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We consider self-dual transverse-field Ising spin chains witspin interaction, where the phase transition
is of second and first order, fon<3 andm>3, respectively. We present a statistical analysis of the spectra
of the Hamiltonians on relatively larde<18 finite lattices. Outside the critical point we found level repulsion
close to the Wigner distribution and the same rigidity as for the Gaussian orthogonal ensemble. At the
transition point the level statistics in the self-dual sector is shown to be the superposition of two independent
Wigner distributions. This is explained by the existence of an extra symmetry, which is connected to level
crossing in the thermodynamic limit. Our study has given no evidence for the possible integrability of the
models form>2, even at the transition poiftS1063-651X98)05907-9

PACS numbgs): 05.50+q, 05.30—d, 05.20-y, 05.45+b

I. INTRODUCTION mechanical modelshas different statistical properties for in-
tegrable and nonintegrable models and one can make a close
There are many problems in physics in which multipar-connection to the theory of the spectral properties of random
ticle interactions play an important role. One may mentionmatrices. In the actual calculation we first make use of all
nuclear forces, solidHe[1], adsorbed systenfg], and plas- those symmetries of the Hamiltonian which do not depend
mas[3]. It is known from some exact resulig] that the on the value of the couplings, and for large finite lattices we
critical properties of models with many body forces gener-block diagonalize the eigenvalue matrix of the problem. The
ally depend on the range of interaction. Recently considerstatistical analysis of the energy levels is then performed for
able effort has been made to clarify the properties of a simpleach block separately. In a nonintegrable model, in which no
one-dimensional guantum model described by the Hamilfurther internal symmetry is present, the matrix elements of a
tonian[5,6] block matrix are expected to be loosely correlated, so that
they can be approximately represented by random entries.
H=—33 oo i o “hS o?=—JH,—hH Indeed the spectrum of nonintegrable models is found to
= T101+17 " Tlem—17 e 01 = x z: belong to the class of orthogonal random matrices, to the
(1) so-called Gaussian orthogonal ensem{d®E) and the level
spacing distribution is described by the Wigner surnizg:
Here thea|, of are Pauli matrices at siteandJ andh are
the exchange coupling and the transverse field, respectively.
The classical statistical mechanical equivalent of this model
is a two-dimensional square lattice Ising model with mixed
m-spin and two-spin interactiorg]. On the other hand, if the Hamiltonian is integrable by the
The Hamiltonian Eq(1) is self-dual[5,6] and the self- Bethe ansatz there is an infinite number of internal symme-
dual point isJ=h independent ofm. According to numerical tries and consequently the matrix elements of a block matrix
studies[6—14] there is one phase transition in the system,are strongly correlated. Loosely speaking integrable Hamil-
which takes place at the self-dual point, and the transitiorionians are so peculiar that they are not well described by an
changes from second to first order, when-m.=3. In the  “average Hamiltonian.” Then one expects that in this case
borderline casen=3 the transition is conjecturdd@] to be-  the eigenvalues themselves behave like independent random
long to the four-state Potts universality class, a conjectur@aumbers, so that the spectrum of integrable models belongs
which is supported by an approximate mappit§] and by  to the ensemble of diagonal random matrices and the level
numerical studie$10,13,14,16 spacing distribution is described by the Poissori@ponen-
Concerning the simple structure of the model, its self-duatial) distribution: P(s)=exp(—s). Numerical studies of inte-
symmetry, and the expected relationQestate Potts models, grable modeld17-23 are indeed in agreement with this
one can also pose the question, whether the model is intéssumption.
grable, at least in its self-dual point. To find an answer to this In this paper we are going to perform the analysis of the
guestion in this paper we are going to study the statisticalevel statistics of the multispin-coupling Hamiltonian in Eq.
properties of the spectrum of the Hamiltonian. As it has beerfl). We are going to answer two questions. The first question
established in a series of pap¢ls—23 the spectrum of a is whether or not the Hamiltonian is integrable, at least at the
Hamiltonian (or the transfer matrix for classical statistical transition(self-dua) point. Our second question concerns the

r
P(s)= >S exp( — 7s?/4). )
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TABLE I. Dimensions of the irreducible representatidne., degeneragyand size of the corresponding block.

M=3,L=18
LabelR 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Dimension 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 6 6
Size 2029 1871 1645 1743 3613 3671 3612 3668 3668 3612 3612 3668 5656 5272 5400 5528 10920 10920
characteristics of the level distribution at a first-order transiwherekg,k,, ... ky_, are the bits of the binary represen-

tion point. The paper is organized as follows. The symmesiation ofk, andk,,_; is such that
tries of the Hamiltonian in Eq(1), which are essential to

perform a block diagonalization, are presented in Sec. Il. The !

statistical analysis of the spectrum of the block-diagonalized izo ki even. (4)
Hamiltonian is given in Sec. lll, while the results are dis-

cussed in the final section. The spin-reversal symmetry, which holds whmaris even, is

0O,,_ corresponding t&;=1 for alli. It is straightforward to
check that the condition E@4) ensures that all the operators
Il. SYMMETRIES OF THE HAMILTONIAN O; commute with{(J,h). Itis also clear that these operators

As described in the Introduction the first step in a statis> © diagonal, involutive, and form an Abelian grou(is

. . . . . 71_ _
tical analysis of the energy eigenvalues is to block diagonalt.he identity. Th'.s |mpI_|es that all the 27"=n representa
ize the Hamiltonian in Eq(1) using all those symmetries of tions farﬁ ofne d;)mgnls;oznﬂ1ar;%thehcorre§EoEclilr;g prl? J_ectors
the model which do not depend on the actual values of th&'€ © the formPg=1/n2;_, € O; where &= = or_a2|1
couplings. Before analyzing these symmetries, let us firsfd R- All these projectors spiit the Hilbert space )
notice that ifE(J,h) ={Eq(J,h),E4(3,h), . . . Ear_1(3,h)} invariant subspaces of sizé 2"*! each. For example, for

denotes the set of energies of the Hamiltonian @y one M=2 andL even, Po=(1/2)(Oo+0,) projects onto the

hasE(J,h)=E(=J,+h). This can be seen introducing the Subspace with an even number of up spins, witig

operators()’(:Hi;la;‘ andoz:H:_irS—la_izm and noting that =(1/2)(OO—01). projects 0r_1to the subspace ywth an odd
number of up spins. The projectBp=1/n>0O; projects onto

H,OP=¢,30PH,, wherea,f=x,z and €, =1 if a=p h ) e sub o which th d state b
and—1 otherwise. On a finite lattice this symmetry holds for € most symmetric subspace 1o which the ground state be-
longs (we refer now to this subspace as the ground-state

periodic boundary conditions and if the length of the chain is 1
a multiple of m. In what follows we consider this type of sectoy, whereas the other2 “—1 sectors become degener-

lattices and restrict ourselves to the chse0 andJ>0 ate in the thermodynamic limit. Thus, in this limit, the de-
The symmetries of the model are of three tygésspace- generacy of the g[?und .state in the strong-coupling plase

like symmetrigswhich describe invariance of the system un—.>h IS given by_ 2 Th|s'degeneracy for thn=3 model

der geometrical transformatiorisanslation, inversion, etg. Is just four, Wh'Ch Ie_d Debierre and Turbéﬁ] to conjecture

(i) gauge symmetriesvhich are connecte,d to invariémce of the same universality class for the transition as that for the

the Hamiltonian under internal transformations; and finaIIyQ:_I_?]'State E.Otts. modfel.h d th

(iii ) duality symmetrieswhich make a connection between e combination of the space symmetry and the gauge

the strong- and weak-coupling regimes of the Hamiltonian, SYMmetry is not ObViOl.JS’ since the operators of these two
(i) The space symmetrgf the model on a finite lattice groups ‘.ijtCO“?”T'“te in general. Th(’.} product of th‘?se two
roups is a semidirect produ@tot a direct produgt since

depends on the boundary condition. In a statistical analysi .
e gauge group is a normal subgroup. As usual the states are

of the spectrum of finite systems it is desired to use the mo .
symmetric boundary condition to get a block structure,/@P€led by the number of the representatioto which they

which well represents the statistical behavior of the spectrunt?elong' We have computed Fhe ch_aracter taple Of. the sym-
in the thermodynamic limit. Therefore, as already men-Metry group from which the dimensions of the invariant sub-

tioned, we apply periodic boundary conditions, which can pespaces are deduced and then the block-diagonal Hamiltonian
formally expressed as* .= o*. The space symmetry group Is constructed. The dimensions of the irreducible representa-
L+i— i~

is then the automorphy group of a ring, irrespective of th tions and the size of the corresponding blocks are given in

: : e . Ell'ables I-11I for different values of, in the range of &R
range of the interactiom. This is the dihedral group gener- - ’
ated by the translatiom and the reflectionR (T-=R? <L/2+3 and O<R<(L—1)/2+2, for L even and odd, re-

. . — . . tively. We note that in the ground-state sector, which is
=identity and TR=RT-"1), which both commute with{. ~ >heC o g

(i) Thegauge symmetriegre generalizations of the spin- labeled byR=0 and corresponds tB,=(1/n)20; all the
reversal symmetry for the well knowm=2 case. Recalling operators of the space and gauge symmeiry group commue,

that we takd. to be a multivle ofn. let us introduce a set of S° thatin this sectorwe have a representation of the dihedral
n=2""1 operatorsO, for kp—o 1 ' n—1: group. In what follows we use the same labeling convention
- K =U,L, ... — 4.

as in[22].
(iii) As mentioned in the Introduction the Hamiltonian in
L/m—1 amtm—1 Eqg. (1) has the property ofluality symmetryTo show this
O, = o)k, 3 and its consequences in finite lattices, first we define, for an
K c:rI;[O igm () ® infinite lattice, dual Pauli operatorg’, 7’ as
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TABLE Il. Dimensions of the irreducible representatiaing., degeneragyand size of the corresponding block.

M=4,L=16
LabelR 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Dimension 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
Size 330 265 202 265 288 288 224 224 529 512 544 480 544 480 496 512 526
LabelR 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
Dimension 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 8
Size 512 496 512 496 512 526 512 496 512 1088 960 1024 1024 1024 1024 1024 2048
=0l 0t (5)  their spectrum by standard numerical methods, which are
contained in the.APACK library. The next step, before per-
ol=T T (6) forming the analysis, is to unfold the spectrum, i.e., to sub-

tract the average tendency and to keep only the fluctuations,
in terms of which the Hamiltonian in Eq1) is expressed as Which are normalized in the same manner at each part of the
spectrum. Technical details relating to unfolding the spec-
trum are given in Refd.22,23.
H= —JEl Tf—hEl N Te1 Tem-1- @) The unfolded spectrum is then analyzed and several spec-
tral quantities are determined and compared with the predic-
Consequently the two sets of energig6),h) and E(h,J)  tions of random matrix theory. First, we consider the level
are equal: spacing distributionP(s), which is expected to be of the
Wigner form in Eq.(2) for nonintegrable models, whereas it
E(J,h)=E(h,J) 8 is generally of the Poissonian form for integrable models. To
analyze realistic spectra it is often useful to consider Brody’s
and the self-dual poinh=J corresponds to the transition interpolation formula:
point of the system, provided there is one single-phase tran-
sition in the system. The duality symmetry, as described Pg(s)=c(1+B)sPexp —cs’ ™), 9
above, holds in the thermodynamic limit, i.e., when the
length of the systenh —co. In afinite systenduality gener-
ally relates sectors of the Hamiltonian with different boun
ary conditions. With periodic boundary conditions one ha
the symmetriesr] , ;=] andof , ;= 0c7, which in terms of
the dual operators in E@5) and Eq.(6) are only satisfied in
the ground-state sector of the Hamiltonian. As a result self-
duality holds only in the ground-state sector, which is indeed®
verified numerically. Based on this observation we expect 1 ot/
somewhat different statistical properties of the energy levels Ag()= < _minf [Ny(e)—ae—b]?de) , (10
in the self-dual and non-self-dual sectors. b 2

with c=[T'((B+2)/(B+1))]**#, which corresponds to the
d-Wigner and the Poisson form fgg8=1 and 8=0, respec-
dively. The interpolation parametes, which is determined
by an optimization fit, proved itself to be a useful indicator
for the localization of integrable varieti¢22,23.

Another quantity characterizing the independence of the
igenvalues is the spectral rigidity in an interval of lenbth

[e3

lIl. RESULTS OF THE RANDOM MATRIX THEORY whereN,(e)=2;0(e—¢) is the integrated density of un-
] . ) ) ) folded eigenvalues and), denotes an average over Fi-
Using the symmetries as described in the preceding seggy)ly, we shall also consider the number variad@él) de-

tion we have performed the block diagonalization of the eifineq as the variance of the number of unfolded eigenvalues
genvalue matrices for large finite lattices, the size of which, g interval of length:

was a multiple of the length of the interaction We went up

to L=18, 16, and 15 fom=3, m=4, andm=5, respec- 32()=([Ny(e+1/12)=Ny(e—1/2)-11%, (12)
tively. The size of the blocks, as seen in Tables I-lll, is

relatively small; especially for larger valuesmftheir size is  where the angle brackets denote an averaging ever
reduced by gauge symmetry. First we present the results of the statistical analysis of the

Having the block-diagonalized Hamiltonian we solved spectraoutside the transition pointAs seen in Figs. 1 and 2

TABLE Ill. Dimensions of the irreducible representatiding., degeneragyand size of the corresponding
block.

M=5,L=15

LabelR o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Dimension 1 1 2 2 2 2 2 2 2 5 5 5 5 5 5 10 10 10
Size 102 38 138 136 136 136 136 136 136 374 310 374 310 374 310 682 682 682
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00 é :1 é é 10 FIG. 3. Parametep as a function ofh/J for m=3. For L

=15 the data are averaged separately over all self-dual sectors or
over all non-self-dual sectors. Fhr=18 only the representatidr,
to which the ground state belongs is taken into account.

FIG. 1. Level spacing distribution fdr=15, M =3, h/J=1.36,
and all the representations. The exponentiil) (and the Wigner
(W) distributions are showrtfull line), together with the Brody

distribution (broken line for the fitted best value of the parameter . . . L.
B=1.01(see text In the following we investigate the level statistics of the

model as a function of the ratio/J and calculate the inter-

on the example of then=3 model at a coupling/h=1.36 polation parametes in Eq. (9) as a best fit over the_self_—dual
for a 15-site chain, all the three characteristic quantities ofnd non-self-dual sectors. The results are shown in Fig. 3 for
the spectrum are very well described by the Wigner distribut-= 15 andm=3, whereas data for the largest system size are
tion [24]. Figure 2 presents the rigidity and the number vari-only mpluded in the self-dual sector. We note that the corre-
ance for the same parameters. The expected behavior f§Ponding data fom=4, m=5, and a less extensive calcula-
independent random energies and for the eigenvalues of tfon for m=6, lead us to very similar conclusions. One can
GOE is also shown. The GOE behavior is observed up t§€€ in Fig. 3 that Brody's parametgrhas different behavior
quite large values df, indicating that GOE matrices provide N the self-dual and in the non—sel_f—dual sectors. While in the
a good description of the Hamiltonian. The data shown aréon-self-dual sectorg is approximately constant and its
obtained averaging over all the representations. Howeveralue 3~1 corresponds to the GOE result, in the self-dual
very similar results are obtained averaging only over the selfsector there is a change in the valuggodround the self-dual
dual sector. The characteristic parameters of the spectrum d@int. Actually its value drops fron8=1 to about3~0.45

not depend on whether the sector under consideration is seft the transition point. The region where the changegin
dual or non-self-dual We also note that very similar behaviottakes place seems to shrink only to the self-dual point in the
is found for other ranges of the interactior>3 or for other ~ thermodynamic limit, as can be seen in Fig. 3 by comparing
values ofJ/h>1. Consequently, there is no evidence for thethe results with. =15 andL =18.

integrability of the model withm>2 away from the critical This observation leads us to study carefully the spectral
point. properties of the modelst the transition pointthe results of

which are shown in Fig.(@). As seen in the figure the level
- - - - - spacing distribution could not be well fitted by the interpo-
Non self-dual sectors . . . .
1t % o . lation formula in Eq.(9), at least with the symmetries we
..E\""E" - g 73 oy ,wE'--a"'/E‘%ﬁ \!/B\V

B e g have taken into account. However, it is given approximately
by the arithmetic average of the Wigner and Poisson distri-
butions, which is also shown in the figure. We argue that the
measured spectral quantities in the self-dual sector can be
Self-dual sector L=18 interpreted as if the spectrum is composed of two indepen-
dent Wigner distributions. To check our assumption we have
i taken two non-self-dual blocks of roughly the same size each
of which has Wigner characteristics and merged the levels of
the two blocks. Then we analyzed the level statistics of the
combined blocks and the obtained results in Fig) 400k
very similar to those we found for the self-dual sector and
%a 06 08 h1;.1 12 14 16 presented in Fig- (@-)
Thus at this point we conclude that the spectrum of the

FIG. 2. Rigidity (a) and variance(b) for L=15, M=3, self-dual sector at the self-dual point is seemingly composed
h/J=1.36, and all the representations. The corresponding quanti- Of two independent parts, each having Wigner-type charac-
ties for the GOE matrices and for random diagonal matrices are alstgristics. This type of behavior is the result of an extra sym-
shown in full lines. metry, theself-duality which is just seen in the self-dual

08 |
0.6 |
Self-dual sector ———

04

02 4
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L=18 M=3 h/J=1 Representation RO L=15 M=5 hiJ= 1.1 mixture of rep. 16 and rep. 16
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FIG. 4. (a) Level spacing distribution fok =18, M =3 and for the representation to which the ground state bel¢ghg§ombination of
the spectrum of two different representatidds and R;¢ of them=5 model forL=15.

sector. Furthermore, we argue that this extra symmetry isamic limit 5—cc. Thus there is an exact degeneracy in the

manifested by the crossing of energy levels at the self-duaelf-dual sector at the transition point, which should be con-
point in the thermodynamic limit —oc. To see this we have nected with the presence of an extra symmetry. The possible

calculated the quantity origin of this extra symmetry is discussed in the final section.

_<ma>(si ,si_1)>

i

min(s; ,S;_1) 12 IV. LEVEL STATISTICS AT A FIRST-ORDER
TRANSITION POINT

which measures the asymmetry in the level spacing distribu- ) . - .

tion. Forindependentandom variables chosen according to N this paper we have studied the statistical properties of

a Wigner distribution one ha(8) = 48/(1+ 62)2 yielding a the spectrum of a transverse-field Ising spin chain with
mean value(8)=1+ m/2~2.5708. For matrices from the m-spin interactions and compared to the predictions of ran-

GOE, the correlation between spacings modifies this dom matrix theory. Away fr_om the transition point, which i_s
value. We have numerically found that this value does noknoWn exactly from duality symmetry, the spectrum is

vary considerably with the size of the matrix, and is verys.hown to be a Gau;sian orthogongl ense_mb_le a_nd its proper-
close to ties are well described by the Wigner distribution. On the

(8)cor=3. (13)  other hand, at the transition point the spectral properties of
the self-dual and non-self-dual sectors are different. While
(Diagonalizing 1000 GOE random matrices of size ranginghe spectra of non-self-dual sectors are close to the Wigner
from 3 up to 2000. As seen in Fig. 5 for non-self-dual sec- distribution the same for the self-dual sector can be described
tors § is indeed close to the GOE result in E4.3). Simi-  as the composition of two independent Wigner distributions.
larly, 6~3 is found in the self-dual sector far from the self- Furthermore, we have shown that this special behavior at the
dual point, however, there is a sharp increasesim the  transition point is the result of level crossing in the thermo-
neighborhood ofh/J=1 [25]. Since the value of at the  dynamic limit.
self-dual point is monotonically increasing with the size of ~ This observation can be compared with the known exact
the systen(see Table 1V, one expects that in the thermody- [26] and numerical[27] results on the two-dimensional
Q>4 Potts model. As known exact]g8], this model is also
1 . ' . ' . - , self-dual and there is a first-order transition in the system. As
L=15 m=3 All representations an analogous quantity to the Hamiltonian in E&). we con-
sider the7 transfer matrix of the Potts model, which in the
Hamiltonian limit[29,3(Q is given by7=exp(- Hp), where
~ 7 denotes the lattice spacing aht} is the Hamiltonian of
08 1 the one-dimensional quantum Potts model. According to ex-
act resultd 26] in the thermodynamic limit the ground state
of Hp at the transition point is@+ 1)-fold degenerate. At

P(s)

04t

TABLE IV. The asymmetry parametef in Eq. (12) as a func-

02 ] tion of L for m=3, 4, and 5 in the ground-state sector. When
present the number in parentheses refers to the asymmetry calcu-
lated for theentire self-dual sector.

0

c o5 1 75 3 e 3 a5 ¢
L=10 L=12 L=15 L=16 L=18
FIG. 5. The asymmetry paramet&iin Eq. (12) as a function of
h/J for L=16 andm=4. The upper curve corresponds to the self-m=3 479  6.54(9.63 1131
dual sector and the lower curve to non-self-dual sectors. The erran=4 4.58 5.09(8.67
bars are calculated as the variance divided by the square root of thg=5 1.76 4.33

number of spacing ratios.
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this point the first two levels of the self-dual sector, as wellscenario, which stays valid as— 3", could hold also for

as the first levels of th@® — 1 other, non-self-dual sectors are m=3, perhaps with another type of functional form for the
degenerate. Thus the first order nature of the transition isize dependence of the hybridization gap. Indeed, this type of
manifested by a level crossing in the self-dual secor  behavior has been found by our numerical studies.

finite rings one observes a hybridization gap in the self-dual Finally, we discuss possible integrability of the multispin-
sector, which vanishes exponentially with the size of the SySCoup”ng model in Eq(l) As a result of our numerical stud-
tem[27].) As shown by numerical calculatiofig7] the same jes of spectral properties of the model we conclude that there
type of level crossing phenomena takes place for the highgg no evidence in favor of integrability of the Hamiltonian in

lying levels, too. Thus, for finite systems, the spectrum at the=. (1) for m>2, even at the transition point.
transition point is expected to decompose into two parts,

which are going to be degenerate in the thermodynamic
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