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Growth rate of nonthermodynamic emittance of intense electron beams
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The nonlinear free-energy concept has been particularly useful in estimating the emittance growth resulting
from any excess energy of electron beams in periodic and uniform channels. However, additional emittance
growth, that is geometrical rather than thermodynamic in origin, is induced if the particles have different
kinetic energies and axial velocities, which is common for mildly relativistic, very intense electron beams. This
effect is especially strong if particles lose or gain significant kinetic energy due to the beam’s potential
depression, as the beam converges and diverges. In this paper we analyze these geometric emittance growth
mechanisms for a uniform, continuous, intense electron beam in a focusing transport channel consisting of
discrete solenoidal magnets, over distances short enough that the beam does not reach equilibrium. These
emittance growth mechanisms are based on the effe¢ty ehergy variations leading to nonlinearities in the
space-charge force even if the current density is unifé@nan axial velocity shear radially along the beam
due to the beam’s azimuthal motion in the solenoids, @h@n energy redistribution of the beam as the beam
compresses or expands. The geometric emittance growth is compared in magnitude with that resulting from the
nonlinear free energy, for the case of a mismatched beam in a uniform channel, and is shown to dominate for
certain experimental conditions. Rules for minimizing the emittance along a beamline are outlined.
[S1063-651%98)01108-9
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I. INTRODUCTION gaining and losing kinetic energy as the beam compresses
and expands, from the beam’s own potential depression.
In this paper we will analyze some dominant emittanceEven if the applied forces are linefspecificallyd(yr)/dt
growth mechanisms of a continuous, intense electron beafor each particle is linear in radius, where the dot refers to a
in a transport channel made up of short discrete solenoidsime derivativé, variations in the kinetic energies and axial

where the normalized, rms emittance is defined by velocities of the particles will lead to effective nonlinear
terms in the radial equation of motion where the axial coor-
e=yBV(ro)(r'2y—(rr")?2, (1)  dinate is usedspecificallydr’/dz for each particle will not

be proportional to the particle’s radjusThese mechanisms,
v is the relativistic mass factog is the axial velocity nor- which have been previously largely ignored, are becoming
malized to the speed of light, the prime refers to an axiaimportant for a new, emerging generation of high-current,
derivative, and the brackets indicate ensemble averages. Abw-emittance induction linear accelerators, and are the focus
though the emittance defined this way is not strictly con-of this paper. The emittance growth described in this paper is
served(if the beam has a nonzero energy spread and either Bssentially geometric in nature, and is not related to the ther-
accelerated or experiences linear focusirigis a practical, modynamic energy of the beam. Since this emittance growth
geometrical definition, because it relates the emittance to theesults from energy variations, it could also be referred to as
minimum rms beam size achievable for a drifting beam at aa chromatic emittance growth, but we choose the term geo-
waist or target position. We will assume that the transporimetric because the growth arises from using the geometric
channel is short with a few discrete focusing elements, themittance definition, Eq(l), instead of using the emittance
focusing is not necessarily periodic, and the electron beardefined by the ensemble averages of the conjugate variables
does not reach an equilibrium or periodic phase-space distri- and yr. Additionally, we do not want these mechanisms
bution. For simplicity in the analytic treatment, we will as- confused with the chromatic effects resulting from the en-
sume that the beam is laminar with uniform density, and allergy spread that exists axially along a finite-length bunch. In
focusing elements are perfect with no fringe fields or mis-regards to recent discussions relating beam emittance to en-
alignments, which eliminates several very significant emittropy[7,8], the emittance growth described by the nonlinear
tance growth mechanisms, such as the corkscrew mechanidnee energy is related to a real increase in entropy, whereas
[1-3] and radial aberrations in the focusing. The mechathe emittance growth resulting from the geometrical effects
nisms we will study here are based on kinetic energy andtudied here is not related to a real increase in entropy. In
axial velocity variations of the particles in the beam. Thesehis manner, this type of emittance growth is similar to the
variations will lead to an increase in the geometrical emit-nonequilibrium emittance growth seen in photoinjectors,
tance, as defined by E({), but will not lead to an associated which can be compensat¢@—13], leading to an emittance
increase in the beam'’s entropy. Since these effects are nttat initially grows and then decreases to a final equilibrium
thermodynamic in nature, they are not included in standardalue often between a fourth and a tenth of the maximum
analyses of the nonlinear free-energy mechaniés6]. The  emittance. The nonequilibrium emittance in photoinjectors is
most important of these mechanism results from particlesxial in nature due to the pulsed nature of the bunched beam;
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the geometric emittance studied in this paper is radial irmany existing and proposed beamlines. Using numerical
nature because the beam is continuous. simulations, we additionally demonstrate that these mecha-
Much of the previous work on the emittance growth of nisms also lead to the beam density hollowing out.
electron beams in focusing channpds-6] has concentrated ~ We will start by constructing the radial equation of mo-
on the powerful approach of the evolution of nonlinear freetion including the effect of both the space-charge force and
energy. This concept is based on the fact that stationaripe focusing force from a perfect, hard-edged solenoid. Then,
states of the channélising either periodic or uniform focus- We Wwill examine the emittance growth for the effects out-
ing) are minimum-energy statéfor given second moments linéd above, making the assumption that the emittance
of the beam, including its rms emittanc&hus a beam in a growt'h' is primarily due to changes in the_ partlcles’_ radial
nonstationary distribution state will have a higher energy peyelpcmes and that the bea”_" density profile essentially re-
particle than the equivalent stationary state, and will try toTains constant. Although this procedure does not lead to a

relax to the stationary state with that amount of average eréelf—consistent begm s_tatione_lry state solution, this procedu_re
ergy per particle. The higher-energy stationary state willlS common for estimating emittance growth rates of nonequi-

have larger second moments, including the rms emittancé',t_’lrl'lIJméﬁlecmr.1 Eeameﬁ Refs'[12,14], for eﬁamplehan_d
than the initial distribution. This relaxation will be triggered \I':V_' ﬁa to |r_1|T|g ts into the emittance growthTec anisms.
by any nonlinear forces present; beam density nonuniformit 'nally we will compare the emittance growth from a mis-

ties typically relax in about a quarter-plasma period, andnatched beam from this effect with that estimated by the

beam mismatches or transverse offsets typically relax Witr?omim:""’lr fre(_a energy, and. demonstrate that for sufficiently
distances on the order of the betatron motion. The energ ntense, relativistic, low-emittance electron beams, the effect

conservation leading to this effect exists because the statio rom the energy variations will dominate.
ary states are eigenstates of the Hamiltonian of the system.

Strictly, this conservation property only exists for the Hamil- Il. DERIVATION OF THE RADIAL EQUATION
tonian conjugate variables and yr. The beam rms emit- OF MOTION, INCLUDING NONLINEAR
tance is typically defined with the variablesndr’; thus an FOCUSING FORCES

equivalent conservation property for the rms emittance

growth also exists for these variables if all particles are as;_ i equation of motion that we can use to examine various

sumed to have the same energy and axial velocity. Howeveémittance growth mechanisms. In particular, we wish to have

for inten;e elgctron beams, this as_sumption fails, as we demy, expression we can use to estimate the emittance growth
onstrate in this paper. The result is that there can be a no

> b . ) X —for a laminar, uniform-density beam.
thermodynamic increase in the beam’s rms emittance, whic

In this section we wish to derive an expression for the

center. We will then assume that each particle experiences a
Tonstant force over some axial distaricas they drift. Once
. . . this is done, the emittance growth can be easily evaluated by
' Here, we will carefu'lly expand'the rela}t|V|st|c radial equa- performing the ensemble averages in EH, since we are
tion of motion for a uniform-density, laminar electron Ioeam'assuming that the radial current density remains constant.

and find that several nonlinear terms arise from the variation§,hiS approach will not deal with correlations in the emittance

in the particles’ energies. In fact, even though the beam dIS(';;rowth relative to the initial distribution. Since we are inter-

t.”bUt'on is uniform and the space-charg_e force is r"j‘d'a"yested in the emittance growth from nonlinear components of
linear, these other terms can lead to emittance growths th

. ; "I’llle space-charge and focusing forces, we will expand the
accumulate along the beamline. The mechanisms that ha P 9 g P

Y&dial equation of motion carefully.
the largest emittance growth rates result from energy fluctua- d y

tions due to the particles’ radial motion and axial velocity
variations due to the particles’ azimuthal motion within the
solenoids. These mechanisms can lead to very significant The radial equation of motion for a particle within the
emittance growth rates for initially low-emittance beamsbeam within the central part of a solendighere the applied
with uniform densities; the normalized emittance growthmagnetic field from the solenoid is purely aji&@ given by
rates due to these mechanisms also do not necessarily de-

increase, as will the minimum achievable rms waist radius a
the beam is focused.

Radial force equation

crease with increasing beam energy, unlike that arising from d(yr) _ ymuy
the space-charge force if the beam density is nonuniform. M =4t =eE +e(vBaa—v,Bo) T evoBeat ro’
Thus the emittance growths discussed in this paper are of 2

very practical concern for low-emittance, high-current, rela-

tivistic accelerators, where special care has been taken where B, is the total external axial magnetic fieldrom
design an electron gun producing a uniform-density beamboth the solenoid and the diamagnetic effect from the image
One goal of this paper is to develop formulas that can beurrents in the beampipeBy;, is the induced diamagnetic
used by induction-accelerator beamline designers as a figugxial magnetic field from the beam current opposing the so-
of merit. This formalism does not assume uniform or peri-lenoidal field, B, is the azimuthal magnetic field from the
odic focusing, and can be used to estimate the emittancgpace charge, anH, is the radial electric field from the
growth of electron beams in nonperiodic focusing structurespace charge, all at the position of the particle, arahdm
where no equilibrium beam distribution exists, as seen irare the electronic charge and mass, respectively. Most of
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these terms are mostly linear with radius. For balanced floments in order to find a more useful form. The total magnetic
(the beam edge is at a constant raglidbe linear compo- field B in terms of the diamagnetic component and the total
nents cancel. The ,B, term mostly cancel€, (to order externally applied fielB,,; is given to lowest order by

1/y?). For balanced flow, the solenoid strength is adjusted

such that the linear part of the combinationeaf,B,,, and BB (1+ %) B Y[ ) E) n E)
the centrifugal force will cancel the linear part of the result- ext Beyt ex Yal 2 Yal 2

ing space-charge force. There is also a potential depression

within the beana variation ofy that is a function of radiys -B.l1+ 71 E ®)
Our approach will be to expand the radial equation of motion a Ya\ 2 '

in terms of the variation of, to lowest order, which we will

then use to estimate the emittance growth for various case#hereB, is the total axial magnetic field along the axis (
We will assume that the particles have no intrinsic angu-=0). If the charge density is uniforrn&0), the total axial

lar momentum(there is no axial magnetic field at the loca- magnetic field and the relativistic mass factor have the same

tion of the cathodeand that the external magnetic field is radial dependency,

radially constant. Thus the azimuthal velocity can found by

application of Busch'’s theorefii5] (the conservation of an- B=B.l14+ 71
gular momentur a Ya)'
= 2 | (Bout Bugv d 7
Vo= mr Jo(Bext Baalv dv, ® y=7a| 1+ Z)' ©)

where v is a dummy variable for the radial integration. We Note thaty, depends quadratically on the beam radius, and
will assume that any radial divergence of the beam is smallig positive[see Eq(7)].

and use Gauss's law to find the radial electric field, The azimuthal velocity in terms of the magnetic field on
axis and the relativistic mass factor on axis is given by

E f " p(v)v q @
r)=
(1) o e&r v eB,yr [ 1+ (yi/ya)(n+2)/(n+4)
v0=_27m 1+y,1y (10
wherep is the charge density. The diamagnetic field is given & 17 7a
by Note that the azimuthal velocity is not radially linear even if
0 the space-charge density is uniform=0).
Bdia:f wo o(v)p(v)dw, (5) The beam-induced azimuthal magnetic field in E).is
r given in terms of the vector potential by
wherery, is the radial edge of the beam. The diamagnetic 9 19
field is small, and, to first order, only the azimuthal velocity Bo=— A+ —-—TA,. (11

depending on the externally applied solenoidal field needs to

be considered in Ed5). The relativistic mass factor is given ¢ he peam is converging or diverging, there is a nonzero

by radial vector potential, and if the beam is being focused in a
r eE () solenoid, the axial derivative of the radial vector potential is
(1) =ya+ y1(1) = ya+ f —z dv, (6) nonzerg 16]. The term corresponding to the axial derivative
o m

of the radial vector potential tends to average out for a lami-

) . nar beam and will not result in an appreciable emittance
where y, is the mass factor along the axis=0). Let us growth, and we will ignore it.

assume that the space-charge density is of the fprm = a; this point, we have written out all the terms on the

=por". Explicit evaluation of the above integrals for this right-hand side of the radial equation of motion, and we can
charge density profile gives evaluate the nonlinear terms. For the emittance analysis, we
want the radial divergence instead of the radial velocity, so

r:L Pl we still need to change the variable of differentiation on the
e(n+2) left-hand side of the radial equation of moticfthis change
of variable is what induces the geometric emittance growth.
__¢ Po =L Using dots to refer to time derivatives and primes to refer to
Mm@ en+22" T m&n+2’ axial derivatives, we have
%:_M_e Po n+2_rn+2):_(&_£) n+2 Eyf':i’d—’y-i—'yi":E.rZ—F)/F. (12
Bext 2my (n+2) b Ya 7Va 2 dt dt mc

7

“ With the definitions , being the axial velocity along the axis
where we have now introduceg, as the difference in the andv being the relative axial velocity,
relativistic mass factor between the center and the radial
edge of the beam. We can manipulate the axial field compo- vAr)=vatu(r), (13
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Eq. (2) becomes the fact that the growth in the emittance defined in the usual
way [Eq. (1)] does not reflect a thermodynamic change in the
2 1+21) _ ek beam distribution.
2 val  y7*(r)?
2 Il. EMITTANCE GROWTH ESTIMATES
1 ymoy,
+ P € y(Bextt Buia) + — In this section we will estimate the emittance growth due

to variations in particle energies and axial velocities, for
2 o typical focusing scenarios of a ur)iform—dens_ity, Iaminar
_mvoErf , (149 peam. We will make the assumption that this emittance

growth adds in quadrature with a beam’s initial emittance,

where y* is an effective relativistic mass factor we will for a beam with nonzero initial emittance. This assumption

evaluate later. To lowest order in the small quantities, thé®ally has two parts(1) the emittance growth for a nonlami-
radial force equation becomes in terms of the parameterd@’ beam is the same as for a laminar beam @hdthe

evaluated on axis beam’s initial emittance is uncorrelated with the emittance
growth. These resulting emittance growths are not derivable
eE, Y1 from nonlinear free-energy consideratidds-6], but instead
"=l ( - —) arise from geometric nonlinearities in the introduced radial
Mugzyay”*(r) Ya

divergence[Eq. (18)]—in particular, from (1) the y,/7y,
engr y1| eEr’? v term multiplying the space-charge foro@) the r()2 term,
- m( )— ( ) and (3) the v/v, term. The emittance growth frorfl) is
a’ ra physically due to a nonlinearity in the radial equation of
(15 motion because a particle’s radial acceleration depends on its
relativistic mass, in addition to the space-charge force. The
The focal length of a solenoid of lengthfor the beam  emittance growth fron(2) arises from the fact that even if
near the axis is defined by the radial momentum change is linear, if particles at different
2 2 2 radii gain or lose energy at different rates, this will lead to a
_ Ayamug (16) nonlinearity in the radial equation of motion fof. Because
N |eZ|3a2 of issue(3), particles at different radii inside a solenoid end
up spending a different amount of time experiencing the so-
and so the change in the radial divergence after a lehgth lenoid’s focusing field§and thus are affected by a different
becomes focal length.
We will assume that the focusing elements are thin for

leE, v\ V1 simplicity. In the emittance growth formulas that we derive
i e ey A I Sl Bl I Sl later, the focusing element length is important only for the
mvgyay*(r) Ya f Ya ’ .S . . .
case of the variation of axial velocities in a solenoid.
IeErr(’)2 v The emittance growth from the nonlinear space-charge
- 7am & o) 17 force term scales as 47 (if the density is nonuniform it
a a

scales as 3#). Thus, as the beam is accelerated, the emit-
tance growth from this effect vanishes, and, for most beam-
lines with acceleration, the net accumulated emittance
growth is small. However, the emittance growths from the
other effects do not necessarily decrease as the beam is ac-
leE, ( 7’1) r celerated, and very large net emittance growths can occur,

wherer is the initial beam divergence.
If the charge density is uniform, the change in the radial
divergence becomes

e

- even for beamlines with acceleration. Clearly, the correla-
tions between particle motion and the nonlinear forces will

mviyay* (r)2 Ya

le v have an important effect on the net emittance growth, which
e Err(’,2 (1—2—). (18  will not be considered beyond some simulation results pre-
YaMm Va sented in the following section; however, the emittance

rowth rates derived in this section still can be used to esti-

Note that the effect of the potential depression of the bea ate the emittance growth in beamline designs.

exactly cancels the effect of the diamagnetic effect, leading
to a purely linear focusing force. The apparent nonlinearities
in this equatior(which governs the emittance growtre(1)

the term modifying the space-charge force, which results In this section we will assume that the focusing just bal-
from the variations in the different particles’ relativistic mass ances the radial space-charge force near the axis of the beam,
factors, (2) the last term within the square brackets, whichand that the initial beam divergence vanishgss 0. In this
results from how the particles’ mass factor changes as thease, the third term within the first parentheses in @&)

beam converges or diverges, a3jlthe last term in the final vanishes, and any nonlinearity introduced in the radial diver-
parentheses, which results from variations in the particlesgjence comes from the nonlinearity in the first term within the
axial velocity. If the emittance is defined by the rms en-first parenthesegll nonlinear effects from terms within the
semble averages of and yr, it would not grow, reflecting second parentheses are second grder

A. Balanced uniform flow
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Balanced flow means that Ir
D Pl (26)
leE, r 1e?Bir 2merpUa
23T 42mn (19 . - ;
Va%Ya 4yamug Using the definition of the Alfve current (a

=4memc’/e), we can rewrite the change in the beam diver-
There is clearly a nonlinearity in the space-charge force asgence as
sociated with the beam’s potential depression, but it is also

instructive to investigate the linearity of the® factor in the 1253

space-charge term. N'==27777 25 A (27)
The space-charge radial electric field at a radial position
from a ring at radius is given by where B=v,/c. After doing the ensemble averag@scall
we are assuming that the initial beam density is unifiorre
v find that the normalized, 90% emittance is
dEF% dv. (20) °

=| var® (28

The radial force at is then given by T 1285310

" epov For a 4-kA beam at 6 MeMthe rough parameters of the
Fr(f)=f — [1=A(r)B(v)]dv, (21)  Integrated Test StandTS) induction linac at Los Alamos
0 ® [17]), the emittance growth is about 3.2(19I. Note that
hich i i | d h .this emittance growth is independent of beam radius.
grlfhelziglsi/)élﬁ\éﬁ u:tsea %Sniggrr: gfr\;v;al avoeSizilir(;nexpressmn We would npt expect that the emitt_ancg would_ grow un-
The axial velocit%// is found from the conspervatioﬁ of en- bpunded at this rate. .The beam Qensny will continue 1o 0s-
cillate about the equilibrium densifgomewhat lower at the

ergy: beam edge than at the beam centwiith the emittance os-
1 1 291(r)  Byy(r)? cilla_lting also, Wit-h a period equal to one_-half of the plasma
1-p2— ===, (1_ o, 7’12 , (22 period. For this case, the generalized perveariCe
Y Va Ya Ya =21/1,(B7y2)° [6] is 2.3x10 %, and the beam travels a dis-

tancer,/2y2K=2.2 m in a quarter-plasma period.
where, as beforey, is the normalized beam energy along the  There are three features of this emittance growth we
axis andyy(r) is the beam energy change from the axis, andshould note. First, this emittance growth is only a function of
we have kept this equation to second orderyiy,. From  peam energy and current. Second, it is a small effect, and one
before, we know that the azimuthal velocity is given to low- that vanishes quickly as the energy is increased. Third, the
est order by emittance growth from this effect will oscillate for a laminar
beam, and the emittance will vanish at integer multiples of a
) ( eB,r
By=

2y,mc

2_ V1
=23,
Va

half-plasma wavelength.

We can verify these conclusions using the relativistic
particle-pushing codesLICE [18], which uses the Lorentz
using the condition of balanced flojq. (19)] and the rela-  force equation along with external fields and the beam’s self-
tion between the radial electric field and the potential depresfields to calculate particle trajectories. For a balanced, mono-
sion for a uniform beam. Using this expression in E2p), kinetic-energetic beam that should have no emittance growth

(23

we find according to Eq(18) (here the beam is injected with equal
kinetic energies at all radii, ignoring the potential depression
1 3y? of the beany, the numerical error due to the interpolation of
1—,(3?:7 1+ 7) (24)  the particles’ positions leads to an emittance oscillation that
a a

is roughly of the size of 0.35(1¢) m divided by the num-

e . o ber of particles in the simulatiofin other words about
and any variation in the axial beam velocity is second orde :35(10°%) m for 1000 simulation particles, which is negli-

in the small _quantitie_s. Thus_the entire beam_ essential_ly hag?ible]. In Fig. 1 we show simulation results for a balanced
the same axial velocity, and indegd = y,, to firstorderin oo injected with uniform total energjinetic plus poten-
1/ 7va. This is a more general case of the same well-known)) with the above parameters. The initial emittance growth
effect for Brillouin flow for tenuous electron bearfiss). rate is very close to 2(1¢) m per meter of drift, and oscil-
_ In order to estimate the emittance growth from the noNy,ie5 with“a period corresponding to a half-plasma period.
linear contribution from the radial space-charge force, We\gte that the emittance growth results from a differential
start with the nonlinear part of E¢18), rotation in phase space, shown in the phase-space plot at the
final axial location(28 m) in Fig. 1(c). Close inspection of
Sr'=— leE, 7:_ (25) the phase-space plots at different axial locations shows that
mu zya this differential rotation changes sign in successive emittance
oscillations, and the curvature in the final phase-space plot is
In terms of the beam current, the radial electric field is givenof the correct sign. This oscillation is very different than the
by emittance growth resulting from the nonlinear free energy, in
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32 4

24 +

r(cm)

emittance (mm mrad)
~N
4

4 8 12 16 20 24 28 32 36
(b) 2z(m)
0.164
0.08-
=)
4 5
£ 0
T
-0.08-
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0 0.8 16 24 3.2
(c) r(em)

FIG. 1. Numerical results for the balanced flow case Radial beam profile(b) Emittance profile, showing correlated oscillatiofrs.
Final beam phase-space plot, showing differential betatron rotation.

which case the emittance growth is permanent as the beations are now driven by variations in the particles’ axial ve-

relaxes to the new stationary state. Also note for the caskcity in the space-charge force terpt in Eq. (18), as the

shown in Fig. 1, there is no nonlinear free energy, and ndbeam compresses and expands. We attribute the increase in

resulting permanent emittance growth due to an excess dhe magnitude of the emittance oscillations to a parametric

thermodynamic energy. pumping of the differential betatron rotation by the oscilla-
In Fig. 2 we show simulation results where the beam istions of the beam core. Although the emittance does vanish

mismatched in the uniform-focusing channel, and the Lor-at the proper axial locations, this effect may be problematic

entz force equation was modified so effects from energyn actual accelerators, especially if the phase space mixes.

variations from beam compression and expanstbe third

term in the first parentheses in E4.8)] were ignored. Note B. Axial velocity variations in a solenoid

for this case the envelope period is about 5.75 m. The emit- ) ) .

tance[Fig. 2(b)] still oscillates, but now the oscillation pe- ~ NOW let us consider the effect from the spread in the axial

riod is a beating between the envelope period and the ha“ye!ocny of Fhe beam W|th||j thg solenoid. The variation in the

plasma period, and the magnitude of the oscillationsXi@l velocity @, =va+v) is given by

increases at an approximate rate of 2 mm mrad per meter. In 2

Fig. 2(c) we see that the emittance growth is still due to a V=7 —— — f_ — ,3%, (29

differential rotation in phase space. The emittance oscilla- Yala 2Va 2v
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FIG. 2. Mismatched beam with uniform focusifignodified Lorentz force equation ignoring energy variations from beam compression
and expansion (a) Radial beam profile(b) Emittance profile(c) Final beam phase-space plot.

where v, is the axial velocity at the center of the beam. 1 4

. . . . . b
Inside the solenoid, the azimuthal velocity term dominates, e=__— Yajz:
and we find 122

(32

2 ,  e’Bir? For the case of the ITS final focus solen¢ilenoid length
YT 20, By=— 8y2m?," (300 is about 10 cm, focal length is about 60 cm, and the beam
radius is about 3 cimnthe emittance growth is about 18 mm
glrad. If the beamline consists of several discrete solenoids
with the beam being focused tightly between them, the emit-
tance from this effect may or may not accumulate, depending
on the relation between the beam’s betatron period and the
; ( 2) spacing between solenoids. For laminar flow between sole-

This leads to the divergence in the beam introduced by th
solenoid(ignoring all terms except for the terms depending
on the solenoid’s focal lengttas

1— ~ (3 noids, there is also an axial velocity shear, which depends

If both on the radial divergence of the beam and the potential

depression of the beam. If the radial divergence effect domi-

The normalized, 90% emittance growth from the nonlineamates, particles at the center of the beam still have a greater
part of this divergence is now axial velocity, and the nonlinearity here will tend to cancel

f
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the nonlinearity induced inside the solenoids. If the beam’s -, K?2 )
potential energy effect dominates, particles at the center of =32 s, (37
b

the beam have a smaller axial velocity, and the nonlinearity
here will tend to add to the nonlinearity induced inside theyhere| is the separation between solenoids. For this case,

solenoids. the average rms emittance growth ratétising Eq.(34)]
C. Gentle scalloping case Ae V2 | K? , V2 [1 3 |§
. . . ~aeT 259 |\ 7] 2ege
In general, the beam is not in completely balanced, uni- Az 3614 1 9 \la) r5¥°B

form flow or being focused hard to a waist. The solenoids are

usually discrete, and the beam-edge radius gently undulates
down the beamline. Alternatively, we can have scalloping ifgqr the case of a mismatched beam in a uniform focusing

the beam is mismatched into a uniform-focusing channelchannel; we use the envelope equation to find the envelope
We can estimate the emittance growth for a lerlgtti scal- wave numberk,= m For the case where

Iop_lng motion, by using the d"’efge'?ce term in E48 the unnormalized emittance is very smatjuasilaminar
while assuming that the beam radius is a constant. flow), we find[using Eq.(35)]
a '

In this case, the accumulated nonlinear divergence after

(matched, periodic focusing (38

lengthl is given by Ase V31 K 52_‘@ ( I )2 52
st eEr? _, nre _ 33 Az 6 Iarp 3 1Al 15y°B°
r=—| ———= a~-=— —F @ ,
yamciry YaBlalp (mismatch, uniform channgl (39

where nowa is the rms divergence of the scalloping of the It should be remembered that the emittance growths de-
radial beam edge. For this case, the normalized, rms emiscribed in Eqs(38) and (39) are for specific focusing sce-

tance growth is given by narios, which leads to the property that the emittance growth
rate decreases with beam energy. Recall from (B4). that
. Q | '_ 2 (34) the emittance growth rate actually only depends on the beam

current and the rms beam convergence or divergence. Equa-
tions (38) and (39) are presented for comparison with the
or emittance growth from the beam’s nonlinear free energy and

with simulations.
v2 |
| — (5ko)?, (39

S 24 1, IV. DISCUSSION COMPARING THE MAGNITUDES

if th dial illati L id is th itud f OF THE GEOMETRICAL EMITTANCE GROWTH
if the radial oscillation is sinusoidal is the magnitude o AND THE EMITTANCE GROWTH

the radial oscillations, and, is the e_nvelope oscillation FROM NONLINEAR FREE ENERGY

wave number. Note that the beam radius and energy are not

present in these equations. For the numbers used in the pre- In this section we compare the magnitude of the predicted

vious examples with a rms divergence of 20 mrad, the noremittance growth for a scalloping beam in a uniform focus-

malized, rms emittance growth is about 1.1(¥, which  ing channel, using Eq(39) for the geometrical effect and

can become large if this emittance growth is accumulatedormulas in[6] for the effect of the nonlinear free-energy

over a long distance. Note that the worst situation is if theeffect. We additionally use the simulation coslace to nu-

beam flow is laminar, because the particles’ phase space iserically calculate the emittance growth for verification of

disrupted in the same manner if the beam is converging othe estimates. There is no nonlinear free energy and hence no

diverging. There will also always be an accumulation over @hermodynamic emittance growth for a matched beam in a

long distance when the beam is in the emittance-dominategeriodic channel, and no comparison is relevant.

regime; but the exact rate depends on the correlation between Reducing the equations [6] for the case of a scalloping

the particles’ betatron period and the period of the scallopslaminar beam in a uniform channel, we find that the emit-
These expressions can be conveniently approximated faance growth(this is the total allowable emittance growth

both the cases of a matched beam in a channel of discretad not a ratebecomes

thin solenoids and a mismatched beam in a uniform channel,

€

for modest oscillation magnitudes, using the envelope equa- B vBKor, 6
tion for the beam envelope radius edgg[6], ST (40)
2
2K 48un: (36) where, as beforej is the magnitude of the radial oscillation.

" 2
Mo Kol Iy rg 0, For small initial emittancegwhere the undepressed betatron
wavelength is very nearly equal to the square root of two

where the unnormalized emittance is definecegs=e/8y  times the generalized perveance divided by the equilibrium
andk, is the undepressed betatron wave number. In the limibeam rms radiys the total emittance growth is approxi-
of laminar flow (vanishing unnormalized emittaneg,), the  mately
rms beam divergence for the matched, periodic case with
thin solenoids is given by s%y,B\/Rc?, (41
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FIG. 3. Periodic focusing cas@nodified Lorentz force equation ignoring nonlinearities in the space-charge. t&nRadial beam
profile. (b) Average particle kinetic energy profiléc) Externally applied magnetic field profiléd) Emittance profile.(e) Final beam
phase-space plotf) Final beam configuration-space plot.

and the rough initial emittance growth rafesing the de-

where nowg; is the initial normalized, rms emittance.

pressed betatron wavelength as a rough estimate for the scale Comparing Eqs(39) and(42), we see that the ratio of the
required for the generation of the emittance growth in Eqgeometrical emittance growth rate to the thermodynamic

(36)] is

Ae

Az

§8i
e

emittance growth rate i€275(1/1,) VK/6e; . The geometri-

cal emittance growth tends to dominate under the conditions
of large radial oscillations, low energy, and small initial
emittances. For the numerical example used before, the total
expected emittance growth from the nonlinear free energy is

2| 58i
V1,333 e’

(42
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FIG. 3 (Continued.

on the order of 1000 mm mrad; however, the geometrical In Fig. 4 we show thesLICE outputs for a mismatched
emittance growth rate is about twice the thermodynamideam in a uniform focusing channel. In Figapwe see the
emittance growth ratéor initial emittances of about 30 mm radial profile, in Fig. 4b) we see the average particle kinetic
mrad. At lower energies, the geometric effect becomes morenergy, in Fig. 4c) we see the emittance evolution, and in
dominant—at 3 MeV, the growth rate associated with thisFig. 4(d) we see the final phase-space plot. The Lorentz force
effect is about six times as great as the emittance growtBquation was also modified in this simulation to eliminate the
from the nonlinear free energy. nonlinearity associated with the space-charge term. Again we
In Fig. 3, we show thesLICE outputs for a periodic focus- see the bending back in the beam’s phase space, and an
ing case. In Fig. @), we see the radial profile, in Fig(l3  average emittance growth of about 1.1 mm mrad per meter,
we see the average particle kinetic energy, in Fig) Sve again in rough agreement with that predicted by &§) (2
see the externally applied axial magnetic field, in Figh3 1y mrad per meter of drift For this case, there should also
we see the emittance evoI.ut|on., in FigeBwe see the f!nal be additional emittance growth from excess nonlinear free
phase-space plot, and in Fig.(f[B we see the final energy, and with the parameters used in the simulation, the

configuration-space plot. In this simulation we modified th?approximate emittance growth rate from the nonlinear free

Lorentz force equation to eliminate the nonlinearity associ- ha .
ated with the space-charge term so the effect from the palg_nergy Sh.OUId pe of a similar _magmtude. However, no ther-
ticle energy variations would be very clear. Note the bendin odynamic 9m|ttance growth is observed n the phase-space
back of the beam’s phase-space profile, in contrast to that©t (where it would appear as a broadening of the phase-
seen in Figs. @) and 2c), where the emittance is due to space dlstr|but|o.n ms_teaq of a curvatyrbecause it is sup-
only a differential betatron rotation. This deformation of the Préssed by the linearization of the space-charge term.
particles’ phase space leads to a hollowing out of the beam’s Of the mechanisms studied in this paper, the effects from
density in configuration space. The average emittanc®eam scalloping will probably dominate in practical beam-
growth rate is about 1.4 mm mrad per meter, in rough agredines and accelerators, even at high beam enefgéssem-
ment with Eq.(38) (which predicts about 2.1 mm mrad per ber that in Eq.(34) the emittance growth rate only depends
mete). Because we used a nearly matched distribution in then the beam current and rms divergence, and is independent
simulation, there is no appreciable emittance growth fronof the beam enerdy In regards to that mechanism, we can
any excess nonlinear free energy. make the following relevant observations.
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(1) For a mismatch in a uniform channel, the rms emit- (3) The emittance oscillations that increase in magnitude
tance as defined in Eq1) will grow both from geometric due to the change in particles’ axial velocity as the beam
reasons and from thermodynamic reasons. Once a new stgempresses and expands may also become problematic for
tionary state is established and the beam is no longer migractical accelerator beamlines.
matched, both the thermodynamic and geometric emittance (4) The hollowing out of the bearfiseen in Figs. @),
growths vanish. The total amount of emittance growth from3(f), and 4d)] due to these geometric mechanisms can trig-
the nonlinear free energy is predictable from physical argu9€r additional emittance _growths from bo_th the nonlinear
ments[Egs.(36) and(37)]; the rate of emittance growth from fré€ energy of the nonuniform beam density and also from
the geometric effects is al§&qs. (34) and (35)]. Either ef- mechanisms that exist in the emittance-dominated regime
fect can lead to the largest contribution in the total rms emitll8]' .
tance, depending on the depressed betatron period, the be m(5) These effects can scale strongly with beam energy

current, the beam radius, and the beam energy. As a rule, t ace _for_example, qu(;38) and(:_39)]. This I_ea_lds toa _rough
geometric mechanism will dominate for intense high_quantltatwe evaluation of how important it is to maintain a
energy, low-emittance beams ' high diode voltage, in terms of both the induced emittance

(2) For matched beam oscillations in a periodic fOCusinggrowth and the associated distortion in phase space. An in-

channel, the beam is already in a stationary state and thereJ%Ctor at half the voltage, but with similar optics, will have

no excess nonlinear free energy leading to an emittanc‘é’eII over an or(_jer O.f ma_lgnitude more emittance growth ar_ld
growth. However, the geometric emittance growth will Con_phase-space distortion in the anode magnet capture region,

tinue essentially unbounded at the same (iateill only stop than an injector at full voltage.
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