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Dispersive lattice functions in a six-dimensional pseudo-harmonic-oscillator
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We derive dispersivelike lattice functions in a way totally invariant under canonical transformation. This
bridges the gap between invariant treatments that use only the coefficients of the coupled Courant-Snyder
invariants as lattice functions and treatments that introduce dispersive lattices functions that depend on par-
ticular parametrizationgS1063-651X98)12907-(

PACS numbes): 29.20.Dh, 42.15.Eq

I. INTRODUCTION tory will lead to invariant functions.
The symplectic or Hamiltonian case is easiest to under-

In this paper | would like to use certain symmetries stand and has this physical interpretation based on ergodic
present in a periodic system in an attempt to classify thewverages. Therefore, | will discuss it first. A more dry ap-
types of lattice functions that can be defined in the case of aroach will be introduced later to prove the invariance of
linear oscillatory map. The main result of this paper concernghese lattice functions in the nonsymplectic case.
the existence of “dispersive” lattice functions when all the  Let us assume that the one-turn matkik for a ring is
planes are oscillating. Dispersion is a mathematically wellsymplectic(derivable from a Hamiltonign Then this implies
defined concept when the energy is consfaat cavity and  that in a judicious choice of coordinates the matvixand its
no radiation; however, it does not seem to exist in a three-transposed! must obey
dimensional pseudo-harmonic-oscillator. In this paper | de-
fine dispersive lattices functions that are invariant under the

choice of canonical transformations. In the symplectic case J=MIM @

the invariance is connected to ergodic averages, which can

be defined “experimentally” and thus must be invariant un-"V"€"€

der the theoretical technigque used to compute them. | show,

as it is well known, that ergodic averages of quadratic mo- 61 00 O

nomials are related to the usual lattices functiOhwiss pa- -1 0 0 0 0 0

rameters in one-dimensipwhile stroboscopicor adiabati¢

averages are related to dispersive quantities. J= 00 1 00
Finally, 1 express the one-turn matrix in terms of these 0 0 -1 0 0 O

lattice functions; the natural appearance of the dispersive lat- 00 0 0 1

tice functions in such a parametrization explains why

“Courant-Snyder—like” parametrizationgl] of the matrix 60 00O0-10

in terms of lattice functions are not found in the literature

(see the one-turn map of R¢R]) in more than one degree of We then assume that the motion producedvbys pseudo-
freedom. Nevertheless, | succeed in expressing the preselm@rmonic. This is a fancy way of saying that the matix
dispersive functions entirely in terms of the old Courant-can be diagonalized as

Snyder parameters, even in the general case of the damped

(nonsymplectic, radiatiye pseudo-harmonic-oscillator rel- M=ARA 1, 2)

evant to electron rings.

whereA, it turns out, can be a symplectic matrix aRds a

Il. DIAGONALIZATION AND INVARIANTS rotation:
. In .a_periodic ora repetitiye symplectic.system su_ch. as a r, 0 0
ring, it is normal to ask questions concerning the “at infinity
behavior.” Are particles confined and if so on what trajecto- R=| 0 rz O,
ries do they sit? Therefore, one finds that many averages 0 0 rj
over distributions are closely related to ergodic averages over
a single trajectory. This is true at least for the symplectic cosp,  sin
system. Indeed, a tracking code will display ellipses or Lis- fi:( - '), (3)
sajous figures in phase space. A knowledge of the parametri- —SIN uj COS ;i

zation of the surfaces provides us with the “infinite time”

behavior. Clearly, whatever at infinity property a trajectory The angles of the rotation, known as the tunes, are certainly
has, it is invariant under initial conditions chosen on thisuniqgue modulo 2, but the matrixA is not unique. This can
trajectory. Any mathematical attempt to compute this trajecbe seen by adding a rotationto A:
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if M=ARA™'= M = Ar Rr~1A°!. symplectic,_i.e., canoni_cal, r_natrioeisnplies that the radii of
5 7:1—’ (4)  the new trajectory are invariants as well. Let us compute one

of these radii. If a particle has initial conditionéo
Thus we have a certain freedom in choosigrhe fact that — =(x,py,y,py.t,p;), then in normalized variables it will have
A may vary at most by a rotatiafprovidedA is restricted to  the initial conditions

X AXH AL Pt ALY AL Py AT ALy
A71Zg=A"Y By | =[ ARXTAG PHALGY+ A£4lpy +AR AP |, (5

which, we want to emphasize, are not unique. However, the radii are unique and characterize a trajectory. Denoting the square
of the radius in the first plane by, in two degrees of freedom it is given by

£1(2)= (AL AL P H ALY T ALY 2+ (A X+ AR Dyt Arly + A% Dy )2
={(ALD)2+ (A2 H{(A) 2+ (A 5+ 2{ AT AL + AT AR IXp+H{ (AL 2+ (A 2y?
+H{(ATH?+ (A3 P)Z/ +2{AL A+ AST AT IXY+ 2{ A AT+ AZT AT X Pyt 2{AL AL+ AL A IDLY

+2{ A AL AG AL Py + 2{AGAL + AZTALTY Py - (6)

In one degree of freedom this reduces to the usual Courantdously time (or turn invariant such as the average of a
Snyder invariant function or the extrema reached by a function. Such a quan-
tity will depend only on the initial value of the invariants
£=yx*+ Bp*+2axp, (7)  defined above. Why? If the averages or extrema exist, then
they have to be the same for any point along the trajectory,
where i.e., they cannot depend on “time.” In normalized variables,
time is just the action of the matriR; thus it is not surprising
y=(A;H2+ (A2 that thglinvariants.have. to be made out of “contractions” of
A or A™ - that are invariant under rotation.
For example, in one degree of freedom, it is easy to show
a=AAL +AGAL that the ergodic averages ®f, p?, andxp are given by the
formulas(here we assume that the tune is irratignal

B=(AL)2+ (A2

The coefficients of this invariant as well as the multidimen- . B o YE ae

sional equivalents must themselves be invariant under the (x9)= PE (p)= X (Xp)=— o ®
choice ofA™ L. In other words, if a matriB~1=r A ! as

in EQ. (4) is used to define the functiorss, theses;’s should

be the same as the one defined usiig. Two polynomial In conclusion, the so-called lattice functions emerge natu-
functions are identical if the coefficients multiplying each rally whenever we examine properties that are invariant un-
monomial are the samenonomials form a basis in the vec- der iteration of the map. We will see how it is possible to

tor space of functions This implies that the coefficients de- derive such formulas using the canonical transforma#ion
noted here ag, 3, andy, as well as all the others in E(6),  and the symplectic condition.

are invariant under a change of the mathix?.
In summary, the radii in normalized variables are invari-
ant along the trajectory. The invariance of these functions Ill. ERGODIC AVERAGES
implies that the coefficients that define them are invariants of
the diagonalization process. We should not forget the obvi- In this section | will derive two types of ergodic averages.
ous: The tunes themselves are invariants of the diagonaliz42n€ is a regular average over the trajectory and the other one
tion process. is a stroboscopic average. Both will lead to invariants. We
We can even say more about these functions if we use start, as we did before, by transformiliginto normalized
bit more physical intuition. Consider any quantity that is ob-space, each subspace characterized by a tune
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= __ A=l _ ~1, A=1l_, A=1_ A-1_ 4-1 -1
w=A"7= Z (Au zi, Ag; 2, Az 2, Ay zi, Ag; 2, Ag; Zi)- ©)
i

w1 U2 w3

In this space the trajectories are circles by assumption. Therefore, we can express a trajectory as

W(n)=R"A™1z=[ e cognu;+ ¢1), — Veisinnu;+ ¢y), . . . \escodnug+ d3), — Vessinnus+¢3)]. (10

The ray an=0 must correspond to the initial ray of E®). space dependence of the distribution is a function okthe
Both quantitiesp; ande; can be chosen to satisfy this need. In that case one replaces/2 by the average of; over the

As we have seen, the quantity is invariant and, in fact, the distribution.

canonical nature of the original variables implies that the We will call the lattice functions of this section betaoids
Poisson brackdtg; ,&;] is equal to 2. Thus one can identify because they appear naturally in the Hamiltonian theory of a
J;=¢,/2 with the usual action variable canonically conjugatepseudo-oscillator. The Lie operator for the one-turn linear

to ¢;. Let us return to ergodic averages. map is none other than the invariartsthemselves; in fact,
the function3{u e+ uoe,+ uges} is associated with the
A. Regular ergodic averages Lie operator of the one-turn map and can viewed as a

. . -Hamiltonian for the matriM.
We first assume that the three tunesare prime among pseudo-Hamiltonian for the matrd

each other, i.e., they are not on a resonance. We then reex-
press the trajectory in real spap@) in terms of the trajec- B. Stroboscopic or adiabatic ergodic averages

tory in normalized space There are other averages that can be built in terms of the
ST matrix A. Their physical meaning is not so obvious. We will
z(n)=Aw(n). 11) look at them in two different ways. First we will take the

Away from resonances, it is clear that the ergodic averag8iSPersion route. Our goal is to construct objects that are
over all three tunes of Eq(11) will be zero because it obviously invariant when the motion in one of the three har-

amounts to an average of sines and cosines over their resp onic plane freezes. The staqdard dispe_rsion is defined in
tive phases: Thus the linear momets) are null the absence of a cavity, that is to say, in the absence of
The next.possibility is to consider the so—calléd beam enlongitudinal oscillations. The normal form associated with

velope(z,zy,) defined by an ergodic average. We can expres uch a map is different from the pseudoharmo_nlc n_or_mal
this ergodic average as orm. In that case we have only two tunes and five distinct

eigenvalues. This is because the motion in the longitudinal
plane is “driftlike” in nature. The energy is a constaftike
<Zazb>:<2 Aa2i- o) Wai— 02 Ao2j—yW2j—y ) the momentum in a driftwhile the time (or path length
e b (12) grows proportionally with the energy. This is exactly true in
a region of the ring with no dispersion, i.e., the ray
where the latin letters, j take the value 1, 2, or 3, while the (0,0,0,0z5,2¢) remains(0,0,0,0 in the transverse planes for

greek letters are either 0 or 1. To proceed further we notic@ll values of the energys. In a dispersive region it can still
that be true if the map is reexpressed around the energy-

dependent fixed point; the derivative of this fixed point with

(Wai Wy >_} 55 (13 respect tag is the dispersion vector. We will not go into the
2i=aN2j=5) =5 i) Qo details of this type of nonoscillatory normal form because it
_ might confuse the reader needlessly. Suffice it to say that this
where g;; and é,,,, are Kronecker delta functions, and is what happens if there is no longitudinal focusing in a ring:
1 The energy is constant and the transverse closed orbit varies
<Za2b>=§ E > Aazi—oPo2i—o | i with energy (for example, the cyclotron That variation is
i=13 | 0=01 the dispersion.
1 Returning to our three-dimensional oscillator, we can ask
=_ _ _ . R the following question: Under what condition do we see the
1Aa2i - 1Ab2i - 1) T Aac2i) Ab2i) f &i - ) A ¢ .
i=13 effect of dispersion in a system without energy conservation?

(14) Physically, one should slowly lower the voltage on the rf
system until it is zero. As we do this, the main linear effect
Using the symplectic condition, we can rewrite all the abovewill be the lowering of the longitudinal tungs until it is
formulas in terms of the inverse &f and thus make a one- zero. The transverse phase space will move slowly as the
to-one connection between the coefficients that define thngitudinal phase space evolves. The slow sloshing back
invariantse; and the coefficients of the beam envelgpee and forth of the transverse coordinates is closely related to
Egs.(33) and(34)]. the usual “cavity-free” dispersion. We will see that this
It should be said that the results of this section are welguantity, which seems to be well defined as an adiabatic
known. In the case of a distribution of particles they are stilllimit, is nevertheless an invariant of the diagonalization pro-
valid formulas when the distribution is static, i.e., the phasecess for arbitrary tunes.
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I will now compute this adiabatic average and argue thameasurable, unique, and do not depend on the choice of the
it is an invariant using a mathematical and physical arguiransformationA. More importantly, there is nothing re-

ment. Let us start with a ray whose initial condition is quired concerning the relative sizes of the three tunes. We
. only need that the two remaining tunes must be irrational.

z=(0,0,0,0,0z¢) (15 Mathematically, the argument is even simpler: One aver-

o ) . ages around the invariant tori of first and second tunes.

and transform it into normalized space using E3): While the actual phase of a ray is arbitrary and depends on

A, the integral around each torus cannot depend bt just
W= AT = z6( A, Asd, Asd, AL AR, AGL) on the radius, which we know is an invariant in canonical
ﬁ;‘—’ T T perturbation theory.
(16) The above considerations imply that one could have se-

o _ lected any initial ray and any tune in lieu of (0,0,0,@4),

The next step consists in letting the ray of Efj6) evolve  and x5 and one would still have produced invariant quanti-
under the action of the rotatioR as in Eq.(10). If we as-  ties. Therefore, we define the stroboscopic invariants
sume that the motion is adiabatic in the third plane,
ity '<puy?t, then the average ¢fv) over the short time M=A—1)Akzi- 1)+ A Acai) (19)
scale of min (144,1/u,) will be given by

. 1 The dispersion of Eq18) is a special case of E¢L9). | call

(W)1,2=26(0,0,0,0A55 ,Agg ). (17 these functions etaoids because they are dispersive in nature

o ) ] ) in the adiabatic limit or stroboscopic interpretation. The
Of course this simply says that in normalized variables the‘regular lattice functions of Eq14)

first two planes, on their respective circular trajectories, av-

erage to zero before the positionsg(,wg) have any time to

move and thus are frozen at their initial values. These values > Aa2i - )Ab(2i — o) = Aa2i - 1)Ab2i — 1) T Aa2i)Ab(2i)
are of course dependent on the normal form; however, if we ¢=01

project this ray back into the original physical space we (20

should get the dispersion ) _ _ . .
will be called betaoids since they are, like the usual Twiss

ArAse+ ArAse parameters, related to the enveldpgz,) and to the Hamil-
1 _1 tonian (Lie) representation of the map.
AzsAss T Azefes We have seen physical justifications for the existence of
. . . A3%§61+A36A861 the betaoid and etaoid invariants and they are based on the
(2)1.=26m=A(W)1 ,=Z¢ 1 1| (18 Hamiltonian nature of the flow of a pseudo-harmonic-
AssAss T AseAee oscillator. It is remarkable that the invariants have an exten-
AssAcd + AscAss sion to the nonsymplectic case most relevant to electron
1 1 rings. The proof of this is simple but somewhat dry. It is
AssAss T AsePes presented in the next section.
The first four entries must reduce to the cavity-free disper-
sion in the limit of vanishingus; the fifth and sixth entries IV. MATHEMATICAL POINT OF VIEW

are, respectively, zero and one if the map is symplectic and We have seen how lattice functions emerge from askin
the longitudinal motion is not very dependent on the trans- . . S 9 Ing
verse positions, questions about the properties at infinity, a very natural thing

. . oo : to do in the study of dynamical systems. There is a dry
Itis clear that, in the limit ofus going to zero, the vector mathematical way to get the same answers and a little bit
created in Eq(18) cannot depend on the choice of canonical ; yl0g i
: - T : oo . more. This way has the advantage of being extendable to
transformation. This is nat priori obvious if w5 is arbitrary.

However, it is true. Before proving this explicitly in the gen- damped systems. If a small amount of radiation is added to a

; . . ring, the closed orbit will move slightly and the eigenvalues
eral nonsymplectic case, | would like to argue this on the . S .

: . will go off the unit circle by small amountg3—5]. In this
basis of a gedanken experiment.

; " case we have six complex eigenvalues of the form
First of all, it is clear that one can measure the three tunes P 9

M1, Mo, andug using a turn-Fourier transform of some quan- o ]

tity such as the energy or position. From this one can extract Na-o= XA (— 1) pa— aal; (22)

ug with any desired accuracgtheoretically. Second, one )

can slightly change the machine so that some multiple.pf Wherea=1,2,3 ando=0,1. The map can be put into a nor-
is a multiple of 27. Theoretically, this can be done with Mal form analogous to that of the pseudo-harmonic-
infinitesimal changes in the machines because rational nun@Scillator:

bers are dense in the real numbers. Let us assume that indeed

kus=m2m, where bothk and m are integers. We then M=AARA™. (22)
launch a particle with initial conditions given by Eg.5) and

we observe this ray evelyturns and average over the turns. None of the matrices involved in this normalization are sym-
The result will be given by Eq(18) as well. In this case all plectic except foR. The matricesk andA are, respectively,
the quantities necessary for performing this measurement agephase space rotation and a diagonal damping matrix
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R, 0 0O Al
—1.-1%j_ ¢—1 -1 (2i-1)j L
0 0 Rs

In the presence of damping it is clear that no invariants of the
where normalization process can be constructed out of the minivec-
tors of Eq.(29) alone. However, consider the transpose of

[ cosui sinp; 24 the matrixAdr, which is justsr ~*A. As before we define a
"\ —sinyu; cosu/’ set of minivectorsv'! based on this matrix:
and Ao
> 2i— .
A, O O Aj2i)
A= 0 Az 0, (25) Now we are ready to define two sets of invariants of the
0 0 Aj diagonalization process. First we take the dot product of
these minivectors
where
expi—a) O 7= 8o o W= o WE= ALy Ao
A= . (26) _
' 0 exp— ;) +AGhAki) - (3)

This normal form is appropriate to electron rings in the pres-The damping conveniently cancels out. As for the rotation,
ence of classical radiation. It is also useful when consideringye know that it leaves the scalar product invariant and thus
the stochastic maps on momerifg. Here we will restrict 7}, is the same for all possible choices of the transformation
our discussion to the deterministic damped map. A. We also know that the wedge or cross product is left

As in the symplectic case we know that the eigenvalues of,yariant by planar rotations; therefore, we define the set of
M are unique and thus the matricBsand A are unique  f,nctions

provided we associate each eigenvalue with a definite plane.
The mapA, however, is not unique. This is because the

. . - : = s Yy TN s WKk=p AwKk=A7L .
matrix AR commutes with a similar matrixr, Bik=96 T v Agiri wi=vi Aw Ai - 1)jAk(2i)

M=AA RA71 _A(Z:ll)JAk(ZI -1)» (32)
I where &,y)/\(a,b)=xb—ya. As in the symplectic case we
expect quantities that do not depend on the normalization
—ASTARr 15 1AL, 27) being a function of these generalizets and 8's only.
wherer is a rotation likeR and é is a dilation like A. The V. RELATIONS BETWEEN BETAOIDS IN THE
next step is to construct invariants of the diagonalization SYMPLECTIC CASE
process usingA and/or A”1. Let us look at the matrix , . . .
r 15 1AL first: As we have said the betaoids appear in two different
ways. First, we know that the radii in normalized space are
syt 0 0 invariants and this leads us to contraction®\of with itself.
L 1 Second, we also know that ergodic averages of the quadratic
roisTiAT= 0 6,715 0 moments must also be invariants; from this emerges contrac-
0 0 S35t tions of A with itself.
Finally, mathematical manipulations in the arbitrary non-
Al]l AIGl symplectic case forces us to consider contraction& wafith
AL Al its inverse only. It remains to be proved that these are all the
2 % same invariants in the symplectic case. To do this one uses
X : : : . the definition of a symplectic matrix given by E@.). Let us
ACL AL introduce the following notation for an indgxrunning from
51 56 ;
( 1 1 1to 6:
AGl A66
If we define some minivectors using the matAx?, if j=135 then j=2,46;
L[ AG if j=2,46 then j=1,3,5.

v'l= , i=1,....3, (28

AL
(20)] . . o
Then it follows from the symplectic condition that the betao-

then the matrix ~15 A1 is composed of the minivectors ids can be rewritten as
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_ 1 P become significant. The beam reaches an equilibrium. This
ﬂ}k: —JkK{A(_zil_l)jA(_Zil_l)ﬁ A(_Zil)jA(_Zil)E}: — EJKI—I quantum effect is totally ignored in this paper, but the de-
92,0z scriptions of the lattice functions presented here are relevant

(33  to the computation of the equilibrium enveloge,z,) de-
fined by distribution averagingnot ergodic averaging

or as In the deterministic case of a damped pseudo-harmonic-

_ Kz Z0) oscilla_ltor it is physica!ly inadeq_uate to derive the inva.ria.ny
ﬁ}k:JjﬁAﬂziﬂ)Ak(m 1)+ AT o) Ak} = 23“—#_ betaoids or etaoids using ergoph_c averages. Indeed, at infinity
Je; the beam collapses to the origin and thus all averages are

(34 trivially null. Thus it is not surprising that expressiof@3)

i , i and (34) are not valid invariants of the damped pseudo-
Thus, in the symplectic case Ed6) and(14) are equivalent.  harmonic-oscillator. We may be tempted to give them the

Finally, before discussing the nonsymplectic case, | wanfo|lowing meaning: It can be shown that the Courant-Snyder
to point out that a measurement of the beam envelope Wilinyariants defined in terms o0&~ will shrink towards the
lead to a measurement of the emittances and through thgigin and keep their shape. Indeed, if a distribution of par-
equivalence established in Eq83) and(34). The argument ;i jag depends only on the functiong?), i.e., p(e1,62,63),

will be presented in two degrees of freedom as it clearlyihen the new distribution after one turn will be given by
extends to a higher dimensionality. We start by constructing

the following Hamiltonian made of the ergodic envelope: exp(2{a;+ ay+ ag})p(e(zal)sl,e<2“2)82,e(2“3)83).( )
39
o\ — 2\ 2 2\ 12 2\,,2 2\ "2
h(z) =(p) X"+ (X )P+ (Py Y+ (Y )Py — 2(XP)X Py For small damping, away from linear resonances, it is true
+2(PxPy)XY— 2(PLY)XPy— 2(XPy) Pxy + 2(Xy) PxPy that the equilibrium distribution has the form of E§9) and
thus one can compute the so-called equilibrium emittances
—2(ypy)yPpy- (35  and feed them into a Gaussian distribution that is a function
) S of the Courant-Snyder functions. In the general case, we can-
From Eqs.(33) and(34) we see that this Hamiltonian is just ot talk of equilibrium emittances based of the functiens
. 8, . £y . and thus the formulas for the Courant-Snyder functions do
h(z)=7sl(z)+ ?sz(z). (36) not enter in any physically well-posed problem. Only the
invariants computed in Eqg31) and (32) are potentially
The quantitiese; and ¢, are the numerical values of the present in the general linear case. . .
emittances of thle trajecziory being ergodically averaged. Th Thus we may ask the following questions: What quanti-
- "Nfes, if measured by two observers, will always be the same?

functionse4(z) ande,(2) are the Courant-Snyder invariant \what quantities do not depend on the actual method or trans-

functions for this linear system formation A used in computing them? The answer is some-
e - & what trivial: the one-turn matrix itself, the tune, and damping
h(z)=?sl(z)+ Esz(z)_ (37 shifts due to some perturbations. Let us start with the shifts:

The Sands, Chao, and envelope formalisms all give formulas
for the damping as a function of the radiation field. It is

If we now perform a normal form on this Hamiltonian, the remarkable that formulas for the shift of the tufE@mplex

result will be part of the eigenvalugsiepend only on the betaoids, while
e e formulas for the damping depend only on the etaoids.
>, 1 2
hnorma|(2)=§(xz+ p§)+?(y2+ p;). (38)

A. Tune and damping shifts

Since we are interested in first-order perturbation theory,

The effect of the normal form will be to turn the invariant . . L
it suffices to see the effects of a perturbatioadiation for

functionse ,(z) andsz(z_) inta radii in phase space. Thus it example at one point around the ring. Thus, suppose we are
follows that the numerical values of the emittanegsand

€,, can be read off easily. Once these are known the betaoit%g pe_rturb the rng by a linear vect_or f|e¢tF_ wh_ose act!on IS

can be obtained using E@L4). We will now discuss the final ocalized. That is t(_) S?Y’ at a,g"’e” point in the ””9 the

topic of this paper, which relates to the significance of thes@hase space coordinateis modified by a small linear im-

invariants in the nonsymplectic case and to the parametrizgulse forcedF:

tion of the one-turn map. ~tin cini L g

z'"M=7""4+dF, (40

VI. PHYSICAL INTERPRETATION IN THE GENERAL where
CASE

The general case corresponds to a particle undergoing dFi_; dFi;z;.

classical radiation and whose energy is restored at the rf ) )

cavities. Accelerator physicists design such systems by rdD the language of Lie operators, which does not assume

quiring that the eigenvalues of the matrix be inside the unifinearity, the original one-turn Lie map1 is modified by the

circle by a small amount. The beam will then contract untilnew impulsedF and by the normalization transformatich

the quantum fluctuations due to the granularity of the photoras
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AMMW A~ 1= AM exp(d,z‘v*)A—l wants to exploit certain properties such the smallness of a
tune. In Ref[5] it was shown that such formalisms can rig-

= AMA 1A exp(dF V)AL orously diagonalize a pseudo-harmonic-oscillator. The au-

thors constructed a special parametrization for that purpose;

=R exp(AdF-VA™Y). (42 here | point out that there is a more fundamental link be-

tween the usual symplectic formalisgall the planes are on
Here the mapR is the Lie map associated with the original an equal footingand the biased formalism. This link is re-
matrix AR of Eq.(22). The effect of the transformatiod on  alized through the interdependence of the betaoids and etao-
the Lie operatordF-V, denotedAdF-V.A™! in Eq. (41), ids.

can be computed and the answer is Our discussion was centered on the computation of the
tunes. Of course the vector field itself and thus the one-turn
if AdF-VA 1=dG-V=dG,= >, AtdFapApcZe . matrix should be expressible in terms of our invariant func-
ab.c tions alone. This is the topic of the next subsection.
(42)
The next steps, which | will omit, consist in extracting the B. The one-turn symplectic matrix

generators of rotations in the three phase space planes as well Although the comments of this section can be extended to

as the generators of damping. The coefficients in front othe damped nonsymplectic system, here | will restrict the

these generators ateith some constantghe tunes and the discussion to the Hamiltonian case for simplicity. In one de-

dampings. The formulas for the shift of the complex eigen-gree of freedom, it is well known that the one-turn matrix

values{*iu;—a;} are can be expressed in terms of the tunes and the Twiss func-
tions (one degree of freedom betagids

1 :
new_ . = j . .
M _MJJFZ;EJ BapdFap, " cosu+a sin u B sinu
' = . . . 46
1 —ysinu CosSu—a Sin u 46
a®V=a;+ = JodFap- 43
! 2 ;J ap=Tab “3 The functionsg, y, anda are, respectively— 83;, — 815,

) . ] ] and ,8%2. It is remarkable that no etaoids enter into this for-
Since the coefficientdF,, are arbitrary in the general case ,ia.

and since the eigenvalues cannot depend on the diagonaliza- T question is whether or not it is possible to extend

tion process, we conclude that the functigsls, and 7., are  formulas for the one-turn matrix that depend only on the

invariant of the diagonalization process. Of course these afgines and the betaoids. We will discover three facts in this
the same functions we defined in Sec. IV. The formula forgection.

the damping in Eq(43) is very famous in the context of the (i) when we express the one-turn matrix in terms of the
computation of synchrotron integrals. In particular it is cus-inyariants, it most naturally comes in terms of a mixed

tomary to write the damping in the longitudinal plane only in petaoid-etaoid representation.

terms of the dispersiof6]. In the transverse plane, because (ji) |n the symplectic case, it should be possible to have a

the longitudinal tungug is small, it is useful to derive mixed pyre betaoid representation, but it must be very messy to
formulas involving the transverse betaoids and the usual digptain. This is why it is not seen in the “coupled” formalism

persions. In Refl5] Ohmi, Hirata, and Oide pointed out that |iterature.

this can be done rigorously using a special parametrization of jii) Finally, we will give a formula that relates the etaoids
A. However, noticing that the etaoids and betaoids are najp the betaoids even in the general case.

independent, we can actually perform such transformations \we start with the expression for the symplectic one-turn

in the general case without using a special parametrizatiomnatrix in terms ofA, A~%, andR and then use the simple
For example, in two degrees of freedom, the formula for thenatyre of the rotatiofR:

ergodic (or distribution average(x?), wherex=z;, can be

rewritten as 1
M ab=, k21 ] AajRikAkp

o Eyx l > 2 g,
(X >_:8Xx?+W{lgzzgz'i_')’zzﬂz_zazzgznﬁi! . .
(E (44) =j§13 {Aa2i- A2 - 1)b T Aa2i)A2))b COS 4
> -1 -1 .
where z=(X,Py,2,6), Bo=—Ba, Bzz=—Bias Ver=Baas F{Aa2i-1A2) b~ Aa2) Azj - 1)p) SIN K
and a,,= ﬁ§4. This formula should be contrasted with _ _
= 2 {mbacos ;= Bhasin ). (47

2 €x €z
<X >::8xx?+:8xz§a (45)
In the case of one degree of freedom, the etaoids are equal to
whereg, = —,8%1 andpg,,= —,8%1, which is obtained from a either one or zero. It is a simple exercise to regain the fa-
“normal” pseudoharmonic analysis using Ed.4), for ex- mous formula(46).
ample[2]. Biased formalisms, mixing etaoids with betaoids, In more dimensions it appears that the presence of etaoids
are necessary for pseudo-harmonic-oscillators when onis unavoidable in the one-turn matrix and therefore it is no



2488 ETIENNE FOREST PRE 58

big surprise that no Courant-Snyder—like formula exists inis known in advanced. Nevertheless, it is interesting to re-
the literature for the one-turn matrix that involves only thewrite 7}, is terms of either the moments or the Courant-
coefficients of the invariantg; (betaoid$ and the tunes. Snyder coefficients

However, the reader familiar with Lie methods knows that

the one-turn map is actually the exponential of the Poisson

bracket operator associated with the function )
g [ 42D [a<zaza>r
- E{M181+M282+M383} ° dej  Jg; e
) . 1 5281' 5281' 028j 2
and thus the one-turn map can in theory be a function of the =3 > 5 . (52
betaoids only, albeit an infinite series. However, in the case 0z, 9z, | 0Za0Zy

of a symplectic map, it turns out that it is possible to express

the etaoids in terms adnly the betaoids using formuld83)

and(34). First, we recall that the general derivation of these[These formulas look very much like the so-called invariant
invariants involves the dot and wedge product of two vecemittance defined agx?){p?)—(xp). This emittance,

tors. We know that these are related so that if which is an average over arbitrary distribution, is pre-
(x,y)/\(a,b)=xb—ya servgd by one-degree-of—free_dom linear symplgctic maps. In
fact, it does not change even if we transport it with any linear
and map. It is thus a much stronger invariant and should not be

confused with our betaoids and etaoids. In fact, the reader
will notice that this emittance looks very much like},,
then which happens to be a trivial constamamely, ongin the
(2+y2Ha2+ b2 ={(x,y)A\(a,b)}2+{(x,y)- (a,b)}2. one-degree-of-freedom capdlotice that in the symplectic
(48)  caseitis easy to check using E§2) that 77;?0 using Eq.
. ) (52). Finally, in the general case, we can derive a formula for
This equation is applied tg;, and B;, with the result that 7, only in terms of the betaoids:

{7+ {81 = {(Axzi- 1)+ (Axzi) %}

(x,y)-(a,b)=xa+yb,

-1 2 -1 \2
Al Ban)d @49 The=— 3 Bl 53
Finally, we use Eqs(33) and (34) to rewrite the right-hand o
side of EQ.(49) in terms of betaoids:
iv2_3-3-8-g-_r1g12 50 This formula was derived by comparing E@7) with the
™= adiiBjBa {Aid 50 Lie representation when all the tunes are near 90°. However,
We now substitute this result in EG47), it can be proved to be true by direct substitution, which im-

plies that the formula is true for all damped pseudo-

i O harmonic-oscillators.
M a1b:j721 3 ﬂLaCOS,u,j - ﬁ{)aSIﬂ Mj
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