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Reconnection of vortex filaments in the complex Ginzburg-Landau equation

Michael Gabbay,* Edward Ott,† and Parvez N. Guzdar
Institute for Plasma Research, University of Maryland, College Park, Maryland 20742

~Received 24 July 1997!

A criterion for the reconnection of vortex filaments in the complex Ginzburg-Landau equation is presented.
In particular, we give an estimate of the maximum intervortex separation beyond which coplanar filaments of
locally opposite charge will not reconnect. This is done by balancing the motion of the filaments toward each
other that would result if they were straight~a two-dimensional effect! with the opposing motion due to the
filament curvature. Numerical experiments are in good agreement with the estimated vortex separation.
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PACS number~s!: 82.40.Ck, 47.32.Cc
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Amplitude equations, which describe the slow spatial a
temporal variation of a system in the vicinity of a line
instability, have proven to be a fruitful tool for the theoretic
analysis of pattern formation in nonequilibrium system
@1,2#. A prototypical amplitude equation is the comple
Ginzburg-Landau equation~CGLE! which describes the be
havior of extended systems near a Hopf bifurcation o
steady, homogeneous state to a limit cycle@3#. In particular,
the CGLE applies to reaction-diffusion systems@4#. The
CGLE is given by

]A

]t
5A2~11 ia!uAu2A1~11 ib!¹2A, ~1!

wherea andb are real parameters, andA(x,t) is a complex
scalar field often called the order parameter. The CGLE
plays a rich variety of behavior@1#. In two dimensions, it
possesses spiral wave solutions and is perhaps the sim
equation that does so. Expressed in polar coordinates
single-armed solution for an isolated two-dimensional~2D!
CGLE spiral wave is of the form

A0~r ,u,t !5F~r !exp$ i @2v0t1su1c~r !#%. ~2!

The symbols561 denotes the ‘‘topological charge’’ of th
spiral wave, as one can see that the phase change ofA0 upon
counterclockwise traversal of a path around the origin
62p. Hence the center of the spiral is a vortex or ‘‘defect
This singularity in the phase field forcesA0 to vanish at
the center of the spiral. The real functionsF(r ) and c(r )
have the asymptotic behaviorsF;r , c8;r as r→0, and
F→A12k0

2, c8→k0 as r→`, with the prime signifying
differentiation with respect tor . The amplitudeF rises rap-
idly in the region called the core that immediately surroun
the defect. The frequencyv0 is determined uniquely by the
parametersa andb @5,6#. This, in turn, uniquely specifies th
asymptotic wave-numberk0 via the plane wave dispersio
relationv05a1(b2a)k0

2.
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Spiral waves can also occur in three-dimensional~3D!
systems~including the CGLE! and are known as scrol
waves@7,8#. The point defect at the center of a 2D spir
wave is replaced by a vortex filament about which the spir
rotate. This filament can span the boundaries of the med
or it can be closed to form a loop, which may be knotted
interlinked with other loops@9#. Experimentally, scroll
waves have been observed in excitable media such as
Belousov-Zhabotinsky reaction@10#, in slime mold@11#, and
in electrical signal propagation in the heart@12#.

Reconnection of vortex filaments leading to topologic
changes in the configuration occurs when the filaments co
into local contact. For instance, as two interlinked filame
loops both contract, they may make local contact and rec
nect, creating a single large loop. Experimentally, vort
filament reconnection has been observed in fluids@13,14#
and in liquid crystals@15#. Reconnection has been demo
strated numerically in the Navier-Stokes equations@16,17#, a
coupled map lattice version of Eq.~1! with a5b50 @18#,
and the nonlinear Schrodinger equation@Eq. ~1! in the limit
a,b→`# @19#. Winfree and Strogatz@9# showed the recon-
nection of scroll wave filaments of reaction-diffusion equ
tions to be possible based on topological considerations,
it has been observed in numerical simulation of excita
media@20#. In this paper, we present numerical evidence
the reconnection of scroll filaments in the 3D compl
Ginzburg-Landau equation, and estimate the threshold s
ration between coplanar filaments of given curvatures
yond which reconnection will not take place. The occurren
of reconnection in CGLE vortex filaments has important i
plications. In particular, reconnection can destroy the to
logical integrity of linked or knotted filaments. In addition
reconnection will allow an initially dense state of vortices
evolve into a smaller number of larger vortices. Reconn
tion may also be an important feature of defect-media
turbulence@21–24# in three dimensions, perhaps leading
the existence of large-scale, long-lived structures.

The reconnection of two initially coplanar scroll wav
filaments is shown in Fig. 1 for a numerical simulation of t
CGLE in three dimensions, using parameter values ofa51
andb50. The amplitude fielduAu is displayed, and the fila-
ments are seen as dark regions of lowuAu. In the region
where the filaments are initially nearest, they draw close
one another. Eventually they merge and form a new pai
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filaments which then move apart from each other. The fi
ments become distorted only in the immediate neighborh
of where they are closest, and so the reconnection proce
a fairly localized phenomenon.

Figure 2 shows the phase field of the complex quantityA
in the plane perpendicular to the initial plane of the fi
ments, with the intersection being formed by the lineaa8 in
Fig. 1~a!. This plane intersects the filaments at the poi
where they are nearest~henceforth referred to as the cent
plane!. The singularities in Fig. 2~a! are the centers of the
spirals where the different phase bands pictured in the
converge. The two spirals are seen to be of opposite cha
winding in opposite senses around their centers~the condi-
tion of outward-directed group velocity selects a prefer

FIG. 1. Amplitude field for reconnecting coplanar filamen
The locus of points in the data volume for whichuAu,0.5 is shown.
As the filaments move toward each other, they also drift togethe
the direction perpendicular to the plane of the figure. Since this d
is larger where the filaments are closer together, the initial pla
disposition of the filament becomes nonplanar. This nonplana
however, is a small effect.

FIG. 2. Phase field~a! before and~b! after reconnection along
the center plane.
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winding direction for a given topological charge!. We note
that in general a global topological charge cannot be
signed to a spiral wave filament, but the direction, clockw
or counterclockwise, in which the phase increases aroun
given point on the filament can be used to pick out a dir
tion along the tangent to the filament at that point via t
right-hand rule. For instance, a plane that slices throug
circular filament ring along its diameter will reveal two sp
rals of opposite charge, but the right-hand rule define
unique direction of travel along the ring. Any mention
topological charge when referring to spiral wave filaments
understood to be made in the context of a given tw
dimensional plane~the center plane for the case of Fig.!
and a given point along the filament intersected by t
plane. Figure 2~b! shows the phase in the center plane af
reconnection, and one can see that the singularities have
appeared. A view of the phase in the plane perpendicula
the center plane and that cuts through the middle of lineaa8
would reveal the reverse process—the creation of a pai
oppositely charged singularities which then proceed to m
away from each other.

Our numerical solutions of the CGLE were implement
using a pseudospectral code. The size of the computati
box is 1283 grid points, and each side is 20p space units
long. The time step between iterations is 0.1. The init
shape of the filaments is a sine wave with an amplitude
G53.54 space units and a wavelengthL520p. Considering
only one of the filaments, the field around it is initialized,
that A in the plane perpendicular to a given point on t
filament approximates the 2D spiral solution for the partic
lar parametersa andb. The field of the filament in the othe
half of the box is simply the mirror image of the first.

The distanced between the centers of the filaments in t
center plane as a function of time is shown in Fig. 3. T
filaments are initially separated by 6.6 space units. The fi
ments approach each other at an increasing rate, and re
nection occurs at about timet536. At a given moment, the
positions of the filament vortices in the center plane are
termined by finding the two unit grid squares around wh
the change in phase is62p ~it is zero elsewhere!. If only
this method were used, however, the separation versus
plot would have a staircaselike appearance due to the
grid resolution. There are only 13.3 grid divisions initial
separating the filaments, and, furthermore, the filame
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FIG. 3. Intervortex separation in the center plane vs time
reconnecting filaments.
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move as mirror images of each other, making the jump
tween grid squares at exactly the same time. This wo
leave only six ‘‘steps’’ on the staircase which is unsatisfa
tory for the determination of the filament velocity need
below. Therefore, the following interpolation scheme is e
ployed to obtain Fig. 3. The field amplitudesuAu at the four
grid points comprising the square containing the singula
are compared, and the lowest one is found. Presumably,
is the grid point closest to the singularity, and the distan
between this grid point and the phase singularity at the fi
ment’s center is estimated using the field of the core of a
vortex with the samea and b, obtained from a numerica
simulation with much higher resolution~a 10242 grid for the
same side length of 20p!. The distance between the sing
larity and another grid point in the square can also be fo
in this way. These two distances and the distance betw
adjacent grid points form the legs of a triangle, and so
location of the singularity within the grid square can be d
termined. This method works fairly well but not perfectly,
can be seen from the choppiness of Fig. 3.

The reconnection process of the coplanar filaments
picted in Fig. 1 can be understood qualitatively as be
driven by the essentially 2D attraction between opposit
charged spirals, and being resisted by the 3D effect
seeks to straighten out the curved filaments. The interac
between CGLE spiral wave vortices in two dimensions h
received much attention. The nature of the 2D interact
between opposite charges depends on the parametersa andb
and the distanced between them. It can be attractive or r
pulsive. The charges can move toward each other and a
hilate, form a bound state~in which d becomes constant!, or
asymptotically repel each other. The defects have oppos
directed velocities along the axis connecting them, and t
can also drift in the direction perpendicular to this axis~these
components are parallel!. For spirals whose centers are we
separated and with very long asymptotic waveleng
(ua2bu!1) in comparison tod, the strength of the interac
tion as measured by the defect velocity falls off as 1/d @25–
27#. When the vortices are still well separated and
asymptotic wavelength is now comparable tod, a ‘‘shock’’
~i.e., a ridge of elevateduAu) forms where the waves ema
nating from the vortices collide. Its effect is to screen t
interaction between the vortices strongly, and, in this ca
the velocity due to interaction decays in an essentially ex
nential fashion withd @28#. Aranson, Kramer, and Webe
demonstrated that, for (a2b)/(11ab).0.845, oppositely
charged CGLE vortices can form stable bound states wh
the separation distance remains constant@29#. For small
enoughd, however, opposite charges attract and eventu
annihilate. This is the region of relevance to reconnectio

An asymptotic theory for the dynamics of 3D CGLE vo
tex filaments in the absence of filament-filament interact
was developed in Ref.@30#. The motion of the filaments is
due to the local curvaturek, whenk!1 ~i.e., k21 is large
compared to the vortex core!. The velocityvk at which the
filament moves towards its center of curvature is given b

vk5~11b2!k. ~3!

This formula agrees well with numerical simulations
scroll rings up tok values of about 0.2. There is no drift o
planar filaments in the direction normal to their plane to fi
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order in k. Equation~3! implies that a low curvature, sinu
soidal filament will relax exponentially to a straight line. F
the configuration of Fig. 1, the filament velocity due to t
curvature resists reconnection but is too low to prevent
After reconnection, however, the high local curvature of t
filaments leads to fairly rapid separation.

A prediction of the threshold separation,dc , beyond
which reconnection will not occur for coplanar filaments o
given curvature, can be obtained by balancing the curvat
induced velocity with the velocity of attraction between 2
vortices of opposite charge which are separated by the s
distance as the filaments. We obtain the 2D vortex veloc
due to mutual interaction directly from numerical simulatio
of the 2D CGLE, as there is no analytical expression for
For the parameter valuesa51 andb50, Fig. 4 displays the
component of velocity along the axis connecting the defe
as a function of their separation~all subsequent references
velocity refer to this component!. The lower curve is for a
pair of oppositely charged 2D vortices, and the upper cu
is for the center plane of the coplanar, sinusoidal scroll fi
ment configuration. Each curve consists of data from t
separate numerical runs. For the 2D curve, the negative
locity data set~open squares! starts from a defect separatio
of d59.3 and the defects attract each other and eventu
annihilate. The size of the computational box is 5122 grid
points, with a side length of 20p. The positive velocity data
points ~solid squares! start at d59.6, and in this run the
defects repel each other. The 3D velocity curves are obta
from simulations on a 1283 box with a side length of 20p.
The negative velocity part~open circles! of the 3D velocity
curve corresponds to a run where reconnection takes pl
and the positive velocity section~solid circles! comes from a
run where the filaments move away from each other. T
filaments have the same initial curvature in both cases.
relatively large gap between initial data points of the ne
tive and positive sections of the 3D curve (d56.6 and 7.4! is
due to the inability to get very close todc , given the high
computational costs in three dimensions. The 3D veloc
curve is bumpy in places due to the combination of low g
resolution and small velocities. Brief initial transients, su
as the positive velocity transient seen in Fig. 3, are not
cluded.

Estimatingdc by balancing the 2D vortex velocityv2D
with the curvature-induced velocityvk is equivalent to the

FIG. 4. Velocity vs intervortex separation. The circles are
coplanar filaments and the boxes are for a two-dimensional pa
opposite charges. See text for details.
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claim that the filament velocity should be approximate
given byv2D1vk for sufficiently well-separated filaments o
low curvature. This additivity of the two effects is expect
to hold to lowest order in a perturbation expansion inv2D ,
vk!1 with a next order correction proportional to the pro
uct vkv2D . The curvature at the crest of a sine wave
amplitudeG and wavelengthL is k5(2p/L)2G, which for
our filaments yields an initial curvature ofk50.035. Equa-
tion ~3! then gives an initial curvature-induced velocity
vk50.035. For the 3D run in which reconnection does n
occur ~solid circles in Fig. 4!, the initial difference between
the 3D and 2D velocity curves is 0.041. For the reconnec
run ~open circles in Fig. 4!, the initial difference is 0.044
These values agree reasonably well with the predicted dif
ence of 0.035, given the poor quality of the 3D curve and
neglected departure from the additivity of the 2D attract
and curvature effects.

The estimated threshold distance for reconnection
now be obtained by finding the point at which the velocit
v2D andvk sum to zero. From the 2D velocity curve in Fi
4, one finds by settingv2D520.035 that the predicted re
connection threshold isdc57.5. The measured value ofdc is
found from the point at which the 3D velocity curve pass
ch
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s

through zero, which givesdc57.3. This is good agree
ment, especially considering that the distance betw
adjacent grid points is 0.49. In the case where the filame
have unequal curvaturesk1 andk2 at the points where they
are least separated,dc is determined from the condition
v2D5(vk1

1vk2
)/2.

The maximum separation for the annihilation of opp
sitely charged 2D spirals, corresponding tov2D50 on Fig. 4,
is 9.5. It is also the threshold of reconnection of coplan
filaments regardless of curvature, since they behave as
vortices in the limit of zero curvature. We have observed
reconnection of noncoplanar filaments, and it appears tha
straight filaments the reconnection threshold is less than
equivalent coplanar filaments. If this is the case, then the
annihilation threshold is likely the upper bound on the fi
ment separation required for reconnection, except in confi
rations where the curvature-induced velocity actually a
reconnection~as would be true for interlinked loops whic
would collapse into each other!.
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