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Semi-infinite anisotropic spherical model: Correlations atT>Tc

D. A. Garanin*
Max-Planck-Institut fu¨r Physik Komplexer Systeme, No¨thnitzer Strasse 38, D-01187 Dresden, Germany

~Received 12 February 1998!

The ordinary surface magnetic phase transition is studied for the exactly solvable anisotropic spherical
model~ASM!, which is the limitD→` of theD-component uniaxially anisotropic classical vector model. The
bulk limit of the ASM is similar to that of the spherical model, apart from the role of the anisotropy stabilizing
ordering for low lattice dimensions,d<2, at finite temperatures. The correlation functions and the energy
density profile in the semi-infinite ASM are calculated analytically and numerically forT>Tc and 1<d<`.
Since the lattice dimensionalitiesd51, 2, 3, and 4 are special, a continuous spatial dimensionalityd85d
21 has been introduced for dimensions parallel to the surface. However, preserving a discrete layer structure
perpendicular to the surface avoids unphysical surface singularities and allows numerical solitions that reveal
significant short-range features near the surface. The results obtained generalize the isotropic-criticality results
for 2,d,4 of Bray and Moore@Phys. Rev. Lett.38, 735 ~1977!; J. Phys. A10, 1927~1977!#.
@S1063-651X~98!06607-0#

PACS number~s!: 64.60.Cn, 75.10.Hk, 75.30.Pd
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I. INTRODUCTION

Magnetic ordering in semi-infinite and film geometries
an old problem currently receiving increasing attention
cause of enormous progress in fabrication of magnetic st
tures on the atomic scale. Theoretical methods using
mean-field approximation~MFA! or the phenomenologica
Landau theory@1–5# provided classification and descriptio
of the qualitative features of different types of surface ph
transitions. High-temperature series expansions@4# and
Monte Carlo simulations@6#, as well as the scaling analys
@4,7# and thee expansion@8–10#, shed light on the details o
the surface critical behavior. A general review of these
proaches can be found in Refs.@11,12#. Examples of recen
work in film geometry based one expansion are Refs
@13,14#. A special case is the confined two-dimensional Is
(S5 1

2 ) model, for which exact solutions have been fou
@15–18#.

The ordinary surface phase transition of the semi-infin
ferromagnet occurs at the bulk critical temperatureTc . It is
characterized by a number of surface critical exponents
definition of which can be found in Ref.@11#. In particular,
the susceptibilities at the surface with respect to the fie
applied either in the bulk or at the surface are described
the exponentsg1 and g11, respectively, which in the MFA
are given byg15 1

2 andg1152 1
2 ~no divergence!, in contrast

to the bulk exponentg51. In thin films, which are more
important for applications and more interesting for the e
periment, there are additional effects, such as the lowerin
Tc in comparison to its bulk value and the crossover betw
the three- and two-dimensional behavior as a function of
film thicknessL @19–21#.

The main body of the theoretical work on surface pha
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transitions is being done, with an exclusion of the 2d Ising
model, starting from the field-theoretical continuous Ham
tonians or free energies. Such an approach has proven t
very useful for establishing the universality classes and c
cal laws but, on the other hand, the~nonuniversal! absolute
values of observables, such as critical amplitudes, rem
undetermined. In addition to the restrictions of the fie
theoretical methods that are well known from bulk physi
there are more specific problems related to the role of
lattice discreteness in confined geometries. One can que
how the continuous approach can be applied to thin fil
consisting of amesoscopicnumber of layers. A similar ques
tion can be addressed to the semi-infinite ferromagnets
well—does the continuous approximation apply in the reg
near the boundary,n;1, where n51,2, . . . is thelayer
number? The MFA, or the Landau theory, gives a posit
answer to this question near criticality, where the correlat
lengthjc is much larger than the lattice spacinga0, and the
order parameter—the magnetization—cannot change at
tances smaller thanjc . This is, however, not the case if on
goes beyond the MFA and considers spin-spin correla
functions. If the temperature is high enough, or the system
classical, spin waves with the wave vectors up to the edg
the Brillouin zonek;kmax5p/a0 are excited. This mean
that correlation functions comprisea0 as the length param
eter, additionally tojc , and thus there can be inhomogen
ities near the surface of a ferromagnet on the scale of sev
atomic layers, even near criticality. This boundary regio
n;1, is that which can be locally probed in experimen
and here the continuous approximation may become, at l
quantitatively, wrong.

Spin-wave effects in weakly anisotropic systems dra
cally change their behavior in comparison to the MFA p
dictions. Magnetic models with continuous symmetry in lo
dimensions,d<2, cannot order at finite temperatures, a
for models withd.2 the correlation length is infinite in the
whole region belowTc . These effects are not less importa
than the critical coupling of fluctuations giving rise to no
classical critical indices. In Heisenberg systems the lin
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spin-wave theory satisfactorily describes the above m
tioned effects well belowTc but breaks down at elevate
temperatures. There is, however, a model where a kind
spin-wave description is valid in the whole temperatu
range, whereas the critical fluctuation coupling vanish
This is theD-component classical spin vector model pr
posed by Stanley@22,23# in the limit D→`. Stanley has
shown@24# that in this limit the partition function of a ho
mogeneous ferromagnet coincides with that of the spher
model~SM!. The latter was advanced by Berlin and Kac@25#
as an exactly solvable substitute for the Ising model. T
formalism contains, however, the spin-wave integral over
Brillouin zone and describes rather the properties of the
tropic Heisenberg model. The spherical model in its tra
tional form was extended to inhomogeneous systems by
ber and Fisher@26#, who found a nonmonotonic dependen
Tc(L) for thin films. This unexpected feature was attribut
to the failure of the global spin constraint in the inhomog
neous case. Later, an improved version of the SM was
posed, which used spin constraints on each lattice site@27#,
and it was shown that this version is equivalent to theD
5` model in the inhomogeneous case. Application of
SM with constraints in each layer@28# yielded a reasonable
monotonic dependence of the numerically calculatedTc(L)
for the films in four dimensions. Because of the complex
of models of this type, most researchers still use the m
convenient global-constraint SM in confined geometries~see,
e.g., Refs.@29–31#!. Very recently, a compromised mod
was proposed@32#, which uses a constraint for the spins
the surface in addition to that for the bulk ones. The prop
ties of such a model are closer, in a sense, to those of the
with the local spin constraint and, hence, to those of theD
5`, or O(`), model.

A remarkable property of the Stanley model is that it c
be easily extended to the anisotropic case, whereas the t
tional SM cannot. This is very important because the anis
ropy breaking a continuous symmetry plays a crucial role
low-dimensional systems, where it stabilizes ordering at
nite temperatures. The limitD→` of the uniaxial
D-component vector model determines the so-called an
tropic spherical model~ASM!, which is described in the in
homogeneous case by a closed set of equations for the
ables on the lattice sites obtained in Ref.@33#. The ASM was
applied in Ref.@34# to study the dependenceTc(L) for fer-
romagnetic films in three dimensions. Here, for all fixed v
ues of the film thicknessL one hasTc→0 in the isotropic
limit because of the two-dimensionality of the film, and su
a behavior is pertinent for any Heisenberg film with finiteD
as well. Thus, allowing for the anisotropy is relevant he
and it cannot be done within the traditional SM. An intere
ing feature of the solution obtained in Ref.@34# is the role of
the correlation length of the transverse spin compone
jca , in the crossover from the three- to two-dimension
behavior of the film, which takes place forL&jca . Note that
in the finite-size scaling analysis~see, e.g., Ref.@11#! only
the diverging longitudinal correlation lengthjcz is used,
whereas the noncritical transverse correlation length is di
garded as an irrelevant variable.

Another application of the ASM is to the temperatur
driven phase transition between the Bloch and linear~Ising-
like! domain walls in uniaxial ferromagnets at som
n-
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TB,Tc @33#. This phase transition was studied within th
framework of the MFA and the Landau theory in Refs.@35–
39# and with a field-theoretical method in Ref.@40#. A low
minimum of the domain-wall mobility atTB predicted in
Refs. @41,42# was used to identify the domain-wall phas
transition in the dynamic susceptibility experiments on
and Sr hexaferrites@43,44#. It is clear that the anisotropy is
an important characteristic of the model, giving rise to t
very existence of domain walls offinite widthseparating the
‘‘up’’ and ‘‘down’’ domains. For this reason, the attempts
describe domain walls with the traditional SM in both ve
sions with @45# and without@46# the global spin constrain
could not yield relevant results.

In the recent work of Ref.@47# it was shown that the ASM
and SM arenot equivalent, even in the isotropic homog
neous case, if the longitudinal correlation function~CF!
Szz(k) below Tc is involved. Whereas in the traditional SM
the CF is proportional to 1/k2 at small wave vectors, the
behavior ofSzz(k) in the ASM shows a more complicate
behavior governed by the spin-wave effects and is sens
to the dimensionality. In three dimensions,Szz(k)}1/k,
which is familiar from the linear spin-wave theory. Th
above law holds fork&km}Tc2T, i.e., there is a critical
length scalejm51/km in the theory. The lengthjm is analo-
gous to the ‘‘bare,’’ or the mean-field, correlation length b
low Tc , whereas the true longitudinal correlation lengthjcz
remains infinite in the isotropic model belowTc . The former
is responsible for the crossover of the real-space CF fr
Szz(r )}1/r for r &jm to Szz(r )}1/r 2 for r *jm .

The ASM equations of Ref.@33#, as well as those for the
SM without the global spin constraint@28#, are rather com-
plicated, strongly nonlinear equations for the variables o
lattice. In the latter case some researchers termed them
lytically intractable. Nevertheless, for the weakly anisotrop
ASM in the domain-wall geometry it was possible to gue
the solution@33#, which yielded an example of a phase tra
sition of an interface that is analytically tractable beyond
MFA. Surfaces with free boundary conditions make t
problem much more complicated. In Ref.@34# only the most
important and partially rough asymptotes for theTc shift in
films could be obtained, and numerical calculations have
been performed. The aim of this work is to investigate t
influence of surfaces on magnetic ordering in more detail
the ordinary phase transition in the semi-infinite ASM in t
temperature rangeT>Tc . As we shall see, analytical solu
tions are available in the dimensionality ranges 1<d<2 and
d>4, as well as for 2,d,4, both at and away from the
isotropic criticality. In addition, the problem will be solve
numerically in all the relevant cases.

The same problem presented here was addressed in
seminal work by Bray and Moore@48#, who considered a
field theory with the volume and surface Hamiltonian den
ties of the type (¹f)21tf21uf4 and cf2, respectively,
for the n-component vector order parameterf in the limit
n→`. Since this model is isotropic, the range 1<d<2 is
excluded from the outset due to the absence of orderin
the bulk. For 2,d,4 a very important solution for the cor
relation function at criticality was obtained, however, on
for the ‘‘magic’’ d-dependent valuesu* (d) of the coupling
constantu. This solution yielded the anomalous dimensio
h i5d22 and h'5(d22)/2, with which all other surface
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256 PRE 58D. A. GARANIN
critical indices could be derived from the scaling argume
~see, e.g., Refs.@11,12#!. These critical indices depend ond
and differ from the mean-field ones, as well as from those
the global-constraint semi-infinite SM. In the solution
Bray and Moore the required coupling constantu* (d) van-
ishes ford54, i.e., the model simplifies to the exactly sol
able and trivial Gaussian model showing the mean-field
havior. On one hand, it seems reasonable, because the cr
indices indeed simplify to their mean-field values ford.4.
On the other hand, one could desire more detailed infor
tion about the critical behavior of the models withuÞu* , in
particular foruÞ0 andd.4. Unfortunately, no extension o
the analytical results of Bray and Moore in this direction,
for the off-criticality case, is possible. Also a numerical s
lution is hampered for this model by insurmountable dif
culties. Apart from the obvious impossibility of handling th
inhomogeneities on the scale of the lattice spacing wit
continuous-field theory, it turns out that this model cannot
solved numerically at all because near the surface, where
boundary condition is set, the continuous approximat
does not apply. In fact, this is an example of a situation
which using a field-theoretical approach in statistical m
chanics brings only disadvantages. By contrast, the A
formulated from the beginning in its true form on a latti
leads to the ASM equations which are well defined and s
able for numerical solution, and also can be considered c
tinuously far from the surface.

The main body of the article is organized as follows.
Sec. II the system of equations describing the ASM in z
field is written down. Its bulk solution, which differs from
the well known solution for the spherical model by the i
corporating the uniaxial anisotropy, is studied for all latti
dimensions. The quantity playing the central role in t
theory, the gap parameterGn , is related to the reduced en
ergy densityŨn . The continued-fraction formalism, which i
mainly needed for the numerical solution of the ASM syst
of equations, is described. Section II concludes with the
sults for the variation ofGn far above and far belowTc . In
Sec. III the ASM is solved analytically in low (1<d<2)
and high (4<d) lattice dimensions, starting from the exa
solution for the one-dimensional ‘‘toy’’ model. The energ
density profiles and spin correlation functions are calcula
analytically in all possible cases. In Sec. IV the most int
esting case 2,d,4 is investigated. Analytical solutions ar
obtained for the isotropic model at criticality and away fro
the isotropic criticality. In Sec. V the semi-infinite ASM i
numerically solved in the whole range of dimensions aT
>Tc . The results for the energy density profile and corre
tion functions are presented. In Sec. VI the main results
the paper are summarized and compared with the resul
other approaches.

II. BASIC RELATIONS

A. ASM equations

We start from the Hamiltonian of the uniaxially
anisotropic classicalD-vector model, which, in the absenc
of the magnetic field, can be written in the form

H52
1

2(i j Ji j S mzimz j1h (
a52

D

ma ima j D , ~2.1!
s
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wheremi is the normalizedD-component vector,umi u51,
and h<1 is the dimensionless anisotropy factor. In t
mean-field approximation, the Curie temperature of t
model isTc

MFA5J0 /D, whereJ0 is the zero Fourier compo
nent of the exchange interaction. It is convenient to useTc

MFA

as the energy scale and introduce the dimensionless tem
ture variableu[T/Tc

MFA . Using the diagram technique fo
classical spin systems@49,50#, in the limit D→` one arrives
at the closed system of Eqs.~33! for the average magnetiza
tion mi[^mzi& and the correlation function of transvers
(a>2) spin components:si j [D^ma ima j&. This system of
equations describing the anisotropic spherical model cons
of the magnetization equation

mi5Gi(
j

l i j mj , ~2.2!

the Dyson equation for the transverse CF

sii 85uGid i i 81hGi(
j

l i j sj i 8, ~2.3!

and the kinematic relation playing the role of the spin co
straint on a lattice sitei ,

sii 1mi
251. ~2.4!

Hered i j is the site Kronecker symbol,l i j [Ji j /J0 , and the
so-called gap parameterGi is the one-site cumulant spin av
erageD^ma ima i&cum/u renormalized by Gaussian fluctua
tions. We will see below thatGi can be related to the energ
density at the sitei .

The ASM system of equations is self-consistent. It is
structive to compare it with the MFA equations that can
recovered via the following steps.~i! Ignore correlations in
Eq. ~2.3!, which leads tosii 5uGi . ~ii ! ExpressGi through
mi with the help of Eq.~2.4! to get Gi5(12mi

2)/u. ~iii !
Insert the latter into Eq.~2.2! to obtain the closed equatio
for magnetization. The form of the latter is simplified wit
respect to the general-D case because of the simplification
the Langevin function in the limitD→`. The resultingmi is
zero aboveuc51 and nonzero belowuc . ~iv! With Gi de-
termined, which is simplyGi51/u for u>uc , return to Eq.
~2.3! to find the improved correlation function. It is clear i
step ~iv! that the MFA is not self-consistent, even in th
simpler case aboveuc . This is the reason why the MFA
value ofuc found from the CF equation~2.3! with Gi51/u
for the spatially homogeneous isotropic low-dimension
magnets is nonzero, in contradiction with the result of mo
rigorous approaches. By contrast, the ASM equations
free from such an inconsistency and they correctly desc
the dimensional effects in isotropic and weakly anisotro
systems. It should be noted that in the ‘‘Ising limit’’h50 all
the steps above leading to the MFA equations are exact,
the classical Ising model in the limitD→` is exactly de-
scribed by the mean-field approximation.

For the model with the nearest-neighbor interactionJi j on
the d-dimensional hypercubic lattice in the semi-infinite g
ometry, it is convenient to use the Fourier representation
d85d21 translationally invariant dimensions parallel to th
surface and the site representation in thedth dimension. The
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Dyson equation ~2.3! for the Fourier-transformed CF
snn8(q) then takes the form of a system of the second-or
finite-difference equations in the set of layersn
51,2, . . . ,̀ ,

2bnsnn82sn11,n82sn21,n85~2du/h!dnn8. ~2.5!

bn here is given by

bn511d@~hGn!2121#1d8~12lq8!, ~2.6!

wherelq8 is given by

lq85
1

d8
(
i 51

d8

cos~qi ! ~2.7!

and the lattice spacinga0 is set to unity. The magnetizatio
equation~2.2! takes the form

2b̄nmn2mn112mn2150, ~2.8!

with b̄n511d@Gn
2121#. Since the layer withn50 is ab-

sent, one can use

s0n850, m050 ~2.9!

as the free boundary conditions to Eqs.~2.5! and~2.8!. If the
interaction in the boundary layer differs from that in the bu
~see, e.g., Ref.@11#! the form of the boundary condition
changes. The constraint equations~2.4! can now be written
as

snn1mn
251, snn5E dd8q

~2p!d8
snn~q!. ~2.10!

For n@1, q!1, andk!1, wherek is the inverse transvers
correlation length defined by~2.34! below, the second-orde
finite-difference CF equation~2.5! simplifies to the differen-
tial equation for the Green’s function

S d2

dn2
2q̃212dG1nD snn8522dud~n2n8!, ~2.11!

wheren is regarded as a continuous variable,q̃[Ak21q2,
and

G1n[Gn2G!1 ~2.12!

is the deviation of the gap parameter from its bulk valueG.
The magnetization equation~2.8! takes on a similar form
with q̃⇒0 and without the inhomogeneous term.

Before proceeding, let us consider the solution of eq
tions ~2.5! for the important special variation ofGn near the
surface, in which onlyG1 may differ from the bulk valueG.
In this case one can solve Eq.~2.5! directly with the result

snn85
du/h

Ab221
Fa un2n8u2an1n822

a22b11

a2122b11
G ,

~2.13!
r

-

where a[b2Ab221, b is the bulk value ofbn , and
b11[b2b1. One of the particular cases of~2.13! is b1150,
which corresponds to the MFA or to the high-dimension
(d>4) lattices forn@1 ~see Sec. III C!. Here Eq.~2.13!
simplifies to

snn85
du/h

Ab221
@a un2n8u2an1n8#. ~2.14!

Another particular case isG15@2d/(2d21)#G, i.e., 2b11
51. As we shall see below, a variation ofGn close to this
one is realized for low-dimensional (d<2) lattices in the
weakly anisotropic case at low temperatures. Here~2.13! re-
duces to

snn85
du/h

Ab221
@a un2n8u1an1n821#. ~2.15!

For 12h!1 andq̃!1 one can define 2b11>12c and sim-
plify Eq. ~2.13! to

snn8>
du

q̃
@e2q̃ un2n8u1 f ~ q̃!e2q̃~n1n822!#, ~2.16!

with f (q̃)5(q̃2c)/(q̃1c). This result could also be ob
tained solving the differential equation~2.11! with the
boundary condition

Fcsnn82
d

dn
snn8G

n51

50 ~2.17!

following from Eq. ~2.9!. The remarkable feature of this so
lution is that it becomes insensitive to the exact form of t
boundary condition ifq̃!c or q̃@c. In fact, as will be ar-
gued below, the limiting forms ofsnn8 with both signs of the
surface-induced term,~2.14! and~2.15!, are realized for more
general variations ofGn , in which Gn differs from the bulk
value in some localized region near the surface,n&n* .

Note that the quantityc above is similar to the coefficien
in the surface-energy term that is introduced in the pheno
enological field theory of phase transitions and it defines
extrapolation lengthc5le

21 ~see, e.g., Ref.@11#!. This term
was used, in particular, by Bray and Moore@48#, who have
set c5` for the ordinary phase transition to remove t
uncertainty. We shall see, however, that the weakly an
tropic models withd<4 the microscopic solution is charac
terized by effective values ofc of orderk!1, i.e., by large
extrapolation lengths.

The equation for the longitudinal correlation functio
snn8

zz , is not coupled to the ASM system of equations, sin
fluctuations of the~only one! longitudinal spin componen
make contributions of order 1/D to the physical quantities
which disappear in the spherical limit. AboveTc in zero field
this equation has the form~2.5! with h51. The latter
amounts to replacingq̃⇒q̃z[Akz

21q2 in ~2.11!, wherekz is
the inverse longitudinal correlation length defined by E
~2.48! below. Thus bothsnn8 andsnn8

zz are given by the same
function of different arguments, and the latter is more co
venient, since its argument spans the wider range, star
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from zero at criticality (kz50). In this limit, q̃z50, formula
~2.16! for snn

zz reduces to the expression

snn
zz>2du~n211le!, ~2.18!

where the extrapolation lengthle is given byle51/c.

B. Energy and susceptibilities

For the ferromagnetic model described by the Ham
tonian ~2.1!, the energy corresponding to thei th site,Ui , is
determined in the spherical limitD→` by the spontaneou
magnetizationmi[^mzi& and the transverse CFsi j :

Ui52
1

2(j
Ji j mimj2

h

2(
j

Ji j si j . ~2.19!

It is convenient to consider the reduced energiesŨ
[U/uU0u whereU052J0/2 is the ground-state energy. I
the semi-infinite geometry the reduced energy correspon
to any site in thenth layer can be written as

Ũn52d8Ũnn1Ũn,n211Ũn,n11 , ~2.20!

whereŨnn is due to the interaction with one of the neighbo
in the same layer andŨn,n61 is due to that with the neigh
bors in the adjacent layers. The terms of Eq.~2.20! can be
represented through magnetization and the layer CFsnn8(q)
as

Ũnn52
1

2dFmn
21E dd8q

~2p!d8
hlq8snn~q!G , ~2.21!

Ũn,n6152
1

2dFmnmn611E dd8q

~2p!d8
hsn,n61~q!G .

In practice, only the total energy of the siteŨn is needed.
Using the CF equation~2.5! to eliminate sn,n61 and the
magnetization equation~2.8! to eliminatemn61 in Eq. ~2.21!,
one comes to the remarkably simple result

Ũn5u21/Gn . ~2.22!

The deviation of the energy density from the bulk densityŨ
is given by

Ũ1n[Ũn2Ũ>G1n /G2, ~2.23!

whereG1n is defined by~2.12!. This formula provides addi-
tional physical interpretation ofG1n , besides that following
from the role it plays in the correlation functions~see Sec.
II C!.

The susceptibilities of a ferromagnet are related to
correlation functions. In the semi-infinite geometry the g
neric susceptibility is that describing the response of the s
polarization in thenth layer to the dimensionless magne
field h[J0H in then8th one. In the region aboveTc which is
considered throughout the paper, it can be written as

xann85]^man&/]han85snn8
aa

~0!/u. ~2.24!
-

g

e
-
in

Here, in the anisotropic case the longitudinal (a515z) and
transverse (aÞ15z) susceptibilities are different. For th
transverse susceptibility the corresponding layer correla
functionsnn8(0) ~the indexa is dropped for convenience! is
determined by the system of linear equations~2.5!. The lon-
gitudinal layer CFsnn8

zz (0) satisfies the same system of equ
tions with h⇒1 in ~2.6!. The most important of the suscep
tibilities ~2.24! is xa11, corresponding to the boundary laye
Whereas forh,1 the transverse susceptibilityx11 is non-
critical, the longitudinal onexz11 shows critical behavior
with the critical indexg11. One can also consider the re
sponse in thenth layer to the homogeneous field. The appr
priate susceptibilities are given by

xan5
]^man&

]ha
5 (

n851

`

xann85
1

u (
n851

`

snn8
aa

~0!. ~2.25!

C. Bulk limit and continuous dimensions

In the homogeneous case,mi5m and Gi5G are con-
stants, and the equation~2.3! can be easily solved with the
help of the Fourier transformation. This yields the Fourie
transformed transverse CF

s~k!5
uG

12hGlk
. ~2.26!

The longitudinal CFszz(k) is given aboveTc by the same
expression withh51. Now the autocorrelation functionsii
can be expressed as

sii 5E ddk

~2p!d
s~k!5uGP~hG!512m2, ~2.27!

where

P~X![E ddk

~2p!d

1

12Xlk
~2.28!

is the lattice Green’s function. The quantitylk[Jk /J0 is
given for the nearest-neighbor~nn! interaction by Eq.~2.7!
with d8⇒d. The total wave vectork is related toq above by
k5kzez1q, whereq•ez50. The last equation in~2.27! to-
gether with the equation

m~12G!50 ~2.29!

following from ~2.2! in the homogeneous case complete
describes the ASM in zero magnetic fieldH. The homoge-
neous ASM equations forHÞ0 can be found in Refs
@49,51#. The lattice integralP(X) has the following proper-
ties:
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P~X!>5
11X2/~2d!, X!1

1/~12X2!1/2, d51

~1/p!ln~8/X1!, X1!1, d52

W32cX1
1/2, X1!1, d53

W42cX1ln~c8/X1!, X1!1, d54

Wd2cX1 , X1!1, d.4,
~2.30!

where X1[12X and W351.51639, W451.23947, W5
51.15631, etc., are the Watson integrals. Since aboveTc the
constraint equation~2.4! yieldssii 51, Eq.~2.27! determines
the value ofG which increases with decreasing temperatu
The high-temperature asymptote ofG is G>u21@1
2h2u22/(2d)#, u@1. This results inŨ>2h2/(2du) for
the energy in the bulk, which is given by Eq.~2.22! with n
→`. The criticality is determined byG51, which corre-
sponds to closing the gap in the longitudinal correlat
functionszz(k) @see Eq.~2.26!#. This is the reason for calling
G the ‘‘gap parameter.’’ Belowuc one obtainsG51 from
Eq. ~2.29! and then

m5A12u/uc, uc51/P~h! ~2.31!

from Eq. ~2.27!. Here the value of the Curie temperatureuc
@49# generalizes the well-known result of the spherical mo
uc51/W @25# for the anisotropic case.

The influence of the anisotropy on the ordering in t
ASM is rather essential. The anisotropic gap in the transve
CF s(k) prevents long-wavelength excitations~transverse
fluctuations! from destroying the long-range order in tw
dimensions, anduc determined by Eq.~2.31! is finite for h
,1. Moreover, the phase transition at finite temperature
curs even in theone-dimensionalASM. This surprising re-
sult is due to the switching off of thelongitudinal fluctua-
tions in the limit D→`, which are responsible for th
breakdown of the long-range order in one dimension.

The bulk solution of the linear system of equations~2.5!
has the form

snn8
bulk

~q!5
du

h

a un2n8u

Ab221
, a[b2Ab221, ~2.32!

whereb is given by~2.6! with Gn⇒G. This result could also
be obtained by the integration of the bulk transverse CFs(k)
given by Eq. ~2.26! over kz . For the weakly anisotropic
ASM, 12h!1, at small wave vectors the transverse cor
lation functions in the bulk, Eqs.~2.26! and~2.32!, have the
form

s~k!>
2du

k21k2
, snn

bulk~q!5
du

Ak21q2
, ~2.33!

wherek is defined by

k2[2d@1/~hG!21#>2d@12hG#!1. ~2.34!
.

l

se

c-

-

One can see that the transverse correlation lengthjca[1/k
increases without diverging with decreasing temperat
down to uc and remains constant belowuc , in accordance
with the behavior ofG.

The field-theoretical multiple-componentf4 model used
by Bray and Moore@48# extends in a natural way for arbi
trary noninteger lattice dimensionsd. The discrete structure
of the lattice which is important near the surface is, howev
lost in such a model. A better way to get a continuou
dimension model to study crossover between different lat
dimensions is to consider thed8 translationally invariant di-
mensions as continuous, preserving the dimensionz perpen-
dicular to the surface as discrete. This amounts to making
long-wavelength approximation

lk5
1

d
coskz1

d8

d
lq8 , lq8⇒12

q2

2d8
~2.35!

in the whole Brillouin zonefor the part of the expression fo
the exchange integralJk5J0lk . The natural hypercubic cut
off uki u<p and the corresponding density of states are mo
fied for theq components according to

E dd8q

~2p!d8
. . . ⇒ d8

Ld8E0

L

dqqd821 . . . ~2.36!

with L5A2(d11) . One can check that the sum rules

E
2p

p dkz

2p

d8

Ld8E0

L

dqqd821H 1

lk
J 5H 1

0J ~2.37!

are satisfied. Now using~2.32!, one can, instead of~2.27!,
write

d8

Ld8E0

L

dqqd821
du

h

1

Ab221
5uGP~hG!, ~2.38!

which is the definition ofP(X) in our continuous-dimension
model. The resultingP(X) posesses the same general pro
erties~2.30!. The Watson integralsW for some values ofd
are W2.552.527059,W3.051.719324,W4.051.321825, and
W5.051.192848.

For both hypercubic and continuous-dimension lattic
the singular behavior of the integralP(X) for k!1 is de-
scribed by

P~X!>H Cd /k22d, 1<d<2

W2Cdkd22, 2,d,4.
~2.39!

HereCd5Ad3dMd , where the nonuniversal factorAd reads

Ad[H Sd8 /~2p!d8, hypercubic lattice

d8/Ld8, continuous dimensions
~2.40!

and Sd52pd/2/G(d/2) is the surface of thed-dimensional
unit sphere. The universal quantityMd which will be needed
below is given by

Md[E
0

L/k dyyd821

A11y2
5

12k22d

2p1/2
GS d21

2 DGS 22d

2 D
~2.41!

for d<2 and
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Md[E
0

`

dy yd821F1

y
2

1

A11y2G
5

p

cos~pm!

G~d21!

2d21G2~d/2!

m[
d23

2
~2.42!

for 2,d,4. The factor 12k22d in Eq. ~2.41! is for k!1
close to unity ifd is not close to 2. It is needed for 22d
!1 to give

Md>
12k22d

22d
> ln~1/k! ~2.43!

with logarithmic accuracy. Ford→1 one obtainsCd→1, in
accordance with Eq.~2.30!.

In the anisotropic caseh,1, the value ofG determined
from the equationuGP(hG)51 approaches 1 linearly jus
above the Curie temperatureuc given by Eq.~2.31!:

12G>t/I ~h!, t[u/uc21, ~2.44!

where

I ~X![11
XP8~X!

P~X!
, P8~X![

dP~X!

dX
. ~2.45!

For the weakly anisotropic model this solution is valid in t
narrow region defined by 12G!12h, i.e., below the cross
over temperaturet* 5(12h)I (h). For different lattice di-
mensionst* reads

t* ;5
1, d,2

1/ln@1/~12h!#, d52

~12h!~d22!/2, 2,d,4

~12h!ln@1/~12h!#, d54

12h, d.4.

~2.46!

For t@t* one has

12G;5
u2/~22d!, d,2

exp~2Ad
21/u!, d52, 2.0

t2/~d22!, 2,d,4

t/ lnt, d54

t, d.4,

~2.47!

where, according to Eq.~2.40!, A2
215p andA2.0

215A6. Here
the result ford<2 is valid for u!1, i.e., a weakly aniso-
tropic system can be close to criticality (12G!1) in a tem-
perature range extending far aboveuc!1. Ford>2 the Cu-
rie temperatureuc is not small, and Eq.~2.47! requirest
!1.

The longitudinal CFs are given by the same formu
~2.33! and ~2.34! with h51 . The longitudinal correlation
lengthjcz[1/kz , where
s

kz
2[2d@1/G21#>2d@12G#!1, ~2.48!

diverges atuc in different ways for the isotropic and aniso
tropic models according to Eqs.~2.44! and ~2.47!, respec-
tively. The critical behavior of the ASM is, forh,1, in all
respects analogous to that given by the mean-field appr
mation. This is due to the suppression of the singularity
the lattice Green’s functionP(X) @see Eqs.~2.30! and
~2.39!#. For 12h!1 far enough fromuc , i.e., for t@t* ,
the system behaves isotropically and, in particular,jcz
>jca . Crossover att* is analogous to that between th
Heisenberg and Ising universality classes in the weakly
isotropic Heisenberg model. Here one has the crossover
tween the spherical and mean-field universality classes
stead.

D. Continued-fraction formalism

The linear homogeneous second-order finite-differe
equation

2bnZn2Zn112Zn2150, ~2.49!

which corresponds to the CF equation~2.5!, has two linearly
independent solutions,In andKn . They can be chosen s
that In→` andKn→0 for n→`. The solution of Eq.~2.5!
with the boundary condition~2.9! can be expressed throug
In andKn as

snn852
2du

hWn8

2b1I12I2

2b1K12K2
KnKn8

1
2du

hWn8
H InKn8, n<n8

In8Kn , n8<n, ~2.50!

where the WronskianWn is given by

Wn[InKn212KnIn21 . ~2.51!

It can be shown with the help of Eq.~2.49! that Wn11
5Wn , i.e.,Wn is independent ofn. It is convenient to rede-
fine In by replacing it by its linear combination withKn , so
that the redefinedIn satisfies the additional requirementI0
50 in the nonexisting layern50. This entails 2b1I12I2
50, i.e., the first term in Eq.~2.50! becomes zero.

The solution~2.50! can be rewritten in the form of a con
tinued fraction, which is appropriate in particular for nume
cal calculations. In terms of the functionsan andan8 deter-
mined by

In21 /In[an , Kn21 /Kn[2bn2an8 ~2.52!

the solution~2.50! for n5n8 becomes

snn5
2du

h

1

2bn2an2an8
. ~2.53!

The functionsan andan8 can be found from the forward an
backward recurrence relations
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an115
1

2bn2an
, an218 5

1

2bn2an8
, ~2.54!

being the consequence of Eq.~2.49!. The initial condition for
the first one isa150. Far from the surfacean approaches
the bulk valuea of Eq. ~2.32!. The backward relation foran8
starts froma far from the surface. For numerical calculatio
in the isotropic case for 2,d,4, a refined asymptote i
needed~see the end of Sec. IV A!. If the denominator of Eq.
~2.53! becomes zero forq50 ~which is the case for the
isotropic model at criticality for 2,d<3; see Sec. IV A!,
then with the help of Eq.~2.54! one can obtain the relation

anan218 51 ~q50!. ~2.55!

The general solution~2.50! can be represented throug
the diagonal Green function~2.53! via the relations

sn,n2m5sn2m,n5an2m11an2m12 . . . ansnn ~2.56!

or, alternatively,

sn1m,n5sn,n1m5an1m218 an1m228 . . . an8snn .
~2.57!

The consequence of these two relations is the useful form

sn,n115an11sn11,n115an8snn . ~2.58!

It is convenient to introduce the deviations from the bu
values

a1n[an2a, a1n8 [an82a ~2.59!

and

b1n[b2bn5
d

hS 1

G
2

1

GnD5
dG1n

hGGn
, ~2.60!

wherea, b, and G1n are defined by Eq.~2.32!, ~2.6!, and
~2.12!, respectively. The recurrence relations for the dev
tions a1n anda1n8 have the form

a1,n115
a2~2b1n1a1n!

12a~2b1n1a1n!
, a1152a ~2.61!

and

a1,n218 5
a2~2b1n1a1n8 !

12a~2b1n1a1n8 !
, a1,̀8 50. ~2.62!

In terms of the deviationsa1n , a1n8 , andb1n the CF~2.53!
can be now written as

snn5
du

h

1

Ab2211Sn

, ~2.63!

where

Sn[2~a1n1a1n8 !/22b1n ~2.64!
la

-

plays the role of the self-energy part for the spin CF. At a
aboveuc the constraint equation~2.10! can be rewritten as

E dd8q

~2p!d8
@snn~q!2snn

bulk~q!#50, ~2.65!

where the bulk result is given by Eq.~2.63! without Sn .
Since forn@1 the quantitiesa1n and a1n8 of Eq. ~2.59!

are small andn in the recurrence relations~2.61! and ~2.62!
can be treated as a continuous variable, these relations ca
reduced to the first-order nonlinear differential equatio
which for q̃[Ak21q2!1 have the form

d

dn
a1n522q̃a1n1a1n

2 12b1n ,

2
d

dn
a1n8 522q̃a1n8 1~a1n8 !212b1n . ~2.66!

These Riccati equations can be transformed to linear sec
order differential equations which are equivalent to E
~2.11!.

E. Variation of the gap parameter at low
and high temperatures

The main problem with the solution of the ASM equ
tions ~2.5!–~2.10! is to find the variation of the gap param
eterGn that plays a fundamental role in the theory. Its inh
mogeneous partG1n defined by Eq.~2.12! is analogouos, as
we shall see, to the functionV(z) with the opposite sign,
which was considered by Bray and Moore@48#. The inho-
mogeneityG1n results from the deficit of interacting neigh
bors in the region near the surface and is positive. The s
plest case in whichGn can be found analytically isT50.
Here, for the magnetization one hasmn51 everywhere, and
Gn determined from Eq.~2.8! reads

Gn5H 2d

2d21
, n51

1, n>2.

~2.67!

This result also shows that the boundary layer,n51, is dis-
tinguished from all other ones. This feature that is beyo
the scope of the continuous field-theoretical approaches
be observed in the whole temperature range. In particula
high temperatures (u@1), or in the whole regionu>uc in
the ‘‘quasi-Ising’’ limit h!1, the variation ofGn can be
found with the help of the high-temperature series exp
sions~HTSE!. This can be most conveniently done using t
diagram technique for classical spin systems@49–51,33#.
The result for the hypercubic lattice has the form (h/u!1)

G1n>H 1

uS h

2du D 2

, n51

4~d21!

u S h

2du D 2~n11!

, n>2.

~2.68!

The terms with n>2 are slightly different for the
continuous-dimension model. One can see, again, that
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boundary layer is distinguished. For the layers withn>2 the
expected leading diagrams of order 2n are cancelled, and th
result is much smaller.

Calculation ofG1n in other cases requires more speci
ized methods, which will be considered below.

III. SURFACE-INDUCED CORRELATIONS
IN LOW AND HIGH DIMENSIONS

A. Solution for the ‘‘toy’’ model d51

In one dimension the solution of the ASM equatio
~2.5!–~2.10! is greatly simplified, sinced850 and there is no
integration over the wave vectorq. The quantitybn of Eq.
~2.6! reduces in this case tobn51/(hGn). For the autocorr-
elatorsnn one has simplysnn5snn . Aboveuc the constraint
equation~2.10! becomessnn51, i.e., all snn are equal to
each other. This means that for the one-dimensional A
the transversesusceptibilities with respect to the layer fiel
x'nn5snn /u51/u, are the same for all layers. Now, from
the relation~2.58! follows an115an8 . Using the latter to-
gether with the recurrence relations~2.54!, one can write the
constraint equation as

15snn5
2u

h H 1/@2b12~2b1!21#, n51

1/@an
212an#, n>2.

~3.1!

This implies that allan andan8 , except fora150, are equal
to

a5@Ah21u22u#/h, ~3.2!

which is the bulk value given by Eq.~2.32!. Then forn>2
with the help of Eq.~2.32! one can identifybn5b5@a
1a21#/25Ah21u2/h and Ab2215u/h. The boundary-
layer quantityb1 can be determined directly from Eq.~3.1!
with the result 2b15a215@Ah21u21u#/h. Now the exact
result forGn51/(hbn) can be written in the form

Gn5H 2/@A11u22uc
21u#, n51

1/A11u22uc
2, n>2.

~3.3!

with uc5A12h2. One can see thatG1.Gn>25G. In par-
ticular, in the weakly anisotropic case, 12h!1, at criticality
one hasG1>2(12k), which is nearly two times greate
than the bulk valueG51 @cf. Eq. ~2.67!#. Variation of Gn
above belongs to the class studied at the end of Sec. II A,
thus snn8 is given by Eq.~2.13!. In our one-dimensiona
model, however, one hasa22b1150, and the inhomoge
neous term vanishes. Thus one arrives again at the re
snn51, which can serve as an independent check of
calculations.

Now we consider the longitudinal CFsnn8
zz and the corre-

sponding susceptibilities. The solution of the finit
difference equation~2.5! with h51 and Gn given by Eq.
~3.3! has the form~2.13! with az

615bz7Abz
221 @cf. Eq.

~2.32!#, bz[1/G, andbz11[1/G21/G1 @cf. Eq. ~2.60!#. Us-
ing Eq. ~3.3! one can write, explicitly,
-

M

nd

ult
e

az5A11u22uc
22Au22uc

2,

az22bz11

az
2122bz11

5
u2Au22uc

2

u1Au22uc
2

. ~3.4!

In contrast to the transverse CFsnn given by Eq.~2.13!, the
inhomogeneous term insnn

zz does not disappear. For th
weakly anisotropic ASM in the rangeu!1, the expression
for snn

zz simplifies to

snn
zz>

u

kz
F11

kz2k

kz1k
e22kz~n21!G ~3.5!

@cf. Eq. ~2.16!# wherek andkz are given by

k>u, kz>Au22uc
2. ~3.6!

One can see that here the extrapolation lengthle51/k@1 is
large on the scale of the lattice spacing. Well aboveuc ,
wherekz>k, there is no difference between the longitudin
and transverse CFs:snn

zz>snn51. Nearuc one haskz!k,
and Eq.~3.5! shows the dependence on the distance from
surface. Whereas the bulk CF (n5`) diverges with the ex-
ponentgnn

bulk5 1
2 ~see the end of Sec. II C!, the semi-infinite

CF ~3.5! does not for any finiten. In the boundary layer,snn
zz

takes on the exact form

s11
zz5

2u

u1Au22uc
2

~3.7!

in the whole range ofh. It varies from 1 atu@uc to 2 at
u>uc . At criticality the longitudinal surface susceptibility i
two times greater than the transverse one. One can see
g11521/2, as in the MFA.

B. Low dimensions, 1<d<2

For d.1 the ASM equations become nontrivial becau
of the integration over the wave vectorq in the constraint
equations~2.10!. The deviationG1n of the gap paramete
from its bulk value is now nonzero for all layers,n,`. For
u!1, the system is close to criticality, and the inverse tra
verse correlation lengthk of Eq. ~2.34! is small and related
to u by

u>1/P>k22d/Cd ~3.8!

@see Eqs.~2.27! and ~2.39!, cf. Eq. ~3.6!#. The variation of
Gn is for 1<d<2 close to that for the one-dimension
model above@see Eq.~3.3!# and can be searched in the for

Gn5H 2d

2d21
G1S 2d

2d21D 2

G11, n51

G1G1n , n>2.

~3.9!

The correction termsG1n will be shown below to be propor
tional to (d21)u. @Note that the definition ofG11 here dif-
fers from that of Eq.~2.12!.#

For the variation of the gap parameter above, the spin
snn is for not too small wave vectors determined by t
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boundary condition at the surface and given to the zer
order by Eq.~2.15!. This makes it possible to findG1n per-
turbatively in the rangekn!1. After that one can study th
corresponding corrections tosnn , which prove to be smal
for q@k or d close to 1.

1. Variation of Gn

The quantitiesG1n for n>2 can be found from the con
straint equation ~2.10! written in the form
(d8/Ld8)*dqqd821D̂2snn50, where

D̂2snn[sn11,n1122snn1sn21,n21 . ~3.10!

The second-order difference above can, with the help of
~2.58!, be rewritten as

D̂2snn52@22ab1n1~Ab2212b1n!

3~a1n1a1n8 !2a1na1n8 #snn . ~3.11!

Here the first term is the only one that is important in t
long-wavelength region,q;k. By integrating it one can se
a→1, which yields simply24b1n>24dG1n in the con-
straint equation. All other terms make a contribution fro
q@k, and the only important one among them is the te
containing (b221)1/2a1n wherea1n is induced by the sur-
face. The latter can be found by comparing Eq.~2.15! with
Eq. ~2.63!, where the small termsa1n8 andb1n are neglected.
This results in

a1n>
2~b221!1/2a2n21

11a2n21
>

2q̃

exp~2q̃n!11
, ~3.12!

where the second form is valid forq!1. Using Eq.~2.15!
for q@k, one finally obtains

G1n>
u

2

d8

Ld8E0

L

dqqd821~12a2!a2~n21!, ~3.13!

where the relation 2aAb221512a2 has been employed
This expression is explicitly small foru;k22d!1 or for
d8[d21!1, as was said above. Forn;1, integration in
Eq. ~3.13! extends over the whole Brillouin zone, andG1n is
nonuniversal. It decreases withn sincea,1. In the range
1!n!1/k the integration is cut atq;1/n, and one can use
Ab221>q anda2(n21)>e22qn. Expression~3.13! then sim-
plifies to

G1n>
d8

Ld8

uG~d!

~2n!d
5

G~d!

dMd

k22d

~2n!d
, ~3.14!

where the second form is explicitly universal. HereMd is
given by Eq.~2.41!, or, neard52, by Eq. ~2.43!. In two
dimensions the result above regularizes to

G1n>
1

8n2ln@1/~ak!#
, ~3.15!

wherea;1 is a nonuniversal factor. Ford.2 the values of
G1n are no longer small, and the method used above fails
th

q.

t

distanceskn*1 the integral in Eq.~3.13! is dominated by
q&k, wheresnn and a1n no longer have the forms~2.15!
and ~3.12!. One can writeG1n in the whole range ofkn in
the form

G1n>
G~d!

dMd

k2g~kn!

~2kn!d
, ~3.16!

whereg(kn) is a crossover function. The expected asym
tote of G1n for kn@1 is

G1n;
k2

~kn!z
e22kn, ~3.17!

with some exponentz. The analytical calculation of the pref
actor here seems to be very difficult.

The value ofG11 is fixed by the constraint equation~2.10!
in the first layer. We will see below that(n51

` G1n;k
!k22d, thusG11 is simply given by

G11>2 (
n52

`

G1n>2
u

2

d8

Ld8E0

L

dqqd821a2, ~3.18!

where Eq.~3.13! has been used. Although the derivatio
above becomes invalid ford close to 1, the resulting expres
sion has a well defined formG1152k22d/2 in this region,
which will be confirmed below by another method and is
accord with the resultG1>2(12k) in one dimension@see
the discussion below Eq.~3.3!#.

2. Correlation functions near the surface

In low dimensions the quantitiesG1n are small, and one
can try to find the corresponding corrections to the corre
tion functions perturbatively. It is clear, however, that sin
G1n can be responsible for the gap in the correlation funct
@see Eq.~2.16!# the direct perturbative approach tosnn can
be inefficient. It is more convenient to use perturbati
theory with respect to the self-energy partSn in Eq. ~2.63!.
For the variation ofGn of the form~3.9! in the expression for
the latter one has

b11>
1
2 1dG11

b1n>dG1n , n>2, ~3.19!

and the quantitiesa1n anda1n8 can be found from the recur
rence relations~2.61! and ~2.62!. These equations simplify
sincea1n for n>2, as well as alla1n8 , are induced byG1n

and are small. For the first layer, taking into accounta115
2a one obtains in the long-wavelength region

s11>
2du

q̃1D1~ q̃,k!
, ~3.20!

where

D1~ q̃,k!>22d(
l 51

`

e22q̃G1l ~3.21!
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and the dependence ofD1 on k is due to that ofG1n . The
longitudinal CFs11

zz is given by the same expressions wi

q̃z[Akz
21q2 instead ofq̃[Ak21q2.

In the sum~3.21! only the term withG11 is unknown, and
its value follows from the constraint equation~2.65!, which
can, with the help of Eq.~2.38! and ~2.39!, be put into the
form

E
0

L

dqqd821F 2

q̃1D1~ q̃,k!
2

1

q̃
G50. ~3.22!

For 1,d,2 the integral here is dominated byq;k and its
upper limit can be set tò . This implies thatD1;k, i.e., the
individual terms of the sum~3.21!, each being of orderu
;k22d@k, are nearly cancelled. The ensuing expression
G11 is given by Eq.~3.18! above.

As a result of the cancellation of the leading terms in E
~3.21!, taking the next terms into account may become n
essary. Themth-order terms inG1n are proportional to
km(22d) and they are small in comparison tok!1 for d
,221/m. In particular, the first-order perturbation theo
written above neglects the terms starting fromm52 and it is,
in general, valid only ford,1.5. The second-order perturb
tion theory works ford,1.75, etc. The solution of the prob
lem seems to undergo an infinite number of crossovers fod
approaching 2 and it should be rather complicated. Anal
cal solutions can be obtained ford close to 1 and forq@k,
as well as in the marginal cased52, with only logarithmic
accuracy.

For d8[d21!1 one hasMd>1/(d21), and the main
contribution to the integral in Eq.~3.22! stems from the re-
gion q!k. For d51 the obvious solution of Eq.~3.22! is
D1(k,k)5k. Since ford51 all G1n with n>2 disappear,
this leads to the one-dimensional resultG1152k/2. In the
first order ind21 one can still neglect theq dependence o
D1(q̃,k). Then the perturbative solution of Eq.~3.22! leads
to the simple result

D1~k,k!>dk, d21!1. ~3.23!

On the other hand, the sum~3.21! neard51 consists of two
contributions:

D1~k,k!>22dG112
k22d

Md
(
l 51

1/k
1

l d

>22dG112k22d~12kd21!, ~3.24!

with logarithmic accuracy. Comparing it with Eq.~3.23!
yields

G11>2
k22d

2
>2

k

2F11~d21!ln
1

kG . ~3.25!

For the analysis of the limitq@k and of the behavior of
the longitudinal CFsnn

zz for small wave vectors, it is conve

nient to represent the quantityD1(q̃,k) above as

D1~ q̃,k!5D1~0,k!1D̄1~ q̃,k!, ~3.26!
r

.
-

i-

where

D1~0,k![22d(
l 51

`

G1l

D̄1~ q̃,k![2d(
l 51

`

~12e22q̃l !G1l . ~3.27!

The quantityD1(0,k) determines the gap ofsnn
zz at criticality

(q̃z50) and it is related toD1(k,k) studied above by

D1~0,k!5D1~k,k!22d(
l 51

`

~12e22k l !G1l

>D1~k,k!2
kG~d!

2d21Md
E

0

`dx

xd
~12e22x!g~x!,

~3.28!

where the functiong(kn) was introduced in Eq.~3.16!. The
integral term in this formula stems from the regionx[kn
;1 where g(kn) is unknown. Even neard51, where
D1(k,k) is given by Eq.~3.23! to the first order ind21,
calculation of this term needed to findD1(0,k) would re-
quire additional efforts. In general, there is no apparent w
to calculate analytically the gap insnn

zz . On the other hand
the existence of this gap can be anticipated, since the an
tropic model shows the mean-field critical behavior in
cases. At criticality forq!1 the longitudinal CF can, afte
the expansion of Eq.~3.27!, be written in the form

snn
zz>

2du

D1~0,k!1Aq
, ~3.29!

where the stiffness of the longitudinal spin fluctuations
given by

A>11
222dG~d!

Md
E

k

` dx

xd21
g~x!, ~3.30!

which is again determined by the regionkn;1, in general.
For d,2 the lower limit of integration can be set to zer
andA is a number. Ford→1 the quantityMd diverges, and
A tends to 1. Ford→2 the integral in Eq.~3.30! diverges
logarithmically at the lower limit, and this divergence com
pensates that ofMd @see Eq.~2.43!#. As a result, one obtains
A>21O@1/ln(1/k)#. It should be stressed, however, that
fact A cannot be calculated perturbatively, as above, ifd is
not close to 1. This is because the term of the first-orde
G1n gives a contribution comparable to the zeroth-order
sult, and so do the terms of all orders inG1n .

The analytically tractable case isq@k, in which the sum
in Eq. ~3.27! is dominated byl;1/q!1/k and one can use
Eq. ~3.14! for G1n . Replacing this sum by the integral an
combining it with Eq.~2.41! yields the result

D̄1~q,k!>
GS d

2DGS 32d

2 D
p1/2

12q22d

12k22d
~12kd21!qS k

qD 22d

.

~3.31!
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Here the factor 12q22d reflects the logarithmic divergenc
of the integral at the lower limit ford close to 2, its coun-
terpart 12k22d comes fromMd , and the factor 12kd21 is
due to the logarithmic divergence of the integral at the up
limit for d close to 1. Ford not close to 1 or 2 these factor
can be dropped. Ford52 the expression above regulariz
to

D̄1~q,k!>q ln~1/q!/ ln~1/k! ~3.32!

with logarithmic accuracy. One can see that theq-dependent
term calculated above is smaller than the leading termq in
the denominator of Eq.~3.20! by a factor (k/q)22d!1,
which justifies using the perturbation theory inG1n . This
term depends onk and thus signifies the gap in the correl
tion function. For 22d!1, the latter has a long-tail charac
ter, which makes the perturbation scheme slowly converg
This is in contrast to the bulk behavior, where this gap
stems simply from the expansion ofq̃5Ak21q2 and has the
fast-decaying formq(k/q)2/2. The most drastic situation i
realized ford52, where the gap tail is logarithmic and th
applicability of the perturbation theory requires fulfillment
the very difficult criterium ln(1/q)! ln(1/k).

One can improve the perturbation theory by taking in
account the terms of the second order inG1n in the denomi-
nator of Eq.~3.20!. These terms have the form of doub
sums over the layers and forq@k they make a contribution
of order q(k/q)2(22d) to D̄1(q,k). For d52 the formulas
simplify and one obtains the contributionqR2/2, whereR is
the ratio of logarithms in Eq.~3.32!. In fact, in two dimen-
sions one can sum up~with logarithmic accuracy! all orders
of the perturbation theory inG1n . This is possible becaus
Eq. ~2.11! with G1n given by Eq. ~3.15! can be exactly
solved in terms of the modified Bessel functions. The cor
sponding calculation will be presented below; here we d
cuss some further features of the semi-infinite ASM ford
<2.

In each orderof the perturbation theory,D1(q,k) can be
represented in the form~3.26!, whereD̄1(q,k) is determined
by l;1/q̃@1 and is thus universal. The quantityD1(0,k) is
fixed by the constraint condition~3.22!, whereq;k!1, and
it is thus universal, too. The same can be shown for all v
ues of n, i.e., the spin CFs in the semi-infinite weakl
anisotropic ASM are universal in the whole half-space
d,2. In other words, in this case thestrong scalingis real-
ized, which manifests itself in the independence of the C
of the lattice spacinga0. Alternatively, this can be seen from
the fact that the Green function equation~2.11! with the
boundary condition~2.17! is applicable everywhere, becau
G1n are small andsnn8 is a smooth function ofn in the long
wavelength region. The nonuniversality ofG1n in several
boundary layers does not play a role becausesnn8 is sensi-
tive only to the cumulative action ofG1n from a large num-
ber of remote layers,n;1/q̃@1. Ford52 there are nonuni-
versal logarithmic corrections to the strong scaling. Ford
.2, as we shall see, the scaling is realized only in
asymptotic regionn@1.

The expressions for allsnn can be obtained recurrentl
from s11 with the help of relation~2.58!, which results in
r

t.
il

-
-

l-

r

s

e

snn5
an218 an228 . . . a18

anan21 . . . a2
s11. ~3.33!

Here, forq;k all an andan8 , except fora150, are close to
unity. Thus all CFs in the layers near the surface are clos
each other. At large distances the spin CFs should cross
to the bulk result~2.33! @cf. Eq. ~3.5!#. For q;k, this cross-
over occurs atkn;1 and it cannot be described analyticall
since the solution depends on the values ofG1n in this re-
gion, which have not been determined. For the wave vec
q@k the equation forsnn can be solved perturbatively in
G1n for all distances. This can be seen if one rewrites E
~2.11! in terms of the dimensionless variablez[qn and uses
Eq. ~3.14! for G1n . Then the term withG1n in the equation
becomes of order (k/q)22d/zd and can be considered pertu
batively for d,2. The solution is given~2.16! with q̃@c
plus a correction term. Near the surface,z[qn!1, to the
lowest order inz this solution can be put into the form~3.20!
with Dn(q̃,k)>D̄1(q̃,k) given by Eq. ~3.31!. For z[qn
@1 one obtains

snn>
du

q F11
G~d!

2dMd
S k

qD 2 1

~kn!dG , ~3.34!

which is in fact the expansion ofsnn>du/Aq̃222dG1n for
large q. The latter result has a simple interpretation: Forq
@1/n@k the surface term insnn is negligible, and the cor-
rection to the bulk result is due toG1n from the narrow
region un92nu!1/q, where G1n does not change signifi
cantly ~the local correction!.

For the longitudinal CFsnn8
zz the corresponding effective

wave vectorq̃z[Akz
21q2 can be smaller thank, especially

at criticality, whereq̃z5q. For q̃z!k the exponential de-
crease ofG1n for kn*1 @see Eq.~3.17!# comes into play. As
a result, in the rangen*n* ;1/k the free solution~2.16! is
realized again. The disappearance ofG1n for n;1/k and the
ensuing free solution is also characteristic for dimension
,d,4. As we shall see below, ford.4 the value ofn* is
of the order of the lattice spacing, and the free solution
realized in a wider range. In contrast to the caseq@k con-
sidered above, here the sign of the surface term insnn8

zz is
negative. One can argue, in general, that the form of the
solution in the regionn* &n&1/q̃z is Eq. ~2.16! with a co-
efficient f (q̃z /k) in front of the surface-induced term. Th
plausible assumption about the form off is f 5(q̃z

2ceff)/(q̃z1ceff), i.e., the surface term of the CF chang
sign as a function of the wave vector. As a justification o
can stress that from the distancesn@n* the regionn&n* ,
where the form of the CF is complicated, is seen as narr
Thus one can replace this region with an effective bound
condition of the type~2.17! set atn;n* . The quantityceff
can be expected to be of orderk in dimensions low enough
This is the exact result ford51 @see Eq.~3.5!# and it will be
shown numerically to hold ford<4. This implies that the
extrapolation lengthle51/ceff is of the order of thetrans-
versecorrelation lengthjca , which ~although nondivergent!
is much greater than the lattice spacing for the weakly an
tropic systems near criticality. The important implication
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the negative sign of the surface term insnn8
zz at small wave

vectors is the gap insnn8
zz at any finite distances from th

surface, even at criticality. It is clear, although difficult
prove rigorously, that the existence of this gap in t
asymptotic region, where the free solution is realized, a
entails the gap insnn8

zz near the surface.

3. Correlation functions for d52

Dimension d52 is the marginal one betweend,2,
where the characteristic wave vectors in the spin CFs aq
;k, and d.2, whereq;1/n are important. The solution
with logarithmic accuracy ford52 can be obtained if thes
ranges are separated by many decades, i.e., ln(1/k)@ lnn. In
fact, the solution~3.15! for G1n has been obtained under th
very restrictive condition. With this form ofG1n , the Green
function equation~2.11! can be solved exactly in terms of th
modified Bessel functions. This will be shown in more det
in Sec. IV A, and the result has the form~4.2! with

m>
1

2F211
1

ln~1/k!G . ~3.35!

For qn!1 the expression forsnn simplifies to

snn>
2du

q
~qn!1/ln~1/k! ~3.36!

@cf. Eq. ~4.9!#. This can be represented in the form of ty
~3.20! with Dn5q@12(qn)21/ln(1/k)#. For not too smallq
one can expandDn in powers of ln@1/(qn)#/ ln(1/k) to obtain
the gap tail of the spin CF. In this way the first-order res
~3.32! for n51 and all other orders of the perturbatio
theory inG1n are recovered.

At small wave vectorsq, solution forsnn is determined
by G1n at kn;1 where the latter are unknown and hen
snn does not have the form above. In fact, here the g
Dn(0,k) in snn manifests itself, and it turns out to be muc
larger than the bulk gapk. The dependence ofDn(0,k) can
be obtained from the constraint equation~2.65!, where~3.36!
and ~2.33! are used and the integration overq is performed
betweenDn(0,k) and 1/n. In this way one comes to an in
teresting formula:

Dn~0,k!;k ln 2/n, ln n! ln~1/k!. ~3.37!

Here the critical index ln2 results from the fact thatsnn of
Eq. ~3.36! is about 2 times greater than in the bulk; thus t
gap in this region should be correspondingly greater to
isfy the constraint equation. The coefficient in Eq.~3.37!
cannot be determined in the logarithmic aproximation;
should become universal forn@1. This method is rathe
rough and it cannot distinguish detween the transverse
longitudinal correlation functions. One can expect that th
differ by a numerical factor, as was confirmed by numeri
calculations, which have been done, however, in a rangek
not small enough to confirm formula~3.37! itself.

C. High dimensions,d>4

As we have seen above, for the weakly anisotropic AS
in low dimensions the problem can be solved analytically
o

l

t

p

t-

t

nd
y
l

r

kn!1 due to the separation of theq ranges in the transvers
CF snn , as exemplified by Eq.~3.11!. The surface-induced
term is important forq;1/n@k, whereas the term induce
by G1n dominates forq;k!1. In high dimensions the sepa
ration of theq ranges of both terms also takes place,
though in a different form. Whereas theq range of the sur-
face term remainsq;1/n ~for kn!1), theG1n-induced term
dominates in the rangeq;1. Thus the ranges separate
distancesn@1, where the problem can be solved analy
cally. Henceforce in this subsection we will consider t
close-to-criticality casek!1; otherwise, at distancesn@1
deviations from the bulk values will be too small@cf. Eq.
~2.68!#.

The surface term ofsnn has in high dimensions the op
posite sign, as compared to the low-dimensional res
~2.15!, and forn@1 its form does not depend on the deta
of the behavior in the region close to the surface. As we w
see below, ford>4 the quantityG1n decays fast withn, and
for the calculation of the surface term it can be neglec
starting from somen* @1. For n>n* one can use forsnn8
an expression of the type~2.13!, where 2b11 is replaced by
some quantity determined by the regionn<n* . In contrast to
the low-dimensional case, there is no reason for the sub
tute for 2b11 to be close to unity, because the variation ofGn
is no longer close to Eq.~3.9!, or in Eq. ~3.9! G1n are no
longer small. At large distances and small wave vectors
can thus use Eq.~2.16! where the coefficientf (q) in front of
the surface term is close to21, since the quantityceff should
be of order unity~the extrapolation lengthle[1/ceff compa-
rable to the lattice spacing!.

Since postulatingsnn8 in the form ~2.16! is not quite a
rigorous procedure, let us consider another derivation ba
on the continued-fraction formalism described in Sec. II
For n@1 one can employ the differential equations~2.66!
for the quantitiesa1n and a1n8 of Eq. ~2.59!. The boundary
condition for the second equation isa1`8 50; the quantity
a1n8 is generated solely byG1n and it is not related to the
surface term ofsnn . For the equation fora1n the boundary
condition cannot be set on the surface, since this equatio
invalid for n;1. Thus we use the boundary conditiona1n
5a1n* at n5n* @1, wherea1n* is determined by the exac
recurrence formula~2.61! in the regionn<n* . For n.n*
one can neglect 2b1n in the differential equation fora1n ,
after which it can be linearized with respect to the new va
able 1/a1n and solved to give

a1n5
2q̃a1n*

a1n* 1~2q̃2a1n* !exp@2q̃~n2n* !#
. ~3.38!

Since a1n* is generated by the boundary condition at t
surface and byb1n , which are not explicitly small forn
<n* , one hasua1n* u@q̃ for small wave vectors. It can be
seen thata1n* cannot be positive, otherwisea1n turns to
infinity at n determined by exp@2q̃(n2n* )#5a1n* /(a1n*
22q̃)>1. Thus,a1n* ,0, and in the relevant regionn@n* ,
q̃n;1 ~3.38! simplifies to the form

a1n>2
2q̃

exp~2q̃n!21
, ~3.39!
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which is independent of the behavior in the boundary regi
n<n* . For q̃n;1 one hasa1n;1/n; thus in the differential
equation ~2.66! q̃a1n;a1n

2 ;1/n2. This implies that the
method used here works ifG1n}b1n decays faster than 1/n2.
As we shall see shortly, this is the case ford>4. Now the
surface term ofsnn can be found from Eqs.~2.63! and~2.64!
with a1n8 5b1n50, which results in Eq.~2.16! with f (q)
close to21.

For q;1 andn@1 the quantitya1n of Eq. ~3.39!, as well
as the surface term in Eq.~2.16!, are exponentially small
Here theG1n-induced term becomes dominant. To find t
values ofa1n anda1n8 in this region, one can drop the sma
termsa1n

2 and (a1n8 )2 in Eq. ~2.66!, after which the linear
inhomogeneous differential equations can be solved. The
lution at pointn is induced byb1n9 from the interval ofn9

aroundn, which satisfiesun92nu;1/q̃;1!n; thus one can
treat b1n in Eq. ~2.66! as a constant. The solution of E
~2.66! has the forma1n>a1n8 >ab1n /Ab221, and the quan-
tity Dn of Eq. ~2.64! readsDn>2bb1n /Ab221. The result-
ing correction tosnn given by Eq.~2.63! is of the form

dsnn
local>du

bb1n

~b221!3/2
52b1n

]

]b
snn

bulk , ~3.40!

wheresnn
bulk is given by Eq.~2.32! or by the first term of Eq.

~2.16!. This correction is due to the local deviation ofbn
from the bulk valueb @see Eq.~2.60!# and it could in fact be
written for q;1 without calculations.

Now the value ofb1n can be found from the constrain
equation~2.65!, where snn is the sum of Eqs.~2.16! and
~3.40!. One can see thatb1n.0 is needed to compensate f
the negative surface term. The integration of the local te
~3.40! extends ford.4 over the whole Brillouin zone
q;1, and can be accomplished with the use of Eq.~2.38!.
This results in

d8

Ld8E0

L

dqqd821
bb1n

~b221!3/2
5

b1n

d2
P~hG!I ~hG!,

~3.41!

where I (X) is defined by Eq.~2.45!. Since ford.4 both
P(X) and I (X) do not diverge forX→1, one can setX51
for weakly anisotropic ASM near criticality. The integratio
of the surface term is cut atq;1/n!1 for kn!1 and atq
;q* 5Ak/n (1/n!q* !k) for kn@1. The resultingG1n
>b1n /d has ford.4 andn@1 the form

G1n>
d8

Ld8

dG@~d21!/2#

P~1!I ~1!

kd22

~kn!~d22!/2
K ~d22!/2~2kn!,

~3.42!

whereKn(x) is the Macdonald~modified Bessel! function.
For the hypercubic lattices the first fraction in Eq.~3.42!
should be replaced according to Eq.~2.36! by Sd8 /(2p)d8

@see Eq.~2.40!#. One can see that the form ofG1n is nonuni-
versal. The limiting forms of Eq.~3.42! are
,

o-

G1n>
d8

Ld8

dG~d22!

P~1!I ~1!

1

~2n!d22
, kn!1, ~3.43!

and

G1n>
d8

Ld8

dG@~d21!/2#

2P~1!I ~1!

kd22e22kn

~kn!~d21!/2
, kn@1.

~3.44!

If d is close to the marginal valued54 the contribution to
the integral~3.41! from small wave vectors becomes larg
and separation of theq ranges insnn no longer takes place
Nevertheless, the problem can be solved analytically w
logarithmic accuracy at distanceskn!1. In this case one
should integrate in Eq.~3.41! down toq;1/n@k where the
surface term in Eq.~2.16! becomes important. This leads t
the replacement

P~1!I ~1!⇒ d8

Ld8

16

d24F12
1

~an!d24G ~3.45!

in Eq. ~3.43!, a being a lattice-dependent number. ForG1n
neard54 one obtains the result

G1n>
1

16n2

d24

~an!d2421
, ~3.46!

which regularizes to

G1n>
1

16n2ln~an!
, 1!n!1/k, ~3.47!

in four dimensions.
It can be seen that the applicability condition of th

method used here,G1n5o(1/n2) for n@1, is satisfied for
d>4. In the range 2,d,4 an attempt to apply~for k50)
the same method yields for the integral~3.41! a value of
order;b1nn42d that stems from the regionq;1/n. The in-
tegral of the inhomogeneous term in Eq.~2.16! is, for k50,
determined by the same range ofq and it is proportional to
n22d. Equating both contributions according to Eq.~2.65!
yields G1n}b1n}1/n2 with some universal coefficient. On
can see that formula~3.46! shows such a behavior ford,4
where the term containing the nonuniversal numbera is
small. In fact, it joins smoothly the exact solution~4.1! for
2,d,4 found by Bray and Moore@48#, which will be con-
sidered in the next section.

The susceptibilities of the ASM in high dimensions sho
the mean-field critical behavior. In particular, at small wa
vectors one can drop the local contribution~3.40! and use
Eq. ~2.16! for snn at distances far enough from the surfac
n*n* . For q50 andkn,kzn!1 both transverse and long
tudinal CFs@see Eq.~2.16!# simplify to ~2.18!. CFs in the
surface region,n&n* , should be calculated numerically
Since s11 can be obtained from the CFssnn far from the
surface with the help of relation~3.33! and the quantitiesan

andan8 are nonsingular,s11 shows the same critical behavio
as in the asymptotic regionn@1. The latter is characterize
in particular byg1152 1

2, which can be found by expandin
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Eq. ~2.16! for q50 up to the second order inq̃5k!1 and
usingk}t1/2 following from Eqs.~2.34! and ~2.47!.

Finally, let us transform the CFsnn8(q) to the real-space
CF snn8(r), wherer is the distance between two points
the direction parallel to the surface. At large distanc
n,n8,r@1 the relevant values ofq are small and one can us
Eq. ~2.16! with q̃5q!c, disregarding the local contributio
~3.40!. The condition for this iseqn!(qn)2nd24, which is
satisfied ford.4 andn@1. Then one comes to the MFA
result, which, at isotropic criticality,k50, has the form@5#

snn8~r!}H 1

@r21~n2n8!2#~d22!/2

2
1

@r21~n1n8!2#~d22!/2J ~3.48!

with a nonuniversal factor depending on the lattice structu
In this expression the surface-induced term withn1n8,
which is similar to the ‘‘image’’ term in electrostatic prob
lems, modifies its asymptotes atr@n,n8 and n@r,n8.
These are@5,11#

snn8~r!}1/rd221h i, h i52 ~3.49!

for n,n85const andr@n,n8 and

snn8~r!}1/nd221h', h'51 ~3.50!

for r,n85const andn@r,n8. One can see that near the su
face correlations decay faster than in the bulk (hb50), es-
pecially in the direction parallel to the surface.

IV. DIMENSIONS BETWEEN TWO AND FOUR

A. Isotropic model at criticality

As we have seen above, in low and high dimensions
correlation functionsnn consists of two different~surface
and local! terms, which are dominant in different ranges
q. This property makes possible an analytical solution of
problem forkn!1 in low dimensions and forn@1 in high
dimensions. In the range 2,d,4 both terms are dominate
by the rangeq;1/n, i.e., they cannot be separated from ea
other. Fortunately, the problem has an exact solution for
isotropic model at criticality forn@1 @48#, where the antici-
pated asymptote ofG1n far from the surface can be writte
as @see the discussion after Eq.~3.47!#

G1n5

1
4 2m2

2dn2
, m5

d23

2
, ~4.1!

where the choice of the parameterm will be justified below.
For n@1 andq!1 one can use the second-order differen
equation~2.11! for the transverse CF, in whichq̃5q at iso-
tropic criticality. The latter can be solved in terms of th
modified Bessel functions:

snn852duH Ann8I m~qn!Km~qn8!, n<n8

Ann8I m~qn8!Km~qn!, n8<n,
~4.2!
,

e.

e

f
e

h
e

l

where the termC(nn8)1/2Km(qn)Km(qn8) could also be
added. This solution looks similar to the full discrete soluti
~2.50!, but here the constantC cannot be found from the
boundary condition at the surface, since Eq.~2.11! is only
valid for n@1.

There is, however, another method of findingsnn8 @48#
that avoids using the boundary condition at the surface
yields C50. The consideration starts with the eigenval
problem

S d2

dn2
1

1
4 2m2

n2 D c~a,n!52a2c~a,n!, ~4.3!

whose solutionc(a,n)5AanJm(an) satisfies

E
0

`

dn c~a,n!c~a8,n!5d~a2a8!,

E
0

`

da c~a,n!c~a,n8!5d~n2n8! ~4.4!

and thus forms an orthogonal and complete basis on
semi-infinite interval. Then the Green functionsnn8 can be
expressed through its decomposition over the set of eig
functions as

snn852duE
0

`

da
c~a,n!c~a,n8!

a21q2
, ~4.5!

which results in Eq.~4.2! without any additional terms.
Now the value ofm can be found from the constrain

condition in the form~2.65! with the bulk CF given by Eq.
~2.33!, i.e.,

nE
0

`

dz zd22F2I m~z!Km~z!2
1

zG50. ~4.6!

This integral, which can be found in Ref.@48#, is zero for all
n if m is given by Eq.~4.1! and 2,d,4. There is another
solution,m5(d25)/2 for 3,d,4, which leads to negative
values ofG1n and it should be disregarded for the ordina
phase transition considered here. The asymptotic form of
layer autocorrelation functionsnn of ~4.2! for qn@1 is

snn>
du

q F11

1
4 2m2

2~qn!2G . ~4.7!

Here the first term is the bulk CF and the second term in
square brackets,dG1n /q2, is the local contribution analo
gous to that in Eq.~3.34!. This form ofsnn is responsible for
the convergence of the integral in Eq.~4.6! at z[qn;1, i.e.,
for q;1/n!1. The latter justifies using the long-waveleng
approximation in the scaling region,n@1. Here the discrete
lattice structure does not show up in the long-wavelen
behavior ofsnn8 and in the form ofG1n , thus 1/n is the only
scale forq. In the opposite limit,qn!1, one can use
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I m~z!>
1

G~11m!S z

2D m

@11O~z2!#, z!1

Km~z!5
p

2 sin~pm!
@ I 2m~z!2I m~z!# ~4.8!

to expresssnn in the form

snn>
dun

m F12
G~12m!

G~11m!S qn

2 D 2mG . ~4.9!

For d.3 one hasm.0 andsnn does not diverge atq→0
for any finite n. Conversely, ford,3 one hasm,0, and
thus the second singular term in Eq.~4.9! is dominant and it
causes the divergence ofsnn at smallq. In the marginal case
d53, Eq. ~4.9! regularizes to

snn>2dunF ln
1

qn
1c0G , c05 ln 22g, ~4.10!

whereg50.5772 . . . is theEuler constant andc0'0.1159 is
rather small.

The Fourier transformed CF~4.2! looks very beautiful in
real space@48#:

snn8~r!5
2duG~d22!

~4p!~d21!/2G@~d21!/2#

3F 1

r21~n2n8!2
2

1

r21~n1n8!2G ~d22!/2

.

~4.11!

Here, in contrast to the MFA result~3.48!, the bulk term and
the surface-induced image term arenonadditive. The critical
exponentsh i and h' determined analogously to Eq.~3.49!
and ~3.50! areh i5d22 andh'5(d22)/2 @48#.

In spite of the apparent similarity of the solution pr
sented here and that of Bray and Moore@48#, they are not
completely identical. The difference is that in the spin vec
model used here the constraintumi u51 on each lattice site is
obeyed, which is accounted for in the constraint equat
~2.4!. Bray and Moore used the phenomenologicalf4 field-
theoretical model with theO(`) symmetry, which has no
constraint on the fieldf. Accordingly, the self-consisten
determination of the functionV(z) @48#, which is analogous
to 2G1n here, is more complicated and can be done only
the singled-dependent magic value of the coupling const
u.

A peculiar feature of the differential equation~2.11! is
that its solution~4.2! is twofold: for a givenm2 in Eq. ~4.1!
solutions with both signs ofm56umu can be realized ford
.3 and d,3. Accordingly, the eigenvalue problem~4.3!
has two sets of eigenfunctions that form two different
thogonal and complete bases. An apparent reason for su
behavior is the singularity ofG1n at n50 in the continuous
approach, which is, naturally, not present in the original d
crete formulation of the problem. This singularity and t
concomitant loss of the boundary condition at the surf
could be circumvented by Bray and Moore by application
the eigenfunction trick above, which looks like a mirac
r

n

r
t

-
h a

-

e
f

~see other examples from quantum mechanics in Ref.@52#!.
However, the fact that the same differential equation h
different solutions, e.g., ford52.5 andd53.5, contradicts
common sense and, more importantly, impedes numer
solution of this equation. The latter would be the only po
sibility in situations where no general analytical solution
available, as in the off-criticality case; and in that case
loss of the boundary condition creates insurmountable d
culties.

The key to the paradox is that in the original discre
formulation there is no singularity ofG1n , and the values of
2dG1n aredifferent for d.3 andd,3, although they may
coincide in the scaling region,n@1. The ~rather essential!
difference between the CFssnn8 for d.3 andd,3 stems
entirely from the nonscaling region,n;1, which is not ame-
nable to the field-theoretical methods. This is most p
nounced in the limitsd→2 and d→4, whereG1n of Eq.
~4.1! tends to zero in the scaling region butsnn of ~4.2!
remains well defined and given by

snn>
du

q
~16e22qn!, d→H 2

4J . ~4.12!

The latter is nothing more than the particular forms of E
~2.16!, the difference between the two expressions be
completelydetermined by the nonscaling region near the s
face. Ford→2, the parameterc in Eq. ~2.16! disappears with
k in the isotropic limit, and the coefficient in front of th
surface terms isf 51. Ford→4, the parameterc is of order
unity, and for q!1 the surface term is negative,f >21.
Thus the isotropic-criticality solution of Bray and Moor
smoothly joins the solutions obtained ford<2 andd>4.

To close this subsection let us look at how the continu
fraction formalism of Sec. II D works at isotropic criticality
Here snn is given by Eq.~2.63!, whereAb221>q in the
long-wavelength region andb1n>dG1n;1/n2 can be ne-
glected forn@1. The quantitiesa1n and a1n8 can be found
from the first-order nonlinear differential equations~2.66!
with q̃5q. The latter can be reduced to the second-or
linear differential equations and solved to give

a1n52
d

dn
ln$e2qnAqn@ I m~qn!1CKm~qn!#%,

a1n8 5
d

dn
ln$eqnAqn@Km~qn!1C8I m~qn!#%. ~4.13!

Here the integration constantC8 should be set to zero, sinc
a1n8 vanishes at infinity. The constantC remains undefined
due to the loss of the boundary condition at the surface
the equation fora1n . Adopting these results in Eq.~2.63!
and usingI m(z)Km8 (z)2I m8 (z)Km(z)521/z leads to the pre-
viously obtained expression~4.2! for n85n, with the same
additional term containingC. Thus one should setC50 in
Eq. ~4.13!. Then from Eq.~4.8! it can be seen thata1n is
nonsingular atqn!1 and the singular terms insnn @see Eq.
~4.9!# are due solely toa1n8 . Another way of obtaining Eq.
~4.13! is to use the definitions~2.59! and ~2.52! to identify
In5AnIm(qn) andKn5AnKm(qn). The limiting forms of
a1n anda1n8 are
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a1n>
1

n
3H 2 1

2 2m, qn!1

1
4 2m2

2qn F11
1

qnG , qn@1
~4.14!

and

a1n8 >
1

n
3H 1

2 2umu, qn!1

1
4 2m2

2qn F12
1

qnG , qn@1.
~4.15!

The results above will be used in the numerical solution
the semi-infinite ASM at the isotropic criticality.

B. Away from anisotropic criticality

The transverse correlation functionsnn8 behaves simi-
larly for the isotropic model slightly aboveuc and for the
weakly anisotropic model at or slightly aboveuc . In both
cases the behavior ofsnn8 is modified in comparison to tha
at isotropic criticality due to the finiteness of the transve
correlation lengthjca51/k, wherek is given by Eq.~2.34!.
For 0,k!1 the functionG1n has in the scaling region
n@1 the form generalizing Eq.~4.1!:

G1n5

1
4 2m2

2dn2
g~kn!. ~4.16!

For kn@1 one can expect, as is the case in other dimens
@see, e.g., Eq.~3.44!#, g(kn)}e22kn with somen-dependent
prefactor. Analytical calculation of this prefactor seems to
impossible. In the opposite limitg can be written in the form

g~kn!>12ad~kn!r , kn!1, ~4.17!

with r .0 andad;1. There is no guess about the concre
form of g(kn) in the intermediate region and, moreove
even if g(kn) is known, one would not be able to find
general analytical solution for the differential equati
~2.11!. For the field-theoretical model@48# the question of
how to generalize the choice of the coupling constantu for
kÞ0 @be it the magic valueu* (d) or something else# further
complicates the problem and makes it quite intractable.
the ASM, however, the situation is not so hopeless: So
features of the off-criticality behavior can be studied analy
cally using available small parameters; its general proper
are well described by the scaling, and the rest can be d
numerically.

1. Scaling form of correlation functions

It is convenient to start the consideration with the lon
tudinal correlation functionsnn8

zz . The latter satisfies in the

scaling regionn@1 Eq. ~2.11! with q̃2⇒kz
21q2 and G1n

given by Eq.~4.16!. In the generic case of the anisotrop
criticality the longitudinal correlation lengthjcz goes to in-
finity and one haskz[1/jcz50 in Eq. ~2.11!. In this case,
for n5n8 there are only three length parameters enter
f

e

ns

e

e

or
e
-
s

ne

-

g

into the longitudinal CF:n, 1/q, and the transverse correla
tion lengthjca[1/k. Thussnn

zz can be written atuc in the
two-parameter scaling form

snn,uc

zz ~k,q!5
du

k
F~x,y!, x[kn, y[

q

k
. ~4.18!

Away from criticality one more length parameter,jcz , ap-
pears, but it does not complicate the problem. As can be s
from Eq.~2.11!, snn

zz(k,kz ,q) can be represented in the sam
form with y⇒A(kz /k)21y2. Similarly, the transverse CF
snn(k,q) is given by Eq.~4.18! with y⇒A11y2. For the
isotropic model or above the anisotropic crossover temp
ture t* @see the discussion following Eq.~2.48!# the longi-
tudinal CF coincides with the transverse CF.

It should be stressed that in the ASM the transverse c
relation length plays the main role, whereas the longitudi
one, which does not enter into the ASM equations~2.5!–
~2.10!, is a subordinate quantity. This feature, which shou
be to some extent shared by the weakly anisotropic class
Heisenberg model, provides a contrast to the usual sca
scheme using the divergingjcz as the main scaling paramete
~see, e.g., Refs.@11,12#!.

Let us now study the limiting forms of the scaling fun
tion F(x,y). The bulk limit Fbulk(x,y)51/y is clearly real-
ized for z[xy5qn@1. The isotropic criticality limit
F isocrit(x,y)52xIm(xy)Km(xy) studied above is achieved
y@1 provided thatx!1. Both of these conditions imply tha
1/k becomes greater than other length scales. Forx@1 the
quantitiesG1n become exponentially small, and in the lon
wavelength regionsnn,uc

zz is given by Eq.~2.16!, as in high

dimensions. This implies the scaling function

Fx@1~x,y!>@12e22~x1xe!y#/y, ~4.19!

where xe[kle;1 is the scaled extrapolation length. Th
expression could also be written in the form of the ty
~2.16!, which makes no difference in the relevant regiony
!1. One can see that the longitudinal CF at criticality do
not diverge forq→0 at any finite distances from the surfac
as in the MFA. We have seen above thatxe51 for d51 and
xe>0 ~in fact, le;1) for d.4. Actually, for all values ofx
one has

F~x,0!5H 2~11x!, d51

2x, d.4,
~4.20!

and the curvesF(x,0) for all d should go between thes
straight lines. Forx!1 in the wide rangey!1/x one can
write @cf. Eq. ~4.9!#

F~x,y!>
x

mF12
G~12m!

G~11m!S xy

2 D 2m

F~y!G , ~4.21!

wherem5(d23)/2 and the scaling functionF(y) describes
the crossover from the zeroq to the isotropic criticality limit
at y;1 and satisfiesF(`)51, as well asF(y);y22m for
y!1. The latter requirement serves to kill the singularity
q for kÞ0; as a resultsnn(k,0) behaves similarly to
snn(0,q). For 2,d,3 one can simply use
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F~y!>F~x!1,y!/F isocrit~x!1,y! ~4.22!

to find F(y). The functionF(x,0) shows a crossover from
F(x,0);xmin(d22,1) for x!1 to F(x,0)52(x1xe) for x
@1 @see Eq.~4.19!#.

One can see that only the second, singular, term in
~4.21! makes ak-dependent contribution tosnn

zz in the limit
q→0. Specifically, for 2,d,4 one has

xznn
sing}snn

zz,sing~k,0!}nd22kd23, ~4.23!

which in addition shows that the susceptibility increas
away from the surface, as it should. In the isotropic c
from Eqs.~2.34! and ~2.47! it follows that k;t1/(d22), thus
snn

zz,sing(k,0);t2g11 with g115(32d)/(d22) @11#. This re-
sult means that the surface susceptibility with respect to
surface field diverges in the ASM only ford<3. The leading
terms ofxznn near the surface are given by

xznn;5
n, d.3

n ln@1/~kn!#, d53

nd22kd23, 2,d,3

k21, 1<d,2.

~4.24!

For the isotropic systems in the range 1<d<2 the bulk tran-
sition temperature is zero. With respect to the latter,xznn
shows the critical behaviorxznn;u2g11 with g1151/(2
2d) @see Eqs.~2.34! and~2.47!#. This result is complemen
tary to that for 2,d,4 quoted above, and it shows simila
divergence withd52 approaching from the other side. In th
anisotropic case this low-dimensional critical behavior is
alized in the ranget@t* , wheret* is given by Eq.~2.46!.
In the vicinity of uc , i.e., t!t* , the mean-field critical be-
havior with g1152 1

2 is observed.
It should be stressed that the critical amplitudes in

nonscaling region near the surface,n;1, cannot be found in
the continuous approximation. Here one should numeric
solve the ASM equations on the lattice. On the other han
can be shown that the critical indices remain unchange
the nonscaling region. The CFs in this region can be obtai
from those in the region 1!n!1/k with the help of the
formulas of type~3.33!. Since the quantitiesan andan8 are
all nonsingular,s11

zz differs from the result of the continuou
approximation extrapolated ton51 by a numerical factor
only.

2. The gap tail of the scaling function F( y)

It turns out that the form~4.17! of the functiong(x) for
x!1 determines the asymptote of the scaling functionF(y)
of ~4.21! for y@1, and in the regionx!1, y@1 everything
can be calculated analytically. Fory@1 the solutionsnn of
Eq. ~2.11! at a point n!1/k stems from the intervalun
2n9u;1/q!1/k aroundn; thus one can useg(kn) in the
form ~4.17! and calculate the correction tosnn perturbatively
in ad(kn) r . The resulting expression for the scaling functi
F(x,y) of Eq. ~4.18! has the form

F~x,y!>2x@ I m~z!Km~z!2QJm~z!#, ~4.25!
q.

s
e

e

-

e

ly
it
in
d

where z[xy5qn, the first term corresponds to isotrop
criticality,

Q[ad~ 1
4 2m2!/yr!1, ~4.26!

and the functionJm(z) reads

Jm~z!5Km
2 ~z!E

z0

z

dt tr 21@ I m
2 ~ t !2cm

2 t2m#1Km
2 ~z!

cm
2 zr 12m

r 12m

1I m
2 ~z!E

z

`

dt tr 21Km
2 ~ t !, ~4.27!

with z0!1, andcm[@2mG(11m)#21 is a factor from Eq.
~4.8!. The part of the expression above without the ter
containingcm is just what one obtains from the straightfo
ward perturbative scheme using the Green function~4.2!.
The additional terms withcm in Eq. ~4.27! can be rewritten
in the formKm

2 (z)cm
2 z0

r 12m/(r 12m)5CKm
2 (z), i.e., they can

always be added to the solution and their amplitude sho
be fixed from the boundary condition at the surface. Sin
this boundary condition is lost in the continuous approxim
tion, the exact form of these terms in Eq.~4.27! has been
chosen above from the requirement that the termCKm

2 (z),
which was ruled out above with the help of the eigenfunct
trick, does not appear again in the resulting expression
F(x,y). With such a choice one can setz050, because the
first integral in Eq.~4.27! converges at the lower limit. Now
one can see that the terms withcm cancel each other, ifr
12m.0, whereas in the opposite case they do not. Fom
,0 ~i.e., d,3) the functionJm(z) can be rearranged as

Jm~z!5@2sin~pm!/p#2K̄Km
2 ~z!1J̃m~z!, ~4.28!

where

J̃m~z!5Km
2 ~z!E

0

z

dt tr 21 Ĩ m
2 ~ t !1 Ĩ m

2 ~z!E
z

`

dt tr 21Km
2 ~ t !,

Ĩ m
2 ~z![I m

2 ~z!2@2 sin~pm!/p#2Km
2 ~z! ~4.29!

and

K̄5E
0

`

dt tr 21H Km
2 ~ t !2F p

2 sin~pm!G
2

cm
2 t2mJ

52r 23G~r /21m!G~r /22m!G2~r /2!G21~r !.

~4.30!

In Eq. ~4.30! the subtraction term withcm is present only for
r 12m,0; the resulting expression is valid for both signs
r 12m. The representation ofJm(z) in the form ~4.28! for
m,0 is convenient because of the cancellation of the div
gence att→0 terms inĨ m

2 (t). For m>0 ~i.e., d>3) expres-
sion ~4.28! remains valid as well, although the subtractio
makes little sense andJm(z) can simply be written in the
form ~4.27! with z05cm50.

The parametersr andad in Eq. ~4.17! should be chosen
self-consistently to satisfy the spin-constraint condition. H
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it is convenient to subtract equations~2.65! at and away from
isotropic criticality from each other. Thus one can write

E
0

`

dy yd821@F isocrit~x,y!2F~x,y!#5Md , ~4.31!

whereMd is given by Eq.~2.42!. The integral on the left-
hand side of Eq.~4.31! is determined byz5xy;1, i.e., y
;1/x@1, which justifies the approximations made abo
With the use of Eqs.~4.25! and ~4.26! one can rewrite Eq.
~4.31! in the form

2ad~ 1
4 2m2!

xd222r E
0

`

dz zd222rJm~z!5Md . ~4.32!

This equation should be satisfied for all values ofx5kn,
thus

r 5d22. ~4.33!

Then Eq.~4.32! fixes the value ofad :

ad5
2Md

~d22!~42d!
J̄21, J̄[E

0

`

dz J~z!. ~4.34!

The scaling functionF(y) in Eq. ~4.21! can now be iden-
tified taking the limit z!1 in Eq. ~4.25!. This leads to
F(y)>112QK̄sin(pm)/p in the whole interval 2,d,4.
The latter can with the use of Eq.~4.26! be rewritten as

F~y!>11Ad /yr , y@1, ~4.35!

where

Ad5
p1/2tan~pm!G~d25/2!

4~d22!J̄
. ~4.36!

A remarkable feature of Eq.~4.35! is that the tail ofF(y) is,
for d,4, anomalously long compared to that in the bu
Fbulk(y)5y2/A11y2>121/(2y2). The sign ofAd is deter-
mined bym5(d23)/2, and one hasAd50 for d53. This is
in accord with the structure of Eq.~4.21!; in all casesF(x,y)
is smaller thanF isocrit(x,y), as it should be. In the limit
d→4 the integralJ̄ of Eq. ~4.34! diverges at the upper limi
andAd regularizes toA45 1

8. For d→ 5
2 the quantityK̄ given

by Eq. ~4.30! diverges, and thus one can neglectJ̃(z) in
Eq. ~4.28!. In this limit Ad regularizes to A5/25
24p1/2/G2(1/4)'20.539. The same situation takes pla
for d→2, where one obtainsA252 1

2. It should be noted,
however, that ford close to 2 the tail ofF(y) becomes
extremely long@see Eq.~4.33!#. The validity of the presen
approximation forF(y) requires, ford→2, very large values
of y, which can become incompatible with the conditionz
[xy!1 needed to representF(x,y) in the form~4.21!. Ac-
tually, d52 is a special case with a logarithmically decayi
gap tail ~see Sec. III B 3!.

The quantityad given by Eq.~4.34! is positive for 5
2 ,d

,4 and negative for 2,d, 5
2. At d5 5

2 one hasad50 due to
the divergence ofK̄ and henceJ̄. The latter could raise
questions about the validity of the perturbation theory w
.

,

respect toad(kn) r for d5 5
2 @should the higher-order terms i

Eq. ~4.17! be taken into account?#. As we will see below, the
numerical results are in excellent agreement with
asymptotic behaviorF(y)>120.539/y1/2 for d5 5

2 and y
@1.

V. NUMERICAL RESULTS

A. Variation of Gn

In the symmetric phase,m50, the ASM equations were
solved numerically in the following way. For a given varia
tion of Gn and the value of the wave vectorq in Eq. ~2.6!,
the transverse CFsnn(q) can be found from Eq.~2.5!. In
practice, the formula~2.63! was used, wherea1n and a1n8
were determined from the recurrence relations~2.61! and
~2.62!. The result forsnn(q) can be put into the constrain
equation~2.4! to obtain, after the integration overq, the sys-
tem of nonlinear equations forGn . Again, it is more conve-
nient to work with the deviations from the bulk values and
use the constraint equation in the form~2.65! where the sub-
traction is done analytically to avoid the loss of accura
The integrals overq have been performed in all cases ov
the whole Brillouin zone, even in low dimensions. For t
continuous-dimension model@see Eq.~2.36!# the range 0
<q<L was divided into three or four log-spaced interva
~e.g., @0,1024L#, @1024L,1023L#, etc.! and the Gaussian
quadratures over 10 or 20 points were used in each of th
intervals. For the hypercubic lattice the products of Gauss
quadratures were used, and the intergation was done
respect to the nonlinearly scaledq componentsQi5qi

1/p with
p53 to redistribute the contribution of the singularity atq
50 more uniformly over the Brillouin zone. In fact, simila
nonlinear transformations were also done for the continuo
dimension model. The resulting system of equations for
deviationsG1n was solved with a nonlinear equation solv
based on the Newton method.

For the numerical solution in the semi-infinite geomet
the boundary condition atn5` in Eq. ~2.62! should be re-
placed by one at somenmax@1. For the isotropic model a
criticality one cannot just seta1nmax

8 50, sincea1n8 slowly

decays withn @see Eq.~4.15!#. This would spoil the behavior
of correlation functions at small wave vectors and lead to
unphysical gap for 2,d<3. Fortunately, the asymptotic be
havior of a1n8 in the scaling region,n@1, is given by Eq.
~4.13! with c850 and it can be used as the boundary con
tion at infinity. The purpose of numerical calculations at is
tropic criticality was to check the scaling solution~4.1! and
to study the nonscaling effects atn;1. The quantitym was
determined self-consistently as a function of allG1n using
the asymptotic form ofa1n at n@1 andq50 @see the first
limit of Eq. ~4.14!#. In this way the valuem5(d23)/2 has
been confirmed.

Above uc or at the anisotropic criticality (k.0) the in-
homogeneities decay as exp(22kn) @see Eq.~4.16!#, and one
can use the boundary conditiona1nmax

8 50 for nmax@1/k.

Here the value ofk should be taken rather small to study th
details of the scaling functionF(x,y) in Eq. ~4.18!. Indeed,
to reproduce the limitx!1 one should havekn!1, where
n* ;10 is the smallest value ofn for which the continuous
scaling solution holds. This implies, in turn, large values
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nmax. Calculations were done for 12h down to 1028, which
corresponds tok5A2d(12h)'2.531024 at the aniso-
tropic criticality for d53. For such k the value nmax
510 000 was used, which corresponds to 2knmax'5. Natu-
rally, in this case the system of equations forG1n was not
solved on each of 10 000 layers. Instead, forn*10 only the
‘‘representative’’ layers with an exponentially increasin
spacing between them were chosen to solve the equat
The values ofG1n between them were interpolated with th
help of the formulaG1n5(a/nb)exp(22kn) with the values
of a andb determined fromG1n at the ends of the interpo
lation intervals. In all cases the number of unknowns did
exceed 50. Computations could be performed on a 486
66-MHz laptop.

The results forG1n , as defined by Eq.~2.12! for all val-
ues ofn, are shown at isotropic criticality for different hy
percubic and continuous-dimension lattices in Fig. 1. T
general view, Fig. 1~a!, shows that the analytical result~4.1!
is well obeyed in three dimensions outside the surface
gion. This result is universal and independent of the latt
structure; it is the same for the simple-cubic lattice (d53)
and the 3d continuous-dimension lattice (d53.0). Formula

FIG. 1. G1n at isotropic criticality for different hypercubic an
continuous-dimension lattices:~a! general view;~b! surface region,
deviations from scaling.
ns.

t
X

e

e-
e

~4.1! has also been confirmed for other values ofd around
d53; the results do not differ much from each other in t
log scale and thus they have not been shown. In four dim
sions the results can be fitted with formula~3.47! with a
5e3'20, which implies significant corrections to the log
rithmic approximation. In fact, the nonuniversal numbera is
slightly larger for the hypercubic lattice (d53), which can
be seen in Fig. 1~a!. In dimensions higher than four,G1n

follows formula~3.43!. The coefficient in Eq.~3.43! depends
on the lattice structure and is clearly different ford55 and
d55.0.

Deviations from the asymptotic solution~4.1! in the re-
gion near the surface are shown in Fig. 1~b!. There is a clear
difference between the values ofG1n for both three-
dimensional lattices.

The dependence ofG1n at isotropic criticality near the
surface ond is shown in Fig. 2. In the limitd→2 the value
G11 tends to1

3, which means that the limiting value ofG1 is
4
3, as given by the first term of Eq.~3.9!, where, at criticality,
G51. On the other hand, allG1n with n>2 vanish in the
limit d→2, in accord with Eq.~3.15!, which disappears for
k→0.

The algorithm for solving the system of nonlinear equ
tions for G1n based on the Newton method, which was us
here, shows instability ford&2.3 andnmax*10. This insta-
bility is responsible for the lack of points in the left part o
the n510 curve. The reason is that the integral in the co
straint equation~2.65! becomes more and more sensitive
the region of smallq where the integrand may become in
nite due to a negative gap arising for some sets ofG1n in the
course of iterations. Away from isotropic criticality, the ga
in the spin CFs stabilizes the algorithm. For each dimens
d there is a minimal value of the anisotropy 12h for which
the system of nonlinear equations forG1n does not show
instability for nmax large enough, if the starting variation o
G1n is chosen sufficiently close to the actual one. The la
is very important and necessitates using small variations
the parameters, such asd, 12h, nmax, etc., in low dimen-

FIG. 2. G1n at isotropic criticality vs lattice dimensionalityd.
The asymptotic scaling result~4.1! for 2,d,4 and the asymptotic
formula ~3.43! are shown by dashed lines.
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sions. The minimal values of the anisotropy 12h are about
331028 for d52.0, 1027 for d51.75, and 531027 for d
51.5.

Contrary to the implication of the scaling solution of Bra
and Moore, Eq.~4.1!, G1n do not go to zero and do not eve
show any singularity atd54 for any finiten. This is due to
the correction-to-scaling terms@see Fig. 1~b!# , which be-
come more and more pronounced asd deviates from 3. The
crossover from the solution forG1n in the range
2,d,3 and that ford.4 is described by Eq.~3.46!.

Additionally, in four surface layers for the two
dimensional model at criticality, the dependences ofG1n on
the anisotropy parameterh are shown in Fig. 3. Calculation
down to 12h510211 were possible here, since the value
nmax was chosen to be about 50, which is significan
smaller than the requirednmax@1/k. The latter introduces a
significant gap in the spin CFs, which is the artifact of c
ting the ASM equations atnmax&1/k. This gap stabilizes the
solution of the ASM equations. On the other hand, the val
of G1n in several layers near the surface are pretty robust
insensitive to this defect ofsnn . One can see that in th
isotropic limit,h→1, the value ofG11 tends to1

3, whereas all
other G1n tend to zero logarithmically in accordance wi
Eq. ~3.15!. In the opposite limit,h!1, the HTSE results
~2.68! are recovered.

In Fig. 4 the calculated values ofG1n for continuous-
dimension lattices away from the isotropic criticality are re
resented in the scaled form. The results ford55.0 show
crossover from Eq~3.43! to Eq ~3.44! asx[kn increases. A
similar crossover fromG1n;1/n2 to G1n;e22kn/n3/2 takes
place ford54.0. The scaling is, however, not perfect he
because of the logarithmic corrections. Ford53.0 the result
crosses over toG1n;e22kn/n1.4 for kn@1. Note that there
is no analytical solution forG1n in this region.

The calculated values ofG1n at the anisotropic criticality
~or above criticality! in low dimensions (d51.5, 1.75, and 2!
are shown in Fig. 5. One can see that the theoretical form
~3.14! and ~3.15! are obeyed starting fromn*10, although
corrections related to the finite value ofk and described by

FIG. 3. G1n at the anisotropic criticality in two dimensions v
the anisotropy parameterh. The HTSE results~2.68! are shown by
the dashed lines.
f
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the functiong(kn) in Eq. ~3.16! are quite pronounced. Fo
d52.0 the functiong(kn) is nonmonotonic: apart from the
exponential decrease atkn@1 it shows a singular positive
deviation from unity forkn!1. The fit in Fig. 6 suggests
g(kn)>112Akn for kn!1. One can see from Fig. 5 tha
the correction term ing(kn) has the negative sign ford
51.5. The cased51.75 seems to be marginal. The values
G1n in Fig. 5 nicely follow the dependenceG1n5G1n

approx,
whereG1n

approx is given by Eq.~3.14! with the additional fac-
tor exp(22kn) in the whole range ofn. This is, however, not
an exact solution to the problem. The plot ofG1n /G1n

approx in
Fig. 7 shows that forkn*1 this function begins to increas
with oscillations. These oscillations are not an artifact
cutting the ASM equations at the maximal layer numb
nmax. Numerical calculations with different values ofnmax

give the same results. Although the ratioG1n /G1n
approx is not

exactly 1, its proximity to 1 in a wide range ofn is remark-
able, taking into account the strong dependence ofG1n on n.

FIG. 4. Scaled form ofG1n away from isotropic criticality.
Dashed lines are the fits describing crossovers between diffe
power laws.

FIG. 5. G1n in low dimensions at the anisotropic criticality
Dashed lines represent the theoretical formulas~3.14! and ~3.15!,
the latter with the fitting parametera5e52.718.
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B. Correlation functions

After G1n has been determined, the spin CFs can be fo
from Eq. ~2.63! and the recurrence relations~2.61! and
~2.62!. The results at isotropic criticality in the scaling regio
n@1, which illustrate the analytical solution of Bray an
Moore ~4.2! for 2,d,4, are shown in Fig. 8. One can se
that for 2,d,4 the solution satisfiessnn,snn

bulk for small
wave vectors andsnn.snn

bulk for large wave vectors. Ford
54 one hassnn,snn

bulk everywhere, which contradicts th
constraint equation~2.65!. In fact, ford>4 the scaling solu-
tion of Bray and Moore breaks down, and one has to t
into account thepositive local contribution tosnn at q;1
@see Eq.~3.40!#, which balances the constraint equation. F
d52 one hassnn.snn

bulk everywhere, and the constraint r
lation is violated again. In fact, ford<2 the form ofsnn is
changed by the gap in the region of smallq, where snn

,snn
bulk , thus ensuring the constraint~see Fig. 10!.

FIG. 6. G1n for d52.0 at the anisotropic criticality: scaling
function g(kn) and deviations from scaling near the surface.

FIG. 7. G1n for d51.75 relative to its approximation shown b
the dashed line in Fig. 5. Overlapping solid and open symbols
respond to different values of the maximal number of layersnmax in
the numerical calculation.
d

e

r

Deviations from the scaling solution~4.2! in the region
near the surface,n;1, are shown in Fig. 9. The correlatio
functions in different layers are related to each other by
~3.33!, where the quantitiesan and an8 are constants in the
limit q→0 and they approach the bulk valuea of Eq. ~2.32!
with increasingn. For n@1 small deviations ofan and an8
from a are responsible for the scaling form ofsnn showing
only a small change whenn changes by one. By contrast, i
the nonscaling region,n;1, the spin CFs change signifi
cantly from one layer to another and they acquire in
rangeq!1 nonuniversal numerical factors, relative to th
extrapolated scaling solution. These factors, which
shown in Fig. 9, tend to 1 as some negative powers ofn far
from the surface. The accuracy of the calculations is, ho
ever, not high enough to determine these powers precis
One can see that the deviations from scaling are quite la
and slowly decaying for the dimensions well above 3@cf. Eq.
~3.46!#. On the other hand, ford well below 3 the deviations
from scaling are mainly localized near the surface. Note

r-

FIG. 8. Reciprocal of the spin CFs at isotropic criticality in th
scaling regionn@1 for different lattice dimensionalitiesd. The
dashed line is the bulk solution~2.33!.

FIG. 9. Deviations from the scaling solution~4.2! for snn in the
nonscaling regionn;1.
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difference between the results for the simple-cubic (d53)
lattice and the three-dimensional continuous-dimension
tice (d53.0). For the latter the deviations from scaling a
anomalously small, which suggests the existence of an e
solution. If one assumes that the scaling form ofsnn holds
for all n, then from Eqs.~3.33! and ~2.55! it follows that
an5A121/n and an85A111/n for q50. Then, using the
divergence of Eq.~2.53! for q→0 one obtains

Gn5
6

41A111/n1A121/n
, d53.0, ~5.1!

which is indeed a rather good approximation. It has
proper behaviorGn>111/(24n2) for n@1, and the value
G151.1082 is very close to 1.1067 following from nume
cal calculations. More careful analysis shows, however,
the formula above is not an exact solution for the ASM eq
tions, where discrepancies of the typeA2 ln 2'0.980Þ1
arise.

At anisotropic criticality, which is the only type of criti
cality in low dimensions, the generic CF issnn

zz . The trans-
verse CFsnn , as well assnn

zz itself above criticality, can be
obtained from the latter by the simple change of the wa
vector argument. The numerical results forsnn

zz in the surface
layer (n51) at anisotropic criticality in low dimensions ar
shown in Fig. 10. One can see the gap and the lineaq
dependence at smallq, in accord with Eq.~3.29!. The values
of the gapD1(0,k) and the stiffnessA in Eq. ~3.29! deter-
mined from the fits of the numerical data exceed those
culated from Eqs.~3.28! and ~3.30!. The reason for this is
that the first-order perturbation theory inG1n leading to Eqs.
~3.28! and~3.30! is valid for small wave vectors only in th
dimension ranged,1.5, as was explained after Eq.~3.22!.
On the other hand, the asymptoteD̄1(q,k) for q@k, which
is given by Eq. ~3.31!, works nicely for d51.5 and
d51.75.

FIG. 10. Reciprocal of the longitudinal CFsnn
zz in the surface

layer (n51) in low dimensions at anisotropic criticality. Dashe

lines represent the asymptote@q1D̄1(q,k)#/2 with D̄1(q,k) given
by Eq. ~3.31! for q@k.
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It can be seen that ford51.5 the results for the model
with different anisotropies scale with each other. This co
firms the concept of the strong scaling~down to the surface
layer! in low dimensions, which has been suggested in S
III B 2. For d51.75 the scaling in Fig. 10 is incomplete
which can be explained by the values ofk not being small
enough. Ford52.0 the results do not scale, although they
not deviate far from each other, becaused52 is the marginal
dimension between the strong scaling and the asympt
(n@1) scaling. This behavior is illustrated in greater det
in Fig. 11, where the gapD1(0,k) of s11

zz is plotted as a
function of the anisotropy. Whereas the dependences fod
51.5 andd51.75 saturate in the limit ofk[A2d(12h)
going to zero, which confirmsD1(0,k)}k for weakly aniso-
tropic models, the almost perfectly straight line over seve
decades ford52.0 suggestsD1(0,k)}k ln(1/k) in two di-
mensions.

The numerical result ford52 above is quite plausible
because logarithms usually arise in marginal dimensio
This would imply something likexznn}k21/ln@1/(kn)# for
d52 in Eq. ~4.24!, where the corresponding position ha
been left empty. It seems to be, however, the third occas
in this work when numerical calculations suggest so
qualitative features that do not follow from analytical co
siderations. Ford52 the calculation with logarithmic accu
racy leads to another dependence ofD1(0,k), which is given
by Eq. ~3.37!. The applicability of Eq.~3.37! requires, how-
ever, such small values of the anisotropy that numerical
culations cannot be performed, and for larger anisotropies
other possible analytical approximations are seen.

To shed some light on this puzzle, it is convenient to p
qd21snn as a function of logq over the whole Brillouin
zone. The area under the curve is proportional to the inte
overq in the constraint equation~2.65!, and the regions ofq
making contributions into the constraint can be well iden
fied. Such plots show that the integral is dominated byq
;1/n for d.2 and byq;k for d,2. In the marginal case
d52 the results for the lowest manageable anisotro
12h5331028, are shown in Fig. 12. One can see that t
area under the bulk solution~the solid line! coincides with

FIG. 11. Dependence of the gap ins11
zz on the anisotropy at

anisotropic criticality in low dimensions.
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that under the numerical solutions forn51 andn520 ~open
circles!. The curve forn520 merges with the bulk curve fo
q*1/n. Although the distance betweenq;1 or q;1/n on
the right-hand side andq;k on the left-hand side is severa
decades, it is not large enough to apply the logarithmic
proximation, i.e., to integrate the solution obtained fork
!q!1/n between these limits. The applicability conditio
for the formula~3.37! is clearly not satisfied. Nevertheles
as we have seen in Fig. 5, formula~3.15! is in reasonable
agreement with the numerical results forG1n for small kn.
Thus one can use the solution~4.2! for snn in terms of the
modified Bessel functions of indexm given by Eq.~3.35!.
This solution with q̃⇒q̃1Dn(0,k) is plotted with dashed
lines in Fig. 12, where the gap valuesD1(0,k)55.2k ~taken
from Fig. 11! and D20(0,k)52.7k were used as fitting pa
rameters. The agreement with numerical results is ra
good. On the other hand, 1/ln(1/k) is not small enough to us
the simplified form ~3.36! for snn . The corresponding
curves deviate strongly from the numerical solution in F
12, thus the final result~3.37! is not realized. And analyti-
cally calculating the constraint integral with the gapp
Bessel functions to obtain the simple empirical formu
D1(0,k)}k ln(1/k) seems to be impossible.

Now let us consider the numerical results for the longi
dinal CFsnn

zz in the scaling representation~4.18!. The scaling
functionF(x,y) for d52.0 and 1.5 is represented in Fig. 1
One can see that the asymptotic scaling~for n@1) is well
obeyed. Ford52 in the surface regionn;1 there are small,
seemingly logarithmic deviations from the strong scaling,
was suggested above for the two-dimensional model. H
for smallx the results can be fitted with power-law function
the exponent slowly decreasing withk. In particular, for
12h5331028 this exponent is 0.195, which roughl
agrees with 1/ln(1/k)50.125 following from Eq.~3.36!. For
large and small values ofy the numerical results contain th
features of the free solutionF(x,y)5(16e22xy)/y, as was
argued in Sec. III B 2. In fact,d52 is a marginal dimension
and for d,2 the free solution is reproduced for large a
small y much better, as can be seen from the plot ford

FIG. 12. Transverse CFsnn in two dimensions. Circles: numeri
cal results forn51 andn520. Dashed lines: Bessel-function sol
tion with fitted gap, as explained in the text.
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51.5. The latter also confirms the strong scaling in low
mensions.

The results forF(x,0) in the whole range of lattice di
mensions are shown in Fig. 14. All the curves are boun
by the ones representing the exact expressions of Eq.~4.20!.
For small x the results are in accord with Eq.~4.24!. The
asymptotic form of the curves in the regionx@1, which is
given by the limity→0 of ~4.19!, determines the extrapola
tion lengthle . The latter is represented in Fig. 15 as a fun
tion of d. One can see that ford,4 the extrapolation length
is of the order of transverse correlation lengthjca , which is
a ‘‘mesoscopic’’ length scale between the lattice spacinga0
and the diverging longitudinal correlation lengthjcz .

For d.2 the scaling form of the correlation functio
holds in the asymptotic regionn@1. The general view of the
scaling functionF(x,y) is shown ford53.0 in Fig. 16. One
can figure out how the results look like for other dimensio
with the help of Figs. 13 and 14. The results for the wav
vector scaling functionF(y) defined by Eq.~4.21! or, for
2,d,3, also by Eq.~4.22!, are shown ford52.5 in Fig. 17.
The dimensiond52.5 is especially convenient since here t

FIG. 13. Scaling representation ofsnn
zz for d52 and d51.5.

Dashed lines: free solutionsF(x,y)5(16e22xy)/y for large and
small values ofy.
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278 PRE 58D. A. GARANIN
coefficient Ad in the gap tail ofF(y) given by Eq.~4.35!
simplifies toA5/2524p1/2/G2(1/4)'20.539. In order to re-
duce the value ofz5xy5qn, which should be small accord
ing to the definition ofF(y), the solution for the CF in the
first two layers has been used. Calculation ofF(y) with the
help of Eq.~4.22! yields the curves of solid triangles in Fig
17. These curves do not scale with each other, because s
scaling does not hold ford>2. Nevertheless, correlatio
functions in the asymptotic regionn@1 differ from those in
the nonscaling region near the surface only by numer
factors, which are represented in Fig. 9. Inserting these
tors into F(y) makes the results forn51 andn52 scale.
These corrected results are in excellent accord with
asymptotic formula~4.35! for y@1.

The longitudinal CFsnn
zz itself, which also is shown in

Fig. 17, has the same cusplike form with a gap described
Eq. ~3.29!, as in low dimensions. The linearq dependence in
the denominator of Eq.~3.29! says that, in spite of the gap
the correlation length ofsnn

zz near the surface is infinite at th
anisotropic criticality. Actually, the correlation lengths ne
the surface are, in the ASM, the same as in the bulk. Inde

FIG. 15. Extrapolation length vs lattice dimension.

FIG. 14. Scaling function at zero wave vector,F(x,0), in all
dimensions.
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above criticality snn
zz is a function of q̃z5Akz

21q2; thus
there are singularities insnn

zz at q56 ikz , which cause the
decrease of correlations of the type exp(2kzr) in the real
space at large distances.

VI. DISCUSSION

In this paper, a comprehensive analysis of the behavio
the semi-infinite anisotropic spherical model at and abo
the ordinary phase transition is presented. The critical c
pling of fluctuations, which usually necessitates applicat
of the e expansion or purely numerical methods, dies out
this model due to the infinite number of spin components a
makes it exactly solvable. On the other hand, the more
portant qualitative effects associated with Goldstone
quasi-Goldstone modes in weakly anisotropic magnetic s
tems are properly described by the ASM. The most imp
tant of these effects is the anisotropy-induced ordering in
dimensions. The ASM is superior with respect to the us
spherical model, which cannot incorporate anisotropy a
yields unphysical results for spacially inhomogeneous s
tems because of the global spin constraint. On the o

FIG. 16. Scaling functionF(x,y) of ~4.18! for d53.

FIG. 17. Scaling functionF(y) of ~4.22! for d52.5.
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hand, the ASM is much better defined than its phenome
logical field-theoretical analog, the infinite-componentf4

model, and it can always be solved numerically.
Unlike the renormalization-group~RG! approach, which

is based on the expansion about the dimensiond54 and
becomes inefficient for low dimensions, the ASM describ
the whole range 1<d<` in a uniform way. The price for
that is the rather complicated character of the ASM system
equations in constrained geometries, which makes app
tion of numerical methods necessary. Nevertheless, there
a number of analytical solutions of the semi-infinite ASM
different limiting and particular cases. The most important
them are the isotropic-criticality solution of Bray and Moo
for 2,d,4, which was obtained above in and easier a
more general way, the variations of the gap parameterG1n
for d<2 andd>4, and the slowly decaying gap tails of th
correlation functions forq@k away from isotropic critical-
ity.

The gap parameterGn , or its deviation from the bulk
valueG1n , plays a fundamental role in the theory of ASM
The quantity2G1n is similar to the functionV(z) used by
Bray and Moore, and it also is proportional~and at criticality
equal! to the inhomogeneity of the energy density,Ũ1n @see
Eq. ~2.23!#. The latter has been determined in Ref.@10# using
renormalization-group and scaling arguments with the re
Ũ1n}1/n(12a)/n for 2,d,4 at isotropic criticality, wheren
and a are the bulk correlation length and the heat capa
exponents. In the ASMn52/(d22), as follows from Eqs.
~2.34! and ~2.47!, and a5(d24)/(d22), as follows from
Eqs. ~2.22! and ~2.47!. Thus the above formula reduces
G1n>Ũ1n}1/n2, as was obtained by Bray and Moore.
these approaches, which considern as a continuous variable
the inhomogeneous part of the energy shows strong and
physical divergence at the surface. Although it is clear t
the continuous approximation is generally invalid near
rg

a

o-

s

of
a-
re

f

d

lt

y

n-
t

e

surface, this strong singularity does not allow one to av
the problem by replacing the surface region by some eff
tive boundary condition, as can be done in the MFA. As
result, a numerical solution is principally ruled out for th
semi-infinite field-theoreticalO(`) model. In contrast, no
such problems arise in the ASM, which is formulated on t
lattice from the beginning. Moreover, continuous dimensio
alities ~in the directions parallel to the surface! can be intro-
duced into the ASM as well, while preserving the sem
infinite dimension discrete. The consideration in this pa
shows that the nonscaling region near the surface,n;1,
plays a very important role in the behavior of the CFs in t
asymptotic region far from the surface. So, the isotrop
criticality CFs are different for, say,d52.5 andd53.5, al-
though they satisfy the same equation in the regionn@1.
The difference between them stems completely from the
gion n;1.

The universality of the physical quantities in the ASM
different in different dimensionality ranges. Ford.4 the gap
parameterG1n is nonuniversal and decays as 1/nd22, al-
though the CFs have the universal mean-field form forn
@1. For 2,d,4 both G1n and CFs are universal forn
@1 and nonuniversal forn;1. Ford,2 the values ofG1n
are universal and decay as 1/nd for n@1. In contrast, the
correlation functions are universal in the whole range ofn.
The reason for this strong universality and the ensuing str
scaling is that the~transverse! CFs satisfy the constrain
equation containing the integral over the wave vectorq
dominated byq;k!1 in low dimensions.

The next steps in studying the inhomogeneous magn
systems with the help of the ASM should be~i! the solution
of the semi-infinite problem belowTc and in field,~ii ! inclu-
sion of surface terms in the Hamiltonian, and~iii ! numerical
solution of the model in the film geometry. The prelimina
analytical investigation of the last problem can be found
Ref. @34#.
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