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Level statistics of multispin-coupling models with first- and second-order phase transitions
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We consider self-dual transverse-field Ising spin chains withm-spin interaction, where the phase transition
is of second and first order, form<3 andm.3, respectively. We present a statistical analysis of the spectra
of the Hamiltonians on relatively largeL<18 finite lattices. Outside the critical point we found level repulsion
close to the Wigner distribution and the same rigidity as for the Gaussian orthogonal ensemble. At the
transition point the level statistics in the self-dual sector is shown to be the superposition of two independent
Wigner distributions. This is explained by the existence of an extra symmetry, which is connected to level
crossing in the thermodynamic limit. Our study has given no evidence for the possible integrability of the
models form.2, even at the transition point.@S1063-651X~98!05907-8#

PACS number~s!: 05.50.1q, 05.30.2d, 05.20.2y, 05.45.1b
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I. INTRODUCTION

There are many problems in physics in which multip
ticle interactions play an important role. One may ment
nuclear forces, solid3He @1#, adsorbed systems@2#, and plas-
mas @3#. It is known from some exact results@4# that the
critical properties of models with many body forces gen
ally depend on the range of interaction. Recently consid
able effort has been made to clarify the properties of a sim
one-dimensional quantum model described by the Ham
tonian @5,6#

H52J(
l

s l
xs l 11

x
•••s l 1m21

x 2h(
l

s l
z[2JHx2hHz .

~1!

Here thes l
x , s l

z are Pauli matrices at sitel andJ andh are
the exchange coupling and the transverse field, respectiv
The classical statistical mechanical equivalent of this mo
is a two-dimensional square lattice Ising model with mix
m-spin and two-spin interactions@7#.

The Hamiltonian Eq.~1! is self-dual@5,6# and the self-
dual point isJ5h independent ofm. According to numerical
studies@6–14# there is one phase transition in the syste
which takes place at the self-dual point, and the transit
changes from second to first order, whenm.mc53. In the
borderline casem53 the transition is conjectured@7# to be-
long to the four-state Potts universality class, a conject
which is supported by an approximate mapping@15# and by
numerical studies@10,13,14,16#.

Concerning the simple structure of the model, its self-d
symmetry, and the expected relation toQ-state Potts models
one can also pose the question, whether the model is
grable, at least in its self-dual point. To find an answer to t
question in this paper we are going to study the statist
properties of the spectrum of the Hamiltonian. As it has be
established in a series of papers@17–23# the spectrum of a
Hamiltonian ~or the transfer matrix for classical statistic
PRE 581063-651X/98/58~1!/241~6!/$15.00
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mechanical models! has different statistical properties for in
tegrable and nonintegrable models and one can make a c
connection to the theory of the spectral properties of rand
matrices. In the actual calculation we first make use of
those symmetries of the Hamiltonian which do not depe
on the value of the couplings, and for large finite lattices
block diagonalize the eigenvalue matrix of the problem. T
statistical analysis of the energy levels is then performed
each block separately. In a nonintegrable model, in which
further internal symmetry is present, the matrix elements o
block matrix are expected to be loosely correlated, so t
they can be approximately represented by random ent
Indeed the spectrum of nonintegrable models is found
belong to the class of orthogonal random matrices, to
so-called Gaussian orthogonal ensemble~GOE! and the level
spacing distribution is described by the Wigner surmise@24#:

P~s!5
p

2
s exp~2ps2/4!. ~2!

On the other hand, if the Hamiltonian is integrable by t
Bethe ansatz there is an infinite number of internal symm
tries and consequently the matrix elements of a block ma
are strongly correlated. Loosely speaking integrable Ham
tonians are so peculiar that they are not well described by
‘‘average Hamiltonian.’’ Then one expects that in this ca
the eigenvalues themselves behave like independent ran
numbers, so that the spectrum of integrable models belo
to the ensemble of diagonal random matrices and the le
spacing distribution is described by the Poissonian~exponen-
tial! distribution:P(s)5exp(2s). Numerical studies of inte-
grable models@17–23# are indeed in agreement with th
assumption.

In this paper we are going to perform the analysis of
level statistics of the multispin-coupling Hamiltonian in E
~1!. We are going to answer two questions. The first ques
is whether or not the Hamiltonian is integrable, at least at
transition~self-dual! point. Our second question concerns t
241 © 1998 The American Physical Society
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TABLE I. Dimensions of the irreducible representations~i.e., degeneracy! and size of the corresponding block.

M53, L518

Label R 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Dimension 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 6 6
Size 2029 1871 1645 1743 3613 3671 3612 3668 3668 3612 3612 3668 5656 5272 5400 5528 10920
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characteristics of the level distribution at a first-order tran
tion point. The paper is organized as follows. The symm
tries of the Hamiltonian in Eq.~1!, which are essential to
perform a block diagonalization, are presented in Sec. II. T
statistical analysis of the spectrum of the block-diagonali
Hamiltonian is given in Sec. III, while the results are d
cussed in the final section.

II. SYMMETRIES OF THE HAMILTONIAN

As described in the Introduction the first step in a sta
tical analysis of the energy eigenvalues is to block diagon
ize the Hamiltonian in Eq.~1! using all those symmetries o
the model which do not depend on the actual values of
couplings. Before analyzing these symmetries, let us
notice that ifE(J,h)5$E0(J,h),E1(J,h), . . . ,E2L21(J,h)%
denotes the set of energies of the Hamiltonian Eq.~1!, one
hasE(J,h)5E(6J,6h). This can be seen introducing th
operatorsOx5) i 50

L21s i
x andOz5) i 50

L/m21s im
z and noting that

HaOb5eabObHa , wherea,b5x,z and ea,b51 if a5b
and21 otherwise. On a finite lattice this symmetry holds f
periodic boundary conditions and if the length of the chain
a multiple of m. In what follows we consider this type o
lattices and restrict ourselves to the caseh.0 andJ.0.

The symmetries of the model are of three types:~i! space-
like symmetries, which describe invariance of the system u
der geometrical transformations~translation, inversion, etc.!;
~ii ! gauge symmetries, which are connected to invariance
the Hamiltonian under internal transformations; and fina
~iii ! duality symmetries, which make a connection betwee
the strong- and weak-coupling regimes of the Hamiltonia

~i! The space symmetryof the model on a finite lattice
depends on the boundary condition. In a statistical anal
of the spectrum of finite systems it is desired to use the m
symmetric boundary condition to get a block structu
which well represents the statistical behavior of the spect
in the thermodynamic limit. Therefore, as already me
tioned, we apply periodic boundary conditions, which can
formally expressed assL1 i

x 5s i
x . The space symmetry grou

is then the automorphy group of a ring, irrespective of
range of the interactionm. This is the dihedral group gene
ated by the translationT and the reflectionR (TL5R2

5 identity and TR5RTL21), which both commute withH.
~ii ! Thegauge symmetriesare generalizations of the spin

reversal symmetry for the well knownm52 case. Recalling
that we takeL to be a multiple ofm, let us introduce a set o
n52m21 operatorsOk for k50,1, . . . ,n21:

Ok5 )
a50

L/m21

)
i 5am

am1m21

~s i
z!ki, ~3!
i-
-

e
d

-
l-

e
st

s

-

.

is
st
,
m
-
e

e

wherek0 ,k1 , . . . ,km22 are the bits of the binary represen
tation of k, andkm21 is such that

(
i 50

m21

ki even. ~4!

The spin-reversal symmetry, which holds whenm is even, is
On21 corresponding toki51 for all i . It is straightforward to
check that the condition Eq.~4! ensures that all the operato
Oi commute withH(J,h). It is also clear that these operato
are diagonal, involutive, and form an Abelian group (O0 is
the identity!. This implies that all the 2m215n representa-
tions are one dimensional and the corresponding projec
are of the formPR51/n( i 50

n21e i
ROi wheree i

R561 for all i
and R. All these projectors split the Hilbert space in 2m21

invariant subspaces of size 2L2m11 each. For example, fo
m52 and L even, P05(1/2)(O01O1) projects onto the
subspace with an even number of up spins, whileP1
5(1/2)(O02O1) projects onto the subspace with an o
number of up spins. The projectorP051/n(Oi projects onto
the most symmetric subspace to which the ground state
longs ~we refer now to this subspace as the ground-s
sector!, whereas the other 2m2121 sectors become degene
ate in the thermodynamic limit. Thus, in this limit, the d
generacy of the ground state in the strong-coupling phasJ
.h is given by 2m21. This degeneracy for them53 model
is just four, which led Debierre and Turban@7# to conjecture
the same universality class for the transition as that for
Q54-state Potts model.

The combination of the space symmetry and the ga
symmetry is not obvious, since the operators of these
groups donot commute in general. The product of these tw
groups is a semidirect product~not a direct product!, since
the gauge group is a normal subgroup. As usual the state
labeled by the number of the representationR to which they
belong. We have computed the character table of the s
metry group from which the dimensions of the invariant su
spaces are deduced and then the block-diagonal Hamilto
is constructed. The dimensions of the irreducible represe
tions and the size of the corresponding blocks are given
Tables I–III for different values ofm, in the range of 0<R
,L/213 and 0<R,(L21)/212, for L even and odd, re-
spectively. We note that in the ground-state sector, whic
labeled byR50 and corresponds toP05(1/n)(Oi all the
operators of the space and gauge symmetry group comm
so thatin this sectorwe have a representation of the dihed
group. In what follows we use the same labeling convent
as in @22#.

~iii ! As mentioned in the Introduction the Hamiltonian
Eq. ~1! has the property ofduality symmetry. To show this
and its consequences in finite lattices, first we define, for
infinite lattice, dual Pauli operatorst i

x , t i
z as
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TABLE II. Dimensions of the irreducible representations~i.e., degeneracy! and size of the corresponding block.

M54, L516

Label R 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Dimension 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
Size 330 265 202 265 288 288 224 224 529 512 544 480 544 480 496 512

Label R 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 3
Dimension 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 8
Size 512 496 512 496 512 526 512 496 512 1088 960 1024 1024 1024 1024 1024
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t i
z5s i

xs i 11
x

•••s i 1m21
x , ~5!

s i
z5t i

xt i 11
x

•••t i 1m21
x ~6!

in terms of which the Hamiltonian in Eq.~1! is expressed as

H52J(
l

t l
z2h(

l
t l

xt l 11
x

•••t l 1m21
x . ~7!

Consequently the two sets of energiesE(J,h) and E(h,J)
are equal:

E~J,h!5E~h,J! ~8!

and the self-dual pointh5J corresponds to the transitio
point of the system, provided there is one single-phase t
sition in the system. The duality symmetry, as describ
above, holds in the thermodynamic limit, i.e., when t
length of the systemL→`. In a finite systemduality gener-
ally relates sectors of the Hamiltonian with different boun
ary conditions. With periodic boundary conditions one h
the symmetriessL1 i

x 5s i
x andsL11

z 5s i
z , which in terms of

the dual operators in Eq.~5! and Eq.~6! are only satisfied in
the ground-state sector of the Hamiltonian. As a result s
duality holds only in the ground-state sector, which is inde
verified numerically. Based on this observation we exp
somewhat different statistical properties of the energy lev
in the self-dual and non-self-dual sectors.

III. RESULTS OF THE RANDOM MATRIX THEORY

Using the symmetries as described in the preceding
tion we have performed the block diagonalization of the
genvalue matrices for large finite lattices, the size of wh
was a multiple of the length of the interactionm. We went up
to L518, 16, and 15 form53, m54, andm55, respec-
tively. The size of the blocks, as seen in Tables I–III,
relatively small; especially for larger values ofm their size is
reduced by gauge symmetry.

Having the block-diagonalized Hamiltonian we solv
n-
d

-
s

f-
d
t

ls

c-
-
h

their spectrum by standard numerical methods, which
contained in theLAPACK library. The next step, before per
forming the analysis, is to unfold the spectrum, i.e., to su
tract the average tendency and to keep only the fluctuati
which are normalized in the same manner at each part of
spectrum. Technical details relating to unfolding the sp
trum are given in Refs.@22,23#.

The unfolded spectrum is then analyzed and several s
tral quantities are determined and compared with the pre
tions of random matrix theory. First, we consider the lev
spacing distributionP(s), which is expected to be of the
Wigner form in Eq.~2! for nonintegrable models, whereas
is generally of the Poissonian form for integrable models.
analyze realistic spectra it is often useful to consider Brod
interpolation formula:

Pb~s!5c~11b!sbexp~2csb11!, ~9!

with c5@G„(b12)/(b11)…#11b, which corresponds to the
Wigner and the Poisson form forb51 andb50, respec-
tively. The interpolation parameterb, which is determined
by an optimization fit, proved itself to be a useful indicat
for the localization of integrable varieties@22,23#.

Another quantity characterizing the independence of
eigenvalues is the spectral rigidity in an interval of lengthl :

D3~ l !5K 1

l
min
a,b

E
a2 l /2

a1 l /2

@Nu~e!2ae2b#2deL
a

, ~10!

whereNu(e)[( iQ(e2e i) is the integrated density of un
folded eigenvalues and̂&a denotes an average overa. Fi-
nally, we shall also consider the number varianceS2( l ) de-
fined as the variance of the number of unfolded eigenval
in an interval of lengthl :

S2~ l !5^@Nu~e1 l /2!2Nu~e2 l /2!2 l #2&e , ~11!

where the angle brackets denote an averaging overe.
First we present the results of the statistical analysis of

spectraoutside the transition point. As seen in Figs. 1 and 2
g

7

682
TABLE III. Dimensions of the irreducible representations~i.e., degeneracy! and size of the correspondin
block.

M55, L515

Label R 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1
Dimension 1 1 2 2 2 2 2 2 2 5 5 5 5 5 5 10 10 10
Size 102 38 138 136 136 136 136 136 136 374 310 374 310 374 310 682 682
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on the example of them53 model at a couplingJ/h51.36
for a 15-site chain, all the three characteristic quantities
the spectrum are very well described by the Wigner distri
tion @24#. Figure 2 presents the rigidity and the number va
ance for the same parameters. The expected behavio
independent random energies and for the eigenvalues o
GOE is also shown. The GOE behavior is observed up
quite large values ofL, indicating that GOE matrices provid
a good description of the Hamiltonian. The data shown
obtained averaging over all the representations. Howe
very similar results are obtained averaging only over the s
dual sector. The characteristic parameters of the spectrum
not depend on whether the sector under consideration is
dual or non-self-dual We also note that very similar behav
is found for other ranges of the interactionm.3 or for other
values ofJ/h.1. Consequently, there is no evidence for t
integrability of the model withm.2 away from the critical
point.

FIG. 1. Level spacing distribution forL515, M53, h/J51.36,
and all the representations. The exponential (E) and the Wigner
(W) distributions are shown~full line!, together with the Brody
distribution ~broken line! for the fitted best value of the paramet
b51.01 ~see text!.

FIG. 2. Rigidity ~a! and variance~b! for L515, M53,
h/J51.36, and all the representations. The corresponding quan
ties for the GOE matrices and for random diagonal matrices are
shown in full lines.
f
-
-
for
he
to

e
r,
f-
do
lf-
r

In the following we investigate the level statistics of th
model as a function of the ratioh/J and calculate the inter
polation parameterb in Eq. ~9! as a best fit over the self-dua
and non-self-dual sectors. The results are shown in Fig. 3
L515 andm53, whereas data for the largest system size
only included in the self-dual sector. We note that the cor
sponding data form54, m55, and a less extensive calcula
tion for m56, lead us to very similar conclusions. One c
see in Fig. 3 that Brody’s parameterb has different behavior
in the self-dual and in the non-self-dual sectors. While in
non-self-dual sectorsb is approximately constant and it
value b'1 corresponds to the GOE result, in the self-du
sector there is a change in the value ofb around the self-dua
point. Actually its value drops fromb51 to aboutb'0.45
at the transition point. The region where the change inb
takes place seems to shrink only to the self-dual point in
thermodynamic limit, as can be seen in Fig. 3 by compar
the results withL515 andL518.

This observation leads us to study carefully the spec
properties of the modelsat the transition point, the results of
which are shown in Fig. 4~a!. As seen in the figure the leve
spacing distribution could not be well fitted by the interp
lation formula in Eq.~9!, at least with the symmetries w
have taken into account. However, it is given approximat
by the arithmetic average of the Wigner and Poisson dis
butions, which is also shown in the figure. We argue that
measured spectral quantities in the self-dual sector can
interpreted as if the spectrum is composed of two indep
dent Wigner distributions. To check our assumption we ha
taken two non-self-dual blocks of roughly the same size e
of which has Wigner characteristics and merged the level
the two blocks. Then we analyzed the level statistics of
combined blocks and the obtained results in Fig. 4~b! look
very similar to those we found for the self-dual sector a
presented in Fig. 4~a!.

Thus at this point we conclude that the spectrum of
self-dual sector at the self-dual point is seemingly compo
of two independent parts, each having Wigner-type char
teristics. This type of behavior is the result of an extra sy
metry, theself-duality, which is just seen in the self-dua

so

FIG. 3. Parameterb as a function ofh/J for m53. For L
515 the data are averaged separately over all self-dual secto
over all non-self-dual sectors. ForL518 only the representationR0

to which the ground state belongs is taken into account.
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FIG. 4. ~a! Level spacing distribution forL518, M53 and for the representation to which the ground state belongs.~b! Combination of
the spectrum of two different representationsR15 andR16 of the m55 model forL515.
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sector. Furthermore, we argue that this extra symmetr
manifested by the crossing of energy levels at the self-d
point in the thermodynamic limitL→`. To see this we have
calculated the quantity

d5 K max~si ,si 21!

min~si ,si 21! L
i

, ~12!

which measures the asymmetry in the level spacing distr
tion. For independentrandom variables chosen according
a Wigner distribution one hasP(d)54d/(11d2)2 yielding a
mean value^d&511p/2'2.5708. For matrices from th
GOE, the correlation between spacingssi modifies this
value. We have numerically found that this value does
vary considerably with the size of the matrix, and is ve
close to

^d&GOE'3. ~13!

~Diagonalizing 1000 GOE random matrices of size rang
from 3 up to 2000.! As seen in Fig. 5 for non-self-dual sec
tors d is indeed close to the GOE result in Eq.~13!. Simi-
larly, d'3 is found in the self-dual sector far from the se
dual point, however, there is a sharp increase ind in the
neighborhood ofh/J51 @25#. Since the value ofd at the
self-dual point is monotonically increasing with the size
the system~see Table IV!, one expects that in the thermod

FIG. 5. The asymmetry parameterd in Eq. ~12! as a function of
h/J for L516 andm54. The upper curve corresponds to the se
dual sector and the lower curve to non-self-dual sectors. The e
bars are calculated as the variance divided by the square root o
number of spacing ratios.
is
al

u-

t

g

f

namic limit d→`. Thus there is an exact degeneracy in t
self-dual sector at the transition point, which should be c
nected with the presence of an extra symmetry. The poss
origin of this extra symmetry is discussed in the final secti

IV. LEVEL STATISTICS AT A FIRST-ORDER
TRANSITION POINT

In this paper we have studied the statistical properties
the spectrum of a transverse-field Ising spin chain w
m-spin interactions and compared to the predictions of r
dom matrix theory. Away from the transition point, which
known exactly from duality symmetry, the spectrum
shown to be a Gaussian orthogonal ensemble and its pro
ties are well described by the Wigner distribution. On t
other hand, at the transition point the spectral properties
the self-dual and non-self-dual sectors are different. Wh
the spectra of non-self-dual sectors are close to the Wig
distribution the same for the self-dual sector can be descr
as the composition of two independent Wigner distributio
Furthermore, we have shown that this special behavior at
transition point is the result of level crossing in the therm
dynamic limit.

This observation can be compared with the known ex
@26# and numerical@27# results on the two-dimensiona
Q.4 Potts model. As known exactly@28#, this model is also
self-dual and there is a first-order transition in the system.
an analogous quantity to the Hamiltonian in Eq.~1! we con-
sider theT transfer matrix of the Potts model, which in th
Hamiltonian limit @29,30# is given byT5exp(2tHP), where
t denotes the lattice spacing andHP is the Hamiltonian of
the one-dimensional quantum Potts model. According to
act results@26# in the thermodynamic limit the ground sta
of HP at the transition point is (Q11)-fold degenerate. At

or
the

TABLE IV. The asymmetry parameterd in Eq. ~12! as a func-
tion of L for m53, 4, and 5 in the ground-state sector. Wh
present the number in parentheses refers to the asymmetry c
lated for theentire self-dual sector.

L510 L512 L515 L516 L518

m53 4.79 6.54~9.63! 11.31
m54 4.58 5.09~8.67!
m55 1.76 4.33
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this point the first two levels of the self-dual sector, as w
as the first levels of theQ21 other, non-self-dual sectors a
degenerate. Thus the first order nature of the transitio
manifested by a level crossing in the self-dual sector.~For
finite rings one observes a hybridization gap in the self-d
sector, which vanishes exponentially with the size of the s
tem @27#.! As shown by numerical calculations@27# the same
type of level crossing phenomena takes place for the hig
lying levels, too. Thus, for finite systems, the spectrum at
transition point is expected to decompose into two pa
which are going to be degenerate in the thermodyna
limit.

Our numerical results on the multispin-coupling mod
are in agreement with the above picture, thus we expe
similar scenario. The self-dual symmetry at the transit
point, which is connected to a level crossing in the self-d
sector in the thermodynamic limit, is responsible for the u
usual spectral properties of the multispin-coupling mod
for m.3. The m53 model, in which the transition is ex
pected to be second order, is assumed to represent the b
limit of continuous models. Thus one expects that the ab
d.

.

ys
ll

is

l
s-

er
e
s,
ic

l
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n
l
-
s

der
e

scenario, which stays valid asm→31, could hold also for
m53, perhaps with another type of functional form for th
size dependence of the hybridization gap. Indeed, this typ
behavior has been found by our numerical studies.

Finally, we discuss possible integrability of the multispi
coupling model in Eq.~1!. As a result of our numerical stud
ies of spectral properties of the model we conclude that th
is no evidence in favor of integrability of the Hamiltonian
Eq. ~1! for m.2, even at the transition point.
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@10# H. W. J. Blöte, A. Compager, P. A. M. Cornelissen, A

Hoogland, F. Mallezie, and C. Vanderzande, Physica A139,
395 ~1986!.

@11# F. C. Alcaraz, Phys. Rev. B34, 4885~1986!.
@12# M. Kolb and K. A. Penson, J. Phys. A19, L779 ~1986!.
@13# C. Vanderzande and F. Iglo´i, J. Phys. A20, 4539~1987!.
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