— 119+ 472/ (1+ 49+ 472 potentials, where the MF description and Monte CARIL)
— 473+ 7%)2 and constantg,; and \ o characterize zeroth results appear to differ. In Table | we also give some coef-
€ €

q d d-order’ =L [12p(rdF f th ficients of the LGW Hamiltonian at the critical point.
orderv, and second-ordarg=5/r“v(r)dr moments of the Using coefficients of the effective LGW Hamiltonian ob-
attractive potential:

tained, one can also estimate the Ginzburg parametét].
This defines the domain of validity of the classical critical

3
4md eeﬁ:f () di=v,, (19) behavior: The classical description fails forl=|T/T.—1|
3 <75. Following [5], we write for this parameter
5 . 1 ul
2 d2:—u*1fu(r)r2dr. (20) 6= —, (24)
of 3°° ¢ 3242 ayb’

T.his effectiye_ LGW Har_niltonign may be used for the analy-WheregZ: a,7. From Egs.(18) and (24) it follows that for
sis of the critical behavior, using, for example, the RG teCh“the infinite-range Kac-Baker potentiaks—o [with eq<v,

nique. , _ finite; see Eqs(19) and (20)], b,— and thusrg—0 as
Now we perform a mean-fieldMF) level analysis based expectedcf. [5]).

on the effective Hamiltonian. To do so we first remove the To estimatea, we use the MF conditiori21) and ap-

cubic term by making the shifr— o+ o, with o chosen 0 proximatezy(p/pc) + u3/2u, by its value at the critical point
make the cubic term vanish; this leads to new coefficientg_ T/ v,. This yields:
h=h+a,us/u,—ud/3u? and a,=a,—u3/2u, with u;=0,

us=uy, andb,=h,. Then the MF condition at the critical a~ keT  kgTc
point (CP) a,=0 andh=0 gives the approximate relations Pclo  Pclo

=ayT. (25
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TABLE I. The Ginzburg criterionrg, the ratio of the right- to the left-hand side of E§1) asW, and
that of Eq.(22) as Y., and coefficients of the effective LGW Hamiltonidm,u,c,a,. Hereh is the
effective range of the attractive potentialg=\ for the SW fluig. T* =kgT/e.; andp? = p.d® are, respec-
tively, the reduced critical temperature and density. The critical data for the SW fluid ar¢Xidn16] (for
Ner=1.5), and[18] (for \¢=3.0); for the HCY fluid from[15]; and for the LJ fluid fron{14].

b2,c Ugc a
Nett T* pE s W, Y. (unitsof 100%)  (units of 100%)  (units of 10°?)
SW
1.25 0.391 0.370 0.272 1.07 1.21 0.62 25.2
1.375 0.375 0.355 0.259 1.06 1.55 0.88 25.2
1.500 0.370 0.329 0.301 1.06 1.01 2.00 1.46 26.9
1.75 0.338 0.284 0.407 1.12 2.89 2.96 28.4
2.00 0.346 0.225 0.334 1.09 4.58 6.10 36.7
3.00 0.433 0.181 0.012 0.87 15.7 9.02 57.0
HCY
1.396 0.298 0.377 0.336 1.45 0.56 1.91 0.52 18.8
1.579 0.307 0.375 0.096 1.39 0.62 1.70 0.55 19.5
2137 0.328 0.313 0.054 1.16 0.95 4.40 1.91 25.0
LJ
2.215 0.347 0.320 0.027 1.06 0.94 5.09 1.70 25.9

Thusa,=kgT¢/pevo =kgTe/87c€qs. Using this value ofr,  LJ fluid, with an attractive potential proportional o,
anduy,b, given by Egs.(14), and (18) (the coefficients in  similar to that of real fluidszg is of the order of 10?; real
this relation computed at the critical pointve calculate an  simple fluids are supposed to have similar valuesf20].
approximate Ginzburg parameteg for some of the Sw, However, it may be noted that in MC simulations of the LJ
HCY, and LJ fluids. The results are given in Tab]E_g] fIUId [14] (Where a Cutpff of the LJ potential and tail correc-
As we see in Table I, the derived value gf is of the tions were use)dlsmg-llkg behavior was observed. to values
order of 10! for most of the fluids studied in computer Of 7], at least a few times larger than thes given in
simulations and lies within the range of values predicted Table I.
in Ref.[5]. On the other hand, for the SW fluid with the most  Valuable discussions with John Valleau, his help, and
long-ranged attraction\g=3), 7¢~10 2 is much smaller suggestions are highly appreciated. Financial support from
and may explain the MF-like behavior obsery&8]. Forthe NSERC of Canada is acknowledged.
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