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Semi-infinite anisotropic spherical model: Correlations atT=T,
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The ordinary surface magnetic phase transition is studied for the exactly solvable anisotropic spherical
model(ASM), which is the limitD — oo of the D-component uniaxially anisotropic classical vector model. The
bulk limit of the ASM is similar to that of the spherical model, apart from the role of the anisotropy stabilizing
ordering for low lattice dimensiongl<2, at finite temperatures. The correlation functions and the energy
density profile in the semi-infinite ASM are calculated analytically and numericallff foll . and 1<d<o.
Since the lattice dimensionalitiet=1, 2, 3, and 4 are special, a continuous spatial dimensiondlityd
—1 has been introduced for dimensions parallel to the surface. However, preserving a discrete layer structure
perpendicular to the surface avoids unphysical surface singularities and allows numerical solitions that reveal
significant short-range features near the surface. The results obtained generalize the isotropic-criticality results
for 2<d<4 of Bray and MoorgPhys. Rev. Lett38, 735(1977); J. Phys. A10, 1927 (1977].
[S1063-651%98)06607-0

PACS numbds): 64.60.Cn, 75.10.Hk, 75.30.Pd

I. INTRODUCTION transitions is being done, with an exclusion of tte I2ing
model, starting from the field-theoretical continuous Hamil-
Magnetic ordering in semi-infinite and film geometries is tonians or free energies. Such an approach has proven to be
an old problem currently receiving increasing attention bevery useful for establishing the universality classes and criti-
cause of enormous progress in fabrication of magnetic strucal laws but, on the other hand, tlilgonuniversal absolute
tures on the atomic scale. Theoretical methods using thealues of observables, such as critical amplitudes, remain
mean-field approximatioiMFA) or the phenomenological undetermined. In addition to the restrictions of the field-
Landau theory1-5] provided classification and description theoretical methods that are well known from bulk physics,
of the qualitative features of different types of surface phasg¢here are more specific problems related to the role of the
transitions. High-temperature series expansigd$ and lattice discreteness in confined geometries. One can question
Monte Carlo simulation§6], as well as the scaling analysis how the continuous approach can be applied to thin films
[4,7] and thee expansiorf8—10], shed light on the details of consisting of anesoscopiaumber of layers. A similar ques-
the surface critical behavior. A general review of these aption can be addressed to the semi-infinite ferromagnets as
proaches can be found in Refd.1,12. Examples of recent well—does the continuous approximation apply in the region
work in film geometry based or expansion are Refs. near the boundaryn~1, wheren=1,2,... is thelayer
[13,14. A special case is the confined two-dimensional Isingnumber? The MFA, or the Landau theory, gives a positive
(S=3) model, for which exact solutions have been foundanswer to this question near criticality, where the correlation
[15-18. length &; is much larger than the lattice spaciag, and the
The ordinary surface phase transition of the semi-infiniteorder parameter—the magnetization—cannot change at dis-
ferromagnet occurs at the bulk critical temperatlige It is  tances smaller thag.. This is, however, not the case if one
characterized by a number of surface critical exponents thgoes beyond the MFA and considers spin-spin correlation
definition of which can be found in Ref11]. In particular, functions. If the temperature is high enough, or the system is
the susceptibilities at the surface with respect to the fieldslassical, spin waves with the wave vectors up to the edge of
applied either in the bulk or at the surface are described byhe Brillouin zonek~k,,,= m/ay are excited. This means
the exponentsy; and y,;, respectively, which in the MFA that correlation functions compris®, as the length param-
are given byy, =3 andy;;= — 3 (no divergencg in contrast  eter, additionally ta¢., and thus there can be inhomogene-
to the bulk exponenty=1. In thin films, which are more ities near the surface of a ferromagnet on the scale of several
important for applications and more interesting for the ex-atomic layers, even near criticality. This boundary region,
periment, there are additional effects, such as the lowering ai~1, is that which can be locally probed in experiments,
T in comparison to its bulk value and the crossover betweeand here the continuous approximation may become, at least
the three- and two-dimensional behavior as a function of thejuantitatively, wrong.
film thicknessL [19-21]. Spin-wave effects in weakly anisotropic systems drasti-
The main body of the theoretical work on surface phasecally change their behavior in comparison to the MFA pre-
dictions. Magnetic models with continuous symmetry in low
dimensions,d<2, cannot order at finite temperatures, and
*Permanent address: |. Institut rfuTheoretische Physik, for models withd>2 the correlation length is infinite in the
Universifa Hamburg, Jungius Strasse 9, D-20355 Hamburgwhole region belowT .. These effects are not less important
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spin-wave theory satisfactorily describes the above men¥fgz<T. [33]. This phase transition was studied within the
tioned effects well belowl. but breaks down at elevated framework of the MFA and the Landau theory in Rg35—
temperatures. There is, however, a model where a kind d39] and with a field-theoretical method in R¢#0]. A low
spin-wave description is valid in the whole temperatureminimum of the domain-wall mobility aflg predicted in
range, whereas the critical fluctuation coupling vanishesRefs.[41,42 was used to identify the domain-wall phase
This is the D-component classical spin vector model pro-transition in the dynamic susceptibility experiments on Ba
posed by Stanley22,23 in the limit D—~. Stanley has and Sr hexaferritep43,44. It is clear that the anisotropy is
shown[24] that in this limit the partition function of a ho- an important characteristic of the model, giving rise to the
mogeneous ferromagnet coincides with that of the sphericalery existence of domain walls dihite widthseparating the
model(SM). The latter was advanced by Berlin and Ka8] “up” and “down” domains. For this reason, the attempts to
as an exactly solvable substitute for the Ising model. Thelescribe domain walls with the traditional SM in both ver-
formalism contains, however, the spin-wave integral over theions with[45] and without[46] the global spin constraint
Brillouin zone and describes rather the properties of the isocould not yield relevant results.
tropic Heisenberg model. The spherical model in its tradi- In the recent work of Ref47] it was shown that the ASM
tional form was extended to inhomogeneous systems by Bagnd SM arenot equivalent, even in the isotropic homoge-
ber and Fishef26], who found a nonmonotonic dependenceneous case, if the longitudinal correlation functi¢@F)
T.(L) for thin films. This unexpected feature was attributedS,Ak) below T, is involved. Whereas in the traditional SM
to the failure of the global spin constraint in the inhomoge-the CF is proportional to k7 at small wave vectors, the
neous case. Later, an improved version of the SM was prdsehavior ofS, (k) in the ASM shows a more complicated
posed, which used spin constraints on each lattice[28iff =~ behavior governed by the spin-wave effects and is sensitive
and it was shown that this version is equivalent to lhe to the dimensionality. In three dimensionS, (k)= 1Kk,
= model in the inhomogeneous case. Application of thewhich is familiar from the linear spin-wave theory. The
SM with constraints in each lay¢28] yielded a reasonable above law holds fok=<x,<T.—T, i.e., there is a critical
monotonic dependence of the numerically calculafgfl) length scalét,,,= 1/x,, in the theory. The lengtl,, is analo-
for the films in four dimensions. Because of the complexitygous to the “bare,” or the mean-field, correlation length be-
of models of this type, most researchers still use the moréow T, whereas the true longitudinal correlation length
convenient global-constraint SM in confined geomet(se®, remains infinite in the isotropic model beldly. The former
e.g., Refs[29-31]). Very recently, a compromised model is responsible for the crossover of the real-space CF from
was proposed32], which uses a constraint for the spins atS,{r)=1/r for r<é&, to S,(r)=1/r? for r=¢,,.
the surface in addition to that for the bulk ones. The proper- The ASM equations of Ref33], as well as those for the
ties of such a model are closer, in a sense, to those of the SBM without the global spin constraifi28], are rather com-
with the local spin constraint and, hence, to those oflbhe plicated, strongly nonlinear equations for the variables on a
=, or O(«), model. lattice. In the latter case some researchers termed them ana-
A remarkable property of the Stanley model is that it canlytically intractable. Nevertheless, for the weakly anisotropic
be easily extended to the anisotropic case, whereas the traddSM in the domain-wall geometry it was possible to guess
tional SM cannot. This is very important because the anisotthe solution[33], which yielded an example of a phase tran-
ropy breaking a continuous symmetry plays a crucial role irsition of an interface that is analytically tractable beyond the
low-dimensional systems, where it stabilizes ordering at fiMFA. Surfaces with free boundary conditions make the
nite temperatures. The limitD—e of the uniaxial problem much more complicated. In RE34] only the most
D-component vector model determines the so-called anisdmportant and partially rough asymptotes for thgshift in
tropic spherical modelASM), which is described in the in- films could be obtained, and numerical calculations have not
homogeneous case by a closed set of equations for the vakieen performed. The aim of this work is to investigate the
ables on the lattice sites obtained in R&3]. The ASM was influence of surfaces on magnetic ordering in more detail for
applied in Ref[34] to study the dependendg(L) for fer-  the ordinary phase transition in the semi-infinite ASM in the
romagnetic films in three dimensions. Here, for all fixed val-temperature rang&€=T.. As we shall see, analytical solu-
ues of the film thicknest one hasT.—0 in the isotropic  tions are available in the dimensionality rangesd=<2 and
limit because of the two-dimensionality of the film, and suchd=4, as well as for 2d<4, both at and away from the
a behavior is pertinent for any Heisenberg film with firflle  isotropic criticality. In addition, the problem will be solved
as well. Thus, allowing for the anisotropy is relevant here,numerically in all the relevant cases.
and it cannot be done within the traditional SM. An interest- The same problem presented here was addressed in the
ing feature of the solution obtained in RE34] is the role of  seminal work by Bray and Moorg48], who considered a
the correlation length of the transverse spin componentdjeld theory with the volume and surface Hamiltonian densi-
£.,. in the crossover from the three- to two-dimensionalties of the type ¥ ¢)?+ 7¢?+uep* and c¢?, respectively,
behavior of the film, which takes place fors &, . Note that  for the n-component vector order parametgrin the limit
in the finite-size scaling analysisee, e.g., Refl11]) only = n—o. Since this model is isotropic, the rangesti<2 is
the diverging longitudinal correlation lengt., is used, excluded from the outset due to the absence of ordering in
whereas the noncritical transverse correlation length is disrghe bulk. For 22d<4 a very important solution for the cor-
garded as an irrelevant variable. relation function at criticality was obtained, however, only
Another application of the ASM is to the temperature-for the “magic” d-dependent values* (d) of the coupling
driven phase transition between the Bloch and lifésing-  constantu. This solution yielded the anomalous dimensions
like) domain walls in uniaxial ferromagnets at some »=d—2 and», =(d—2)/2, with which all other surface
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critical indices could be derived from the scaling argumentsvherem; is the normalizedd-component vectorjm;|=1,

(see, e.g., Ref§11,12)). These critical indices depend oh and =<1 is the dimensionless anisotropy factor. In the
and differ from the mean-field ones, as well as from those ofnean-field approximation, the Curie temperature of this
the global-constraint semi-infinite SM. In the solution of model isT¥™=J,/D, whereJ, is the zero Fourier compo-
Bray and Moore the required coupling constaii{d) van-  nent of the exchange interaction. It is convenient to T{$&"

ishes ford=4, i.e., the model simplifies to the exactly solv- as the energy scale and introduce the dimensionless tempera-
able and trivial Gaussian model showing the mean-field bepyre variableg=T/TY™ . Using the diagram technique for
havior. On one hand, it seems reasonable, because the criticahssical spin systenig9,50, in the limit D — one arrives

indices indeed simplify to their mean-field values tr4. 4t the closed system of Eq&3) for the average magnetiza-
On the other hand, one could desire more detailed informagon m,=(m,;) and the correlation function of transverse

tion about the critical behavior of the models with u*, in - (,=2) spin componentss; =D(m,;m,;). This system of
particular foru#0 andd> 4. Unfortunately, no extension of equations describing the anisotropic spherical model consists
the analytical results of Bray and Moore in this direction, orof the magnetization equation

for the off-criticality case, is possible. Also a numerical so-

lution is hampered for this model by insurmountable diffi-

culties. Apart from the obvious impossibility of handling the m; :GiE Aijmy, (2.2
inhomogeneities on the scale of the lattice spacing with a .

continuous-field theory, it turns out that this model cannot behe Dyson equation for the transverse CF

solved numerically at all because near the surface, where the

boundary condition is set, the continuous approximation

does not apply. In fact, this is an example of a situation in Sii = 0G; 6 + ﬂGiz NijSjir 23
which using a field-theoretical approach in statistical me- :

chanics brings only disadvantages. By contrast, the ASMynd the kinematic relation playing the role of the spin con-
formulated from the beginning in its true form on a lattice gtraint on a lattice site,

leads to the ASM equations which are well defined and suit-

able for numerical solution, and also can be considered con- si+m?=1. (2.4
tinuously far from the surface.

The main body of the article is organized as follows. InHere §;; is the site Kronecker symbok;;=J;;/J,, and the
Sec. Il the system of equations describing the ASM in zergo-called gap paramet&; is the one-site cumulant spin av-
field is written down. Its bulk solution, which differs from erageD{m,im,;)cum/@ renormalized by Gaussian fluctua-
the well known solution for the spherical model by the in- tions. We will see below thaB; can be related to the energy
corporating the uniaxial anisotropy, is studied for all latticedensity at the sité.
dimensions. The quantity playing the central role in the The ASM system of equations is self-consistent. It is in-
theory, the gap paramet&,, is related to the reduced en- structive to compare it with the MFA equations that can be
ergy densityU ,. The continued-fraction formalism, which is recovered via the following stepé) Ignore correlations in
mainly needed for the numerical solution of the ASM systemEQ. (2.3), which leads tas;; = 6G; . (i) ExpressG; through
of equations, is described. Section Il concludes with the rem; with the help of Eq.(2.4) to getGi=(1—mi2)/0. (iii)
sults for the variation oG, far above and far below.. In  Insert the latter into Eq(2.2) to obtain the closed equation
Sec. Il the ASM is solved analytically in low &d=<2)  for magnetization. The form of the latter is simplified with
and high (4=<d) lattice dimensions, starting from the exact respect to the generél-case because of the simplification of
solution for the one-dimensional “toy” model. The energy the Langevin function in the limiD — . The resultingm; is
density profiles and spin correlation functions are calculated¢ero aboved.=1 and nonzero belowd,. (iv) With G; de-
analytically in all possible cases. In Sec. IV the most inter-termined, which is simph\G;=1/6 for 6= 6, return to Eg.
esting case d<4 is investigated. Analytical solutions are (2.3) to find the improved correlation function. It is clear in
obtained for the isotropic model at criticality and away from step (iv) that the MFA is not self-consistent, even in the
the isotropic criticality. In Sec. V the semi-infinite ASM is simpler case abov#.. This is the reason why the MFA
numerically solved in the whole range of dimensionsTat value of 6. found from the CF equatiof®.3) with G;=1/6
=T.. The results for the energy density profile and correlafor the spatially homogeneous isotropic low-dimensional
tion functions are presented. In Sec. VI the main results ofmagnets is nonzero, in contradiction with the result of more
the paper are summarized and compared with the results oigorous approaches. By contrast, the ASM equations are
other approaches. free from such an inconsistency and they correctly describe

the dimensional effects in isotropic and weakly anisotropic
Il. BASIC RELATIONS systems. It should be noted that in the “Ising limity=0 all
A. ASM equations the steps_above_ leading to_ the MF_A equatipns are exact, i.e.,
the classical Ising model in the limD—« is exactly de-
We start from the Hamiltonian of the Uniaxia”y' Scribed by the mean_fie'd approximation‘

anisotropic classicaD-vector model, which, in the absence  For the model with the nearest-neighbor interactigron

of the magnetic field, can be written in the form the d-dimensional hypercubic lattice in the semi-infinite ge-
1 D ometry, it is convenient to use the Fourier representation in
— d’'=d—1 translationally invariant dimensions parallel to the
H=— =2, J;i| mm,.+ Mg My |, 2.1 ) . : .
2; e 7];2 vl @ surface and the site representation in diie dimension. The
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Dyson equation (2.3) for the Fourier-transformed CF where a=b—b?—1, b is the bulk value ofb,, and
onn () then takes the form of a system of the second-ordeb,,=b—b,. One of the particular cases (£.13 is b;;=0,

finite-difference equations in the set of layers
=12,...,
20,0y = Ot = Tno10 =(2d6/ 1) S (2.9
b, here is given by
bn=1+d[(nGn)’1—1]+d’(1—)\a), (2.6
where\ is given by
1 ¥
Ng==-2, COSq) 2.7

d'i=1

and the lattice spacing, is set to unity. The magnetization

equation(2.2) takes the form

ZEnmn_mn+1_mn—1:01 (2.8

with b,=1+d[G, 1~ 1]. Since the layer witm=0 is ab-
sent, one can use
O'Onrzo, m0=0 (29)

as the free boundary conditions to E@s5) and(2.8). If the

which corresponds to the MFA or to the high-dimensional
(d=4) lattices forn>1 (see Sec. Ill ¢ Here Eq.(2.13
simplifies to

dé/n
Onn' —
nn /b2_1

Another particular case i6,=[2d/(2d—-1)]G, i.e., 2y,
=1. As we shall see below, a variation Gf, close to this
one is realized for low-dimensionald&2) lattices in the
weakly anisotropic case at low temperatures. Heré3 re-
duces to

[a\n—n’\_an+n’]_

(2.19

doln
b°—1

[al"~ "4 gntn' =17, (2.1

Onn' =

For 1- »<1 andq<1 one can definel?;=1—c and sim-
plify Eq. (2.13 to

d9 ~ ’ ~ e !
Ton==[e" I M+ f(ge a2, (2.1
q

with f(q)=(gq—c)/(q+c). This result could also be ob-
tained solving the differential equatio®.11) with the

interaction in the boundary layer differs from that in the bulk Poundary condition

(see, e.g., Refl11]) the form of the boundary conditions

changes. The constraint equatidi@s4) can now be written
as

d’

Snnt mﬁzl, Snn:f onn(Q). (2.10

(2m)?

Forn>1,g<1, andk<<1, wherek is the inverse transverse
correlation length defined b§2.34) below, the second-order

finite-difference CF equatio(®2.5) simplifies to the differen-
tial equation for the Green’s function

o =—2d608(n—n"), (2.1))

d2
_ 2
(ﬁ q +2dG1n

wheren is regarded as a continuous variades \'x?+ g7,
and

G,=G,—G<1 (2.12

is the deviation of the gap parameter from its bulk vatiie
The magnetization equatiof2.8) takes on a similar form

with g=0 and without the inhomogeneous term.

d
COpy — == O nn

an =0 (2.17

n=1

following from Eq.(2.9). The remarkable feature of this so-
lution is that it becomes insensitive to the exact form of the

boundary condition ifg<c or g>c. In fact, as will be ar-
gued below, the limiting forms aof,,» with both signs of the
surface-induced terni2.14) and(2.15), are realized for more
general variations o6, in which G, differs from the bulk
value in some localized region near the surfacen*.

Note that the quantitg above is similar to the coefficient
in the surface-energy term that is introduced in the phenom-
enological field theory of phase transitions and it defines the
extrapolation Iength::)\gl (see, e.g., Ref.11]). This term
was used, in particular, by Bray and Mod#8], who have
set c=o for the ordinary phase transition to remove the
uncertainty. We shall see, however, that the weakly aniso-
tropic models withd<4 the microscopic solution is charac-
terized by effective values af of order k<1, i.e., by large
extrapolation lengths.

The equation for the longitudinal correlation function,
olr,, is not coupled to the ASM system of equations, since
fluctuations of the(only one longitudinal spin component

Before proceeding, let us consider the solution of equamake contributions of order O/ to the physical quantities,

tions (2.5 for the important special variation @,, near the
surface, in which onlyG; may differ from the bulk valu&s.
In this case one can solve E@®.5) directly with the result

doiq |
b2—1|

o — 2b11

a'_l—Zbll ,

(2.13

—-n’ r_
Oy = a,\n n \_an+n 2

which disappear in the spherical limit. AboVe in zero field

this equation has the forn2.5) with n»=1. The latter
amounts to replacing=1q,= \/K22+ g°in (2.11), wherex, is

the inverse longitudinal correlation length defined by Eg.
(2.48 below. Thus bottr,,, ando’, are given by the same
function of different arguments, and the latter is more con-
venient, since its argument spans the wider range, starting
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from zero at criticality ,=0). In this limit, q,=0, formula
(2.19 for o% reduces to the expression
ohr=2dO(n—1+\,), (2.18

where the extrapolation lengt, is given by\ .= 1/c.

B. Energy and susceptibilities

D. A. GARANIN
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Here, in the anisotropic case the longitudinaK1=2z) and
transverse ¢ # 1=2) susceptibilities are different. For the
transverse susceptibility the corresponding layer correlation
function o,/ (0) (the indexa is dropped for conveniengés
determined by the system of linear equati¢®s%). The lon-
gitudinal layer CFo;7,(0) satisfies the same system of equa-
tions with =1 in (2.6). The most important of the suscep-
tibilities (2.24) is y 11, corresponding to the boundary layer.

For the ferromagnetic model described by the Hamil-Whereas forp<<1 the transverse susceptibilify;; is non-

tonian(2.1), the energy corresponding to thi site,U;, is

critical, the longitudinal oney,;; shows critical behavior

determined in the spherical lim— by the spontaneous with the critical indexy;;. One can also consider the re-

magnetizatiorm;=(m;;) and the transverse Cg; :
1 7
Ui:_zg Jllm,mj—Ez ‘Jijsij' (219

It is convenient to consider the reduced energids

=U/|Ug| whereUy=—Jy/2 is the ground-state energy. In

sponse in thath layer to the homogeneous field. The appro-
priate susceptibilities are given by

o o

HMgp) 1
Xan:Tn: 2 Xann’zgnz

a n'=1 =1

7% (0).

(2.25

the semi-infinite geometry the reduced energy corresponding

to any site in thenth layer can be written as

Dn:Zd,Unn""Un,nfl""ljn,mrlv

(2.20

whereU,,, is due to the interaction with one of the neighbors
in the same layer anﬁn'nil is due to that with the neigh-

bors in the adjacent layers. The terms of E20 can be
represented through magnetization and the layeoF(q)
as

- 1] dq
Unn== 54 mﬁJmm\qUnn(Q) . (221
- 1 d¥q
n,ntlz_% mn”‘ntl"’fWﬂo'n,ntl(Q) .

In practice, only the total energy of the sitk, is needed.
Using the CF equatiorf2.5 to eliminate o, ,+; and the
magnetization equatiof2.8) to eliminatem,,., in Eq. (2.2,
one comes to the remarkably simple result

U,=6-1/G,. (2.22
The deviation of the energy density from the bulk denglty
is given by

U,,=U0,-U=G,,/G? (2.23
whereG,, is defined by(2.12. This formula provides addi-
tional physical interpretation d&,,,, besides that following

from the role it plays in the correlation functiorisee Sec.
I1C).

The susceptibilities of a ferromagnet are related to the

C. Bulk limit and continuous dimensions

In the homogeneous casey=m and G;=G are con-
stants, and the equatid@.3) can be easily solved with the
help of the Fourier transformation. This yields the Fourier-
transformed transverse CF

0G

S(k)zm

(2.2

The longitudinal CFs,/k) is given aboveT; by the same
expression withp=1. Now the autocorrelation functios;
can be expressed as

s--—f d'k s(k)=6GP(7G)=1-m?, (2.27
i = (2m)¢ = ne)= ) .
where

(X)= (27)9 1= X\ '

is the lattice Green’s function. The quantiyy=J,/J, is
given for the nearest-neighbonn) interaction by Eq(2.7)
with d’'=d. The total wave vectdk is related tog above by
k=k,e,+q, whereq-e,=0. The last equation if2.27) to-
gether with the equation

m(1—-G)=0 (2.29

correlation functions. In the semi-infinite geometry the ge-
neric susceptibility is that describing the response of the spin

polarization in thenth Iayer to the dimensionless magnetic f0||owing from (2.2) in the homogeneous case Comp|ete|y

field h=JyH in then’th one. In the region abovE, which is
considered throughout the paper, it can be written as

Xannr:&<man>/(9hanr:(7?:,(0)/0. (224)

describes the ASM in zero magnetic figttd The homoge-
neous ASM equations foH#0 can be found in Refs.
[49,51]. The lattice integraP(X) has the following proper-
ties:
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[1+X?/(2d), X<1 One can see that the transverse correlation ledgte 1/
increases without diverging with decreasing temperature

UA=X2)M, d=1 down to 6, and remains constant belod, i
A %, in accordance
(1/7)In(8/X,), X;<1, d=2 with the behavior ofG.
P(X)= Wae o X112 X.<1 d=3 The field-theoretical multiple-componegt* model used
3T CAL == ¥ by Bray and Moorg48] extends in a natural way for arbi-
W,—cXiIn(c'/Xy), X;<1, d=4 trary noninteger lattice dimensioms The discrete structure

W,—CXy, X,<1, d>4, Iof thg lattice which is important near the surface is, hpwever,
(2.30 ost in _such a model. A better way to get a continuous-
dimension model to study crossover between different lattice
dimensions is to consider thE translationally invariant di-
where X;=1-X and W3=1.51639, W,=1.23947, W5 mensjons as continuous, preserving the dimengiparpen-
=1.15631, etc., are the Watson integrals. Since aiQu@e  dicular to the surface as discrete. This amounts to making the
constraint equatio2.4) yieldss; =1, Eq.(2.27) determines  |ong-wavelength approximation
the value ofG which increases with decreasing temperature.
The high-temperature asymptote dB is G=6 11
—72672/(2d)], 6>1. This results inU=— »?%/(2d6) for
the energy in the bulk, which is given by E@.22 with n i o i
—.. The criticality is determined by =1, which corre- I the whole Brillouin zonéor the part of the expression for
sponds to closing the gap in the iongitudinal correlationt® €xchange integrdl=Jo\, . The natural hypercubic cut-
functions, (k) [see Eq(2.26]. This is the reason for calling °ff ki< and the corresponding density of states are modi-
G the “gap parameter.” Belowd. one obtaingG=1 from fied for theq components according to

Eqg. (2.29 and then dd’ d’ A
f q,...:—,f dgod ~1. .. (2.36)
(2m)¢ A% Jo

with A=+2(d+1) . One can check that the sum rules

1 d , q?
)\kzaCOSKZ—F E)\q, inl—ﬁ (2.35

m=\1—0/6,, 6.=1/P() (2.30)

from Eq. (2.27). Here the value of the Curie temperatute - dk. d’ A 1 1
[49] generalizes the well-known result of the spherical model f —_= _,f dqqd'l[ } :’ } (2.37)
.= 1/W [25] for the anisotropic case. —=2m A9 Jo N 1O

The influence of the anisotropy on the ordering in the

ASM is rather essential. The anisotropic gap in the transversg' ¢ satisfied. Now using2.32, one can, instead a2.27),

CF s(k) prevents long-wavelength excitatiorigansverse write

fluctuationg from destroying the long-range order in two d’ A o ode 1

dimensions, and, determined by Eq(2.31) is finite for » TJ dagt ~1— ——=0GP(7G), (2.39
<1. Moreover, the phase transition at finite temperature oc- AT Jo 7 Vb -1

curs even in theone-dimensionahSM. This surprising re- nicpy is the definition oP(X) in our continuous-dimension

S.L”t is_due to _th_e switching qﬁ of th&)ngitudin_al fluctua- — ogel. The resultind®(X) posesses the same general prop-
tions in the limit D—c, which are responsible for the erties(2.30. The Watson integralgV for some values ofl

breakdown of the long-range order in one dimension. _ _ _
i ) . are W, c==2.527059,W; ,=1.719324,W, ,=1.321825, and
The bulk solution of the linear system of equatiq@ss) We 0=215192848 3.0 4.0

has the form For both hypercubic and continuous-dimension lattices

/ the singular behavior of the integr&l(X) for k<1 is de-
buik, 90 al" " scribed by

ann,(q)—n—bz_l, a=b—\b?-1, (2.32 Calr—t. led=2

W-—Cyx972, 2<d<4. (2-39

P(X) s[
whereb is given by(2.6) with G,=G. This result could also _
be obtained by the integration of the bulk transverses@ ~ HereCy=AyXdMy, where the nonuniversal factdy reads
given by Eq.(2.26 over k,. For the weakly anisotropic [
dE

d/ . .
ASM, 1—- »<1, at small wave vectors the transverse corre- Sar/(2m)©,  hypercubic lattice

lation functions in the bulk, Eq$2.26) and(2.32), have the d'/AY, continuous dimensions(
form
and S;=27%%/T'(d/2) is the surface of thel-dimensional
40 unit sphere. The universal quantityy which will be needed
s(k)= , bulk, ~\ _ , 23 below is given by
=g M@= (23 B y
AMe dyy? "t 1-k? (d—l) (Z—d)
= =
wherex is defined by o Jl+y* 272 2 2

(2.4
k’=2d[1(nG)—1]=2d[1- »G]<1l. (2.3 ford<2 and
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" Fd et 1 1 k2=2d[1/G—1]=2d[1-G]<1, (2.48
d= y T T
0 y 1ty diverges atf. in different ways for the isotropic and aniso-
- T'(d—1) tropic models according to Eq$2.44) and (2.47), respec-
= tively. The critical behavior of the ASM is, fop<1, in all
cogmu) 247112(d/2) respects analogous to that given by the mean-field approxi-
mation. This is due to the suppression of the singularity of
_d-3 the lattice Green’s functiorP(X) [see Egs.(2.30 and
H="5" (2.42 (2.39]. For 1- »<1 far enough fromé,, i.e., for r>r*,
the system behaves isotropically and, in particulgs,
for 2<d<4. The factor +«?~ % in Eq. (2.41) is for k<1 =¢.,. Crossover atr* is analogous to that between the
close to unity ifd is not close to 2. It is needed for-d Heisenberg and Ising universality classes in the weakly an-
<1 to give isotropic Heisenberg model. Here one has the crossover be-
tween the spherical and mean-field universality classes in-
1-x*¢ stead.
My= ﬂ%’ln(l/K) (243)

] o ) ) D. Continued-fraction formalism
with logarithmic accuracy. Fal— 1 one obtainsCy—1, in

accordance with Eq(2.30). The linear homogeneous second-order finite-difference
In the anisotropic casg<1, the value ofG determined ~€duation
from the equatiorG P(7G)=1 approaches 1 linearly just 2b. 2, — 2,1~ Z0_1=0, (2.49

above the Curie temperatusg given by Eq.(2.31):
which corresponds to the CF equatib5), has two linearly

1=G=7ll(n), 7=0/6:~1, (2.44 independent solutiong, and K,,. They can be chosen so
where that Z,— and K,—0 for n—«. The solution of Eq(2.5
with the boundary conditioi2.9) can be expressed through
()=1+ 5= P O=—g=. (249
_ 2d0 2b111—12 IC
For the weakly anisotropic model this solution is valid in the T = W,y 201K — K" n
narrow region defined by-1G<1- », i.e., below the cross-
over temperature™ =(1— n)l(#n). For different lattice di- 2dg | Ik ns<n’
X N (
mensionsr* reads + e Z.,K,, n'=n, (2.50
1, d<?2
UIN[ 141 7)] d=2 where the WronskiawV, is given by
_ d—2)/2
*~{ (1= 727 2<d<4 (249 Wi=T K1~ KT (2.51)
(1= p[1(1-7)], d=4 _
1- 7, d>a. It can be shown with the help of Ed2.49 that W, ;1

=W,, i.e.,, W, is independent of.. It is convenient to rede-
fine Z,, by replacing it by its linear combination witki,,, so

For 7> 7* one has . . " .
=T that the redefined,, satisfies the additional requiremerty

g22—d), d<?2 =0 in the nonexisting layen=0. This entails »,Z,—7,
1 =0, i.e., the first term in Eq(2.50 becomes zero.
exp(—Aq/0), d=2,2.0 The solution(2.50 can be rewritten in the form of a con-
1-G~{ s2Md-2) 2<d<4 (2.47  tinued fraction, which is appropriate in particular for numeri-
_ cal calculations. In terms of the functioms, and «,, deter-
7/InT, d=4 .
mined by
7, d>4,

In 11T, =a,, K., 1/K,=2b,—a/ 25

where, according to Eq2.40, A, = andA, 3= \/6. Here e -1/l =2on ey (252

the result ford<2 is valid for §<1, i.e., a weakly aniso- the solution(2.50 for n=n’ becomes

tropic system can be close to criticality {1G<1) in a tem-

perature range extending far abos#e<1. Ford=2 the Cu- 2d0 1

rie temperatured, is not small, and Eq(2.47) requirest T —

<1, 7 2b,—a,— a)
The longitudinal CFs are given by the same formulas

(2.33 and (2.34 with =1 . The longitudinal correlation The functionse, and«,, can be found from the forward and

length ¢.,=1/k,, where backward recurrence relations

(2.53
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being the consequence of EQ.49. The initial condition for
the first one isa;=0. Far from the surfacey,, approaches
the bulk valuex of Eq.(2.32. The backward relation fos),

starts froma far from the surface. For numerical calculations

in the isotropic case for 2d<4, a refined asymptote is
neededsee the end of Sec. IV)AIf the denominator of Eq.
(2.53 becomes zero fog=0 (which is the case for the
isotropic model at criticality for 2d=<3; see Sec. IV A
then with the help of Eq(2.54) one can obtain the relation
(q=0). (2.59

ana)_,=1

The general solutior{2.50 can be represented through

the diagonal Green functiof2.53 via the relations
Onn-m=—On-mn=— Xn-—m+1%n—m+2 - - - Xn0np (2.56
or, alternatively,

— — ! ’ !
On+tmn=Onn+m™= nim-1%+m-2 - - - nOnn-

(2.57

The consequence of these two relations is the useful formula

(2.59

— — !
Onn+1= Xn+10n+1n+1~ X 0npn-
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plays the role of the self-energy part for the spin CF. At and
above#, the constraint equatio2.10 can be rewritten as

dd,q bulk
f W[ann(q)—am (@]=0, (2.65

where the bulk result is given by ER.63 without X ,.
Since forn>1 the quantities,,, and a;, of Eq. (2.59
are small andh in the recurrence relation2.61) and(2.62
can be treated as a continuous variable, these relations can be
reduced to the first-order nonlinear differential equations

which for g= k% + %<1 have the form

~ 2
gn &= ~2qaint apt2by,,

d ~
- —a,= —ZQain-i-(ain)z-i— 2by,.

an (2.66

These Riccati equations can be transformed to linear second-
order differential equations which are equivalent to Eg.

(2.11).

E. Variation of the gap parameter at low
and high temperatures

The main problem with the solution of the ASM equa-
tions (2.5—(2.10 is to find the variation of the gap param-
eterG,, that plays a fundamental role in the theory. Its inho-

It is convenient to introduce the deviations from the bulkmogeneous pamln defined by Eq(212 is ana'ogouosl as

values
ap=ap—a, ap=o—a (2.59
and
bbby~ S G| o (60
7G G" 7GG,

where «, b, and G;, are defined by Eq(2.32, (2.6), and

(2.12), respectively. The recurrence relations for the devia-

tions a,, and ay,, have the form

‘12(2b1n+a1n)
al,n+1:1_a(2bln+a1n)! Q= (26])
and
a®(2byn+ af,,)
Ain-1= I ).=0. (262

1-a(2by+al,)’

In terms of the deviations,,, aj,, andb,, the CF(2.53
can be now written as

dé 1

o= —Y———, 2.6
L S (2.63

where
EnE_(aln'ipailln)/z_bln (2.69

we shall see, to the functioW(z) with the opposite sign,
which was considered by Bray and Modd8]. The inho-
mogeneityG,, results from the deficit of interacting neigh-
bors in the region near the surface and is positive. The sim-
plest case in whiclG,, can be found analytically iF=0.
Here, for the magnetization one has=1 everywhere, and
G,, determined from Eq(2.8) reads

2d
2d—-1’
1, n=2.

G,= (2.67

This result also shows that the boundary laye# 1, is dis-
tinguished from all other ones. This feature that is beyond
the scope of the continuous field-theoretical approaches can
be observed in the whole temperature range. In particular, at
high temperaturesé&1), or in the whole regiord= 6, in

the “quasi-Ising” limit »<<1, the variation ofG,, can be
found with the help of the high-temperature series expan-
sions(HTSE). This can be most conveniently done using the
diagram technique for classical spin systefd9-51,33.

The result for the hypercubic lattice has the formy §<1)

1/ 5 \?
0(2d6> ’ 2.68
Gyp= 2 2.6
4(d-1 (n+1)
( ) 7 , h=2.
0 2d6

The terms with n=2 are slightly different for the
continuous-dimension model. One can see, again, that the
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boundary layer is distinguished. For the layers wita2 the a,= J1+ 62— 02— 9> — é2,
expected leading diagrams of order @re cancelled, and the ¢ ¢

result is much smaller.
a,~2by,,  0—\6>— 62

Calculation ofG,,, in other cases requires more special- - = - (3.9
ized methods, which will be considered below. a, —2b,, 6+ \/02— 0
In contrast to the transverse G, given by Eq.(2.13), the
lll. SURFACE-INDUCED CORRELATIONS inhomogeneous term iw?% does not disappear. For the
IN LOW AND HIGH DIMENSIONS weakly anisotropic ASM in the rangé<1, the expression
A. Solution for the “toy” model d=1 for o7, simplifies to
In one dimension the solution of the ASM equations P Ky— K
(2.5—(2.10 is greatly simplified, sincd’ =0 and there is no oli= pa R e 2xn=1) (3.5
Z z

integration over the wave vectay. The quantityb,, of Eq.
(2.6) reduces in this case to,=1/(%G,)). For the autocorr- [cf. Eq. (2.16] wherex and x, are given by
elators,,, one has simplg,,= o,,. Above 6. the constraint z

equation(2.10 becomeso,,=1, i.e., all o, are equal to k=0 k.=02— 02 36
each other. This means that for the one-dimensional ASM b ¢ 39
the transversesusceptibilities with respect to the layer field, one can see that here the extrapolation length 1/x>1 is
Xinn=0nn/ 0=1/6, are the same for all layers. Now, from |arge on the scale of the lattice spacing. Well abake
the relation(2.58 follows an;=ay. Using the latter to-  wherex,= , there is no difference between the longitudinal
gether with the recurrence relatiof®&54), one can write the  gnd transverse CFt?2=¢,,=1. Near 6, one hask,<k,

constraint equation as and Eq.(3.5) shows the dependence on the distance from the
B _1 _ surface. Whereas the bulk CR€ =) diverges with the ex-
1:0“:% 1/[2?11 (2by) 7], n=1 (3.1 ponentyPuk=1 (see the end of Sec. Il)Cthe semi-infinite
7 (Ua, " —ayl, n=2. CF (3.5 does not for any finite. In the boundary layeir?4

takes on the exact form

This implies that allx,, and @/, except fora; =0, are equal
to 260

Uﬁ=—2 (3.7
6+ 67— 62

a=[\n’+ 6*- 6]l 7, (3.2
LV L in the whole range ofy. It varies from 1 at#> 6. to 2 at
L . 0= 0. . At criticality the longitudinal surface susceptibility is
W.h'Ch is the bulk value given by qu'?’z)' T_hen forn=2 two times greater than the transverse one. One can see that
with the help of Eq.(2.32 one can identifyb,=b=[« y11=—1/2, as in the MFA.
+a Y2=5?+ 65 and b>—1=6/%. The boundary- '
layer quantityb; can be determined directly from E(B.1)

: B. Low dimensions, I=d<?2
with the result ;= a~*=[ \/?+ 62+ 6]/ 5. Now the exact

result forG,,=1/(yb,) can be written in the form For d>1 the ASM equations become nontrivial because
of the integration over the wave vectgrin the constraint
Y B equations(2.10. The deviationG,,, of the gap parameter
G = 2[N1+ 67— 6c+ 6], n=1 3.3 from its bulk value is now nonzero for all layens< «. For
"l 11+ 62— gg n=2. ' #<1, the system is close to criticality, and the inverse trans-
verse correlation lengtk of Eq. (2.34) is small and related
to 6 by

with 6,=J1— 7?. One can see th&;>G,-,=G. In par-
ticular, in the weakly anisotropic case:-Iy<<1, at criticality 9=1/P= K2—d/c:d (3.8
one hasG;=2(1—«), which is nearly two times greater

than the bulk values=1 [cf. Eq. (2.67]. Variation of G, [see Egs(2.27) and (2.39, cf. Eq. (3.6)]. The variation of
above belongs to the class studied at the end of Sec. Il A, an@,, is for 1<d=<2 close to that for the one-dimensional
thus o,y is given by Eq.(2.13. In our one-dimensional model abovdsee Eq(3.3)] and can be searched in the form
model, however, one has—2b,;=0, and the inhomoge-

neous term vanishes. Thus one arrives again at the result 2d Gt 2d ZG n=1
onn=1, which can serve as an independent check of the G,=1 2d-1 2d—1) (3.9
calculations. , G+Gy,, n=2.

Now we consider the longitudinal C&fm, and the corre-
sponding susceptibilities. The solution of the finite- The correction term&,,, will be shown below to be propor-
difference equatior2.5) with »=1 and G, given by Eq. tional to (d—1)6. [Note that the definition 064, here dif-
(3.3) has the form(2.13 with azil:bzi \/bzz—l [cf. Eq. fers from that of Eq(2.12.]
(2.32], b,=1/G, andb,;;=1/G—1/G, [cf. EqQ.(2.60]. Us- For the variation of the gap parameter above, the spin CF
ing Eqg. (3.3 one can write, explicitly, onn IS for not too small wave vectors determined by the
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boundary condition at the surface and given to the zerothlistanceskn=1 the integral in Eq(3.13 is dominated by

order by Eq.(2.15. This makes it possible to fin@,,, per-
turbatively in the rangen<<1. After that one can study the
corresponding corrections t®,,,, which prove to be small
for g>« or d close to 1.

1. Variation of G,

The quantitiesG,,, for n=2 can be found from the con-

straint  equation (2.10 written in the form
(d’/AY) fdqo? ~A%g,,=0, where
AZO'nnEO'n+1,n+l_20—nn+‘Tnfl,nfl- (3.10

The second-order difference above can, with the help of Eq.

(2.58), be rewritten as

A26,,=2[—2abi,+ (VbZ—1-by,)

X (a1nt a1,) = ain@in]onn - (3.11
Here the first term is the only one that is important in the
long-wavelength regiorg~ . By integrating it one can set
a—1, which yields simply—4b,,=—-4dG,, in the con-
straint equation. All other terms make a contribution from

g=<«k, whereo,, and «;, no longer have the form&.15
and (3.12. One can writeG, in the whole range okn in
the form

:F(d) k?g(kn)
~dMg (2xkn)d”’

(3.19

In

whereg(xn) is a crossover function. The expected asymp-
tote of Gy, for kn>1 is

K2

— —2kn
(kn)*

(3.17

Gin

with some exponenf. The analytical calculation of the pref-
actor here seems to be very difficult.

The value ofG,; is fixed by the constraint equatig¢@.10
in the first layer. We will see below that,_;G,~«
<279 thusGy, is simply given by

6 d’

°° A
= _ ~_ _ -1 2
Gu=-3, Gu= =5 |, dad’ a?, (318

g>k, and the only important one among them is the term

containing b?—1)Y?a;,, where a,, is induced by the sur-
face. The latter can be found by comparing Eg15 with
Eg. (2.63, where the small terma;,, andb,, are neglected.
This results in

29
exp2qn)+1’

2(b2— 1)1/2a,2n71

1+ 21

(3.12

A1n=

where the second form is valid fay<1. Using Eq.(2.15
for g> k, one finally obtains

!

6 d

Gin=3 I

fAdqqd"l(l—aZ)az(“’l), (3.13
0

where the relation 2\b?—1=1-a? has been employed.
This expression is explicitly small fod~«2~9<1 or for
d’'=d—-1<1, as was said above. For-1, integration in
Eq. (3.13 extends over the whole Brillouin zone, a&d,, is
nonuniversal. It decreases withsince a<1. In the range
1<n<1/k the integration is cut aj~1/n, and one can use
Jb?—1=q anda?" Y=e 24" Expressior(3.13 then sim-
plifies to

d’ 6or(d) _T(d) «*¢
A9 (2n)d  dMg (2n)d’

1n=

(3.19

where the second form is explicitly universal. Hevk, is
given by Eq.(2.4)), or, neard=2, by Eq.(2.43. In two
dimensions the result above regularizes to

1

Gln

wherea~1 is a nonuniversal factor. Fa>2 the values of

G, are no longer small, and the method used above fails. At

where Eq.(3.13 has been used. Although the derivation
above becomes invalid fat close to 1, the resulting expres-
sion has a well defined forr® ;= — x>~ 9/2 in this region,
which will be confirmed below by another method and is in
accord with the resulG;=2(1-«) in one dimensiorisee
the discussion below Eq3.3)].

2. Correlation functions near the surface

In low dimensions the quantitieS,, are small, and one
can try to find the corresponding corrections to the correla-
tion functions perturbatively. It is clear, however, that since
G;, can be responsible for the gap in the correlation function
[see Eq(2.16)] the direct perturbative approach &, can
be inefficient. It is more convenient to use perturbation
theory with respect to the self-energy part in Eq. (2.63.

For the variation of5,, of the form(3.9) in the expression for
the latter one has

b1=3+dGy;

=

=

b1,=dGy,, n=2, (3.19
and the quantities;, and a;,, can be found from the recur-
rence relationg2.61) and (2.62. These equations simplify,
sincea,, for n=2, as well as alk;,,, are induced byG,
and are small. For the first layer, taking into accoupt=

— « one obtains in the long-wavelength region

2d6 (320
== .
g+A44(9,«)
where
Ay(G0)=-2dY, e %Gy, (3.2
1=1
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and the dependence &f; on « is due to that ofG,,,. The  where

longitudinal CFo7] is given by the same expressions with "

q,= \/Kz+q2 instead ofg= +q2. Al(O,K)E—ZdZ Gy
In the sum(3.21) only the term withG4; is unknown, and =1

its value follows from the constraint equati¢®.65, which

can, with the help of Eq(2.38 and (2.39, be put into the — - - -
form Ay(@0)=2d2, (1-e72Gy. (3.27)
jAd o 2 1 ~0 (3.22 The quantityA,(0,x) determines the gap ef’/ at criticality
a q+A(q.«) q] ' (9,=0) and it is related ta\(«,«) studied above by

For 1<d<2 the integral here is dominated ly- « and its
upper limit can be set t@. This implies thatA;~ «, i.e., the
individual terms of the sun{3.21), each being of ordep

Al(o,K)=A1(K,K)—2d|21 (1-e~2)Gy,

~ k%7 9>k, are nearly cancelled. The ensuing expression for kI'(d) [=dx 72
Gy, is given by Eq.(3.18 above. =A1(k,K)— prETYS — (1=e"g(x),
As a result of the cancellation of the leading terms in Eq. 70 X
(3.21), taking the next terms into account may become nec- (3.28

essary. Themth-order terms inG,,, are proportional to
kM2~ and they are small in comparison te<1 for d
<2—1/m. In particular, the first-order perturbation theory .
written above neglects the terms starting froms 2 and it is, ~1 where g_(Kn) IS unknown. Even ' nead= 1’. where

in general, valid only fod<1.5. The second-order perturba- Al(""‘)_ IS given by Eq.(3.23 to the_ first order ind—1,

tion theory works ford<<1.75, etc. The solution of the prob- cal_culatlop_ of this term needed to f'mdl(.O'K) would re-

lem seems to undergo an infinite number of crossovers for duire additional efforts. In general, there is no apparent way
approaching 2 and it should be rather complicated. Analyti{C calculate analytically the gap im,,. On the other hand,
cal solutions can be obtained fdrclose to 1 and fogs «, the gmstence of this gap can be.ant|C|pqted, since the_ aniso-
as well as in the marginal case=2, with only logarithmic tropic model shows the mean-field critical behavior in all

where the functiorg(xn) was introduced in Eq3.16). The
integral term in this formula stems from the regigg xn

accuracy. cases. At criticality forg<<1 the longitudinal CF can, after
For d’=d—1<1 one hasM,=1/(d—1), and the main the expansion of E(3.27), be written in the form

contribution to the integral in Eq3.22 stems from the re- 2d g

gion g<k. For d=1 the obvious solution of E(3.22 is e R — (3.29

A,(x,k)=k. Since ford=1 all G4, with n=2 disappear, " AL(0k) +AQ’

this leads to the one-dimensional res@li;= — /2. In the
first order ind— 1 one can still neglect the dependence of

A1(9,«). Then the perturbative solution of E€8.22 leads

to the simple result 22797(d) (= dx
A=1+ f —g(x), (3.30
Mg x x471

where the stiffness of the longitudinal spin fluctuations is
given by

Aj(k,k)=dk, d—1<1. (3.23

which is again determined by the regiam~1, in general.
For d<2 the lower limit of integration can be set to zero,
andA is a number. Fod—1 the quantityM, diverges, and

On the other hand, the su(8.21) neard=1 consists of two
contributions:

2-dVx 4 A tends to 1. Fod—2 the integral in Eq(3.30 diverges
Ay(k,k)=—2dGyy— K_z - logarithmically at the lower limit, and this divergence com-
Mg =1 19 pensates that d¥l 4 [see Eq(2.43]. As a result, one obtains

A=2+0[1/In(1/k)]. It should be stressed, however, that in
=-2dGy;— k? 41—k, (3.24  fact A cannot be calculated perturbatively, as above i
not close to 1. This is because the term of the first-order in
with logarithmic accuracy. Comparing it with Eq3.23  G,, gives a contribution comparable to the zeroth-order re-
yields sult, and so do the terms of all orders@®y,, .
The analytically tractable case ds> «, in which the sum
in Eq. (3.27 is dominated byl ~1/q<1/« and one can use
' (3.29 Eq. (3.19 for G,,. Replacing this sum by the integral and
combining it with Eq.(2.41) yields the result
For the analysis of the limigj> « and of the behavior of
the longitudinal CRo?7, for small wave vectors, it is conve- (E)I‘(E) "y ”d
nient to represent the quantity;(q,«) above as AL(Q,K)= 2 — 2 i ZZd(l_Kd—l)q(f) _

K

1
1+(d—1)In=
K

A1(G,0)=A1(0,)+A4(q,x), (3.26 (3.31)
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Here the factor +q2 ¢ reflects the logarithmic divergence al_qal_,...a)
of the integral at the lower limit fod close to 2, its coun- T~ g, Ol (3.33
terpart - x2~ 9 comes fromMy, and the factor + 9 is n®n-1--- T2

due to the logarithmic divergence of the integral at the uppefgre forg~ « all @, and«/,, except fora; =0, are close to
’ n:? ’

limit for d close to 1. Fod not close to 1 or 2 these factors i, Thus all CFs in the layers near the surface are close to
can be dropped. Fai=2 the expression above regularizes gach other. At large distances the spin CFs should cross over
to to the bulk resul{2.33 [cf. Eq.(3.5]. Forg~ «, this cross-
over occurs akn~1 and it cannot be described analytically,
Kl(q,,();q In(1/g)/In(1/k) (3.32 since the solution depends on the valuesgf, in this re-
gion, which have not been determined. For the wave vectors
>k the equation foro,, can be solved perturbatively in
G, for all distances. This can be seen if one rewrites Eq.
(2.17) in terms of the dimensionless varialde qn and uses

R, . . . Eq. (3.14 for G;,. Then the term withG,, in the equation
which justifies using the perturbation theory @y,,. This bgcc()me2 of ordlgn‘(/q)zfd/zd and can belnconsider(gd pertur-
term depends o/ and thus signifies the gap in the correla- = o T~
tion function. For 2-d<1, the latter has a long-tail charac- Patively for d<2. The solution is giver(2.1§ with q>c

ter, which makes the perturbation scheme slowly convergenP!Us & correction term. Near the surfagesqn<1, to the
This is in contrast to the bulk behavior, where this gap tailloWest order ire this solution can be put into the for(8.20

stems simply from the expansion 9 Vx2+qZ and has the With An(q,<)=A4(q,«) given by Eg.(3.31. For z=qgn
fast-decaying formy(«/q)%/2. The most drastic situation is >1 One obtains
realized ford=2, where the gap tail is logarithmic and the )
applicability of the perturbation theory requires fulfillment of o= % n I'(d) (f) 1
the very difficult criterium In(14) <In(1/«). " q 29M4\ A/ (kn)®

One can improve the perturbation theory by taking into
account the terms of the second ordeGy, in the denomi-  which is in fact the expansion af,,=d6/\/q>—2dG,,, for
nator of Eq.(3.20. These terms have the form of double |arge q. The latter result has a simple interpretation: Eor
sums over the layers and fge- « they make a contribution > 1/n> « the surface term iy, is negligible, and the cor-
of order q(«/q)?? ¥ to A;(q,«). For d=2 the formulas rection to the bulk result is due t6;, from the narrow
simplify and one obtains the contributieqfR?/2, whereR is  region |n”—n|<1/q, where G;, does not change signifi-
the ratio of logarithms in Eq(3.32. In fact, in two dimen- cantly (the local correction
sions one can sum upith logarithmic accuracyall orders For the longitudinal CFo/, the corresponding effective

of the perturbation theory i;,,. This is possible because wave vecton.= k2+ a2 canl:rbe smaller thar. especiall
Eq. (2.1 with G,, given by Eq.(3.15 can be exactly 2= Vi T ' 5P y

solved in terms of the modified Bessel functions. The corre-at criticality, whereq,=gq. For g,<« the exponential de-

sponding calculation will be presented below: here we dis€réase 03y, for ani[sfe Eq(3.17] comes into play. As
cuss some further features of the semi-infinite ASM dor & "€Sult, in the ranga=n*~1/x the free solutior(2.1 is
<2 realized again. The disappearancezgf, for n~ 1/« and the

In each orderof the perturbation theory (g, «) can be ensuing free solution is also characteristic for dimensions 2

. — . . <d<4. As we shall see below, fa>4 the value ofn* is
represented in the fori{8.26, whereA,(q, ) is determined of the order of the lattice spacing, and the free solution is

by |~1/g>1 and is thus universal. The quantidyi(0.«) IS realized in a wider range. In contrast to the cgsex con-
fixed by the constraint conditiof8.22, whereq~«<1,and  gjjereq above, here the sign of the surface ternrfy is

it is thus u_mversal, toq. The Same can be. S.hc.M.m for all val'negative. One can argue, in general, that the form of the free
ues ofn, i.e., the spin CFs in the semi-infinite weakly-

anisotropic ASM are universal in the whole half-space forselution in the regiom* <n=<1/q, is Eq. (2.16 with a co-
d<2. In other words, in this case tlstrong scalingis real-  €fficient f(q,/«) in front of the surface-induced term. The
ized, which manifests itself in the independence of the CFplausible assumption about the form df is f=(q,
of the lattice spacing,. Alternat_lvely, thls_can be seen from —Cen)/(0,+ Cerr), i.€., the surface term of the CF changes
the fact that the Green function equati¢2.11) with the  sjgn as a function of the wave vector. As a justification one
boundary conditiof2.17) is applicable everywhere, because ¢an stress that from the distanags n* the regionn=n*,
Gy, are small andr, ., is @ smooth function ofi in the long  \here the form of the CF is complicated, is seen as narrow.
wavelength region. The nonuniversality Gf;, in several  Thys one can replace this region with an effective boundary
boundary layers does not play a role becaugg is sensi-  condition of the typeg(2.17) set atn~n*. The quantityc.
tive only to the cumulative action @by, from a large num-  can be expected to be of orderin dimensions low enough.
ber of remote layers~1/g>1. Ford=2 there are nonuni- This is the exact result fat=1 [see Eq(3.5)] and it will be
versal logarithmic corrections to the strong scaling. Fdr  shown numerically to hold fod<4. This implies that the
>2, as we shall see, the scaling is realized only in theextrapolation length\.=1/c. is of the order of therans-
asymptotic regiom>1. versecorrelation lengthé.,, which (although nondivergent
The expressions for all,, can be obtained recurrently is much greater than the lattice spacing for the weakly aniso-
from o1, with the help of relation2.58, which results in tropic systems near criticality. The important implication of

with logarithmic accuracy. One can see that ¢hdependent
term calculated above is smaller than the leading tgrin
the denominator of Eq(3.20 by a factor /q)? %<1,

: (3.34
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the negative sign of the surface termdf, at small wave «n<1 due to the separation of tieranges in the transverse
vectors is the gap im?%, at any finite distances from the CF onn, @s exemplified by Eq3.11). The surface-induced
surface, even at criticality. It is clear, although difficult to (€M iS important fog~1/n>«, whereas the term induced
prove rigorously, that the existence of this gap in thePY Gin dominates foq~x<1. In high dimensions the sepa-

asymptotic region, where the free solution is realized, alséﬁtionho_f thedqffrangte? of b\?\/tr? termst also takefsﬂﬁ)lace, al-
. 72 ough in a different form. Whereas tigerange of the sur-
entails the gap inr,,, near the surface. 9 g

face term remaing~ 1/n (for kn<1), theG,,-induced term
dominates in the rangg~1. Thus the ranges separate at
distancesn>1, where the problem can be solved analyti-
Dimensiond=2 is the marginal one betweed<2, cally. Henceforce in this subsection we will consider the
where the characteristic wave vectors in the spin CFjare close-to-criticality casec<1; otherwise, at distancas>1
~k, andd>2, whereq~1/n are important. The solution deviations from the bulk values will be too smédf. Eq.
with logarithmic accuracy fod=2 can be obtained if these (2.69)].
ranges are separated by many decades, i.e.£y¥lhn. In The surface term obr,, has in high dimensions the op-
fact, the solutior(3.19 for G,, has been obtained under this posite sign, as compared to the low-dimensional result
very restrictive condition. With this form o, the Green (2,15, and forn>1 its form does not depend on the details
function equatiori2.11) can be solved exactly in terms of the of the behavior in the region close to the surface. As we will
modified Bessel functions. This will be shown in more detailsee below, fod=4 the quantityG,, decays fast witm, and
in Sec. IV A, and the result has the for#.2) with for the calculation of the surface term it can be neglected
starting from somen* >1. Forn=n* one can use foo,
= } _ (3.39 an expression of the typ@.13, where b, is replaced by
2 some quantity determined by the regiogn*. In contrast to
) o the low-dimensional case, there is no reason for the substi-
Forgn<1 the expression fos,, simplifies to tute for 20,; to be close to unity, because the variatiorGof
2d6 is no longer close to Eq.3.9), or in Eq. (3.9 G;, are no
0= — (g ) (e (3.36 longer small. At large distances and small wave vectors one
q can thus use Ed2.16 where the coefficient(q) in front of
the surface term is close to1, since the quantitg.+ should
be of order unity(the extrapolation length .= 1/c.+ compa-
rable to the lattice spacing
Since postulatingr,» in the form (2.16 is not quite a
rigorous procedure, let us consider another derivation based
on the continued-fraction formalism described in Sec. Il D.

3. Correlation functions for d=2

ERTTETS)

[cf. Eq. (4.9)]. This can be represented in the form of type
(3.20 with A,=q[1—(gn) ¥"¥)] For not too smallq
one can expand , in powers of Ifh1/(gn)]/In(1/«) to obtain
the gap tail of the spin CF. In this way the first-order result
(3.32 for n=1 and all other orders of the perturbation

theory inG,, are recovered. For n>1 one can employ the differential equatiof&66)

At small wave vectorsgy, solution foro,, is determined for the quantitiesey, and -, of Eq. (2.59. The boundary
by G, at kn~1 where the latter are unknown and hence o T .
condition for the second equation i8,..=0; the quantity

o,n does not have the form above. In fact, here the gap;, . L
A,(0,x) in o, manifests itself, and it turns out to be much %1n is generated solely b, and it is not related to the

larger than the bulk gag. The dependence &,(0,x) can surfapg term obry,. For the equation foa;n the t_)oundary .
be obtained from the constraint equati@65 wﬂer’e(3 36 condition cannot be set on the surface, since this equation is
and(2.33 are used and the integration owglis performed invalid for n~1. Thus we use the boundary condities,

betweenA (0,<) and 1h. In this way one comes to an in- — @i atn=n*>1, wherea,,. is determined by the exact
teresting f?)rmula' recurrence formuld2.61) in the regionn=n*. For n>n*

one can neglectl2, in the differential equation foe,,
AL(06)~x"2/n, In n<In(1/x). (3.37)  after which it can be linearized with respect to the new vari-
able 1k, and solved to give
Here the critical index In2 results from the fact that,, of -
Eq. (3.36 is about 2 times greater than in the bulk; thus the o — 2qaynx (3.39
gap in this region should_be corresponqlmgly greater to sat- in @y + (20— aqx ) exyd 2q(n—n*)]
isfy the constraint equation. The coefficient in E§.37)
cannot be determined in the logarithmic aproximation; itsince a,,. is generated by the boundary condition at the
should become universal far>1. This method is rather gyrface and byb,,, which are not explicitly small fom
rough and it cannot distinguish detween the transverse ang n*
angltudmal corre_latlon functions. One can expect that t_heySeen thater;« cannot be positive, otherwise;, tums to
differ by a numerical factor, as was confirmed by numerical, ~ " ) ~ N
calculations, which have been done, however, in a range of INfinity at ndetermined by ex{@q(n—n*)]=ayn /(aym
not small enough to confirm formul®.37) itself. —20)=1. Thus,a,+<0, and in the relevant regiom>n*,
an~1 (3.39 simplifies to the form

, one haga;,«|>0q for small wave vectors. It can be

C. High dimensions,d=4

As we have seen above, for the weakly anisotropic ASM a=— E—q
in low dimensions the problem can be solved analytically for exp2gn)—1

(3.39
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which is independent of the behavior in the boundary region,

n<n*. Forgn~1 one hasy;,~1/n; thus in the differential
equation (2.66 qai,~ a2,~1/n?. This implies that the
method used here works@,,>b;,, decays faster thanr?.
As we shall see shortly, this is the case 4. Now the
surface term ofr,, can be found from Eq$2.63 and(2.64)
with aj,=b;,=0, which results in Eq(2.16 with f(q)
close to—1.

Forg~1 andn>1 the quantityx,, of Eq.(3.39, as well
as the surface term in Eq2.16), are exponentially small.
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.~ d’ dl'(d-2) 1 <1 (34
S AT P g2 M G4
and
_d’ dr[(d—1)/2] k% 2e 2" 1
WENT 2P(DID) (@ e T
(3.44

If d is close to the marginal value= 4 the contribution to

Here theG,,-induced term becomes dominant. To find thethe integral(3.41) from small wave vectors becomes large,

values ofa;, anday,, in this region, one can drop the small
termsa?, and (¢},)? in Eq. (2.66), after which the linear

and separation of thg ranges ino,, ho longer takes place.
Nevertheless, the problem can be solved analytically with

inhomogeneous differential equations can be solved. The s@ogarithmic accuracy at distances1<1. In this case one

lution at pointn is induced byb,,» from the interval ofn”
aroundn, which satisfiegn” —n|~ 1/q~1<n; thus one can
treat by, in Eq. (2.66 as a constant. The solution of Eq.
(2.66) has the formy;,=a},=aby,/Vb?>—1, and the quan-
tity A, of Eq. (2.64 readsA ,=—bb,;,//b?—1. The result-
ing correction too,, given by Eq.(2.63 is of the form

bby, J

— bulk
T T

local _
do,,=do Onn

(3.40

Whereaﬁ‘,‘]"‘ is given by Eq.(2.32 or by the first term of Eq.

(2.16. This correction is due to the local deviation bf
from the bulk valueb [see Eq(2.60] and it could in fact be
written for g~ 1 without calculations.

Now the value ofb,, can be found from the constraint
equation(2.65, where o, is the sum of Egs(2.16 and

(3.40. One can see thdt;,,>0 is needed to compensate for

should integrate in Eq.3.41) down tog~ 1/n> k where the
surface term in Eq(2.16 becomes important. This leads to
the replacement

d’ 16|

F>(1)|(1):>F a4

l_
(an)d—4

(3.4

in Eqg. (3.43), a being a lattice-dependent number. Fay,
neard=4 one obtains the result

G~ 1 d-4 (3.46
" 16n2 (an)d-4—1" '
which regularizes to
G1n l<n<1/k, (3.47

~ 16n2n(an)’

the negative surface term. The integration of the local termy, ftour dimensions

(3.40 extends ford>4 over the whole Brillouin zone,
g~1, and can be accomplished with the use of E338.
This results in

d’ (a _, bbiy, b1n

— | g T = 2B (46)1(4G),

IC fo qq’ TERPTEpT (7G)1(7G)
(3.41

wherel(X) is defined by Eq(2.45. Since ford>4 both
P(X) andl(X) do not diverge forX—1, one can seX=1
for weakly anisotropic ASM near criticality. The integration
of the surface term is cut &~ 1/n<1 for kn<1 and atq
~q*=\k/n (1Ih<g*<k) for kn>1. The resultingG,,
=h,,/d has ford>4 andn>1 the form

Kd72

(kn)(d-272

_d’ dI'[(d—1)/2]
T Ad P(1)I(D)

K(da-2)2(2kn),
(3.42

whereK ,(x) is the Macdonaldmodified Besseglfunction.
For the hypercubic lattices the first fraction in E®.42
should be replaced according to E&.36) by Sy /(27)%
[see Eq(2.40]. One can see that the form Gf;,, is nonuni-
versal. The limiting forms of Eq(3.42) are

It can be seen that the applicability condition of the
method used here3;,=0(1/n?) for n>1, is satisfied for
d=4. In the range 2d<4 an attempt to applyfor k=0)
the same method vyields for the integi&.41) a value of
order~b;,n*"9 that stems from the regiog~ 1/n. The in-
tegral of the inhomogeneous term in £8.16) is, for k=0,
determined by the same rangeafnd it is proportional to
n2-9. Equating both contributions according to H.65
yields G;,%b;,>1/n? with some universal coefficient. One
can see that formulé3.46 shows such a behavior for<4
where the term containing the nonuniversal numhbeis
small. In fact, it joins smoothly the exact solutig.1) for
2<d<4 found by Bray and Moor@48], which will be con-
sidered in the next section.

The susceptibilities of the ASM in high dimensions show
the mean-field critical behavior. In particular, at small wave
vectors one can drop the local contributi®40 and use
Eq. (2.16 for o, at distances far enough from the surface,
n=n*. Forgq=0 andxn,«,n<1 both transverse and longi-
tudinal CFs[see Eq.(2.16)] simplify to (2.18. CFs in the
surface regionn=n*, should be calculated numerically.
Since o11 can be obtained from the Cks,, far from the
surface with the help of relatio8.33 and the quantitieg,,
ande,, are nonsingularg,, shows the same critical behavior
as in the asymptotic regiom>1. The latter is characterized
in particular byy;;= — 3, which can be found by expanding
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Eq. (2.16 for =0 up to the second order =x<1 and Where the termC(nn')*?K ,(qn)K,(gqn’) could also be
using ko 72 following from Egs.(2.34 and(2.47). added. This solution looks similar to the full discrete solution
Finally, let us transform the CF,,/(q) to the real-space (2.50, but here the constar@ cannot be found from the

CF o,,(p), Wherep is the distance between two points in Poundary condition at the surface, since E211) is only

the direction parallel to the surface. At large distancesValid for n>1. o

n,n’,p>1 the relevant values af are small and one can use _ There is, however, another method of finding, [48]

Eq. (2.16 with §=q<c, disregarding the local contribution that avoids using the b_oundgry condmon_ at the s_urface and
(3.40. The condition for this ie?"<(qn)2n~4, which is yields C=0. The consideration starts with the eigenvalue

satisfied ford>4 andn>1. Then one comes to the MFA problem
result, which, at isotropic criticalityx =0, has the fornj5] . 1
d° i—u
— 41 Y(a,n)=—a’y(a,n), 4.3
dn? n?

T (p)°* [p2+(n—n’)2](@- 272

whose solutiony(a,n) = \anJ,(an) satisfies
1

[p2+(n+n/)2](d—2)/2

(3.48 .
f dn ¢(a,n)¢(a’n)=s(a—a’),
0
with a nonuniversal factor depending on the lattice structure.
In this expression the surface-induced term with-n’, .
which is similar to the “image” term in electrostatic prob- f da ¥(a,n)g(a,n’)=8(n—n’) (4.4)
lems, modifies its asymptotes at>n,n’ and n>p,n’. 0
These arg5,11]
and thus forms an orthogonal and complete basis on the

T (p) = 1p?= 27, =2 (349  semi-infinite interval. Then the Green function,, can be
expressed through its decomposition over the set of eigen-
for n,n’=const andp>n,n’ and functions as
opp(p)ocdind=2%m 5 =1 (3.50 )
P ' = any(an’)
, , opy=2d6| da—————, 4.5
for p,n’=const andh>p,n’. One can see that near the sur- 0 a’+q?
face correlations decay faster than in the bull€0), es-
pecially in the direction parallel to the surface. which results in Eq(4.2) without any additional terms.
Now the value ofu can be found from the constraint
IV. DIMENSIONS BETWEEN TWO AND FOUR condition in the form(2.695 with the bulk CF given by Eq.
A. Isotropic model at criticality (233, ie.,
As we have seen above, in low and high dimensions the o 1
correlation functiono,,, consists of two differen{surface nJO dz #7221 (2)K (2) - E}ZO- (4.9

and loca) terms, which are dominant in different ranges of
g. This property makes possible an analytical solution of the_ = i ) .
problem forkn<1 in low dimensions and fon>1 in high ~ This integral, which can be found in R¢#8], is zero for all
dimensions. In the range<2d<4 both terms are dominated N if « is given by Eq.(4.1) and 2<d<4. There is another

by the rangey~ 1/n, i.e., they cannot be separated from eachsolution, u=(d—5)/2 for 3<d<4, which leads to negative
other. Fortunately, the problem has an exact solution for th¥@lues ofG;, and it should be disregarded for the ordinary
isotropic model at criticality fon>1 [48], where the antici- Phase transition considered here. The asymptotic form of the
pated asymptote oB,,, far from the surface can be written layer autocorrelation functionr,, of (4.2) for gn>1 is

as[see the discussion after E@.47)]

i u’ d-3 ~—d0{1+ H 4.7
1 o= — = .
- - q 2(qn)?

Gy, ey M 5 4.1 (qn)

i _ N Here the first term is the bulk CF and the second term in the
where the choice of the paramegmwill be justified pelow. _ square bracketsiG,,/q?, is the local contribution analo-
Forn>1 andq<1 one can use the second—oider dn‘ferentlalgous to that in Eq(3.34). This form of o, is responsible for
equation(2.11) for the transverse CF, in whiap=q at iso-  the convergence of the integral in £4.6) atz=qn~1, i.e.,
tropic criticality. The latter can be solved in terms of the for q~1/n<1. The latter justifies using the long-wavelength
modified Bessel functions: approximation in the scaling regions1. Here the discrete

lattice structure does not show up in the long-wavelength
Vnn'l,(an)K ,(qn’), n=n’ 4.2 behavior ofo,,,, and in the form ofG;,,, thus 1h is the only
o =2d6 Jnn'l L(an)K,(gqn), n'=n, scale forg. In the opposite limitgn<1, one can use
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wu (see other examples from quantum mechanics in F&2i).
[1+0(z)], z<1 However, the fact that the same differential equation has

different solutions, e.g., fod=2.5 andd= 3.5, contradicts
common sense and, more importantly, impedes numerical

(4.9 solution of this equation. The latter would be the only pos-
sibility in situations where no general analytical solution is
available, as in the off-criticality case; and in that case the
loss of the boundary condition creates insurmountable diffi-
culties.

W= 2

v
K,L(Z)Zm[|w(2)—|“(2)]

to expressr,,, in the form

don[  T(1-pu)(qn|?
Tl 2 4.9 The key to the paradox is that in the original discrete
- K formulation there is no singularity &&,,,, and the values of
For d>3 one hasy>0 ando,, does not diverge aj—0 2d_Gl_n argdifferentfqr d>3_ andd<3, although they may
for any finite n. Conversely, ford<3 one hasy<0, and cplnmde in the scaling regiom>1. The (rather essential
thus the second singular term in Eg.9) is dominant and it ~ difference between the Cks,, for d>3 andd<3 stems

causes the divergence of,, at smallg. In the marginal case €ntirely from the nonscaling region~1, which is not ame-
d=3, Eq.(4.9 regularizes to nable to the field-theoretical methods. This is most pro-

nounced in the limitsd—2 andd—4, whereG,, of Eq.

Onn=

1 (4.1 tends to zero in the scaling region bat,, of (4.2
opn=2d6n |“ﬁ+co » C=In2—v, (410  yemains well defined and given by
_ . - : de 2
\;;Tﬁ:«gmgifﬁz ... is theEuler constant andy~0.1159 is o= E(liefzq”), d—>[4]. 4.12
The Fourier transformed C@.2) looks very beautiful in
real spacg48|: The latter is nothing more than the particular forms of Eq.
(2.16, the difference between the two expressions being
2dor(d—2) completelydetermined by the nonscaling region near the sur-
onn (p)= face. Ford— 2, the parameter in Eq. (2.16) disappears with

(d—-1)/2 _
(4) id=172] x in the isotropic limit, and the coefficient in front of the

1 1 (d=2)/2 surface terms i§=1. Ford—4, the parametet is of order
> P " . unity, and forg<<1 the surface term is negativé=—1.
p+(n—n")* p°+(n+n’) Thus the isotropic-criticality solution of Bray and Moore

(4.1  smoothly joins the solutions obtained fd<2 andd=4.
To close this subsection let us look at how the continued-
Here, in contrast to the MFA resul8.49), the bulk term and  fraction formalism of Sec. Il D works at isotropic criticality.
the surface-induced image term aenadditive The critical ~ Here ¢, is given by Eq.(2.63, Where\/bz—lzq in the
exponentsy and », determined analogously to E(B.49  |ong-wavelength region and;,=dG;,~1/n? can be ne-
and(3.50 are »=d—2 andy, =(d—2)/2[48]. _ glected forn>1. The quantitiesr,, and a;, can be found
In spite of the apparent similarity of the solution pre- from the first-order nonlinear differential equatiof®.66)

sented here_ ano! that of Bray and MOCE'B].’ they are not ity g=gq. The latter can be reduced to the second-order
completely identical. The difference is that in the spin VeCIONiaar differential equations and solved to give

model used here the constrajnt;| =1 on each lattice site is
obeyed, which is accounted for in the constraint equation d
(2.4). Bray and Moore used the phenomenologigélfield- a=— ﬁIn{e*q“\/ﬁ[l#(qn)+CK#(qn)]},
theoretical model with th@©(«) symmetry, which has no

constraint on the fieldp. Accordingly, the self-consistent d

determination _of the funct|oh_((z) [48], which is analogous ain:d—m{eqn\/ﬁ[Kﬂ(anC"M(q N} (4.13
to —G;, here, is more complicated and can be done only for n

the singled-dependent magic value of the coupling constant . . .
u 9 P g ping Here the integration consta@t’ should be set to zero, since

' A peculiar feature of the differential equatiq@.1d) is aj, vanishes at infinity. The consta@t. r_emains undefined
that its solution(4.2) is twofold: for a givenu? in Eq. (4.1) due to the loss of the boundary condition at the surface for

solutions with both signs of.= = |u| can be realized fod ~ the equation forf'ln- A(EIopting these results in Eq2.63
>3 andd<3. Accordingly, the eigenvalue problerd.3) ~ @nd usind ,(2)K ,(2) =1 ,(2)K .(2) = — 1/z leads to the pre-
has two sets of eigenfunctions that form two different or-Vviously obtained expressio@.2) for n’=n, with the same
thogonal and complete bases. An apparent reason for suchgditional term containing. Thus one should s&=0 in
behavior is the singularity 0B, atn=0 in the continuous Ed- (4.13. Then from Eq.(4.8) it can be seen that;, is
approach, which is, naturally, not present in the original disonsingular agn<1 and the singular terms i, [see Eqg.
crete formulation of the problem. This singularity and the(4.9)] are due solely tar;,. Another way of obtaining Eq.
concomitant loss of the boundary condition at the surfacd4.13 is to use the definition$2.59 and(2.52 to identify
could be circumvented by Bray and Moore by application ofZ,= \/ﬁlﬂ(q n) and K,,= \/ﬁKM(qn). The limiting forms of
the eigenfunction trick above, which looks like a miracle «;, and a;,, are
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S gn<1 into the longitudinal CFn, 1/q, and the transverse correla-
1 2w (414 tion length &.,=1/k. Thus o7, can be written a. in the
==X 1_ 2 4.1 R i
=4 M N i qns1 two-parameter scaling form
2gn gn|’
de o}
and Tnno(K.Q) = ——P(xy), x=kn, y=-. (4.18
L Away from criticality one more length paramete,,, ap-
1 2~ ul, qn<1 pears, but it does not complicate the problem. As can be seen
==X 12 1 (415  fromEq.(2.1D), oti(k,k,,q) can be represented in the same
n ! ——|, 9qn>1. form with y=\(x,/«x)%+y?. Similarly, the transverse CF
2qn an onn(K,0) is given by Eq.(4.18 with y=1+y?. For the

. _ . _ isotropic model or above the anisotropic crossover tempera-
The results above will be used in the numerical solution ofyre 7* [see the discussion following E.49] the longi-

the semi-infinite ASM at the isotropic criticality. tudinal CF coincides with the transverse CF.
It should be stressed that in the ASM the transverse cor-

) . .. one, which does not enter into the ASM equatid@s)—
The transverse correlation functian,, behaves simi- 3 10 is a subordinate quantity. This feature, which should
larly for the isotropic model slightly abové. and for the  pe 15 some extent shared by the weakly anisotropic classical
weakly anisotropic model at or slightly abowg. In both  Heisenberg model, provides a contrast to the usual scaling

cases the behavior af,, is modified in comparison to that  scheme using the divergirg, as the main scaling parameter
at isotropic criticality due to the finiteness of the transverse(see, e.g., Ref§11,12).

correlation lengtrg., = 1/x, wherex is given by Eq.(2.34). Let us now study the limiting forms of the scaling func-
For 0<k<1 the func.thn Gy, has in the scaling region ion ®(x,y). The bulk limit ®*K(x,y) =1/ is clearly real-
n>1 the form generalizing Eq4.1): ized for z=xy=qn>1. The isotropic criticality limit

12 <I>'5°°“‘(x,y_)=2xlﬂ(xy)K#(xy) studied abovg is aphleved if

_ATH g(xkn) 4.16 y>1 provided thak<1. Both of these conditions imply that
o dn? ’ ' 1/k becomes greater than other length scales.x®et the

quantitiesG,,, become exponentially small, and in the long-

For kn>1 one can expect, as is the case in other dimension¥avelength regionryy is given by Eq.(2.16), as in high
[see, e.g., Eq3.44)], g(kn)=e 2" with somen-dependent dimensions. This implies the scaling function

prefactor. Analytical calculation of this prefactor seems to be

impossible. In the opposite limi can be written in the form PFHx,y)=[1-e 2XTxN]ly, (4.19

~1_ r ¢ where x.=k\g~1 is the scaled extrapolation length. This
glkm)=1-ag(xn)’,  xn<l, .19 expression could also be written in the form of the type
(2.16, which makes no difference in the relevant region
<1. One can see that the longitudinal CF at criticality does
' not diverge forg— 0 at any finite distances from the surface,
as in the MFA. We have seen above thgt 1 ford=1 and
Xe=0 (in fact,\.~1) for d>4. Actually, for all values ok

one has

with r>0 andayg~1. There is no guess about the concrete
form of g(«n) in the intermediate region and, moreover
even if g(xn) is known, one would not be able to find a
general analytical solution for the differential equation
(2.11). For the field-theoretical mod¢#8] the question of
how to generalize the choice of the coupling constarbr
«# 0 [be it the magic value* (d) or something elsfurther
complicates the problem and makes it quite intractable. For @(x,o):{
the ASM, however, the situation is not so hopeless: Some

features of the off-criticality behavior can be studied analyti-

cally using available small parameters; its general propertie@nd the curvesb(x,0) for all d should go between these

are well described by the scaling, and the rest can be dorgraight lines. Fox<1 in the wide rangey<1/x one can
numerically. write [cf. Eq. (4.9)]

2(1+x), d=1

2x, d>4, (4.20

CPA—pw)
I'(l+pw)

xy\ 2
7) F(Y)}, (4.21

1. Scaling form of correlation functions D(x,y)= X 1
)72

It is convenient to start the consideration with the longi-

tudinal correlation functiors,., . The latter satisfies in the whereu = (d—3)/2 and the scaling functioRi(y) describes
scaling regionn>1 Eg. (2.1 with g°= K§+ g and G, the crossover from the zerpto the isotropic criticality limit
given by Eq.(4.16. In the generic case of the anisotropic at y~1 and satisfied(=)=1, as well asF(y)~y~2* for
criticality the longitudinal correlation length., goes to in- y<<1. The latter requirement serves to kill the singularity in
finity and one hasc,=1/£.,=0 in Eqg.(2.11). In this case, q for «#0; as a resulto,,(«,0) behaves similarly to
for n=n’ there are only three length parameters enteringr,,(0,q). For 2<d<3 one can simply use
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F(y)=®(x<1y)/PSM(x<1y) (4.22 where z=xy=qn, the first term corresponds to isotropic
criticality,
to find F(y). The function®(x,0) shows a crossover from
d(x,0)~xmn@=21) for x<1 to d(x,0)=2(x+x) for x Q=ay(; —udIy'<1, (4.26
>1 [see Eq(4.19].
One can see that only the second, singular, term in Ecand the functiorE ,(z) reads
(4.21) makes ax-dependent contribution te%% in the limit

- 2 r+2u
q—0. Specifically, for 22d<4 one has = k2 fz o102 p 2420 5 CuZ
| | E.(2)=K(2) ZOdtt [ —Cc t™*]+ K5 (2) 2
Xondee 229 k,0) 2,473, (4.23 ]
o 3 o +|i(z)f dt t1K2(1), (4.27)
which in addition shows that the susceptibility increases z

away from the surface, as it should. In the isotropic case

from Egs.(2.34 and (2.47 it follows that k~74@~2) thus ~ With zp<1, andc,=[2“T'(1+u)] ' is a factor from Eq.
o229 e 0)~ 7~ Y1 with yy,=(3—d)/(d—2) [11]. This re- (4.8). The part of the expression above without the terms

it ibility wi ini is just wh ins from th ightf
sult means that the surface susceptibility with respect to th€ontainingc,, is just what one obtains from the straightfor-

surface field diverges in the ASM only fai<3. The leading Ward perturbative scheme using the Green funciiér®).

terms of x,n, near the surface are given by The additional terms witle,, in Eq. (4.27) can be rewritten
in the formK? (z)c2z5"%#/(r +2u) =CK%(2), i.e., they can

n, d>3 always be added to the solution and their amplitude should

be fixed from the boundary condition at the surface. Since

_n In[1/(xn)], d=3 (4.24 this boundary condition is lost in the continuous approxima-
Xznn™) pd-2,d-3 2<d<3 ' tion, the exact form of these terms in E@.27) has been

chosen above from the requirement that the t@mﬁ(z),
which was ruled out above with the help of the eigenfunction
trick, does not appear again in the resulting expression for
d(x,y). With such a choice one can sgf=0, because the
first integral in Eq.(4.27) converges at the lower limit. Now
one can see that the terms with cancel each other, if
+2u>0, whereas in the opposite case they do not. gor
<0 (i.e.,d<3) the functionZ ,(z) can be rearranged as

k1, 1sd<2.

For the isotropic systems in the range <2 the bulk tran-
sition temperature is zero. With respect to the latjer,,
shows the critical behaviol,,,~ 0 711 with y,,=1/(2
—d) [see Eqs(2.34 and(2.47)]. This result is complemen-
tary to that for 22d<4 quoted above, and it shows similar
divergence wittd=2 approaching from the other side. In the
anisotropic case this low-dimensional critical behavior is re- _ ~
alized in the range>7*, wherer* is given by Eq.(2.46). B (2)=[2sinmu) 7)?KK2(2) + B ,(2), (4.28
In the vicinity of 6., i.e., 7<7*, the mean-field critical be-
havior with y,,=— 3 is observed. where

It should be stressed that the critical amplitudes in the i} .
nonscahng region near the'surfaoe71, cannot be found in EM(Z)IKZ(Z)f dt t”sz(t)JrTz(z)f dt t1K2(t),
the continuous approximation. Here one should numerically # 0 " # z #
solve the ASM equations on the lattice. On the other hand, it
can be shown that the critical indices remain unchanged in T2/ =12(7)— ; 2p2
the nonscaling region. The CFs in this region can be obtained (@)= =2 sinmp)lmK,(2) (429
from those in the region €n<1/k with the help of the gnq
formulas of type(3.33. Since the quantitieg,, and «,, are

all nonsingularo3; differs from the result of the continuous — (= T 2

imation extrapolated to=1 b ical fact K=f dt t Y KE(D) — | 5o | cht?
aplproxma ion extrapolated to=1 by a numerical factor 0 " 2 sinmp)| “
only.

=2"30(r/2+ w)T(r/2— w)T?(r/2)T ~(r).

4.3
It turns out that the forn{4.17) of the functiong(x) for (430
x<1 determines the asymptote of the scaling functdy) In Eq. (4.30 the subtraction term witl,, is present only for
of (4.21) for y>1, and in the regiox<1, y>1 everything r+2u<O0; the resulting expression is valid for both signs of
can be calculated analytically. Fge>1 the solutiono,, of r+2u. The representation d& ,(2z) in the form (4.28 for
Eg. (2.1 at a pointn<1/k stems from the intervaln  w<O0 is convenient because of the cancellation of the diver-
—n"|~1/g<1/x aroundn; thus one can usg(«n) in the  gence at—O0 terms inl2(t). For u=0 (i.e.,d=3) expres-
form (4.17 and calculate the correction &, perturbatively  sjon (4.28 remains valid as well, although the subtraction
in aq(«n)". The resulting expression for the scaling function makes little sense an# ,(z) can simply be written in the
®(x,y) of Eq. (4.18 has the form form (4.27) with zy=c,=0.
The parameters anday in Eq. (4.17) should be chosen
O(x,y)=2x[1,(2)K ,(2)— QEM(Z)], (4.25 self-consistently to satisfy the spin-constraint condition. Here

2. The gap tail of the scaling function F(y)
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it is convenient to subtract equatiof%65 at and away from
isotropic criticality from each other. Thus one can write

f:dy Yy TR, y) ~ D (x,y)]=Mg, (4.3

where M is given by Eq.(2.42. The integral on the left-
hand side of Eq(4.3)) is determined byz=xy~1, i.e.,y

~1/x>1, which justifies the approximations made above.

With the use of Eqs(4.25 and (4.26 one can rewrite Eq.
(4.31) in the form

2a4(3—

2
)fd 2727 (9=My.  (4.32

d2r

This equation should be satisfied for all valuesxaf «n,
thus

r=d-2. (4.33
Then Eq.(4.32 fixes the value ofy:

2Md -

ag= d=2)(4- d): , EEJ dz=(z). (4.39

The scaling functior(y) in Eg. (4.21) can now be iden-
tified taking the limitz<1 in Eq. (4.29. This leads to

F(y)=1+2QKsin(mw)/m in the whole interval 2d<4.
The latter can with the use of E4.26) be rewritten as

F(y)=1+A4ly", y>1, (4.35

where

man wu)T (d 5/2)
4(d— 2)H

(4.36

4=

A remarkable feature of E@4.35 is that the tail ofF(y) is,
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respect tay(xn)" for d= 3 [should the higher-order terms in
Eq. (4.17 be taken into account?As we will see below, the
numerical results are in excellent agreement with the
asymptotic behaviof (y)=1-0.539%? for d=3 and y
>1.

V. NUMERICAL RESULTS
A. Variation of G,

In the symmetric phasen=0, the ASM equations were
solved numerically in the following way. For a given varia-
tion of G, and the value of the wave vectgrin Eq. (2.6),
the transverse Clo,,(g) can be found from Eq(2.5). In
practice, the formuld2.63 was used, wherer;, and a;,
were determined from the recurrence relatiqg@ss1) and
(2.62. The result foro,,(g) can be put into the constraint
equation(2.4) to obtain, after the integration over the sys-
tem of nonlinear equations f@,, . Again, it is more conve-
nient to work with the deviations from the bulk values and to
use the constraint equation in the fotth65 where the sub-
traction is done analytically to avoid the loss of accuracy.
The integrals oveqg have been performed in all cases over
the whole Brillouin zone, even in low dimensions. For the
continuous-dimension modé¢kee Eq.(2.36)] the range 0
=qg=<A was divided into three or four log-spaced intervals
(e.g.,[0,10 *A], [10 *A,10 3A], etc) and the Gaussian
quadratures over 10 or 20 points were used in each of these
intervals. For the hypercubic lattice the products of Gaussian
quadratures were used, and the intergation was done with
respect to the nonlinearly scalgccomponent®); = qil’p with
p=3 to redistribute the contribution of the singularity et
=0 more uniformly over the Brillouin zone. In fact, similar
nonlinear transformations were also done for the continuous-
dimension model. The resulting system of equations for the
deviationsG,, was solved with a nonlinear equation solver
based on the Newton method.

For the numerical solution in the semi-infinite geometry,
the boundary condition at=c< in Eq. (2.62 should be re-

for d<4, anomalously long compared to that in the bulk,placed by one at some,, 1. For the isotropic model at

FPuk(y)=y?/J1+y?=1-1/(2y?). The sign ofA, is deter-
mined byu = (d—3)/2, and one ha8,=0 ford=3. This is
in accord with the structure of E¢4.20); in all casespb(X,y)
is smaller thand®'s°®(x,y), as it should be. In the limit
d—4 the integraE of Eq. (4.34) diverges at the upper limit
andAg regularizes toA,= 3. Ford— 3 the quantityK given
by Eq. (4.30 diverges, and thus one can neglé&(z) in
Eq. (4.28. In this limit Ay regularizes to Agp=

criticality one cannot just set;, =0, sinceay, slowly

decays witm [see Eq(4.15]. This would spoil the behavior

of correlation functions at small wave vectors and lead to an
unphysical gap for d=<3. Fortunately, the asymptotic be-
havior of a1, in the scaling regionn>1, is given by Eq.
(4.13 with ¢’ =0 and it can be used as the boundary condi-
tion at infinity. The purpose of numerical calculations at iso-
tropic criticality was to check the scaling solutiéf.1) and

—47Y3T2(1/4)~ - 0.539. The same situation takes placeto study the nonscaling effects mt-1. The quantityw was

for d—2, where one obtainé\,= — 3. It should be noted,
however, that ford close to 2 the tail ofF(y) becomes
extremely long[see Eq.(4.33]. The validity of the present
approximation for=(y) requires, fod— 2, very large values
of y, which can become incompatible with the conditinn
=xy<1 needed to represest(x,y) in the form(4.21). Ac-

tually, d=2 is a special case with a logarithmically decayingcan use the boundary conditiosy,

gap tail(see Sec. Il B 3

The quantityay given by Eq.(4.34) is positive for3<d
<4 and negative for 2d<3. At d=3 one hasag=0 due to
the divergence oK and henceZ. The latter could raise

determined self-consistently as a function of @lj,, using
the asymptotic form ofxy, at n>1 andq=0 [see the first
limit of Eq. (4.14)]. In this way the valugu=(d—3)/2 has
been confirmed.

Above 6. or at the anisotropic criticality £>0) the in-
homogeneities decay as exi#xn) [see Eq(4.16], and one
=0 for Ny k.

Here the value ok should be taken rather small to study the
details of the scaling functio®(x,y) in Eq. (4.18. Indeed,
to reproduce the limik<<1 one should havan<1, where
n* ~10 is the smallest value af for which the continuous

questions about the validity of the perturbation theory withscaling solution holds. This implies, in turn, large values of
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1 10 100 n 1000 . 25 3.0 3.5 4.0 4.5 d 5.0
G n/G'f;>1 . L FIG. 2. G, at isotropic criticality vs lattice dimensionality.
A The asymptotic scaling resul.1) for 2<d<4 and the asymptotic
(b) Deviations from the scaling solution I formula (3.43 are shown by dashed lines.
44 B (4.2) has also been confirmed for other valuesdofround
d=3; the results do not differ much from each other in the
——d=3 log scale and thus they have not been shown. In four dimen-
3] —0—d=30 i sions the results can be fitted with formuia.47 with a
—4— d=25 =e3~20, which implies significant corrections to the loga-
—v—d=35 r rithmic approximation. In fact, the nonuniversal numbes
A slightly larger for the hypercubic latticedE 3), which can
2 i be seen in Fig. (). In dimensions higher than fou6,,
follows formula(3.43. The coefficient in Eq(3.43 depends
N on the lattice structure and is clearly different fibx=5 and

M —\A:ﬁ§ —
1 T ?"I' T I"%Qf?f?:' d=5.0.
t 2 3 4 5 6 7 & 9 10 Deviations from the asymptotic solutiq@.1) in the re-
gion near the surface are shown in Figh)l There is a clear

FIG. 1. Gy, at isotropic criticality for different hypercubic and  difference between the values dB,, for both three-
continuous-dimension latticea) general view;(b) surface region,  dimensional lattices.

deviations from scaling. The dependence dB,, at isotropic criticality near the

Nmay. Calculations were done for-17 down to 10°8, which surface ord |15 sh(_)wn in Fig. 2. In the.lim-idﬂz the val_ue
corresponds tox=2d(1— 7)~2.5x10"* at the aniso- 4611 tequ tos, Whlch means that the limiting valug Q‘l is
tropic criticality for d=3. For suchx the valuen,, & aSgiven by the first term of EQS.Q), where, at _cr|t|pal|ty,
=10 000 was used, which corresponds tng,~5. Natu- G=1. On the other hand, alb,, with n=2 vanish in the
rally, in this case the system of equations ®j, was not limit d—2, in accord with Eq(3.15), which disappears for
solved on each of 10 000 layers. Instead,fer10 only the ~ «—0.
“representative” layers with an exponentially increasing The algorithm for solving the system of nonlinear equa-
spacing between them were chosen to solve the equatioriéons for G,, based on the Newton method, which was used
The values ofG;,, between them were interpolated with the here, shows instability fod=<2.3 andn,,=10. This insta-
help of the formulaG,,= (a/n°)exp(—2«n) with the values bility is responsible for the lack of points in the left part of
of a andb determined fronG,,, at the ends of the interpo- the n=10 curve. The reason is that the integral in the con-
lation intervals. In all cases the number of unknowns did nostraint equatior(2.65 becomes more and more sensitive to
exceed 50. Computations could be performed on a 486DXhe region of smalty where the integrand may become infi-
66-MHz laptop. nite due to a negative gap arising for some setS gf in the
The results foiG,,,, as defined by E¢2.12 for all val-  course of iterations. Away from isotropic criticality, the gap
ues ofn, are shown at isotropic criticality for different hy- in the spin CFs stabilizes the algorithm. For each dimension
percubic and continuous-dimension lattices in Fig. 1. Thel there is a minimal value of the anisotropy-I for which
general view, Fig. (@), shows that the analytical res@#.1)  the system of nonlinear equations fGr;, does not show
is well obeyed in three dimensions outside the surface reinstability for n,,,, large enough, if the starting variation of
gion. This result is universal and independent of the lattice54, is chosen sufficiently close to the actual one. The latter
structure; it is the same for the simple-cubic lattice=(3) is very important and necessitates using small variations of
and the 8 continuous-dimension latticed&3.0). Formula the parameters, such ds 1— 7, Ny, €tc., in low dimen-
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FIG. 4. Scaled form ofG,,, away from isotropic criticality.
FIG. 3. G, at the anisotropic criticality in two dimensions vs Dashed lines are the fits describing crossovers between different
the anisotropy parameter. The HTSE result$2.68 are shown by  power laws.
the dashed lines.

the functiong(xn) in Eqg. (3.16 are quite pronounced. For
d=2.0 the functiong(xn) is nonmonotonic: apart from the
exponential decrease ah>1 it shows a singular positive
deviation from unity forkn<1. The fit in Fig. 6 suggests
g(kn)=1+2\kn for kn<1. One can see from Fig. 5 that
the correction term ing(«n) has the negative sign fai
=1.5. The casd=1.75 seems to be marginal. The values of
Gy, in Fig. 5 nicely follow the dependend8,,=G3{RP"
whereG{PP"*is given by Eq.(3.14) with the additional fac-
tor exp(— 2Kn) in the whole range ofi. This is, however, not
an exact solution to the problem. The plot®f,/G5""*in
dimensional model at criticality, the dependences&ef on  Fig. 7 shows that fokn=1 this function begins to increase
the anisotropy parameter are shown in Fig. 3. Calculations With oscillations. These oscillations are not an artifact of
down to 1— »=10"* were possible here, since the value of cutting the ASM equations at the maximal layer number
Nmax Was chosen to be about 50, which is significantlyMmax- Numerical calculations with different values ofya
smaller than the requiren,;, 1/x. The latter introduces a give the same results. Although the ra€q,/G3"*is not
significant gap in the spin CFs, which is the artifact of cut-exactly 1, its proximity to 1 in a wide range OfIS remark-
ting the ASM equations at,,,< 1/x. This gap stabilizes the able, taking into account the strong dependencg gfonn.
solution of the ASM equations. On the other hand, the values

sions. The minimal values of the anisotropy- % are about
3Xx1078 for d=2.0, 10 for d=1.75, and 510’ for d
=1.5.

Contrary to the implication of the scaling solution of Bray
and Moore, Eq(4.1), G;,, do not go to zero and do not even
show any singularity atl=4 for any finiten. This is due to
the correction-to-scaling termsee Fig. 1b)] , which be-
come more and more pronounceddadeviates from 3. The
crossover from the solution forG,, in the range
2<d<3 and that ford>4 is described by Eq3.46).

Additionally, in four surface layers for the two-

of G, in several layers near the surface are pretty robust and G,
insensitive to this defect of,,. One can see that in the 1p24 " . il |
isotropic limit, »— 1, the value ofG,; tends to3, whereas all ] °m d=20 l—n=10"
other G4, tend to zero logarithmically in accordance with P RNTRRR
Eg. (3.195. In the opposite limit,y<1, the HTSE results E P
(2.68 are recovered. ]d=1 5\\.‘&;'“;-;&
In Fig. 4 the calculated values d@&,, for continuous- 1044 \‘*.,‘«f:
dimension lattices away from the isotropic criticality are rep- ] ™ :5:;%
resented in the scaled form. The results &+ 5.0 show 5 =115 }‘Ea);?ign
crossover from E@3.43 to Eq(3.44 asx=«n increases. A 1073 fagatee e 1
similar crossover fronG;,~1/n? to G;,~e~ 2<"/n%? takes ] g‘3‘-’?_333«'3 .
place ford=4.0. The scaling is, however, not perfect here 103 g"%ggg
because of the logarithmic corrections. et 3.0 the result 1 d=1.5,1.75, and 2.0, .':ongg
crosses over t@;,~e 2“"/n'* for kn>1. Note that there 107 anisotropic criticality Gun'r, °§§§§g
is no analytical solution fofG4, in this region. Pt °§§°
The calculated values @, at the anisotropic criticality 160 T '1'(')1 o "'1'(')2 T n " "1'(')3

(or above criticality in low dimensions §=1.5, 1.75, and P
are shown in Fig. 5. One can see that the theoretical formulas FIG. 5. G,, in low dimensions at the anisotropic criticality.

(3.14 and(3.15 are obeyed starting from=10, although Dashed lines represent the theoretical formu®d4 and (3.15),
corrections related to the finite value efand described by the latter with the fitting parameter=e=2.718.
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FIG. 6. Gy, for d=2.0 at the anisotropic criticality: scaling FIG. 8. Reciprocal of the spin CFs at isotropic criticality in the

function g(«n) and deviations from scaling near the surface. scaling regionn>1 for different lattice dimensionalitied. The
dashed line is the bulk solutiof2.33.
B. Correlation functions L. i ) ) .
] ] Deviations from the scaling solutio@.2) in the region

After G, has been determined, the spin CFs can be foundear the surface)~1, are shown in Fig. 9. The correlation
from Eqg. (2.63 and the recurrence relation@.61) and  fynctions in different layers are related to each other by Eq.
(2.62. The results at isotropic criticality in the scaling region (3.33, where the quantities,, and a/, are constants in the
n>1, which illustrate the analytical solution of Bray and limit g— 0 and they approach the bulk valueof Eq. (2.32)
Moore (4.2) for 2<d<4, are shown in Fig. 8. One can see i increasingn. For n>1 small deviations ofx, and a/
that for 2<d<4 the solution satisfies,,<o,," for small from « are responsible for the scaling form of,, showing

bulk
wave Vectors anar,> o, for large wave vectors. Fal - oy a small change whem changes by one. By contrast, in
everywhere, which contradicts the nhe nonscaling regiomp~1, the spin CFs change signifi-

=4 one hasop,<otuk

constraint equatiof2.65. In fact, ford=4 the scaling solu- cantly from one layer to another and they acquire in the
tion of Bray and Moore breaks down, and one has to takeangeq<1 nonuniversal numerical factors, relative to the
into account thepositive local contribution too,, at q~1  extrapolated scaling solution. These factors, which are
[see Eq(3.40], which balances the constraint equation. Forshown in Fig. 9, tend to 1 as some negative powens tzr
d=2 one hasr,,>aba" everywhere, and the constraint re- from the surface. The accuracy of the calculations is, how-
lation is violated again. In fact, fal<2 the form ofo,,is  ever, not high enough to determine these powers precisely.

Chagngd by the gap in the region of small whereo,,  One can see that the deviations from scaling are quite large
u

<opn', thus ensuring the constraifgee Fig. 1D and slowly decaying for the dimensions well aboVieB Eq.
(3.46)]. On the other hand, fat well below 3 the deviations
G1,/G o from scaling are mainly localized near the surface. Note the
12—l
[l \‘\ . . . P 1
': ;\* Anisotropic criticality:¢ = 1.75 I ia (snn/cgll}z» ), q—>0
. la Isotropic criticality:
1.3 d=13.5 Deviations from the scaling solution
’ N near the surface
124 2,
* A
iy x Saa, s, d=3.25
' * % x * eoa 4 & 8
XKKx % x X % % % %
; g : 10000000000 0. 0.0 . 0. .0 .0 . .98
' 1.04-¢ DEE‘E‘?Q'U Uo\ 8. . 9‘ o8
RN Y = 4 o .
0.8 0.9 'i' * \4=30 d =3 (sc lattice)
T M LA | M AL | ' AL | ' L o
100 101 102 108 n 1 a=2s
0.8 T T T : .
FIG. 7. G4, for d=1.75 relative to its approximation shown by 0 é 1|o 1|5 2'0 2|5 n 30
the dashed line in Fig. 5. Overlapping solid and open symbols cor-
respond to different values of the maximal number of laygs in FIG. 9. Deviations from the scaling solutig#4.2) for o, in the

the numerical calculation. nonscaling regiom~1.
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FIG. 10. Reciprocal of the longitudinal C#2Z in the surface FIG. 11. Dependence of the gap irf on the anisotropy at

layer (1=1) in low dimensions at anisotropic criticality. Dashed anisotropic criticality in low dimensions.

lines represent the asymptdtg+ Kl(q,x)]lz with Kl(q,K) given

by Eq.(3.3]) for g>«. It can be seen that fal=1.5 the results for the models
with different anisotropies scale with each other. This con-
firms the concept of the strong scalifdpwn to the surface

difference between the results for the simple-cuttlc: @) layen in low dimensions, which has been suggested in Sec.

lattice and the three-dimensional continuous-dimension IatIII B2 For d=175 th ing in Fig. 10 is i let
tice (d=3.0). For the latter the deviations from scaling are - ror d=1. € scaing In rg. IS Incomplete,

anomalously small, which suggests the existence of an exalfich can be explained by the values oot being small
solution. If one assumes that the scaling formogf, holds enough. Fod=2.0 the results do not scale, although they do
for all n, then from Eqgs.(3.33 and (2.59 it follows that not deviate far from each other, becadse?2 is the marginal

N ey N Yy _ : dimension between the strong scaling and the asymptotic
gir:/erginct/nofalgg(czlnsa %;L;/_n)gognl o?).te;li_r?gn, using the (n>1) scaling. This behavior is illustrated in greater detalil

in Fig. 11, where the gapj,(0,x) of o7} is plotted as a

6 function of the anisotropy. Whereas the dependencesl for
n= , d=3.0, (5.9 =1.5 andd=1.75 saturate in the limit ofe=+2d(1— %)
4+\1+1n+\1-1n going to zero, which confirma ;(0,<) = x for weakly aniso-

tropic models, the almost perfectly straight line over several

which is indeed a rather good approximation. It has thedecades fon=2.0 suggests, (0,«)« In(1/k) in two di-

. — 2 N mensions.
groi)ir1%2?1261;20\/%:_01'(;;2/%4? 1)020; fr(])io%/\’/ir?n?rgrf nvl?r:kfri- The numerical result fod=2 above is quite plausible,
call_caiculations Myore Careful.analysis shom?s however, th ecause logarithms usually arise in marginal dimensions.
) , , ) - - 1
the formula above is not an exact solution for the ASM equa- his would imply something likex;nr>« ~/In[1/(xn)] for

. : : " d=2 in Eg. (4.24, where the corresponding position has
gﬂgz' where discrepancies of the tyn@ In 2~0.980% 1 been left empty. It seems to be, however, the third occasion

. L L ... in this work when numerical calculations suggest some
At anisotropic criticality, which is the only type of criti- 99

litv in low di . h . 27 Th qualitative features that do not follow from analytical con-
cality in low dimensions, the generic CF g The trans-  gqerations. Fod=2 the calculation with logarithmic accu-

verse CFa,,, as well aso?? itself above criticality, can be racy leads to another dependence\gf0,«), which is given
obtained from the latter by the simple change of the wavety Eq.(3.37). The applicability of Eq(3.37) requires, how-
vector argument. The numerical results &df, in the surface  ever, such small values of the anisotropy that numerical cal-
layer (n=1) at anisotropic criticality in low dimensions are cuylations cannot be performed, and for larger anisotropies no
shown in Fig. 10. One can see the gap and the lipar other possible analytical approximations are seen.
dependence at small in accord with Eq(3.29. The values To shed some light on this puzzle, it is convenient to plot
of the gapA;(0,«) and the stiffnes#\ in Eq. (3.29 deter- q9~14,, as a function of logj over the whole Brillouin
mined from the fits of the numerical data exceed those calzone. The area under the curve is proportional to the integral
culated from Eqs(3.28 and (3.30. The reason for this is overq in the constraint equatiof?.65), and the regions af

that the first-order perturbation theory®y, leading to Eqs.  making contributions into the constraint can be well identi-
(3.28 and(3.30 is valid for small wave vectors only in the fied. Such plots show that the integral is dominateddby
dimension rangei<1.5, as was explained after E@.22.  ~1/n for d>2 and byg~ « for d<2. In the marginal case
On the other hand, the asymptaige(q, ) for g>«, which d=2 the results for the lowest manageable anisotropy,
is given by Eq.(3.3), works nicely for d=1.5 and 1—7=3x%10 8, are shown in Fig. 12. One can see that the
d=1.75. area under the bulk solutiofthe solid ling coincides with
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1 Anisotropic criticality:
1'4'_ d=20, 1 -1=3x1073,

1.24ie., k=3.46x107

1.0+
0.8+

0.6+

FIG. 12. Transverse C¥&,, in two dimensions. Circles: numeri-
cal results fom=1 andn=20. Dashed lines: Bessel-function solu-
tion with fitted gap, as explained in the text.

that under the numerical solutions for=1 andn=20 (open
circles. The curve fom=20 merges with the bulk curve for
g=1/n. Although the distance between~1 or g~1/n on
the right-hand side ang~ « on the left-hand side is several

decades, it is not large enough to apply the logarithmic ap-

proximation, i.e., to integrate the solution obtained for
<(q<1/n between these limits. The applicability condition
for the formula(3.37) is clearly not satisfied. Nevertheless,
as we have seen in Fig. 5, formul@.15 is in reasonable
agreement with the numerical results f85,, for small xn.
Thus one can use the solutié4.2) for o, in terms of the
modified Bessel functions of index given by Eq.(3.35.
This solution withg=q+A,(0,x) is plotted with dashed
lines in Fig. 12, where the gap valuAs(0,x) =5.2« (taken
from Fig. 1) and A,«0,x) =2.7« were used as fitting pa-
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FIG. 13. Scaling representation of for d=2 andd=1.5.

rameters. The agreement with numerical results is rathebashed lines: free solutiond(x,y)=(1+e 2¥)/y for large and

good. On the other hand, 1/In¢d)/is not small enough to use
the simplified form (3.3 for o,,. The corresponding

small values ofy.

curves deviate strongly from the numerical solution in Fig.=1.5. The latter also confirms the strong scaling in low di-

12, thus the final resul3.37) is not realized. And analyti-

mensions.

cally calculating the constraint integral with the gapped The results ford(x,0) in the whole range of lattice di-
Bessel functions to obtain the simple empirical formulamensions are shown in Fig. 14. All the curves are bounded

A1(0,x)xkIn(1/k) seems to be impossible.

Now let us consider the numerical results for the longitu-

dinal CFo?7 in the scaling representati¢d.18). The scaling

function®(x,y) for d=2.0 and 1.5 is represented in Fig. 13.

One can see that the asymptotic scalifay n>1) is well
obeyed. Fod=2 in the surface region~1 there are small,

by the ones representing the exact expressions of4E20).
For smallx the results are in accord with E¢4.24). The
asymptotic form of the curves in the regio®s>1, which is
given by the limity—0 of (4.19, determines the extrapola-
tion length\ .. The latter is represented in Fig. 15 as a func-
tion of d. One can see that fat<4 the extrapolation length

seemingly logarithmic deviations from the strong scaling, ass of the order of transverse correlation length , which is
was suggested above for the two-dimensional model. Herey “mesoscopic” length scale between the lattice spaeipg

for smallx the results can be fitted with power-law functions,

the exponent slowly decreasing with In particular, for
1-»=3x108 this exponent is 0.195, which roughly
agrees with 1/In(%¢) = 0.125 following from Eq(3.36). For
large and small values gf the numerical results contain the
features of the free solutio®(x,y)=(1+xe 2Y)/y, as was
argued in Sec. Il B 2. In facd=2 is a marginal dimension,

and the diverging longitudinal correlation lenggh, .

For d>2 the scaling form of the correlation function
holds in the asymptotic regiam>1. The general view of the
scaling function®(x,y) is shown ford=3.0 in Fig. 16. One
can figure out how the results look like for other dimensions
with the help of Figs. 13 and 14. The results for the wave-
vector scaling functior=(y) defined by Eq.(4.21) or, for

and ford<2 the free solution is reproduced for large and2<d<3, also by Eq(4.22), are shown fod=2.5 in Fig. 17.

small y much better, as can be seen from the plot dor

The dimensiord=2.5 is especially convenient since here the
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FIG. 14. Scaling function at zero wave vectdr(x,0), in all caling functiorb(x,y) of (4.18) for

dimensions. ~
above criticality 2% is a function ofg,= x2+q?; thus

coefficient Ay in the gap tail ofF(y) given by Eq.(4.35 there are singularitie_s i’ atq=*ix,, Which cause the
simplifies toAg,= — 4742/ T2(1/4)~ — 0.539. In order to re- decrease of cor_relatlons of the type exp{r) in the real
duce the value of=xy=qn, which should be small accord- space at large distances.

ing to the definition ofF(y), the solution for the CF in the

first two layers has been used. CalculatiorFgf/) with the VI. DISCUSSION

help of Eq.(4.22) yields the curves of solid triangles in Fig.

17. These curves do not scale with each other, because stro In this paper, a comprehensive analysis of the behavior of

scaling does not hold fod=2. Nevertheless, correlation Eh sedm|-|nf|n|'r[1e anltsotro_;z_lc s_pherlcal T?jdefllhat a_r][_d allbove
functions in the asymptotic regiam=>1 differ from those in I'e or flr;;’irytp tase ra?]_5| r|10n IS ﬁresen € .'t i e cr |c|_a <t:_ou-
the nonscaling region near the surface only by numericaf N9 of fluctuations, which usually necessitates application

of the e expansion or purely numerical methods, dies out in

factors, which are represented in Fig. 9. Inserting these fac;[-h. del due to the infinit ber of spi i d
tors into F(y) makes the results fon=1 andn=2 scale. IS mociel due to the Infinite nUmber of Spin components an

These corrected results are in excellent accord with thgwakes It exe_lctl_y solvable. On th? other hand, the more im-
asymptotic formulg4.35 for ys1 portant qualitative effects associated with Goldstone or

L 77 . . . quasi-Goldstone modes in weakly anisotropic magnetic sys-
Fig, 17, has the same cusplike form with a gap descrbed E™S &6 PIOPerly described by the ASM. The most impor-
Eq ‘(3 2’9) as in low dimensions. The linegrdependence in Ya_mt of t_hese effects is the anlsot_ropy?lnduced ordering in low
thé dénor,ninator of Eq(3.29 sa)./s that, in spite of the gap dimensions. The ASM is superior with respect to the usual

. 77 ’ L ' spherical model, which cannot incorporate anisotropy and
thg correlguory ]ength of,, near the surface.|s infinite at the yields unphysical results for spacially inhomogeneous sys-
anisotropic criticality. Actually, the correlation lengths near

ems because of the global spin constraint. On the other
the surface are, in the ASM, the same as in the bulk. Indeeé, 9 P

K?\,e 10 F:(y)l L 1 L 1 2 1 L 1 1 1 2 1
' : ' : ' : ' 1 d=25  1-n1=107%, ie,x=2.24x10" I
4 B g -9 oo 6 4 1
10 .\,\ . 6-6-99'666%60?????? AAAAAAL
] e Extrapolation length : : wee?@ﬁ"“uuu::""”v"v v
0.84 \ in the semi-infinite ASM AA‘A:vvyvvva"vv' i
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0.6 \ 5 4 - n=2raw
e 00, v - n=1,corrected|
) » i .
%%ee% & — n=2,corrected
0.44 - ”Ne#vww [
0.2 . - 1-0.539512  Fy)/y'2 e cgg(x«l,y/ I
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FIG. 15. Extrapolation length vs lattice dimension. FIG. 17. Scaling functior(y) of (4.22 for d=2.5.
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hand, the ASM is much better defined than its phenomenosurface, this strong singularity does not allow one to avoid
logical field-theoretical analog, the infinite-componept  the problem by replacing the surface region by some effec-
model, and it can always be solved numerically. tive boundary condition, as can be done in the MFA. As a
Unlike the renormalization-groufRG) approach, which result, a numerical solution is principally ruled out for the
is based on the expansion about the dimenslertd and semi-infinite ﬁ8|d-theoreticao(oo) model. In contrast, no
becomes inefficient for low dimensions, the ASM describesSUch problems arise in the ASM, which is formulated on the
the whole range £d<o in a uniform way. The price for lattice from the beginning. Moreover, continuous dimension-
that is the rather complicated character of the ASM system oft/iti€s (in the directions parallel to the surfgoean be intro-
equations in constrained geometries, which makes applicgluced into the ASM as well, while preserving the semi-
tion of numerical methods necessary. Nevertheless, there al finite dimension d|scre_te. The_ consideration in this paper
a number of analytical solutions of the semi-infinite ASM in shows that t.he nonscallng. region near the surfair:e;,
different limiting and particular cases. The most important ofplays avery |mportant role in the behavior of the C.FS n t_he
them are the isotropic-criticality solution of Bray and Moore as.y.mp_totlc region f_ar from the surface. So, the isotropic-
for 2<d<4, which was obtained above in and easier anacr't'cal'ty CFs are different for, sayj='2.5. andd=3.5, al-
more general way, the variations of the gap paramétgr though they satisfy the same equation in the regisnl.
for d<2 andd=4, and the slowly decaying gap tails of the T_he difference between them stems completely from the re-

correlation functions fog> x away from isotropic critical- 9'°" n~1.. . . o .
ity 0>« y P The universality of the physical quantities in the ASM is

The gap parameteB,, or its deviation from the bulk different in different dimensionality ranges. Fabr4 the gap

valueG;,, plays a fundamental role in the theory of ASM. E)haramhettirGléFls r?onur;a/ersa! and ldecaysf_aslg‘iz ' a:i-
The quantity— G, is similar to the functiorvV(z) used by oug e LIS have the universal mean-fieid form rior

Bray and Moore, and it also is proportiorand at criticality >1. For 2<d<4 both G,, and CFs are universal fan

equal to the inhomogeneity of the energy densiys. [see >1 and nonuniversal fon~1. Ford<2 the values of5,,
9 © in L= i | 4/for n>1. | , th
Eqg.(2.23]. The latter has been determined in H&D] using are universal and decay asni/for n n contrast, the

lizati q i ts with th orrelation functions are universal in the whole rangenof
renormatza |5)n-group an SCE} N9 arg“r'?‘?” S. Wi € I€SUhe reason for this strong universality and the ensuing strong
U219 for 2<d<4 at isotropic criticality, wherer

scaling is that the(transversg CFs satisfy the constraint
and a are the bulk correlation length and the heat capacityoquation containing the integral over the wave veagor
exponents. In the ASM=2/(d—2), as follows from Eqs. dominated byg~x<1 in low dimensions.

(2.34 and (2.47, and a=(d—4)/(d—-2), as follows from The next steps in studying the inhomogeneous magnetic
Egs.(2.22 and (2.47). Thus the above formula reduces to systems with the help of the ASM should b the solution
G1n=U,*1/In? as was obtained by Bray and Moore. In of the semi-infinite problem beloW, and in field,(ii) inclu-
these approaches, which consideais a continuous variable, sion of surface terms in the Hamiltonian, afiiél) numerical

the inhomogeneous part of the energy shows strong and uselution of the model in the film geometry. The preliminary
physical divergence at the surface. Although it is clear thatinalytical investigation of the last problem can be found in
the continuous approximation is generally invalid near theRef.[34].
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