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Linearizability of the perturbed Burgers equation
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We show in this report that the perturbed Burgers equatipn 2uu,+ Uy, + e(3auuy+ 3aUlyy,
+3a3u§+ a4Uyyy) IS equivalent, through a near-identity transformation and u®(e), to a linearizable
equation if the condition 81—3a3—§a2+§a4=0 is satisfied. In the case this condition is not fulfilled, a
normal form for the equation under consideration is given. We show, furthermore, that nonlinearizable cases
lead to perturbative expansions with secular-type behavior. Then, to illustrate our results, we make a lineariz-
ability analysis of the equations governing the dynamics of a one-dimensiondBj&€3-651X98)01908-4

PACS numbds): 03.40.Kf

l. INTRODUCTION Wi = 2WW+ Wy, + X (3W2W, + 3w,

The object of this paper is the perturbed Burgers equation + 3WS+ W) +O( €9), (4)

for some\ e R. If such a¢(w) exists, we say that Eq1)
and Eq.(4) are equivalent up t®(e€), and this is the equiva-
lence that is physically relevant, as long as perturbation

h ) bat q theory is concerned. As E) is linearizable, so is Eq1)
whereq; are constants<1 is a perturbative parameter, and |, 1,'5(¢). The fundamental issue here is thus to determine

subscripts denote partial differentiation. It appears in th_ethe conditions for the existence of a near identity transfor-

long-wave, small-amplitude limit of extended systems domi- . ... : ; :
Lo ) o mation[that is, ¢(w) | ensuring the equivalence, u ,
nated by dissipation, but where dispersion is also present at [ ¢(W)] g g P@(e)

& Egs. (1) and (4). This is the question we will address in

h|ghetr orderr.] Morlg preusetly, dthc_)tse sg_stems' desclrlkigd tc)gwis paper, and an answer will be given in terms of a condi-
equations whose linear part admits a dispersion relation af; - o the parameters,, a,, as, and a,.

the form This kind of equivalence is usually introduced in the con-

text of normal form analysis of ordinary differential equa-

Q(k)=agk®+ask®+ - -- +1(bk?+bsk*+---),  (2)  tions, and has been discussed for dispersive partial differen-

tial equations in7,8]. When the lowest order, in the long-
with a; andb; real constants. For example, Efj) appearsin  wavelength limit, of such system is described by the
the description of gas dynami¢&], and in certain cases of Korteweg—de Vries equatio(KdV), there exists always a
free-surface motion of waves in heated flu[@. More im-  near-identity transformation that makes tbé¢e) perturba-
portant, however, is the fact that the terms appearing at ordeions integrable. Indeed, in R€#], it has been shown that,
€ are the only ones allowed if EqL) is obtained from long- by introducing a¢(w) depending explicitly orx, one can
wave perturbation theory, and no constants are allowed toompletely remove th®(e€) corrections. However, obstacles
scale withe. In this sense, it has theniversalitycharacter-  to integrability appear a(e?) [7,9,10. For a similar analy-
istics, much in the same way as the equations discussed lsjs in the case of the nonlinear Schimger equation, the
Calogerq[3]. reader is addressed f1].

When theO(e€) terms are discarded, we have simply a We will show that, in the case of Edql), obstacles to
Burgers equation, which is an equation linearizable through #inearizability appear already &(€). We mean by this that,
Hopf-Cole transformatiof4]. It is, thus, a natural question in general, Eq(1) is not equivalent to Eq4). The condition
to know when Eq(1) is also linearizable. Put in this way, the for the equivalence will be shown to be
answer is that it is linearizable if; = a>= a3z= a4, in which . .
case the equation is reduced to the sum of Burgers with the Ba;—3az—zaxt3a4=0. )
first higher-order equation of the Burgers hierar¢by We . N -
notice in passing that the latter is also linearizable by thé:urthermore, in the case where C(_)nd't@' IS no_t Sat'Sf'.ed'
same Hopf-Cole transformation that linearizes the Burgerg\’e find a no_rmal .form _for Eq(l)._FmaIIy, as an_lllustratlon,.
equation. However, we can put the question on a more gerWe make a_Ilnear|zab|I|ty _analys_|s of the equations governing
eral setting by introducing the idea péar identity transfor- the dynamics of a one-dlmenS|onaI gas, and we_shov_v that,
mation[6], that is, a transformation—w of the form already at ordef(¢€), these equations cannot be linearized.

U= 2UUy+ Uy + €(3aqU2Uy+ BapUly+ 3aguZ+ aglyyy),

D

U=+ ed(w). 3 II. LINEARIZABILITY ANALYSIS

Let us then implement the ideas exposed above. We want
If we apply such a transformation to E€l), we may look to insert Eq.(3) into Eq. (1), discard allO(e?) terms, and
for functions¢(w) such that the transformed equation reads:compare the result with E¢4). To do so, we have to specify
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the possible form ofp(w). They ought to be such as to O(e€) terms can be written as the sum of a linearizable term

generate, aD(€), terms of the formw?w, , Ww,,, W>2(, and
Wyy. The allowable terms turn out to be,, w? and
w,d~w, whered~ ! means integration ir. Thus the general
form of ¢(w) is

d(W) = aw,+ BW?+ yw,d "~ w, (6)

wherea, B, andy are constants to be determined.
We introduce now the following useful notations:

B(U)=2uUy+ Uy, (7)
and
0 (u)=3a,uUy+ 3a Ul + 3agui+ agly,y.  (8)
This makes Eq(1) read
u;=B(u)+eO(u). 9

The transformatiori3) changes Eq(9) to an equation irw,
given by
w,=B(w) + e{@ (W) +[B(W), (W) ]} +O(€?), (10)

where

oB o
[BW), $(W)]= 5= ¢~ ==B.

In order to obtain the transformed equation, we have thus tﬁg:

calculate the commutatpB(w), ¢(w) ], which is the tedious
part of our task. After performing that calculation, we get

[B(W), p(W)]=2BW;+ 2yWW,y+ (28+ y)WW, .
(12)

proportional toa,F3(w), with
17

plus a termZ(w) representing the obstacle to linearizability,
that is,

F 3(W) = 3W2W, + 3WWyy+ 3W2 + Wy,

W;=B(W)+ easF3(w)+ eZ(w), (18

where
Z(W)=(2B+3a3—3a )W+ (2y+3a,— 3as) WWyy
+(2B+ y+3a;—3a,)Ww,. (19

If we call each of the coefficients appearing in the obstacle
respectively byuq, u,, andug, and if we further introduce

v; through ;= v, with u=3a;—3a3— 3a,+ 3a,, then

we may write out thenormal formof Eq. (1) as

W, =B(W) + €aqF3(W) + e v1W2+ oW+ vaW2Wy),

(20)
wherev; are arbitrary constants satisfying
V2
Vl_V3+?=_1. (21)

Equation(20) encompasses the main results of this letter: for
0 we have a linearizable equation, and fo# 0 it gives
general form to which Edq1) is equivalent up td(e).

Ill. HOPF-COLE TRANSFORMATION
AND PERTURBATIVE EXPANSIONS

A further simplification can be achieved if, instead of Eq.

Inserting this into Eq(10), the transformed equation reads (6); We introduce, following Ref[8], a more general trans-

W;=B(W)+ €[ (28+ y+ 3a)W?Wy + (2y+ 3ap) WW,,

+(2B+3az) W2+ @ Wyyy]. (12)

If we now require Eq(12) to be of the form given by Eq.
(4), we have to take\ = a,, and the following conditions
must be satisfied:

2B=3a,s—3aj, (13
2'y=3a4—3a2, (14)
2B+ 'y=3a4—3a1. (15)

Clearly, this system of equations is not always solvable. The

solubility condition is

3a;—3az—3a,+3a,=0, (16
in which case8=3(a,— a3) andy=3(a,— a,). Note that
a is left undetermined. Conditioil6) is thus the condition
that must be satisfied in order to make EL.equivalent, up
to O(e), to Eq.(4).

Suppose now that Eq16) is not satisfied. The general

form of the transformed equation is given by Ef2). The

formation, given by

B(W) = aWy+ BW2+ YW, 0~ W+ vX (Wt 2WW5 ),
(22)

with v a constant. This leads to the following normal form:
W, =B(W) + e( s+ 20)F3(W) + e v1 W2+ vowwy,

+ vaW2W,), (23
where 1 is not modified, relation21) is still valid, but the
coefficientsy, and v3 have new expressions in terms of the
parameters defining the transformations. Explicitly, we have

vi=u Y(2B+3az—3a,—2v), (24

va=u Y(2B+y+3a;—3a,—2v). (25)
The meaning of this result is the following: the new trans-
formation generated by ER2) does not have any influence
on the linearizability up td(e) of Eq. (1), that is, it does
not alter condition(16). But, it makes it possible to further
simplify the normal form by takingv= a,/2. This com-
pletely eliminates th& 3(w) term from Eq.(23). We are thus
lead to the study of the equation
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Wt=B(W)+e,u(v1w§+ VoWWyt 1W2W, ). (26) A general solution for Eq(33) is not possible in this case.
Let us introduce a further approximation by puttikg—k,
Let us now proceed to make a Hopf-Cole transformation= Ak, and let us comput&(fo) to the lowest order imk.

given by Clearly, this gives
f 2u(Ak) K5 €200V
== Z(fy)= +0(AK3), (36)
Inserting in Eq.(26) we get whereF =fg|, _,=1+2e®*V. We can now explicitly in-
tegrate this expression, yielding the following equation for
foof — Fof = Frud — Fufoxt €F2Z(F), (28  fy:
; _ 2 2 i k
yv|th Z(f) = pu(v Wy + voww,,+ VaW W,). ThIS. means that, L(f1)=(Ak)21—M[1+F INF1. 37)
in general, we do not have a linear equation anymore, as 6
would be the case iZ(f)=0. Let us try to perform a per- ) _
turbative expansion fof by setting Let us now look for a solution to Eq37) by supposing that
f1=11(0(ky)). This implies the following ordinary differen-
f=fotef+---. (29) tial equation forf:
: : (AK)’p
We get, by comparing order by order in E&8), fI—fr= oK [1+FInF]. (38)
1
L(fo)=0, (30

Instead of solving this equation directly, let us notice the
following point. The variable that represents the first-order
__ 2

FolL(f1) 1= ToxL (f2) = foZ(fo), 3D correction towg is dy(f1/fg) [with wo=(fg)«/fo]. Remem-
bering thatF=f0|kl:k2 we are naturally led to defing, =
SFg(@(kl)). Inserting this definition in E¢(38), we come to
an equation fog’ that is exactly the relevant variable, which
reads:

whereL(-)=d;—dyy. As a consequence of these equation
we see that, if we have a solution of E§0) such that there
exist constants; satisfying the constrainf21), for which
Z(fo) =0, then we may také;=0. This means thdlt, is an
exact solution to Eq(_28). This is the case, for instance, for g"(1+2e9k0) + g’ (1—2e0(k1)y
the shock-type solution

Ak)?
fo=1-+e®® (32) ! 6k) P14 (14269 ) In(1+2e°%0)]. (39)
! 1

with O (k) =kx+k?t. If we takev;=—v,=—v3=—3%, then  The solution to this equation fa’ can be found by elemen-
Z(fo)=0. However, this is an exceptional case. To analyzdary methods, and is given by
more general situations, we first note that E8l) can be

X . . 2
seen as a first-order linear nonhomogeneous equation for , L (AK)“u —Oky) 1, 1 O(ky)
L(f,). Solving it, we get 9'(0)=——g —¢ V{7 +3(1+2e%0)

X[1+In(1+2e®*) L, (40)
(=10 dez(fo) @ |
This solution diverges linearly witl® (k;) for O (k;)— oo,
indicating that the perturbative expansion fails. This is quite

which is a diffusion equation with a space and time depenginijar to the secular behavior present in many cases of per-

dent_ source term. It is thus clear that, depending on the “iny  pative expansions for differential equatiofis2]. We
tensity” of the source, Eq(33) may not have aways gnoid notice, however, that this is not a usual secular term
bounded solutions. This is a signal that such perturbative,ming from linear resonances that are eliminated by proce-
expansions are not uniformly valid. This is not surprising, sy, res jike the multiple-scale method. Finally, we note that
such is also the case for the perturbed KdV equaffdnitis  yhe transformation given by Eq22) is not essential for the
useful to have a more explicit example. Let us take derivation of the above results, which could be obtained
fom 1+ 0k 4 g0k 34 without making use of it.

It is not difficult to see that there do not exist allowing V. GAS DYNAMICS

Z(fy)=0. We take then the same as in the shock solution Let us consider the equations governing the dynamics of a
(32). We come to the following expression f@(f): one-dimensional gad ]

2u 2,0(ky) +0(ky) pit+ (pu),=0, (41)
Z(fO): _2[k1k2(k1_k2) e 1 2 ] (35) 2
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wherep(x,t) is the densityu(x,t) is the velocity,u is the  In terms of these new variables, the nondimensional version

viscosity, and of Eq. (52) reads
p\” 2p0 ,  3po
P=A|— U,=2UUs+ Uzt €] — —UUs— —uu
(Po) £ Ay 8 Ay ¥
is the pressure, witly=(c,/c,) the ratio of specific heats, LO(2 54
andA a proportionality constant. In order to study its long- ZA'}/ ug)? = ufff (€9). (54)
wavelength, small-amplitude limit, we define slow space and
time variables, A comparison with Eq(1) yields
§=e(x—ct), (43 - 2po g P0
1= 7 A A 2= T A
3A A
=€, (44) Y 4
and sc_ale the originalprimed density and velocity fields az=— 6’%, ay=— 4'%_ (55)
according to Y Y
p' = po+ €p, (45) The linearizability condition(16), therefore, is
, 3
U= eu. (46) N /’:;:o. (56)

In terms of these new variables, E¢41) and(42) become . . .
This means that, in the long-wavelength, small-amplitude

poUg—Cp+ e[ p,+(up) =0, (47 limit, the equation governing a one-dimensional gas can be
linearized only at the lowest order. When tB€¢) correc-
tions are taken into account, the corresponding equation can-

N — _ 2
g PETCPole™ e[ =c(up) ¢+ pou-+ poU-+ po(U%), not be linearized, indicating that obstacles to linearizability
5 5 are present already at this order.
— pUge]+ e (up) .+ (pu®)]=0. (48)
Moreover, as a compatibility condition &(€°), we have to V- FINAL REMARK
set In the case of the traveling-wave solution to the Burgers
equation, the above analysis simplifies considerably. As we
szﬂ_ (49) have already showrz,(w) =0 for the shock solution. In this
Po case, however, we could have looked directly to E2{)
_ without need of a Hopf-Cole transformation. Indeed, if we
Now, from Eq.(47) we obtain take
Po S — _9Kk2
pe=g Ugt ¢ [pf+<up>§]+0(e ), (50) w=—k[1~tanktkx=2k"t)], (57)
which is a solution of the Burgers equation, we can promptly
or verify that v;=—v,=—v;=—3 implies Z(w)=0. This
makes it easy to find th@(e€) correction to the solutiofb7)
p= Po U+ — (u —o7Y(u,))|+0(e?), (51) coming from the jo_int sqlution satisfying s_imultaneously the
c Burgers and the first higher-order equation of the Burgers

R : o _ hierarchy, which can be verified to &3]
with ¢~ indicating an integration in thé coordinate. Sub-

stituting in Eq.(48), and using the resulting equation into w=—k{1—tanj kx— (2k?— 4ea,k>)t]}. (59
itself, we are led to
Finally, we note that, having obtained the functimx,t),
1, 3u the physical variablei(x,t) is obtained through Eg3). In
P Fpouugg the case under examination, using the fact thdias been
left arbitrary, we come to the following form fotb(w),
which represents the effects of the perturbation terms present
+0(€?). (52) in Eq. (1)

u :_UU§+ U§§+E

2po

2

w w

- (ug)?+ u
4cpo- ¢ 8epg? F

=—2k? ®)+ yk?sech(©
In order to compare to Eql), we first have to rewrite Eq. ¢x.t) B tank(@)_ yksech(®)
(52) in a nondimensional form. To this end, we nondimen- x{In[3(1+e29)7}, (59)
sionalize all variables according to

where® = kx— (2k?— 4ea,k3)t. The first term represents a

& _Po g T Po - (53) modification of amplitude of the shock solution. The second

Cu 2¢%u term represents a deformation profile. Notice, however, that

u——,
c
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this second term is important only in the region near thecerning the existence of near-identity transformations had

origin of the ® axis, falling to zero a®d increases. The been independently obtained in REE4].

relative importance of the deformation with respect to the

amplitude modifications depends moreover on the coeffi-

cients 8 and y, which in turn depend on the coefficients of

Eq. (2). The authors would like to thank CNPq, Brazil, for partial
Recently, we came to know that part of our results confinancial support.
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