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Monte Carlo studies of adsorbed monolayers: Lattice-gas models with translational degrees
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Standard lattice-gas models for the description of the phase behavior of adsorbed monolayers are generalized
to “elastic lattice gases” which allow for translational degrees of freedom of the adsorbate atoms but have the
substrate lattice structure built into the adsorbate-adsorbate interaction. For such models, we derive a simple
and efficient grand-canonical Monte Carlo algorithm, which treats the occupied and empty sites in precisely the
same way. Using this method, we calculate the phase diagram of a simple model for the adsorption of
hydrogen on palladium(100); this model includes only pairwise interactions and exhibits an ordered
c(2X%2) structure. For our choice of parameters, we find only a rather small influence of the translational
degrees of freedom on the phase diagram. In particular, the observed asymmetry, albeit clearly present, is quite
weak. Finite-size scaling reveals that the second-order phase transition bef{£eed) and the disordered
phase is Ising-like, i.e., the elastic degrees of freedom do not change the universality class.
[S1063-651%98)06608-2

PACS numbsg(s): 02.70.Lq, 05.50tq, 05.70.Jk, 64.60.Cn

I. INTRODUCTION sites, and consequently no particle-hole symmetry. Based on
this observation, one should expect that one can also break
The phase behavior of adsorbed monolayers on a sulthe symmetry by allowing for additional translational de-
strate has found longstanding intergk}, both experimental grees of freedom of the adsorbate atoms, while still strictly
[2—4] as well as theoreticdb—14]. Usually the theoretical sticking to two-body interactions. Perssptb] has argued
description is done in the framework of lattice-gas modelsguite convincingly along these lines.
where the substrate is a fixed lattice with fixed adsorption Of course, such a system can be studied by straightfor-
sites which can either be occupied or empty. Such a model iward molecular dynamicMD) simulation[16] of a number
equivalent to an Ising model, where an occupied site correef particles subject to an external potential which models the
sponds to an “up” pseudospin, while empty sites are mod-effect of the substrate. Similarly, the system could also be
eled as “down” pseudospins. The rich phase behayjas- studied by using a standard Monte CaflC) algorithm in
liquid transition as well as the formation of various the canonical ensemblgEl7]. However, these approaches
superstructures with second-order phase transitions belonfave a number of disadvantages when it comes to the accu-
ing to a variety of two-dimensional universality clasE&®]) rate quantitative analysis of phase transitions and critical
is then investigated using interaction parameters like nearephenomena. The conserved particle number will, in the case
neighbor, next-nearest neighbar, . , attraction or repulsion. of a first-order phase transition, generate two coexisting
However, it is well known, and obvious from the transfor- phases separated by an interface. This requires, on the one
mation to the Ising mode(see also Sec. )|l that pair inter- hand, sufficiently large systems such that the structure of the
actions will always produce a phase diagram in theinterface, and the competition of the interfacial free energy
temperature-coverageT{®) plane which is symmetric with the bulk free energy, is simulated correctly. On the
around® = 1/2. This is a direct consequence of the inherenother hand, long runs are also required in order to equilibrate
particle-hole symmetry of the model. The most common apthe interfacial structure—the conservation law induces a
proach to breaking this symmetry is the introduction ofslow decay of density fluctuatiori§hydrodynamic slowing
three-body interactiongdl 1-13. Without these terms, itisin down”) [18]. Therefore one would prefer a simulation
many cases impossible to obtain a reasonable fit to experinethod which suppresses the occurrence of the interface, i.e.,
mental phase diagrams, which quite often exhibit a marke@& grand-canonical algorithn{19-23 (note that both
asymmetry. constant-pressure schemg®t]| as well as the Gibbs en-
On the other hand, the gas-liquid transition phase diagraraemble methof25] are not feasible due to the rigid structure
in a simple fluid usually exhibits a substantial asymmetry,of the substrate
too. This is, however, not due to three-body interactions be- While it has been demonstrated that grand-canonical
tween the particles, but rather to the simple fact that they casimulations of atomic models are able to study phase equi-
freely move in space, such that there is no notion of fredibria and critical phenomena with high accura3?,23,
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such a methodor mode) is nevertheless computationally Il. GRAND-CANONICAL SIMULATIONS
rather demanding, at least when compared to simulations of OF ELASTIC LATTICE GASES

simple lattice-gas or Ising models. We therefore seek a sim- Our starting point is a distortable lattice of sites in

plified model, which still includes the translational degreesd-dimensional space. These sites are allowed to move freely
of freedom, and works in the grand-canonical ensemble, by, 5 simulation box, with periodic boundary conditions,

nevertheless resembles more closely a simple lattice-g3§hose size defines the system volumeThe position of the
model, 'thus retamlng some ggpec;ts which allow chegper ith site is denoted b;7i . To determine the distances between
simulations. The main simplifications of our model dre sites we impose the standard minimum image convention

reduction of the trsnslatlont?]l dlegi[;tr_ees of freet_dom ';O twodd'Izg]. If the lattice is perfectly ordered, the movable sites are
mensions, andii) keeping the lattice-gas notion of an ad- |\ .oy o their ideal positions; =r?"; these are the ideal

. . ' . . I
sorption site Wh.'Ch can be either occup|e_d or empty, Sucrggldsorption sites. From the topology of that ordered lattice
that the simulation allows only for a maximum number of

. . (e.g., square lattigeone derives the neighborhood relations
adsorped atoms. AIthom_Jgh tt@eccup_ned or emptysites can - petween the site@earest neighboksj ), next-nearest neigh-
move in space, the neighbor relations between the sites a

, ) rs ((ij)), etc), which are viewed as a property of the
kept fixed, such that the same neighbor table can be us§gyice as'such, independently of any interactions, and inde-

throughout a run. Moreover, occupied and empty sites arBendently of the configuration in position space.
treated in precisely the same fashion, such that the Monte Now M sites out of theN possible ones are selected and

Carlo updates are just site moves and pseudospin flips. Thﬂ:cupied with particles. We denote these sites with
resulting algorithm is quite simple, compact, and efficient,i i, .. . i, while the empty  sites are

permitting full vectorization based on the standard checker'rMH,iM“, ....in. By requiring bothi;<i,<---<iy and
board method. Such an approach is quite analogous to semj; ., <i,,,,<---<iy, each occupation configuration corre-
grand-canonical simulations of binary alloys on a distortablesponds uniquely to one index assignment. Alternatively, an
lattice [26,27); however, the decisive difference is that we occupation configuration is described by the standard lattice-
now assign armartificial translational degree of freedom to a gas variablesc;, where ¢, =cj,=-=¢ =1 andgc;
“ghost particle” (empty sit¢ which, in reality, simply does —. ..=¢; =0, or the pseudospin variabl&=2c;
not exist. This requires some care in the construction and ; =77 1 N
optimization of the MC algorithm, which is done in a similar  5p, interaction between particles can only occur if they
spirit as in previous “ghost particle” method simulations of 5re nearest or next-nearest neighbors on the lattice. If two
adsorbateq 20,21, which, however, did not impose any particles are rather close to each other in real space, but
ﬁxed neighbor structure. Th|S ﬁxed |a.ttice structure iS alsqhird_nearest(or furtheo neighbors with respect to the im-
the main difference to a recent study of two-dimensionalposed lattice topology, they will not interact. The restriction
phase transitions of systems with coupled internal and trango nearest and next-nearest neighbors is only done for sim-
lational degrees of freedorf28], which, however, used a plicity of notation; inclusion of additional neighbor shells,
random lattice with fluctuating neighbor shells. It should betriplet interactions, etc., is trivial. The decisive simplification
mentioned that an additional advantage of such a predefindd that the interaction cutoff is not determined via the con-
lattice structure is a simplification of the data analysis; thefiguration in real space, but rather via the lattice. We now
definition of sublattices and order parameters etc. remaingtroduce a characteristic function for nearest neighbors,
trivial.

The remainder of this paper is organized as follows. Sec- 1 (i,j) nearestneighbors
tion Il contains most of the theoretical development. Starting on(i,)) =10
from a physical Hamiltonian, we perform the transformation
to the grand-canonical ensemble, and derive the Monte Carlo
algorithm. The effective Hamiltonian, which governs the and similarly wyyy for next-nearest neighbors. Then the
simulation procedure, no longer exhibits any particle-holeHamiltonian can be written as
symmetry. Moreover, the Ising model notion of a magnetic

M+2

otherwise, (2.9)

field (which, in the simple lattice-gas case, would describe M

the symmetry of the phase diagram in the grand-canonical H= 2, vo(r;, 1)

ensemblgno longer makes sense, due to an arbitrary choice k=1 “

of the zero of the chemical potenti@ee Sec. )l Section Il M=-1 M

then describes how the algorithm is applied to a specific +O0 D onliGiDoan(ri =)

model on the square lattice with nearest and next-nearest k=1 I=k+1 o

neighbor interactions; the results for the phase diagram and M-1 M

the critical behavior are presented in Sec. IV. The model is a + 2 2 wNNN(ikaiI)UNNN(Fik_Fh)a (2.2
straightforward generalization of a simple lattice gas which k=1 I=k+1

has been studied by Binder and Landau long [@jan order

to describe the behavior of H/PDO), which forms an or- using nearest and next-nearest neighbor potentiglsand
deredc(2X2) phase aroun® = 1/2. In the limit of vanish- vyyy @s well as a substrate potentig), which binds each
ing elastic interactions, our model reduces to the case of Refarticle to its ideal site. The canonical partition function of
[9]. Finally, Sec. V concludes with a brief summary. that M-particle system is then
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R R R which binds the “ghosts” close to the ideal adsorption sites,
ZealM)= 2, VEMJ drilf driz'"J' dri,, they would move around freely. Therefore the “ghost” state
it would be strongly entropically favored, by a translational
XeXF{—BH({Fik})]- (2.3 entropy of _In_(\//VO) per “ghost’i particl_e. Even worse, this_
entropic driving force would diverge in the thermodynamic
limit. While this pathology could be remedied by the term
akgT alone, using a proper, system-size dependent choice of
«a, Ug is also very important fodynamicalreasons: We wish
to model the potentialsyy, vnnn ., Vo Via springs with in-
finite range of interaction. Suppose a site has escaped its

Here, we sum over all possibilities to distributk particles
onto theN-site lattice.V, is an arbitrary normalization vol-
ume which is necessary to render the partition function di
mensionless. Within the quasiclassical approximat\gnijs
usually associated with the thermal de Broglie wavelength, X . . o :
however, within the framework of strictly classical statistical proper local environment in the “ghost” state. It will then be

physics it is just a normalization constant whose value doegery”hard for this site to be trned back_mto the “real par-
not matter for the physics. Usually we will choo¥g=a®, ticle” state, because this change would introduce extremely

where a is the lattice constant of the perfect lattice. The strongly stretched springs into the system, i.e., a very high

integrations extend over the volume of the simulation box.excitation energy. Therefore the site will diffuse freely in the

note that only the coordinates of the occupied sites are inte—ghos’t state, until it happens to come back close enough 1o

grated over — only these are the physical degrees of fre ts proper environment, such that it can rematerialize again.
dom. As usual3=(ksT) 1. The grand-canonical partition '\ ° therefore expect, from random-walk arguments, that the
function then is algorithm without the confining potentiél, would exhibit a
correlation timer=L?, whereL is the system linear dimen-
N sion. In other words, the method would be hampered by an
Zoc= X exXpBuM)Zed M), (2.4 artificial “critical slowing down” everywhere in the phase
M=0 diagram. We therefore view the introduction bf, as an
ispensable feature of the method.
In order to find the proper choices fak, and «, we have
compareZq; with Zgc. To this end, we first introduce the
partition function of a single particle in the potentla},

where u denotes the chemical potential. It should be noteolnd
that the lattice induces a unique labeling of the particles[0
(which has explicitly been given abovesuch that they must
be viewed aglistinguishable For this reason, a permutation

factor (M!) ~! doesnot appear. - -
Now let us assume that a Monte Carlo simulation is run, §:V61f drexd —BUq(r)]. 2.7
where a simple Metropolis algorithm is applied to the effec-
tive Hamiltonian Using the trivial identities>;c,=3yZcy. . =i¢i=M, and
i ifIM
N Zi(1-c;)=N—M, we can integrate out the “ghost” de-
Heo= 2 Ci[UO(Fi _ Fio) — u— akgT] grees of freedom to obtain
i=1 N

k - o Zet= 2, expBuM) expaM)N MZe(M). (2.9
+i21 (1—Ci)Uo(fi_ri)+<Z> CiCjunn(ri—r)) M=0
= I
: In order to weight every terrd.,{M) correctly, we have to
- - choose
+ & CiCionnn(ri—rj), (2.5
ij

( a=In¢, (2.9

wherec; and Fi are treated as completely independent de
grees of freedom of aN-particle system. The parameter
and the potential, will be specified below. Zetr=NZ e (2.10

This algorithm will be correct, i.e., produce configurations
satisfying the correct probability distribution, if the corre- The systems are thermodynamically equivalent since the

resulting in

sponding partition function prefactor¢N is a constant. In order to avoid temperature de-
pendence of, we choose a square-well potential
zeﬁzvgN{E} dr}--f dryexp— BHer)  (2.6) 0 r<R
Ci
Uo(N=1% >R, (2.11)

is (up to a constant prefactoridentical to the grand-

canonical partition functioZ ¢ according to Eq(2.4). The N .
physical motivation for Eq(2.5) is as follows: The factors; where the cutoff radiuR is of the same order of magnitude

make sure that potential contributions occur only from rea® th;" typical part|cl-e .dlsr.)lac.ement. from the ideal s!te. For
particles. Hence, the potential part & is identical to. |r_i— ri |_>R, dematerialization is forbidden. Therefore in two

The term proportional t. describes the effect of the exter- dimensions we have

nal chemical potential. The remaining two terms are coun- 2
terterms against the intrinsic tendency to “evaporate” at — 7R

i : - ; (=~ (212
higher temperatures: Without the confining potentiyl, Vo
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state{F?}) is denoted bya. Every length is measured in units

of a. Similarly, we choose an energy scdle 0 and measure

. ] ) energies in units of and temperatures in units dfkg . The
These choices ensure a correct simulation of the grandsamiltonian of Eq.(2.2) is then specified via
canonical ensemble. In practice, one has to use an effective

7R?
a=|n(—). (2.13

chemical potential Ko
vo(r)= ?fz,
Meii= m+kgTINg. (2.19
i izati Knn
N_o';e that the _arblltrary normalization volurig, although o) = ot — (=l yw)2, (3.0

explicitly appearing in the above formulas, doeg enter the 2
effective HamiltonianHg;, as it should be—the physical
properties of the system should not dependvgn The rea- B KN | 2
son for this independence is simply the fact that the chemical UNNN(T) = @nnnt 2 (r=Taw) ™

potentialx can only be definedfter V, has been specified,
such thatu depends oW, too. Indeed, from statistical ther- For simplicity, we chose the following parametergyy

modynamics it follows that =+4, oaan=—4, ko=knn=knan=1, Inn=1, Inan= 2.
3 The choice of \ andlyyy €nsures that faFi = F? the elastic
m=—KgT—=InZ (M) contributions to the Hamiltonian vanish. Since these terms
M are also positive, one sees that the ground state is obtained
P . ) for the perfectly ordered latticg=r? . Of course, this is just
=kgTINVo+ M > f drilf driz---f dri, the simplest case; for choices kgfy andlyyy Which intro-
{citlm duce a mismatch between the substrate and the adsorbate

_ y system one should expect substantially more complicated be-
xexil BH({r'k})]’ 219 havior. The harmonic potentials were chosen as rather soft.
This is probably somewhat unrealistic in comparison with
experimental systems, but was introduced for reasons of sim-
BTicity, and also because we expected the strongest influence
of the translational degrees of freedom for a rather soft lat-
tice. The constant offset iny was set to zero, because it can
be absorbed in the definition of the chemical potential

Finally, for oy @and yny We note that fofi= F? the model

andR=a, wherea is the lattice constant of the undistorted '€duces to an Ising model with nearest and next-nearest
lattice. neighbor couplingsJyy= —1 (antiferromagneticand Jynn

In order to make the asymmetry induced by the transla= T L (ferromagnetig, respectively.
tional degrees of freedom more transparent, we transform 1his latter modelwith exactly this set of NN and NNN

H, to pseudospin variables via= (S + 1)/2. Without writ- coupling has already been studied in quite some detail in
ing down the resulting formulas in full detail, we would just Ref.[9], whose data serve as a valuable reference state for

like to point out that the Hamiltonian assumes the form  the present study. The ground state in the grand-canonical
ensemble is simply given by a completely filled lattice
. . (1x1), for u>8, a completely empty lattice ¢11)_ for
Heir=Ho({riD— 2 3;({riHSS; u<-8, and an ordered(2x2) structure for—8<u<S8.
(i This latter structure corresponds to a decomposition into two
- - sublatticesa andb, each connected via next-nearest neighbor
-2 Jii({ri})gsj_Z Hi({ri})S. (216  ponds, one of which is occupied and the other one empty
i (®=1/2). A physical realization of this structure is the su-
The decisive point is that each pseudospin is subject to itBerstructure of hydrogen on a palladiu@00 surface.
own local magnetic field, which depends on the configura- We therefore sampled m(_)ments of the dlstrlbutlon. of the
tion of the sites in space. In the simple lattice gas, the field jgrder parameter Corre_spondlng to @< 2) structure, i.e.,
a global quantity,H;=H, such that the transformaticyj—  the staggered magnetization
— S accompanied witiH— — H leaves the Hamiltonian in-

such that the dependence Wp in w; €xactly cancels out.
From these considerations, one sees that a particularly co
venient normalization of the partition functions and the
chemical potential is given by the choitg=7R?, i.e., the
normalization volume equals the cutoff volume of the algo-
rithm. In this case{=1, anduc= w. In the present study,
this has, however, not been done; we rather chése a?

variant. Such a transforma.uon is impossible |n.the present mg=N"1 2 51—2 Si)- 3.2
case, and hence the particle-hole symmetry is no longer ica ieb
present.

It should be noted that the distribution i is strictly sym-
metric around zero. This symmetry is not related to any
particle-hole symmetrywhich is of course lacking in our
mode), but rather to the strict equivalence of the two sublat-
We have studied LXL square lattices, withL ticesa andb, which is a purely geometric property. Hence
=10,20,30,100, whose lattice constéintthe ideally ordered we studied(|m{), the staggered susceptibility

Ill. MODEL, AND MONTE CARLO
SIMULATION METHOD
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N 12
Xst:f(<m§t>_<|mstl>2)v (3.3 10F
8¢ I 1 (1X1)q.
and the fourth-order cumulah30] 6 T
4 L
4
m 2l .
UL:1——S;¥3. (3.9 ol
3<mst> c(2x2) b
-2}
Further quantities of interest are the coverage 4 .
-6
O=N"2 (c) (3.9 1 ] ! .
i -0} :
) -12 (1x1)_ . °
and the moment ratio 14 . L.
0 1 2 3 4 5 6
W, —ﬂ (3.6) T
L_<|mer>2. ’ FIG. 1. The phase diagram of the elastic model specified in Eq.

(2.2), and at the beginning of Sec. Ill, in the grand-canonical en-

The chemical potential normalization at nonzero temperasemble[(x,T) pland. Second-order phase transitions at high tem-
ture was fixed by setting/,=1. Furthermore, the cutoff ra- peratures are indi(?ated by filled circles. The error in the Iogation of
diusR for the confining potential, [cf. Eq.(2.11)] was also these transmorjs is smglle_r than the symbol size. The mtervgls
chosen asR=1. Tests showed that this is a reasonablebra_CkEted by dlarr_lc_mds indicate the possible range for the location
choice for ensuring sufficiently fast equilibration, while very ©f first-order transitions at lower temperatures.
large or very small values will both substantially slow the
simulation down. We used “compound moves,” where for a
single site we generated a new trial configurationgthrde-
grees of freedom simultaneously, i.e.,

possible normalizations fqu, all resulting in different phase
diagrams with differing degrees of asymmetry, we do not
consider it useful to discuss the phase diagram’s symmetry in
the grand-canonical ensemble. This should rather be done in

X' =X+ f(u;—1/2), the (®,T) plane, where the phase diagram is free of such
trivial ambiguities.

y/ =yi+f(uy—1/2), (3.7 In Fig. 3 we show this phase diagram, and compare it to
the data obtained in Reff9] for (i) the same model as ours,

¢/ =[2us], but the elastic interactions turned off, aril) the same

model as(i) in the Ising language, but &erromagnetit
whereu, stands for a random number uniformly distributed three-body interaction addetbr more details, see Refi9]).
in the unit interval 6<u,<1, and[ ] denotes the integer part. Clearly, the pure lattice-gas model with only pair interactions
This trial move was then accepted or rejected via the star@s @ symmetric phase diagram. The inclusion of the three-
dard Metropolis criterion, usin@te;. We chosef=0.8, en-  body term induces a very strong asymmetry, such that the
suring an acceptance rate of roughly 1/2 in the relevant temSecond tricritical point at higher coverages vanist@swas
perature regime. The algorithm was fully vectorized basedindetectable within the resolution of Rg8]). Nevertheless,
on a four-sublattice checkerboard method and attaineée shape of the second-order liog2 < 2) — disordered at
0.48x10° particle updates per second on a single Cray'nghtemperatures is remarkably insensitive to the three-body
Y-MP processor. Typical production runs near second-order

phase transitions used betweemx 50° and 1x 10° Monte 12
Carlo stepdMCS, sweeps through the lattice nr I t . (x1)
8¢ * .
IV. RESULTS or *
4 [
A. Phase diagram 2
The phase diagram in the grand-canonical ensemble, i.e., W« of o(2x2) ¢
the (u,T) plane, is shown in Fig. 1. At high temperatures, 2|
the transition line between the ordered and the disordered al .
phase is of second order, while below the two tricritical i .
points it is of first order. There is a rather strong asymmetry [ [ 1 .
present in the phase diagram; however, to a large extent this 10 ax1) ¢ .« °
is simply due to our normalization of the chemical potential, 12 )

coming from the choicerR?/Vy=m+#1 (see discussion at 0 1 2 3 2 5 6
the end of Sec. )l Indeed, when choosing the more natural
normalizationVy=7R?, i.e., plotting the phase diagram in  FiG. 2. Same as Fig. 1, but using a different normalization for

the (uerr, T) plane, the asymmetry is much weaker, but stillthe chemical potential, such that instead softhere appears the
present, as seen in Fig. 2. Since there are infinitely mangffective chemical potentighes= u+ kg TINZ (See text
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6 5F F
é
[o]
4r (Ix1)_/ (1x1), .
[e]
*
3 c(2x2) -
T T PR
2 ce e0
ce [ >
coex. ¢(2x2) <—> (1x1)_/
! 1 coex. ¢(2x2) <> (1x1), 1
S L
0 : : —— . ok v . v :
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.1 0.2 0.3 0.4 0.5
0 6,(1-96)
FIG. 3. The phase diagram in the canonical enserpiste T) FIG. 4. The phase diagram of the elastic model specified in Eq.
pland. (i) Filled circles: Lattice-gas or Ising model with antiferro- (2.2, and at the beginning of Sec. IIl, in the canonical ensemble

magnetic nearest-neighbor interaction, and ferromagnetic NeX{(@,T) pland. In order to demonstrate the weak asymmetry, we
nearest neighbor interactioiiRef. [9]). (ii) Asterisks: Same Ising  pave superimposed the data 0rin the range &0<1/2 (filled
model ag(i), but a ferromagnetic three-body interaction adtRef.  jrcleg with those for -© in the range 1/20<1 (open circles
[9)). (iii) Filled diamonds: Model of the present study, which would gyror pars are always smaller than the symbol sizes.

reduce ta(i) if the elastic interactions were turned off. The second-

order phase transition line at high temperatures ends in tricriticahccurate knowledge oft,, simply because the hysteresis
points below which two-phase regions open w§2x2) and loops of® (data not shownare all rather flat.

(1X1), at high coverages;(2x2) and (1X1)_ at low cover- For the second-order phase transitions at higher tempera-
ages. In caseii), the two-phase region at high coverages is nottures we used finite-size scalif§S9 [32,33 procedures.
present. We chose linear paths in theu(T) plane(not necessarily

. . parallel to the axesand studied the fourth-order cumulant
term (for further discussion, see also REE3]). Conversely, U, along them for the system sizés=10,20,30. For ex-

the phase diagram of our model, which shows the effect ofmple, Fig. 6 shows the data for a rather high temperature.
elastic interactions, is rather close to that of the “unper-gne sees that the intersection point, which serves as estimate
turbed” model in the whole plane. The highest critical tem-for the critical point, is quite well defined. Therefore the
perature is reduced by a few percent, and the tricriticainethod allowed a rather accurate determination of the
points’ temperatures also seem to be somewhat reducegbcond-order transition line. The intersection properties de-
(note that we did not attempt to locate the tricritical pointsteriorate somewhat when approaching the tricritical points,
very accurately; the phase transitionsTat 2.5 still seem to  which we did not attempt to localize very accurately. We
be of second ordgrAltogether, we find a surprisingly small  a1s0 triedw, intersection plots; however, we found that this

influence of the translational degrees of freedom. In fact, thenethod would not provide more accurate estimates from our
asymmetry in our model's phase diagram is so weak that ifjata than the analysis tf, .

can hardly be detected at all by just looking at Fig. 3. There-
fore Fig. 4 compares the data for®=<1/2 with the mirror

image of the phase diagram in the range<ifP<1, with ) ] o )
symbols larger than the error bars. The cumulant intersection value in Fig. 6 is around 0.62,

a value which is typically obtained in simulations of the

C. Critical behavior

B. Details of calculation 1ol

At low temperatures, where the phase transitions are of
first order, we studied ah =100 system for 1D MCS per 08 |
state point. This system size was large enough to make hys-
teresis well observable in sweeps pf back and forth
through the transition. For example, Fig. 5 studies the tran- 06 1
sition (1x1)_<c(2X2) atT=2, where a clear hysteresis sl
is visible in the staggered magnetization. The transition oc- 0.4
curs somewhere within the loop, and the corresponding
ranges are indicated in Fig. 1 and Fig. 2. A more accurate 02 b
determination of the transition chemical potentig] would
require thermodynamic integration procedures. For example,
one could use the method outlined in R§26], or the gl

-11.4 -11.3 -11.2 =111 -11.0 -10.9 -10.8

Frenkel-Ladd procedurg3l]. This was, however, not at- "

tempted, since it turned out that a reasonably accurate deter-
mination of the ®,T) phase diagram was possible without FIG. 5. Hysteresis loop ding| as a function ofu, for T=2.
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0.66 . . . . a5
.. _
.
40 | R
0.64 | .o
.
35 | . *,
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FIG. 6. Cumulant intersection plot fdd, , and three system
sizes. BothT and u were varied along a linear path in thg )
plane in the range g T)=(—1.254.17) and x,T)
=(—0.8375,4.2437). Characteristic error bars are shown.

FIG. 8. Same as Fig. 7, but plotted using mean-field-like critical
exponents.

for Ising universality 3=1/8, »=1), and

two-dimensional Ising universality cla34]. Of course, this (Img)=N""mg(NV%), (4.2)

is just the universality class which is expected for a one-

dimensional order parameter as olifs6]. However, the for the mean-field case, whehe= L? is the total number of

translational degrees of freedom gave us a reason to nevegites. Note that in this special case the arguments of the

theless check the critical behavior: In related threescaling functions coincide, while the prefactors differ

dimensional models of binary alloy&6,27] mean-field- like ~ strongly. A comparison of Fig. 7 with Fig. 8 clearly shows

critical behavior had been found, due to an effective longthat our data are better described by Ising-like behavior than

range interaction mediated by the elastic distortions. In thénean field. A similar conclusion can be drawn from suscep-

present model, however, mean-field behavior can be clearlijbility data (not shown, where the relation

ruled out, since in this case one expd&6,32,33 a cumu- ~

lant value of roughly 0.3. This is further corroborated by the Xs= L7 xs L) 4.3

data collapsing plots for the staggered magnetization shown = , , ) .

in Fig. 7 (Ising) and Fig. 8(mean field. There we check the for Ismg—hke be_hawor withy=1.75 is checked against the

standard FSS relatiorf82] (t=T/T,—1 denoting the nor- Mean field relation

malized distance to the critical pojnt o NYZ (N2, 4.4
_ 1 —Blviy 1/v

(Imgf) =L~ my(L™), .1 For the present model the translational degrees of freedom

obviously have no influence on the universality class.

1.2
AR V. SUMMARY AND DISCUSSION

14t LA N ) The present work proposes a modeling approach for
L Monte Carlo simulation studies of adsorbed monolayers. The
elastic lattice gas is a hybrid between a lattice model and a
continuum model, allowing us to include the translational
degrees of freedom of the latter, while retaining the tight data
structure of the former, which permits an algorithm which is
conceptually simple and computationally efficient. The pre-
sented treatment shows how to deal with the statistical me-
chanics of the vacancies or “ghost particles” in a consistent
and efficient way; the introduction of the confining square-
. . well potentialUg is a crucial feature. Nevertheless, starting
10 0.5 6.0 0.5 from the derived effective Hamiltonian, one could try to im-
L™ (TT.-1) e
prove the efficiency even further. For example, by decou-

FIG. 7. Finite-size scaling plot for order parameter data near th®!ing the pseudospin flips from the translational motion, one

second-order transition gi=ju.=—0.930, T=T,=4.231, using could use force-biased M{29] for the latter, and perhaps

the critical exponents of the two-dimensional Ising universality @S0 develop a cluster flip meth¢@6] for the former. Both
class,3=1/8, v=1. For Ising-like critical behavior, the data for the the theoretical treatment as well as the simulation data show

different system sizes=10,20,30 should all lie on a single curve. that the inclusion of the elastic degrees of freedom destroys
Data are for the same path in the phase diagram as those of Fig. e inherent particle-hole symmetry present in simple lattice

L"Im_|

09 | —eoL=10

0.8 .
20 15
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gases with pair interactions. Moreover, the theoretical analythat this latter result should also be true for more realistic
sis shows that the chemical potential at nonzero temperaturetastic lattice gases, it is not clear how strongly the phase
is only defined up to an additive constant, which is fixed bydiagram’s insensitivity to the elastic degrees of freedom de-
prescribing a value for the partition function normalization pends on the additional simplifying features which we intro-
volumeV,. Therefore one should view the phase diagram induced, i.e., mainly the restriction to harmonic potentials, and
the grand-canonical ensemble only as an auxiliary diagrarthe disregard of any mismatch between the adsorbate-
with no direct physical meaning. As far as the phase diagramdsorbate and the adsorbate-substrate interaction. It is cer-
in the canonical ensemble is concerned, we observed a suginly worthwhile to study these questions further by system-
prisingly small influence of the elastic degrees of freedomatically lifting these restrictions, and introducing more
both with respect to the induced asymmetry, as well as withrealistic models.
respect to the location of the phase boundaries. This is even

more astonishing when one considers the fact that the elastic

lattice was chosen as very sdfirobably even beyond what
is physically reasonablesuch that large fluctuations in the
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