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Linearizability of the perturbed Burgers equation
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We show in this report that the perturbed Burgers equationut52uux1uxx1e(3a1u2ux13a2uuxx

13a3ux
21a4uxxx) is equivalent, through a near-identity transformation and up toO(e), to a linearizable

equation if the condition 3a123a32
3
2 a21

3
2 a450 is satisfied. In the case this condition is not fulfilled, a

normal form for the equation under consideration is given. We show, furthermore, that nonlinearizable cases
lead to perturbative expansions with secular-type behavior. Then, to illustrate our results, we make a lineariz-
ability analysis of the equations governing the dynamics of a one-dimensional gas.@S1063-651X~98!01908-4#

PACS number~s!: 03.40.Kf
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I. INTRODUCTION

The object of this paper is the perturbed Burgers equa

ut52uux1uxx1e~3a1u2ux13a2uuxx13a3ux
21a4uxxx!,

~1!

wherea i are constants,e!1 is a perturbative parameter, an
subscripts denote partial differentiation. It appears in
long-wave, small-amplitude limit of extended systems dom
nated by dissipation, but where dispersion is also present
higher order. More precisely, those systems described
equations whose linear part admits a dispersion relation
the form

V~k!5a3k31a5k51•••1ı~b2k21b4k41••• !, ~2!

with ai andbi real constants. For example, Eq.~1! appears in
the description of gas dynamics@1#, and in certain cases o
free-surface motion of waves in heated fluids@2#. More im-
portant, however, is the fact that the terms appearing at o
e are the only ones allowed if Eq.~1! is obtained from long-
wave perturbation theory, and no constants are allowe
scale withe. In this sense, it has theuniversalitycharacter-
istics, much in the same way as the equations discusse
Calogero@3#.

When theO(e) terms are discarded, we have simply
Burgers equation, which is an equation linearizable throug
Hopf-Cole transformation@4#. It is, thus, a natural questio
to know when Eq.~1! is also linearizable. Put in this way, th
answer is that it is linearizable ifa15a25a35a4, in which
case the equation is reduced to the sum of Burgers with
first higher-order equation of the Burgers hierarchy@5#. We
notice in passing that the latter is also linearizable by
same Hopf-Cole transformation that linearizes the Burg
equation. However, we can put the question on a more g
eral setting by introducing the idea ofnear identity transfor-
mation @6#, that is, a transformationu→w of the form

u5w1ef~w!. ~3!

If we apply such a transformation to Eq.~1!, we may look
for functionsf(w) such that the transformed equation rea
PRE 581063-651X/98/58~2!/2526~5!/$15.00
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wt52wwx1wxx1el~3w2wx13wwxx

13wx
21wxxx!1O~e2!, ~4!

for somelPR. If such af(w) exists, we say that Eq.~1!
and Eq.~4! are equivalent up toO(e), and this is the equiva-
lence that is physically relevant, as long as perturbat
theory is concerned. As Eq.~4! is linearizable, so is Eq.~1!
up toO(e). The fundamental issue here is thus to determ
the conditions for the existence of a near identity transf
mation@that is,f(w)# ensuring the equivalence, up toO(e),
of Eqs. ~1! and ~4!. This is the question we will address i
this paper, and an answer will be given in terms of a con
tion on the parametersa1, a2, a3, anda4.

This kind of equivalence is usually introduced in the co
text of normal form analysis of ordinary differential equ
tions, and has been discussed for dispersive partial diffe
tial equations in@7,8#. When the lowest order, in the long
wavelength limit, of such system is described by t
Korteweg–de Vries equation~KdV!, there exists always a
near-identity transformation that makes theO(e) perturba-
tions integrable. Indeed, in Ref.@8#, it has been shown that
by introducing af(w) depending explicitly onx, one can
completely remove theO(e) corrections. However, obstacle
to integrability appear atO(e2) @7,9,10#. For a similar analy-
sis in the case of the nonlinear Schro¨dinger equation, the
reader is addressed to@11#.

We will show that, in the case of Eq.~1!, obstacles to
linearizability appear already atO(e). We mean by this that
in general, Eq.~1! is not equivalent to Eq.~4!. The condition
for the equivalence will be shown to be

3a123a32 3
2 a21 3

2 a450. ~5!

Furthermore, in the case where condition~5! is not satisfied,
we find a normal form for Eq.~1!. Finally, as an illustration,
we make a linearizability analysis of the equations govern
the dynamics of a one-dimensional gas, and we show t
already at orderO(e), these equations cannot be linearize

II. LINEARIZABILITY ANALYSIS

Let us then implement the ideas exposed above. We w
to insert Eq.~3! into Eq. ~1!, discard allO(e2) terms, and
compare the result with Eq.~4!. To do so, we have to specif
2526 © 1998 The American Physical Society
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PRE 58 2527LINEARIZABILITY OF THE PERTURBED BURGERS EQUATION
the possible form off(w). They ought to be such as t
generate, atO(e), terms of the formw2wx , wwxx , wx

2 , and
wxxx . The allowable terms turn out to bewx , w2, and
wx]

21w, where]21 means integration inx. Thus the genera
form of f(w) is

f~w!5awx1bw21gwx]
21w, ~6!

wherea, b, andg are constants to be determined.
We introduce now the following useful notations:

B~u!52uux1uxx , ~7!

and

Q~u!53a1u2ux13a2uuxx13a3ux
21a4uxxx . ~8!

This makes Eq.~1! read

ut5B~u!1eQ~u!. ~9!

The transformation~3! changes Eq.~9! to an equation inw,
given by

wt5B~w!1e$Q~w!1@B~w!,f~w!#%1O~e2!, ~10!

where

@B~w!,f~w!#5
dB

dw
f2

df

dw
B.

In order to obtain the transformed equation, we have thu
calculate the commutator@B(w),f(w)#, which is the tedious
part of our task. After performing that calculation, we get

@B~w!,f~w!#52bwx
212gwwxx1~2b1g!w2wx .

~11!

Inserting this into Eq.~10!, the transformed equation reads

wt5B~w!1e@~2b1g13a1!w2wx1~2g13a2!wwxx

1~2b13a3!wx
21a4wxxx#. ~12!

If we now require Eq.~12! to be of the form given by Eq
~4!, we have to takel5a4, and the following conditions
must be satisfied:

2b53a423a3 , ~13!

2g53a423a2 , ~14!

2b1g53a423a1 . ~15!

Clearly, this system of equations is not always solvable. T
solubility condition is

3a123a32 3
2 a21 3

2 a450, ~16!

in which caseb5 3
2 (a42a3) andg5 3

2 (a42a2). Note that
a is left undetermined. Condition~16! is thus the condition
that must be satisfied in order to make Eq.~1! equivalent, up
to O(e), to Eq. ~4!.

Suppose now that Eq.~16! is not satisfied. The genera
form of the transformed equation is given by Eq.~12!. The
to

e

O(e) terms can be written as the sum of a linearizable te
proportional toa4F3(w), with

F3~w!53w2wx13wwxx13wx
21wxxx , ~17!

plus a termZ(w) representing the obstacle to linearizabilit
that is,

wt5B~w!1ea4F3~w!1eZ~w!, ~18!

where

Z~w!5~2b13a323a4!wx
21~2g13a223a4!wwxx

1~2b1g13a123a4!w2wx . ~19!

If we call each of the coefficients appearing in the obsta
respectively bym1, m2, andm3, and if we further introduce
n i throughm i5mn i , with m53a123a32 3

2 a21 3
2 a4, then

we may write out thenormal formof Eq. ~1! as

wt5B~w!1ea4F3~w!1em~n1wx
21n2wwxx1n3w2wx!,

~20!

wheren i are arbitrary constants satisfying

n12n31
n2

2
521. ~21!

Equation~20! encompasses the main results of this letter:
m50 we have a linearizable equation, and formÞ0 it gives
the general form to which Eq.~1! is equivalent up toO(e).

III. HOPF-COLE TRANSFORMATION
AND PERTURBATIVE EXPANSIONS

A further simplification can be achieved if, instead of E
~6!, we introduce, following Ref.@8#, a more general trans
formation, given by

f~w!5awx1bw21gwx]
21w1nx~wxx12wwx!,

~22!

with n a constant. This leads to the following normal form

wt5B~w!1e~a412n!F3~w!1em~n1wx
21n2wwxx

1n3w2wx!, ~23!

wherem is not modified, relation~21! is still valid, but the
coefficientsn1 andn3 have new expressions in terms of th
parameters defining the transformations. Explicitly, we ha

n15m21~2b13a323a422n!, ~24!

n35m21~2b1g13a123a422n!. ~25!

The meaning of this result is the following: the new tran
formation generated by Eq.~22! does not have any influenc
on the linearizability up toO(e) of Eq. ~1!, that is, it does
not alter condition~16!. But, it makes it possible to furthe
simplify the normal form by takingn5a4/2. This com-
pletely eliminates theF3(w) term from Eq.~23!. We are thus
lead to the study of the equation
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wt5B~w!1em~n1wx
21n2wwxx1n3w2wx!. ~26!

Let us now proceed to make a Hopf-Cole transformat
given by

w5
f x

f
. ~27!

Inserting in Eq.~26! we get

f xtf 2 f xf t5 f xxxf 2 f xf xx1e f 2Z~ f !, ~28!

with Z( f )5m(n1wx
21n2wwxx1n3w2wx). This means that

in general, we do not have a linear equation anymore
would be the case ifZ( f )[0. Let us try to perform a per
turbative expansion forf by setting

f 5 f 01e f 11•••. ~29!

We get, by comparing order by order in Eq.~28!,

L~ f 0!50, ~30!

f 0@L~ f 1!#x2 f 0xL~ f 1!5 f 0
2Z~ f 0!, ~31!

whereL(•)5] t2]xx . As a consequence of these equatio
we see that, if we have a solution of Eq.~30! such that there
exist constantsn i satisfying the constraint~21!, for which
Z( f 0)50, then we may takef 1[0. This means thatf 0 is an
exact solution to Eq.~28!. This is the case, for instance, fo
the shock-type solution

f 0511eQ~k!, ~32!

with Q(k)5kx1k2t. If we taken152n252n352 2
3 , then

Z( f 0)50. However, this is an exceptional case. To analy
more general situations, we first note that Eq.~31! can be
seen as a first-order linear nonhomogeneous equation
L( f 1). Solving it, we get

L~ f 1!5 f 0E djZ~ f 0!, ~33!

which is a diffusion equation with a space and time dep
dent source term. It is thus clear that, depending on the ‘
tensity’’ of the source, Eq.~33! may not have always
bounded solutions. This is a signal that such perturba
expansions are not uniformly valid. This is not surprising,
such is also the case for the perturbed KdV equation@7#. It is
useful to have a more explicit example. Let us take

f 0511eQ~k1!1eQ~k2!. ~34!

It is not difficult to see that there do not existn i allowing
Z( f 0)50. We take then the samen i as in the shock solution
~32!. We come to the following expression forZ( f 0):

Z~ f 0!5
2m

3 f 0
2 @k1k2~k12k2!2eQ~k1!1Q~k2!#. ~35!
n

s

s

e

for

-
-

e
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A general solution for Eq.~33! is not possible in this case
Let us introduce a further approximation by puttingk12k2
5Dk, and let us computeZ( f 0) to the lowest order inDk.
Clearly, this gives

Z~ f 0!5
2m~Dk!2k1

2

3 Fe2Q~k1!

F2 G1O~Dk3!, ~36!

whereF5 f 0uk15k2
5112eQ(k1). We can now explicitly in-

tegrate this expression, yielding the following equation
f 1:

L~ f 1!5~Dk!2
k1m

6
@11F ln F#. ~37!

Let us now look for a solution to Eq.~37! by supposing that
f 15 f 1„Q(k1)…. This implies the following ordinary differen-
tial equation forf 1:

f 182 f 195
~Dk!2m

6k1
@11F ln F#. ~38!

Instead of solving this equation directly, let us notice t
following point. The variable that represents the first-ord
correction tow0 is ]x( f 1/ f 0) @with w05( f 0)x / f 0#. Remem-
bering thatF5 f 0uk15k2

we are naturally led to definef 15

Fg„Q(k1)…. Inserting this definition in Eq.~38!, we come to
an equation forg8 that is exactly the relevant variable, whic
reads:

g9~112eQ~k1!!1g8~122eQ~k1!!

5
~Dk!2m

6k1
@11~112eQ~k1!!ln~112eQ~k1!!#. ~39!

The solution to this equation forg8 can be found by elemen
tary methods, and is given by

g8~Q!52
~Dk!2m

6k1
e2Q~k1!$ 1

4 1 1
2 ~112eQ~k1!!

3@11 ln~112eQ~k1!!#%. ~40!

This solution diverges linearly withQ(k1) for Q(k1)→`,
indicating that the perturbative expansion fails. This is qu
similar to the secular behavior present in many cases of
turbative expansions for differential equations@12#. We
should notice, however, that this is not a usual secular t
coming from linear resonances that are eliminated by pro
dures like the multiple-scale method. Finally, we note th
the transformation given by Eq.~22! is not essential for the
derivation of the above results, which could be obtain
without making use of it.

IV. GAS DYNAMICS

Let us consider the equations governing the dynamics
one-dimensional gas@1#

r t1~ru!x50, ~41!

~ru! t1@ru21P2mux#x50, ~42!
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wherer(x,t) is the density,u(x,t) is the velocity,m is the
viscosity, and

P5AS r

r0
D g

is the pressure, withg5(cp /cv) the ratio of specific heats
andA a proportionality constant. In order to study its lon
wavelength, small-amplitude limit, we define slow space a
time variables,

j5e~x2ct!, ~43!

t5e2t, ~44!

and scale the original~primed! density and velocity fields
according to

r85r01er, ~45!

u85eu. ~46!

In terms of these new variables, Eqs.~41! and ~42! become

r0uj2crj1e@rt1~ur!j#50, ~47!

Ag

r0
rj2cr0uj1e@2c~ur!j1r0ut1r0ut1r0~u2!j

2mujj#1e2@~ur!t1~ru2!j#50. ~48!

Moreover, as a compatibility condition atO(e0), we have to
set

c25
Ag

r0
. ~49!

Now, from Eq.~47! we obtain

rj5
r0

c
uj1

e

c
@rt1~ur!j#1O~e2!, ~50!

or

r5
r0

c Fu1
e

c
~u22]21~ut!!G1O~e2!, ~51!

with ]21 indicating an integration in thej coordinate. Sub-
stituting in Eq. ~48!, and using the resulting equation in
itself, we are led to

ut52uuj1
m

2r0
ujj1eF1

c
u2uj2

3m

2cr0
uujj

2
m

4cr0
~uj!

21
m2

8cr0
2

ujjjG1O~e2!. ~52!

In order to compare to Eq.~1!, we first have to rewrite Eq
~52! in a nondimensional form. To this end, we nondime
sionalize all variables according to

u→
u

c
, j→2

r0

cm
j, t→

r0

2c2m
t. ~53!
d

-

In terms of these new variables, the nondimensional vers
of Eq. ~52! reads

ut52uuj1ujj1eF2
2r0

Ag
u2uj2

3r0

Ag
uujj

2
r0

2Ag
~uj!

22
r0

4Ag
ujjjG1O~e2!. ~54!

A comparison with Eq.~1! yields

a152
2r0

3Ag
, a252

r0

Ag
,

a352
r0

6Ag
, a452

r0

4Ag
. ~55!

The linearizability condition~16!, therefore, is

3r0

8Ag
50. ~56!

This means that, in the long-wavelength, small-amplitu
limit, the equation governing a one-dimensional gas can
linearized only at the lowest order. When theO(e) correc-
tions are taken into account, the corresponding equation
not be linearized, indicating that obstacles to linearizabi
are present already at this order.

V. FINAL REMARK

In the case of the traveling-wave solution to the Burg
equation, the above analysis simplifies considerably. As
have already shown,Z(w)50 for the shock solution. In this
case, however, we could have looked directly to Eq.~20!
without need of a Hopf-Cole transformation. Indeed, if w
take

w52k@12tanh~kx22k2t !#, ~57!

which is a solution of the Burgers equation, we can promp
verify that n152n252n352 2

3 implies Z(w)50. This
makes it easy to find theO(e) correction to the solution~57!
coming from the joint solution satisfying simultaneously t
Burgers and the first higher-order equation of the Burg
hierarchy, which can be verified to be@13#

w52k$12tanh@kx2~2k224ea4k3!t#%. ~58!

Finally, we note that, having obtained the functionw(x,t),
the physical variableu(x,t) is obtained through Eq.~3!. In
the case under examination, using the fact thata has been
left arbitrary, we come to the following form forf(w),
which represents the effects of the perturbation terms pre
in Eq. ~1!:

f~x,t !522k2b tanh~Q̄ !1gk2sech2~Q̄ !

3$ ln@ 1
2 ~11e22Q̄!#%, ~59!

whereQ̄5kx2(2k224ea4k3)t. The first term represents
modification of amplitude of the shock solution. The seco
term represents a deformation profile. Notice, however, t
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this second term is important only in the region near
origin of the Q̄ axis, falling to zero asQ̄ increases. The
relative importance of the deformation with respect to
amplitude modifications depends moreover on the coe
cientsb andg, which in turn depend on the coefficients
Eq. ~1!.

Recently, we came to know that part of our results co
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-

cerning the existence of near-identity transformations h
been independently obtained in Ref.@14#.
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