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Experimental proof of standard electrodynamics by measuring the self-force
on a part of a current loop

G. Cavalleri,* G. Bettoni, and E. Tonni*

Dipartimento di Matematica e Fisica, Universita` Cattolica del Sacro Cuore, via Trieste 17, 25121 Brescia, Italy
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~Received 15 December 1997!

The results of measurements of the force on a part of a circuit carrying a steady current, due to the action of
the whole current loop, are reported. The theoretical value of the force has been calculated using the standard
electrodynamics force law. Taking into account the finite dimension of the wire forming the current loop, the
calculation implies the computation of a sixfold integral. Contrary to the past experimental outcome reported
in the literature, a comparison of a theoretical predictions with the present experimental results corroborates the
standard force law within the limits of experimental errors.@S1063-651X~98!11706-3#

PACS number~s!: 41.20.Jb, 41.90.1e, 03.30.1p
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I. INTRODUCTION

In this paper we present the experimental results and
relevant theory regarding the electromagnetic force due
the electric current flowing in a closed circuit and acting
a part of it. The experiment performed is like that of Ampe`re.
However, a comparison of theory and experiment could
be done before the advent of modern computers. Indeed
self-forceF ~of a part of a circuit on itself! cannot be calcu-
lated in the approximation of an ideal wire with zero cro
section carrying a steady current becauseF would diverge
logarithmically when the radiusa of the wire tends to zero.F
has to be calculated as the integral over all the volumes,
by a sixfold integral.

Before discussing the experiment, it is important to clar
a point we did not find in the literature. It is often written th
what we measure are forces between closed circuits and
can draw from them infinite different elementary laws th
express the forces between two elements of the wires.
most famous expressions are those of Grassmann~sometimes
called theBiot-Savart law! and Ampère @1#. Some of us@1#
have shown that the Ampe`re and Biot-Savart elementar
laws lead to the same result even for the force on a part
circuit and due to the whole circuit. However, it is also po
sible to derive the correct elementary law by consider
each element of a wire as composed of several charges a
~ions! and other opposite charges~electrons! with an average
velocity v. Then, by applying the Lienard-Wiechert la
@valid for a pointlike chargeq with any value of its advanced
~with respect to the field point at timet) position r2r 8,
advanced velocityv(t2ur2r 8u/c), and advanced accelera
tion a(t2ur2r 8u/c)#, we obtain
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The Laplace expression dB5(m0/4p)dqv3(r
2r 8)ur2r 8u23 ~which leads to the Biot-Savart law! is an
approximation to Eq.~1! for v/c→0 and for negligible ac-
celerationa. On the contrary, Ampe`re’s law @given by Eq.
~1! of Ref. @1## is not even an approximation. However, th
Lienard-Wiechert expressions and those of Laplace~Biot-
Savart! and Ampère give the same result when integrat
over a closed circuit.

A stimulus to perform the present experiment came fr
two rather recent experimental works@2,3# where a disagree
ment between standard theory and experiments is claim
Examining Ref.@2#, we concluded that the relevant expe
ment was unreliable for two reasons: the existence of sh
angles, which imply a strong force not considered by Pap
@2#, and the use of pulsed currents whose durations dep
on the manual technique of the experimenter.

The second experiment@3# is affected by the strong force
comparable to the useful one on the rest of the circuit, du
the electrical connection, and not considered by Phipps@3#.
In fact, if the current is the same, the force is the same
circuits of different sizes but similar in shape. Since the t
electrical connections used by Phipps@3# are just similar to
the main circuit, the total force is three times that acting
the main circuit.

In our experiment we tried to shape the electrical conn
tions so as to be as near as possible to straight lines. Ye
calculations of the forces due to the connections yield ab
6% of the total force and they must therefore be conside
2505 © 1998 The American Physical Society
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The structure of our paper is the following. In Sec. II w
describe the electric circuit and the experimental appar
used to measure the force on a mobile part of the circuit
due to the whole circuit. The mobile part is electrically co
nected to the fixed part by a mercury trough. In Sec. III
calculate the forces using the mentioned standard theory~the
Biot-Savart law!. In addition to the difficulty regarding the
calculation of a convergent sixfold integral with a diverge
integrand, another difficulty consists in calculating the for
on the conductor immersed in the mercury trough since,
this task, one has to find the distribution of the currents in
mercury and in the bronze of the trough. Appendix A
dedicated to these long calculations. In Sec. IV we report
the experimental results and agreement with the theore
predictions. We conclude in Sec. V.

II. EXPERIMENTAL APPARATUS

In order to measure the force acting on a part of the circ
and due to the whole current loop, the part in considera
must be electrically connected to the remaining part but m
be free to move with minimum friction with respect to th
fixed part. After several attempts, we have found it bes
use the traditional method of the mercury trough, as sho
in Fig. 1. Moreover, in order to know the current behavior
the parts~1–3! of the circuit on which the force is measure
we have to avoid sharp edges. The mercury troughsM1 and
M2 provide the electrical connection of the mobile to t
fixed part. Three other sections of the circuit are also sho
in Fig. 1 ~4–6!, which represent the fixed part of the circu
~while sections 1–3 represent, as said, the mobile part!. With
this splitting we can more conveniently calculate the con
bution of each section to theB field and therefore to the
force on each section. In order to calculate the force on p
1–3, the fixed parts 4–6 may be considered as made of a
wire while the contribution due to the edges is of little im
portance. The mobile parts 1–3 must have no edges bec
on them acts also the force due to the fieldBm produced by
the mobile part itself, which requires, for its determinatio
the computation of a sixfold integral.

The experimental apparatus schematized in Fig. 2 is c
posed of three systems. The first system, a current suppS
plus a digital multimeterA, is used for the generation, th
inversion, and measurements of the current. The second

FIG. 1. Sketch of the electrical circuit. The segments 1–6 c
stituting the circuit are divided into two parts: 1–3 represent
mobile part~on which the force has to be measured! and 4–6 rep-
resent the fixed part.R denotes the radius of arc 1 andM1 andM2

the two mercury troughs.
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tem is a variable geometry circuit of the type shown in F
1. The third system allows the measurement of the for
acting on the mobile part by reacting mechanically to a
displacement.

The mobile part of the circuit is made of a semicircul
arc 1 continuing with two straight segments 2 and 3, at
ends of which there are two electrodesV ~see Fig. 2 and, for
details, Fig. 5 of Appendix A, where the mercury trough
extensively studied!. These electrodes have the purpo
once put in the mercury troughsM2 andM1 respectively, of
providing the electric contact with the fixed part. The arc
kept rigid by the insulating rodD fixed to it. A rectangular
plateP related to the third system is attached to the cente
the rodD. The arc is suspended by three threadsT1, T2, and
T3. The threadsT2 andT3 are fixed to the ends of the rodD
andT1 is fixed to the middle point of arc 1.

The fixed part has two different possible configuration
one called short (S) and the other long (L). The short one
has segments 5 and 6 of negligible length, i.e.,l 55 l 650,
while in the long configuration the length of these sections
l 55 l 6560.10 cm. The two mercury troughsM1 and M2
belong to the fixed part and, to calculate the force on
distant arc 1, we may approximateM1 and M2 to two sec-
tions of length equal to their internal radiusr 051.52 cm in
the L configuration since wires 5 and 6 end at the inter
lateral surface of the mercury troughs~for details see Fig. 5!.
In theS configuration wire 4 is soldered onM2 so the sym-
metry axis of wire 4 is a distanced50.488 cm from the
internal surface of mercury trough. The same connection
curs for wire 5 that, in theS configuration, is parallel to wire
4 and separated from it by a thin insulator. The equival

-
e

FIG. 2. Sketch of the experimental apparatus. A current sup
S feeds a currentI 0, measured by an amperometerA ~more pre-
cisely a multimeter!, to the circuit, already schematized in Fig.
and supported by three suspension threadsT1, T2, andT3. A torsion
balanceB1, consisting of a torsion wireW1 and a torsion angle
lecture headH1, measures the forceF acting on the mobile part of
the circuit by an armA1 connected to the plateP fixed to the
insulating rodD. A second torsion balanceB2 ~lecture headH2,
wire W2, and armB2) is used to eliminate the mechanical play
The electrodesV are partially immersed in the mercury contained
the troughs.
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PRE 58 2507EXPERIMENTAL PROOF OF STANDARD . . .
lengths of the fixed part in the two configurations are the
fore

S: l 4529.10 cm,

l 5eq5 l 6eq5 l 5r 01d5~1.5210.488! cm52.008 cm;

L: l 4529.10 cm,

l 5eq5 l 6eq5 l 5 l 51r 05~60.1011.52! cm561.62 cm.
~2!

This approximation is not acceptable for the calculation
the forceFV on the sectionV ~see Fig. 2! immersed in the
mercury and Appendix A is dedicated to the correct calcu
tion of FV . Obviously, side 4 is not directly connected
side 5, but both of them are connected to the current sup
S, as shown in Figs. 1 and 2. The two connections are v
close to each other so that the residual magnetic field
duced by them on arc 1 is negligible.

The values of the different sections of the mobile part
the same in both theL andS configurations. They are

a50.25 cm~ the radius of all the wires!,

R5 l 4/2514.55 cm, l 25 l 35h525.45 cm. ~3!

The third system is composed of two parts, one determ
ing the relative position and the other measuring the fo
acting on the mobile circuit. The part that determines
relative position consists of two electronic barriers, two i
pulse counters, and the plateP fixed to the middle point of
the insulating rodD. The part of the third system that me
sures the forces acting on the mobile circuit is formed by t
torsion balancesB1 andB2. The second balanceB2 does not
intervene directly in the measurements because it has
function of opposing the first one when, in the absence
current, we look for the equilibrium position of the mobi
part. Moreover, it has the useful purpose of eliminating
mechanical plays. The displacements of the mobile parts
are revealed by the interruption of the beam of light emit
by photodiodes on the electronic barriers at the position
the plateP and measured by the impulse counters. When
action of the current displaces the mobile part from the eq
librium position, we shift it back to the original position b
rotating the headH1 of the first balance. In this situation th
electromagnetic force is equilibrated by the elastic tors
force of the wireW1 and the value of the force may b
measured.

III. CALCULATION OF THE FORCES
ON THE DIFFERENT PARTS OF THE CIRCUIT

As said in the Introduction, Eq.~1! reduces to Laplace’s
first law whenv/c→0 and the acceleration term is neg
gible. Sincedqv5 jd3r , we have Laplace’s first formula

B~r !5
m0

4pE E E
11213141516

d3r 8j ~r 8!3
r2r 8

ur2r 8u3
.

~4!

The forces are then calculated by Laplace’s second law
-
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F5E E E
1
d3r j ~r !3B~r !, ~5!

with B(r ) given by Eq.~4!.
Because of symmetry, the resultant force on the mob

part of the circuit is parallel to thex axis, so Eq.~5! implies
that the active sections are those that have components
pendicular to thex axis, i.e., arc 1~see Fig. 1! and the two
bent sections immersed in the mercury and parallel to thy
axis~see details in Fig. 5 of Appendix A!. The magnetic field
at the position of arc 1 is due to all of the circuit includin
arc 1 itself. The forceFrest due to the rest of the circui
~excluding 1 itself! is easily calculated because we may a
proximate the real conductors by wires of infinitesimal cro
sections. Consequently, Eqs.~4! and ~5! reduce, ifI 0 is the
constant current flowing in the circuit, to

Frest5
m0I 0

2

4p E
1
dr3E

213141516
dr 83

r2r 8

ur2r 8u3
. ~6!

It is convenient to separate the circuit into two parts, sy
metric with respect to thex axis so that the contribution to
the force on arc 1 and due to section 2 is equal to tha
section 3, the contribution due to 6 is equal to that of 5, a
the contributions of the two half sections 4~one fromz5
2R to z50 and the other fromz50 to z5R) are equal.
Setting

l 85 l /R, h85h/R ~7!

and denoting byq the angle between the radius vectorR of
arc 1~see Fig. 1! and2êz ~whereêz is the unit vector of the
z axis andêx and êy denote the unit vectors of thex and y
axes, respectively!, we obtain from Eq.~6! for thex compo-
nent ~which is the only one different from zero because
the axial symmetry around thex axis!, after performing ana-
lytically the second integral,

FIG. 3. Arc 1 of Fig. 1 with an enlarged cross section of t
wire seen in perspective. The origin of the Cartesian coordinate
at the centerO of the semicircular axis of arc 1. We have used po
coordinatesr andj in each cross section, the anglej starting from
R.
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F rest5
m0I 0

2A2

4p E
0

p

dq sinqH F h81 l 81sinq

~12cosq!@~h81 l 8!2/21~h81 l 8!sinq1~12cosq!#1/2
2

sinq

~12cosq!3/2G
1

1

sinq1h81 l 8
F cosq

@1/21~h81 l 8!sinq1~h81 l 8!2/2#1/2
1

12cosq

@~12cosq!1~h81 l 8!sinq1~h81 l 8!2/2#1/2G J , ~8!
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where the terms inside the two large square brackets co
spond to the force on 1 due to sections 2, 6, 5, and 3,
section 4, respectively, of Fig. 1.

Now we have to calculate the force acting on arc 1 due
1 itself. The corresponding magnetic field diverges logar
mically as the diameter of the conductor becomes infinite
mal. It is therefore essential to use a conductor of radiusa.
Consequently,R is the radius of the axis of the semicircul
arc 1. Supposing that the current densityj is uniform and
parallel to the unit vectorq̂ tangent to the arc passin
through the considered point, it isj5q̂ I 0/pa2. Conse-
quently, the force on 1~and due to 1 itself! is given by the
sixfold integral obtainable by Eqs.~4! and ~5!,

F15
m0

4pS I 0

pa2D 2

3E E E
1
d3r E E E

1
d3r 8

q̂3@q̂83~r2r 8!#

ur2r 8u3
. ~9!
t
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-

s

e-
d

o
-
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To calculate this integral it is convenient to consider cro
sections of the semicircular wire 1, i.e., circles obtained
intersecting the wire by planes containingR and perpendicu-
lar to the wire axis. We denote byr the distance of a generi
point P ~inside the circular cross section! from the wire axis
and byj the angle betweenR and r. Choosing the coordi-
nate axes, as shown in Fig. 3, the radiusr of a generic point
is r5R1r. Consequently, introducing the dimensionle
quantitys5r/R, the coordinates ofP are

x5R~11s cosj!sinq,

y52Rs sinj, ~10!

z52R~11s cosj!cosq.

The Jacobian of the transformation fromx,y,z to s,j,q is
R3s(11s cosj). Then we obtain from Eq.~9! for the com-
ponent of the force in thex direction
F15
m0

4pS I 0

pa2D 2

R4E
0

a/R

s dsE
0

a/R

s8ds8E
0

2p

djE
0

2p

dj8E
0

p

dqE
0

p

dq8

3$~11s cosj!~11s8cosj8!sinq@~11s8cosj8!2~11s cosj!cos~q2q8!#%

3$21s21s8212~s cosj1s8cosj8!22ss8sinjsinj822~11s cosj!~11s8cosj8!cos~q2q8!%23/2. ~11!
t
n-
ns
s
ent
the
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Since the integrand contains an integrable divergence,
numerical calculation of this integral is very delicate a
Appendix B is dedicated to it.

The results for theS andL configurations are given, re
spectively, by

F restS1F15
m0 I 0

2

4p
~1.493718.8015!510.295

m0I 0
2

4p
,

F restL1F15
m0 I 0

2

4p
~1.270418.8015!510.072

m0I 0
2

4p
.

~12!

We see that the two theoretical results in Eq.~12! differ very
little from each other, contrary to Pappas’s@2# claim. Actu-
ally, Pappas supports the Ampe`re law as leading to result
hedifferent from those obtainable by Grassmann’s law@coming
from the two Laplace’s laws~4! and~5!#. Pappas claims tha
the Ampère law ~which satisfies the action and reaction pri
ciple! implies a longitudinal action between the wire sectio
6 and 2~and between 5 and 3! that is larger than the force
on the rest of the circuit. This stronger force would be abs
in the short configuration. On the contrary, the use of
Laplace laws~4! and ~5! makes it intuitive that the only
useful force is that acting on arc 1. Moreover, some of us@1#
have shown that both the Grassmann and Ampe`re laws lead
to the same result even if applied to the force on a part o
closed circuit. In any case, to give Pappas@2# a direct, ex-
perimental answer, we have used the two configurati
~short and long!.

Thex component of the force on the two vertical sectio
V ~see Fig. 5! immersed in the mercury has been calcula
in Appendix A and turns out to be given by
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FIG. 4. Comparison between
theoretical calculations~solid line!
and experimental data~dots with
error bars! for the forceF on the
mobile part when the currentI 0

flows in the circuit. The results
are relevant to~a! the short con-
figuration and~b! the long con-
figuration.
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2FVS50.6759~160.08!
m0I 0

2

4p
,

~13!

2FVL50.5839~160.08!
m0I 0

2

4p

roughly 0.06 times the force on the mobile part of the circu
We see that 2FV is not negligible and has to be taken in
account even in our configuration, which strongly reduc
these forces with respect to Phipps’s arrangement@3#. The
total force turns out to be

FS5F restS1F112FVS50.1097~160.006!I 0
2 dyn

~14!

in theS configuration and

FL5F restL1F112FVL50.1066~160.005!I 0
2 dyn

~15!

in theL configuration, whereI 0 is measured in amperes. Th
uncertainties in the theoretical calculations are mainly du
the approximations used in Appendix A to calculate the t
forces FV . The theoretical results are represented by
solid lines of Fig. 4~a! ~short! and Fig. 4~b! ~long!.

IV. EXPERIMENTAL MEASUREMENTS

One of the causes of error is due to the action of
magnetic fieldB of the Earth. Fortunately, the correspondi
force is proportional toI 0, so it changes sign when the d
rection of the current is reversed. It is apparent that the
erage value of this force is zero for two measurements m
with the same value ofI 0 but of opposite directions (I 0 and
2I 0). On the other hand, the self-forces generated by
system depend onI 0

2 and are independent of the sign ofI 0.
Thus, if for a fixed, absolute value ofI 0 the current is made
to flow in one direction and then in the opposite directio
.

s

to
o
e

e

v-
de

e

,

the resultant average is unaffected by the magnetic field
the Earth.

Another cause of error is due to the friction force on t
two electrodesV partially immersed in the mercury~see
Figs. 2 and 5! and caused by the surface tension of the m
cury surface. For small values of the currentI 0 this friction
force can be one order of magnitude larger than the elec
dynamical force. It has been necessary therefore to disp
forcedly the mobile part by rotating the head of the torsi
balance. Any displacement was the minimum necessar
trigger the forward impulse counter~whose sensor is a pho
todiode!. Denote byFf the forward force to produce the dis
placement.Ff is opposite the sum of the electrodynamic
force Fed and the forward friction forceFfriction f , i.e., Ff5
2(Fed f1Ffriction f). Then an opposite displacement is pr
duced again by oppositely rotating the head of the tors
balance. Denote byFb the corresponding backward force

FIG. 5. Cross section of the mercury troughM1 of Figs. 1 and 2,
connected to the conductor 5 in the long configuration. The e
trodeV is partially immersed in the mercury and is the end of t
conductor 3 of Figs. 1 and 2. We denote byL the internal lateral
wall and byM the internal bottom ofM1. Moreover,N is the end
center of conductor 5 andG is the intersection of a vertical axi
~parallel toy) passing throughN with the mercury surface whos
ordinate isyf . The ordinate ofM is ym . The shown flux lines of
j5smE have axial symmetry because the conductivitysm of the
mercury is much less than the conductivitysb of the bronze in the
trough.
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which can be written asFb52(Fed b1Ffriction b). Notice that
Fed fÞFed b because the two electrodynamical forces are
evant to two different positions. IfFfriction f.2Ffriction f ,
adding the above expressions gives for the electrodynam
or net force, whenuFedu.uFfrictionu,

^Fed &5
1

2
~Fed f1Fed b!52

1

2
~Fb1Ff !. ~16!

To take the average of backward and forward forces as
‘‘average’’ electrodynamical force implies a 0.3% error sin
the force on the conductorV of the mercury trough is no
linear with the displacement but roughly inversely prop
tional to the distance fromNGL of Fig. 5. Moreover, an
uncertainty of 2 mm of the exact positioning ofV implies an
uncertainty of 8% in the force onV. Since 2FV is . 6% of
the total force, the mentioned uncertainty implies.60.4%
uncertainty for the total force.

Possible asymmetries in the friction forces, i.e., ifFfriction f
differs appreciably from2Ffriction b , bring about asymme
tries in the experimental values leading to an interpolat
curve for F that does not vanish when the currentI 0 van-
ishes. WhenuFedu,uFfrictionu the external forceFb is parallel
to Fed so the latter is given by

Fed5
1

2
~Ff2Fb!. ~17!

It was impossible to obtain reliable data without this a
eraging procedure. The friction force due to the surface la
of mercury increased with timet and in particular after the
temperature of the mercury increased around 50 °C w
operating at high current intensities (.100 A!. Actually, a
high temperature favored the formation of a small amoun
amalgam while the dust depositing on the mercury surf
increased with time, thus forming an almost elastic me
brane. We therefore purified the mercury by means of a fi
after any group of measurements.

Another improvement has been achieved by using a
ond torsion balanceB2 ~see Fig. 2! that exerts a traction
somewhat larger than the friction force.B2 eliminates the
mechanical plays and also allows one to use Eq.~16! only. In
fact, balanceB1 has to exert a force always oppositeFed even
when uFedu,uFfrictionu and there is no longer the necessity
use Eq.~17!.

We have collected 6000 reliable experimental data
which 2000 were needed to obtain the equilibrium point
the absence of the currentI 0. The 4000 useful values hav
been divided into 20 different values for the current intens
I 0. For each of the 200 values relative to the same value oI 0
we have made different groups of measurements, which
reported in Fig. 4~a! for theS configuration and in Fig. 4~b!
for the L configuration as a function ofI 0

2 so as to have
straight interpolating lines~as required by theory!. Actually,
the best interpolating straight lines according to the lea
squares method do not pass through the origin, showin
clear error due to some bias~for instance, the surface tensio
of the mercury trough for an inexact symmetry between
two positions, forward and backward, as explained in S
II !. Since we are interested in the slopes of the two inter
lating straight lines, standard error analysis gives for it
l-

al

e

-

g

-
er

n

f
e
-
r

c-

f

y

re

t-
a

e
c.
-

n

error of. 0.8%, which increases to 1% if we impose, as w
should, that the straight lines pass through the origin. Thi
what we have done in Fig. 4. Standard error analysis
been applied to the data to obtain the standard deviation.
average value of the experimental forceFex and its standard
deviation turn out to be given by

Fex_S50.1107~160.01!I 0
2 dyn ~18!

in theS configuration and by

FexL50.1077~160.01!I 0
2 dyn ~19!

in the L configuration. Comparing the experimental resu
~18! and ~19! with the theoretical results~14! and ~15!, we
see that they agree to within experimental errors and theo
ical approximations@see Fig. 4~a! and Fig. 4~b!#. Conse-
quently, our experimental results contradict those of Pap
@2# and confirm the standard theory.

V. CONCLUSIONS

Our ‘‘old-fashioned’’ experiment of classical electrody
namics shows in a definitive way that there is agreem
between experimental data and the theoretical values ca
lated by standard theory. ‘‘Old fashioned’’ is with regard
the kind of experiment, but not the experimental appara
and the computers necessary to perform the sixfold integ

The agreement found~inside the experimental and the nu
merical computations! allows us to disprove all the paper
@4# claiming the standard theory to be wrong and that th
are no direct, recent, dedicated experiments. In another p
@5#, special mention is made of a recent work of Assis@6#,
who claims to derive gravitation from Weber’s force la
~another elementary law!.
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APPENDIX A

1. The mercury trough and generalities for the calculation
of the force on the sectionV immersed in the mercury

After many attempts we have found that a convenie
practical arrangement for the electrical connections is t
shown in Fig. 5, where we consider the mercury troughM1
~see Fig. 1!. We must calculate the forceFV on the vertical
sectionV belonging to the mobile part of the circuit an
partially immersed in the mercury. We take they axis as
symmetric toV and thex axis as symmetric to the horizonta
wire 3. The contributions toFV antiparallel tox come from
the wires 3 and 5 in the long configuration and only from
in the short version. It isuFV5u!uFV3u with FV3,0. The
contributions parallel to thex axis are due to the bottomM
of the mercury trough~denoted byFVM

), the lateral wallL

~denoted byFVL
), and the current connecting the centerN of

the ending cross section of 5 with the pointG at the free
surface of the mercury~denoted byFVNG

).
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The currents in 3, 5, andNG may be considered as wire
like and having the full valueI 0. The contribution of the
opposite arm 2~parallel to 3 and withz52R) is less than
1023F3 and we neglect it. The calculation ofFVL

1FVM
is

extremely difficult to perform in a rigorous way because t
current densityj inside the mercury must satisfy the con
nuity equation“• j50 ~in steady-state conditions! and is re-
lated to the electric fieldE by j5smE, where sm is the
conductivity of the mercury. In turn,E is related to the scala
potentialw by E52“w andw satisfies the Laplace equatio
¹2w50.

A second, more difficult problem is that we cannot obta
the forceFV by simply calculating the Lorentz force on th
conductorV. Actually, the Lorentz force acts also on th
current distributed in the mercury so that the electrons
slightly displaced from their ions and a very small elect
charge appears on the surface of the mercury, on the la
wall L, and onV. Consequently, an electrostatic force co
parable to the magnetic one acts onV. Because of this, we
first approximate the mercury trough by a simple circ
made of filiform wires, as shown in next section.

2. An equivalent circuit made of filiform wires

As a first approximation we present a schematic of
mercury trough by the filiform~i.e., with zero cross section!
circuit shown in Fig. 6. The wires 5 and 3~now represented
only by their axes! remain the same, while the conductorV is
prolonged up to the bottomM /2, where /2 denotes that it ha
a length equal to half the diameter of the mercury trou
The lengthening ofV* up to M /2 is necessary in order t
take into account the current distribution in the mercury
which the Lorentz force acts. This force is transmitted toV
in Fig. 5 and toV* in Fig. 6 via the electrostatic force~due
to the displacement of the charges in the mercury!. The
length ofL* ~equal to that ofV* ) is less than theym of Fig.
5 because the flux lines ofj are distributed in the mercur
starting from its surface up to the bottomM . Precisely, with
reference to Fig. 5, we leave unalteredNG and reduce by a
fraction .0.5 the distance ofG from M . Consequently, the
new ym* is

ym* 5yf10.5~ym2yf !. ~A1!

The forces onV* and due to 5 andL* are calculated by
consideringV* as a straight segment connectingM /2 to 3. If
the same procedure is adopted to calculate the forces onV*
due to 3 andM /2 we would obtain two logarithmic diver
gences that are equal and opposite. We therefore elimi
two short connections ofV* ~connecting it withM /2 and 3!
when we calculate the actions of 3 andM /2 on V* .

FIG. 6. Circuit, made of filiform wires, roughly approximatin
the mercury trough of Fig. 5, in particular of 5,NGL, M , V, and 3.
re

ral
-

t

e

.

n

te

We then apply Eq.~6! of the main text, which in our case
becomes

S m0I 0
2

4p D 21

FV* 5E
V*

dr3E
5131M /21L*

dr 83
r2r 8

ur2r 8u3
•êx

52E
0

ym* dyE
2 l

2r 0
dx

y

~x21y2!3/2

2E
RV

ym* 2RVdyE
0

h

dx
y

~x21y2!3/2

1E
RV

ym* 2RVdyE
2r 0

0

dx
ym* 2y

@x21~ym* 2y!2#3/2

1E
0

ym* dyE
0

h

dy8
r 0

@r 0
21~y2y8!2#3/2

,

~A2!

wherer 0 ,h are given by Eqs.~2! and~3!, ym* is given by Eq.
~A1!, RV51.5a @with a50.25 cm given by Eq.~3!#, l
561.62 cm in theL configuration, andl 5r 0 in the S con-
figuration. The results for theS and L configurations are
given, respectively, by

FV* S50.3942
m0I 0

2

4p
for S,

FV* L50.3118
m0I 0

2

4p
for L.

~A3!

3. Calculation of the force onV in the real situation
with distributed current

Let us now return to the real configuration shown in F
5. The results of the preceding section show that the jo
contribution of the two conductorsV ~immersed in the two
mercury troughs! is . 6% of the total force. It is therefore
sufficient to calculateFV with a 10% approximation to have
a 0.6% approximation for the total force whose experimen
value has an uncertainty of 1%. Hence it is useless to f
the extremely difficult problem of looking for an exact valu
Moreover, a change of more than 20% in the distribution
the current in the mercury produces a variation ofFV less
than 5%. Consequently, we proceed in an approximate
that guarantees a value forFV within a 10% approximation.

The difficulty that comes from the boundary conditio
may be simplified greatly if the trough is considered as eq
potential. This simplification is justified sincesm
50.033sb , wheresb is the conductivity of the bronze con
stituting the trough. In this case the magnetic fieldB due to
the current flowing in the mercury vanishes because of
axial symmetry of the distribution ofj . Consequently, the
force onV due to thisj vanishes. It is also possible to dra
with a good approximation the distributions of the flux lin
for both j andE, as shown in Fig. 5. The distribution of th
current densityj ~per unit surface! on the lateral wallL is
fairly well approximated by
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j 5 j 0cosF p~y2yf !

2~ym2yf !
G5 j 0cosT. ~A4!

The constantj 0 will be obtained from the currentI L flowing
into the mercury from the lateral wallL. To find the distri-
bution of j on the internal baseM of the mercury trough we
notice that some flux lines issuing from the lateral wall ofV
end on an annular strip betweenr s.0.828r 0 and r 0, the
latter being the maximum radius ofM ~see Fig. 7!. This
modifies the known behavior of the flux lines due to a d
facing an indefinite plane. Moreover,j must vanish in the
connection betweenL andM , i.e., for r 5r 0. By these crite-
ria the current density onM ~with 0,r ,r 0) is approxi-
mated by

j 5 j 0* F0.3211cosS pr

2r s
D G2

. ~A5!

The constantj 0* will be obtained from the currentI M flowing
into the mercury fromM ~see Fig. 5!. The currentsI L andI M
are obtained by two conditions:~i! I L1I M5I 0, whereI 0 is
the total current flowing in the circuit, and~ii ! I L /I M
5RVM

/RVL
, whereRVL

is the resistance between the ele

trode V and L and RVM
is the resistance between the ele

trodeV andM .
To obtain a good approximation for the values ofRVL

and

RVM
we have divided the flux tubes starting from the late

wall VL of the central conductorV into six parts and those
starting from the bottomb of V into four parts, as shown in
Fig. 7. Of the six parts starting fromVL , five end onL, while
the sixth part ends partially onL ~roughly .2/3) and par-
tially on M ~roughly .1/3). The four parts starting fromVb
end onM . The spacing of the traces of the flux tubes on
xy plane is inversely proportional to the current densit
given by Eq.~A4! for the lateral wallL and by Eq.~A5! for
the bottomM . For simplification we have taken straight flu
lines for the current. Then we get

FIG. 7. Cross section of halfM1 with traces of flux tubes of the
current densityj flowing in the mercury, schematized as straig
lines. Their axes are shown by dashed straight lines.r 0 is the radius
of the internal wallL andr s the intersection withM of the flux line
issuing from the corner of the cross section ofV.
-

-

l

e
s

1

RVL

5 (
k51

6
1

RLk

~A6!

and

1

RVM

5 (
k51

5
1

RMk

, ~A7!

where the sixth contribution to Eq.~A6! and the fifth contri-
bution to Eq.~A7! are roughly due to 2/3 and 1/3, respe
tively, of the sixth flux tube starting fromVL .

We write as an example the explicit calculations for
generickth resistanceRk of the kth gap between truncate
cones whose traces on thexy plane are shown in Fig. 7:

Rk5
1

sm
E

l 1k

l 2k dlk
Sk~ l k!

, ~A8!

wheresm is the mercury conductivity,dlk an element of the
axis of thekth flux tube trace, andSk( l k) the variable cross
section of thekth flux tube. The limits of integration are
obtained as follows. Prolong the traces of thekth flux tube
until they cross at a pointHk shown in Fig. 7 fork56. Then
l 1k is the length of the segmentHkQ1k of Fig. 7, i.e., the
distance fromHk of the intersection of thekth axis with the
external wall of the conductorV, while l 2k is the segment
HkQ2k , i.e., the distance fromHk of the intersection of the
kth axis with the internal wall of the mercury trough.

If hk( l k) is the transversal thickness of thekth flux tube
trace andh2k its final value~where the flux tube intersect
the mercury trough!, we havehk /h2k5 l k / l 2k . If uk is the
angle betweeny and the axis of thekth flux tube andxk is
the abscissa ofHk ~negative in the case of the sixth flu
tube!, the distance fromy of the generic point of the flux
tube axis isxk1 l ksinuk . Consequently, the cross section
the kth flux tube is given by

Sk~ l k!5hk2p~xk1 l ksinuk!52ph2k~ l k / l 2k!~xk1 l ksinuk!.
~A9!

The integral~A8! becomes therefore

Rk5
l 2k

2psmh2k
lnF l 2k

l 1k

xk1 l 2ksinuk

xk1 l 1ksinuk
G . ~A10!

From Eqs.~A6!, ~A7!, and~A10! and the values

a50.25 cm, r s51.258 32 cm, r 051.52 cm,

yf50.5625 cm, yb51.15 cm, ym51.6 cm,
~A11!

we obtain

RVL
5

2.666

2psm
, RVM

5
4.941

2psm
, ~A12!

so

I M

I L
5

RVL

RVM

50.539 57. ~A13!
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SinceI 05I M1I L we have finally

I L50.6495I 0 , I M50.3505I 0 . ~A14!

Now from

I L5 j 02pr 0E
yf

ym
dy cosT5 j 04r 0~ym2yf ! ~A15!

we obtain, with the use of Eq.~A14!,

j 05
0.6495I 0

4r 0~ym2yf !
50.102 96I 0 , ~A16!

where j 0 is measured in Am22. Similarly, from

I M5 j 0* 2pE
0

r 0
dr r F0.3211cosS pr

2r s
D G2

5 j 0*
8

p
r s

2H 1

2
~0.321s!210.642@cos~s!1s sin~s!21#

1F S s

2D 2

1
s

4
sin~2s!1

1

8
cos~2s!2

1

8G J , ~A17!

wheres5pr 0/2r s , we get, from Eqs.~A14! and ~A17!,

j 0* 50.098 92I 0 . ~A18!

Having obtained the distribution of the current densities
suing fromL andM it is possible to get the currentI in the
central conductorV, taking, with a good approximation, th
current densitiesj Vb and j VL

on the base and the lateral wa

respectively, ofV, as uniform. Denote byI L1M→VL
the cur-

rent ending on the lateral wall ofV and starting partially
from the lateral wallL of the trough and partially from the
bottomM of the trough. Denote byI M→Vb the current start-
ing from the large central part of the bottomM of the trough
and ending on the baseb of V. We thus have

I L1M→VL
5I L1DI ~A19!

and

I M→Vb5I M2DI , ~A20!

where the contributionD I to the bottomM of the trough is
given by the integral in Eq.~A17! where the lower limit is
set equal tor s . Inserting the values given by Eqs.~A11! and
~A18! gives

DI 50.0072I 0 . ~A21!

We get from Eqs.~A14!, ~A19!, ~A20!, and~A21!

I L1M→VL
50.6567I 0 , I M→Vb50.3433I 0 . ~A22!

Consequently, the currentI in V turns out to be given by

I 5I M→Vb1
yb2y

yb2yf
I L1M→VL

5S 0.343310.6567
yb2y

yb2yf
D I 0 .

~A23!
-

It is more difficult to evaluate the currentsJL andJM per
unit length on the lateral wallL and the bottom of the mer
cury M , respectively. It would be necessary to solve¹2w
50 with partially Dirichlet and Neumann conditions, takin
into account the effective values of the conductivities. It
much easier to give approximated, sensible expressions
keep the error in the calculation ofFV to within 5%. The
most important contribution toFV is due to theJL nearG
since, because of the current flowing in the mercury,JL pro-
gressively decreases as we consider parts ofL further and
further from G and vanishes inZ ~oppositeG; see Figs. 5
and 8!. With a very good approximation,JL is radial in the
part ofL that starts fromG and extends symmetrically from
the planep of symmetry containing thex andy axes, down
to M ~vertically! and, laterally, to a linec5c(y) we deter-
mine later~see Fig. 8!. Using as coordinatesy and the dis-
tanceq from G (x52r 0, y5yf), for y.yf we have the
continuity equation

d~JLq!

dq
52 jq. ~A24!

The coordinates of a point onL are q and the anglec be-
tween the plane containing they axis and passing throughG
and the plane passing through they axis and the considere
point. Let us integrate Eq.~A24!, valid for 0,c,c(y) and
yf,y,ym , along the straight linesy2yf5mr0c ~wherem
is the angular coefficient!. For q→0 we must haveI 0
5JLpq so that use of Eq.~A4! gives

JLq2
I 0

p
52E

yf ,c50

y,c

j 0cosT@~r 0dc!21dy2#1/2

3@~r 0c!21~y2yf !
2#1/2. ~A25!

Sincedc5dy(mr0)21 and withT given by Eq.~A4! we get

JLq2
I 0

p
52 j 0E

yf

y

dy~y2yf !~11m22!cosS p

2

y2yf

ym2yf
D ,

0,c,c~y!,
~A26!

whence

FIG. 8. Wall L of Figs. 5 and 7 has been expanded so as to
tangential to the internal bottomM at a point having coordinate
x52r 0 andy5ym . Some flux lines~schematized by straight seg
ments! of superficial currentJ flowing in the bronze are shown (JL

on L andJM on M ).



el

n

ed
th

x
rg
l

c

q

n

eral

iva-
fi-
the

rces

the
to
on

e

oss

we

is

is

n

2514 PRE 58G. CAVALLERI, G. BETTONI, E. TONNI, AND G. SPAVIERI
JL5@~r 0c!21~y2yf !
2#21/2H I 0

p
2

j 0

T2
@~r 0c!21~y2yf !

2#

3~T sin T1cosT21!J ,
~A.27!

0,c,c~y!.

They and the azimuthal components are given, respectiv
by

JLy5JL~y2yf !/q, JLc5JLr 0c/q, ~A28!

so in vector form we have

JL5JL@~y82yf !êy1r 0c~ êxsinc2êxcosc!#/q,
~A29!

whereêx ,êy ,êz are the unit vectors of the Cartesian axes a
JL is given by Eq.~A27!.

The flux lines of the currents per unit lengths are plott
in Fig. 8 which shows the mercury trough expanded on
plane of the sheet, having ideally cutM along its periphery
andL along the generatrix passing throughZ ~see Figs. 5 and
8!. For c.c(y) we have verified that straight, radial flu
lines are still a good approximation provided they conve
to the point aty5yf andc5p ~upper corner of the latera
wall!. The current distributionJL8 @we add a prime to distin-
guish it from theJL given by Eq.~A26!# is still given by Eq.
~A27! without the first term, with a reverse sign of the se
ond term, andq85@r 0

2(p2c)21(y2yf)
2#1/2 instead ofq,

i.e.,

JL85 j 0T22$@~p2c!r 0#21~y2yf !
2%1/2~T sinT1cosT21!,

c.c~y!.
~A30!

The y and c components are similar to those given by E
~A28!, i.e.,

JLy8 52JL8
y2yf

q8
, JLc8 5JL8

r 0~p2c!

q8
, ~A31!

or, in vector form,

JL85JL8@~yf2y8!êy1r 0~p2c!~ êxsinc2êzcosc!#/q8,
~A32!

with JL8 given by Eq.~A30!.
The linec5c(y) is obtained by equating

JL8~y,c!5JL~y,c! ~A33!

and turns out to be given by

c~y!50.772 181y220.982 268y11.139 38. ~A34!

This line is shown by a dashed line in Fig. 8.
A good approximation for the currentJM per unit length

flowing on the bottomM of the mercury trough is a patter
y,

d

e

e

-

.

of straight flux lines~see Fig. 8!. The values forJM(r 0 ,c)
have to be equal to the corresponding ones of the lat
current fory5ym , i.e.,

JL~ym ,c!5JM~r 0 ,c!. ~A35!

The continuity equation onM is ]JM /]x52 j , which has to
be integrated along the straight linez52r 0sinc giving, with
the use of Eq.~A5!,

JM~x,c!5JM~r 0 ,c!2 j 0* E
2r 0cosc

x

dxH 0.321

1cosFp2 ~x21r 0
2sin2c!1/2/r sG J 2

. ~A36!

The reliability of this result is due to the check that forx
5r 0cosc ~the terminal of flux lines onM ) Eq. ~A35! is still
satisfied to within 1% of the value atx52r 0cosc ~the be-
ginning of the flux lines onM ). Actually, the flux lines onL
and M should be rounded so as to have continuous der
tives. However, the simplification shown in Fig. 8 is suf
cient to guarantee an error less than 1% in small region of
walls and hence an error less than 0.1% for the force onV.

We have now all the elements to calculate the force onV.
However, as already said in Secs. 1 and 2, the Lorentz fo
on the current flowing on mercury are transmitted toV via
the electrostatic forces due to the tiny displacement of
electrons with respect to their ions. An equivalent way
take into account this force is to calculate the whole force
the current flowing inV up to aV cross section intermediat
between a first cross section where thej flux lines in the
mercury begin to bend downward appreciably and the cr
section where the issuingj lines reach the bottomM of the
mercury trough. Then starting from this cross section,
consider a constant current along they axis up to the bottom
M . A point of the mentioned intermediate cross section
denoted byX of Fig. 8. Its ordinate is

yX51.0031 cm. ~A37!

The currentI flowing through cross sectionX is, as obtained
from Eq. ~A23! by settingy5yX ,

I X50.5075I 0 . ~A38!

Then we keepI 5I X from yX to ym . Summarizing, the effec-
tive current on which we must calculate the Lorentz force

I 5I Veff55
I 0 for 0<y,yf

0.3433I 010.6567S yb2y

yb2yf
D I 0 for yf<y,yX

I X for yX<y<ym.

~A39!

At this point we can calculate the force onV in the L
configuration due to wire 5, sectionNG, and the lateral wall
L. Denoting by êx ,êy ,êz the unit vectors of the Cartesia
axes we have for thex component of the force
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FV51FVNG
1FVL

5êx•E
0

ym
dy I~2êy!3B~y!

52E
0

ym
dy IBz , ~A40!

whereI is given by Eq.~A39! andBz by

Bz5Bz51BzNG
1BzL

5
m0I 0

4p H 1

yF l

~ l 21y2!1/2
2

r 0

~r 0
21y2!1/2G

1
1

r 0
F yf2y

@r 0
21~y2yf !

2#1/2
1

y

~r 0
21y2!1/2G

12r 0E
yf

ym
dy8F E

0

c~y8!
dc êz•JL3

r2r 8

ur2r 8u3

1E
c~y8!

p

dc êz•JL83
r2r 8

ur2r 8u3G J , ~A41!

whereJL andJL8 are given by Eqs.~A29! and~A32!, respec-
tively, c(y8) is given by Eq.~A34!, and

r2r 85r 0~ êxcosc1êzsinc!1~y2y8!êy. ~A42!

Numerical calculations yield

FV51FVNG
1FVL

50.4926
m0

4p
I 0

2 in L. ~A43!

In the S configuration, wire 5 is absent and wire 4
electrically connected to the mercury trough as in Fig. 9. T
average paths of the current areNP, PQ, andQG; from G
the average path is as in theL configuration. Numerical cal-
culations yield

FVNP
1FVPQ

1FVQG
1FVL

50.5386
m0

4p
I 0

2 in S.

~A44!

In order to calculate the force onV due to wire 3 and the
bottom M , we eliminate the first connection ofV with 3
~with length RV51.5a50.375 cm! and the last part of the
~artificially! prolongedV near the bottomM ~still RV) since
the effects of the two connections are equal and opposite
their exact calculations are very long. Actually, in our ca

FIG. 9. Connection of wire 4 of Figs. 1 and 2 with the mercu
trough for theS configuration. This detail replaces part 5,NG, and
the beginning ofL of Fig. 5 ~which is relevant to theL configura-
tion!.
e

nd
e

the currentI nearM is smaller thanI 0 whereasI 5I 0 near
conductor 3. However, the round connections of thej flux
lines between those flowing insideV and those inside the
mercury give a cumulative effect equal to and opposite t
near 3. Consequently, we have for thex component of the
force

FVM
1FV35êx•E

RV

ym2RV
dy I~2êy!3B~y!

52E
RV

ym2RV
dy IBz , ~A45!

whereI is still given by Eq.~A39! andBz by

Bz5BzM
1Bz3

5
m0I 0r 0

2p E
0

p/2

dc coscE
2r 0cosc

r 0cosc

dx êz•JM

r2r 9

ur2r 9u3

1
m0I 0

4pyF h

~h21y2!1/2
2

RV

~RV
21y2!1/2G , ~A46!

with JM5JMêx and

r2r 95~y2ym!êy2xêx1r 0sincêz . ~A47!

Numerical calculations yield

FVM
1FV3

520.2007
m0

4p
I 0

2 . ~A48!

The force due to wire 4 onV is negligible sinceB4 is almost
parallel to they axis aroundV. The total force onV has
therefore anx component given by

FVS50.3379~160.08!
m0I 0

2

4p
,

~A49!

FVL50.2919~160.08!
m0I 0

2

4p
.

The values given by Eq.~A49! are somewhat less than
and in acceptable agreement with, the corresponding va
~A3! obtained by the very rough approximation of a simp
wire. Since we have two mercury troughs, the total force
the electrodesV is twice that given by Eq.~A49!.

APPENDIX B

The integrand of Eq.~11! contains an integrable diver
gence, as is clear from Eq.~6!. In fact, it diverges as
ur2r 8u22 for r 8→r although, for anyr , the numerator has
the third-order infinitesimal quantityd3r 8 that makes the in-
tegral converge. This feature makes it difficult to evalua
numerically the integral with an accuracy of four significa
figures. For instance, the usual best method, that of Ga
cannot be applied since two subsequent zeros of Lege
polynomials can be highly asymmetric with respect to
point of divergence. The addition of a small quantitye to the
denominator of the integrand gives a small advantage si
if we fix five of the six variables of integration and vary th
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sixth one, the divergence changes sign when we cross
point r 85r .

The quickest method to calculate multiple integrals is
Monte Carlo method. Addinge5102n to the denominator of
Eq. ~11! and performing many calculations for eachn, we
have obtained the values shown by circles in Fig. 10. We
that there are strong fluctuations by changing the seed o
generated random numbers and the numberN of points cal-
culated. Strong fluctuations remain up toN.23109. The
interpolating lineb is uncertain, so even the second sign
cant figure is unreliable~see the caption of Fig. 10!.

We have succeeded in performing an analytical calcu
tion of the integral overs, thus reducing Eq.~11! to the
five-fold integral

F15
m0

4pS I 0

pa2D 2

R4E
0

a/R

s8ds8E
0

2p

djE
0

2p

dj8

3E
0

p

dqE
0

p

dq8s8sinq~11s8cosj8!H 2
aR

2C

R1e

1
C cosj@DaR~5F26D2!1F~2F23D2!#

~F2D2!R1e

1
~B cosj2C!@aR~F22D2!2FD#1B~F1DaR!

~F2D2!R1e

1AF
C cosj~2F23D2!2~B cosj2C!D1B

F2D21e

1~3DC cosj1B cosj2C!ln
uR1aR1Du1e

uAF1Du1e
J ,

~B1!

FIG. 10. Theh denote the numerical results and interpolati
line b of the six-fold integral~11! obtained by a Monte Carlo
method vsn, where n is the exponent of the smoothing terme
5102n added to the denominator of Eq.~11!, and then denote the
numerical results and interpolating lined of the five-fold integral
~B1! obtained by a Monte Carlo method.
he

e

e
he

-

whereaR5a/R @with a andR given by Eq.~3!# and

B5~11s8cosj8!2cos~q2q8!,

C5cosj cos~q2q8!,

D5cosj2s8sinj sinj82~11s8cosj8!cos~q2q8!cosj,
~B2!

F521s8212s8cosj822~11s8cosj8!cos~q2q8!,

R5AaR
212DaR1F.

We have added the small quantitye5102n in the denomi-
nator of Eq.~B1! as we have done for the six-fold integra
By the same procedure used for Eq.~11!, we have obtained
the values shown by triangles in Fig. 10~still vs n). The
accuracy of the interpolating lined is not better than the
previous ones.

Finally, a good result for the integral has been obtained
imitating the average distribution of the electrons~producing
the current in the considered wire! that are equally spaced
We have therefore divided each variable into equal parts
calculated the force on each point excluding the action of
considered point on itself. We then varied the number
divisions of each variable and verified that the results
come insensitive to further increases after 30 divisions foj
andj8, 20 for s ands8, while the convergence is very slow
for q and q8. We have therefore drawn the plot, shown
Fig. 11, of the values of the integral versusN, which denotes
the number of points ofq ~we have divided the circuit into
two parts exploiting its symmetry so thatN8 for q8 is equal

FIG. 11. Numerical results of the six-fold integral~11! vs the
numberN of points used for the variableq ~the variableq8, be-
cause of the axial symmetry of the circuit, requiresN/2 points!. The
results are obtained by a regular division of the points, thus imi
ing the average behavior of the electrons.
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to N/2). There are no fluctuations and the curve interpolat
the results is

J58.8015S 12
21.742

n3/22163.1729
D , ~B3!

whose asymptotic value is 8.8015, so that
a

g
F15F1self58.8015

m0I 0
2

4p
. ~B4!

Since the contribution to the total force on the circuit is
far the largest one, its accuracy up to and including
fourth significant figure is necessary.
.
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