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The diffusion approximation to the Boltzmann transport equation is commonly used to analyze data obtained
from biomedical optical diagnostic techniques. Unfortunately, this approximation has significant limitations to
accurately predict radiative transport in turbid media, which constrains its applicability to highly scattering
systems. Here we extend the diffusion approximation in both stationary and frequency-domain cases using an
approach initially formulated independently by Pr@Rh.D. thesis, University of Texas at Austin, 198®-
published] and Stafin Dosimetry of Laser Radiation in Medicine and Biologgited by G. J. Miler and D.

H. Sliney (SPIE, Bellingham, WA, 1989 pp. 146—154; inOptical-Thermal Response of Laser-Irradiated
Tissue edited by A. J. Welch and M. J. C. van Gem@tenum, New York, 1996 pp. 131-20& The solution

is presented in the stationary case for infinite media with a collimated source of finite size exhibiting spherical
symmetry. The solution is compared to results given by standard diffusion theory as well as to measurements
made in turbid phantoms with reduced single scattering albai@anging from 0.248 to 0.997. Unlike the
conventional diffusion approximation, the approach presented here provides accurate descriptions of optical
dosimetry in both low and high scattering media. Moreover, it accurately describes the transition from the
highly anisotropic light distributions present close to collimated sources to the nearly isotropic light distribu-
tion present in the far field. It is postulated that the ability to measure the transition between this near and far
field behavior and predict it within a single theoretical framework may allow the separation of the single
scattering anisotropyg from the reduced scattering coefficienf. The generalized formulation of diffusion
theory presented here may enable the quantitative application of present optical diagnostic techniques to turbid
systems which are more highly absorbing and allow these systems to be probed using smaller source-detector
separations.S1063-651X98)13408-4

PACS numbg(s): 87.90:+y, 05.60+w, 42.62.Be

[. INTRODUCTION accurate when applied to positions proximal to the laser ir-
radiation site. This occurs because the diffusion
The diffusion approximation for radiative transport in tur- approximation is unable to accommodate a strong angular
bid media is used as the conceptual basis to analyze meanisotropy in the light field such as that created in the neigh-
surements made in many diagnostic biomedical laser applPorhood of a collimated light source. Also, the solution pro-
cations. These applications, which include photon migratioryided by the diffusion approximation in semi-infinite geom-
and fluorescence spectroscopy, have been successfully efifies is inaccurate proximal to interfaces where there is a
ployed to determine and image tissue optical propertiesfractive index mismatch. This inaccuracy arises due to is-
quantify concentrations of physiologically relevant biomol- SU€S concerning the modeling of the photon sources, the rela-

ecules, and extract accurate fluorescence and Raman spectﬁ’ . mtaﬁmtudez t%f t?e <tj|ffus;e fflubenc% rate relgi!ve to t_he
of turbid tissues[1-5]. Furthermore, it has been demon- radiant fiux, and the freatment of boundary conditions using

strated that data of this type can form the basis for noninva[nonOpoIe and dipole approximatiof0]. Al these factors

sive discrimination between normal and diseased tisigies result in an approximate solution to an equation that in itself
represents an approximation to radiative transport theory.

Dpspﬂe these successes, th_e standard d|ﬁu§|on approxi- Following an approach proposed independently by Prahl
mation and its generalized variant, tfg approximation, 1] and Star[12,13, we provide a generalized diffusion
have significant limitationf7—9]. These models provide ac- a5 0ximation to the Boltzmann transport equation for both
curate predictions for radiative transport only when the ab'stationary and frequency-domain cases. This generalized
sorption coefficienju, is much lower than the reduced scat- model explicitly includes a collimated source in the radiance
tering coefficient w; for the standard diffusion approximation. It is the scattering of this collimated source
approximation or much lower than the scattering coefficienthat “generates” the diffuse light. In addition, thé-
us for the P, approximation. Further, even when the appro-Eddington approximation is employed to model the single
priate condition is satisfied, the resulting predictions are inscattering phase function and better accommodates media

that display strong forward scattering such as tissue. We pro-

vide the solution for the stationary case in an infinite medium

*Author to whom correspondence should be addressed. FAXcontaining a collimated spherical source of finite size and
(949 824-8413. Electronic address: vasan@bli.uci.edu compare it to experimental measurements made in turbid
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phantoms with reduced single scattering albedovarying B. Boundary conditions
from 0.248 to 0.997. We also compare the solution to that g semi-infinite geometries, we must specify conditions
given by the standard diffusion approximation and will dem-t the top boundary, that is, the interface between the turbid
onstrate that the generalized approach shown here is accurgiggia and its surroundings, as well as at infinity. At any
over a broader range of optical properties and at positiongerface where there is a refractive index mismatch, we re-
proximal to a collimated source. quire conservation of the diffuse radiancg(r,st). Denot-
ing the inward surface normal at such an interfacg,ashis
Il. THEORETICAL FORMULATION condition is expressed by
A. Governing equations f

Following the approach outlined by S{dr3], but with the
inclusion of all time-dependent terms, the following equa-
tions specify the diffuse fluence ratg(r,t) and the radiant = J o Lg(r,SHre(=s ) (=5 5)ds, (4
flux j(r,t) within the P, approximation to the Boltzmann §50<0
transport equatiofBTE) using thes-Eddington approxima-

tion for the scattering phase function: Wher.erp(—'é- %) is the Fresnel reflection coefficient for un-
polarized light. Note that we conserve only the diffuse com-
V2pq4(r,t) = 3uamyeq(r,t) ponent of the radiance because the collimated component is
5 really a source. Substituting the radiance approximation
_ 3 Pe(r,t)  3(pat pu) Iea(r,t) specified by the?; approximatior{see Eq(A15) in Appen-
v? at? v at dix A] into this conservation equation and simplifying gives
— _ * o * a a
== 3pg py P(1,S,1) +39* g VP(r.%,0)% O AR o103 , 3N deg(rt)
3 P& | 3w i) (L&D palh PADD ST 2y Tat
BTy, v Jt T P IP(r,5,1) 5
3 5 ) = g* us P(r,s0,1) S ;SOT,()
— -V S [9P(rs. 0], 1)
where A:(1+ Rz)/(l_Rl), h:2/3,UJtrv Rl
=2[3re(vo) vodvg, and Ry=3[3re(vo) vidvy. vp is the
) Y . . cosine of the angle between the photon direction unit vector
JrH=K"4 =3 Veu(r,)+ 9" us P(r.%,0% sand the outward unit surface normag,. The condition at
infinity simply requires that the diffuse radiance go to zero,
10 . . ie.,
— 5 5t [P O]y, 2
@q(r,t)(r—o,t)—0. (6)
where the operatofC=[(1/v)(d/dt) + uy]. In these equa-
tions, P(r,%,t) is the irradiance distribution of the colli- lll. THE CASE OF A SEMI-INFINITE SPHERICAL
mated source, the position in the mediun,the time,v the MEDIUM

speed of light in the medium, argg the unit vector collinear
with the direction of the collimated sourcg,, is the trans-
port coefficient equivalent tpu,+us(1—g)], g being the Consider, as shown in Fig. 1,a semi—in_finite medium with
single scattering anisotropy.® is a reduced scattering coef- @n inner radius ofro representing a collimated source of

ficient equivalent tous(1—f ), wheref is the fraction of finite size that is amplitude modulated in time. In this case,
light scattered directly forward in thé-Eddington approxi- the collimated irradianc®(r,st) takes the form

mation to the scattering phase functiggf is a reduced Poexd — w* (r—ro)]

single scgitte_ring anisotropy equival_entgtt(g+ 1). A com- P(r,5t)= 0 il 5 0

plete derivation of the above equations and a description of 4mr

the parameters is given in Appendix A. Within this formula- aa .

tion, the total fluence rate in the mediuggr,t) is given by XOA=sD{I+M e ~i(wt+ o]}, (7)
the sum of the diffuse fluence ragg(r,t) and the collimated
fluence ratep.(r,t) defined as

A. Problem formulation and solution

wherePy, is the output power of the sourdd, the amplitude
of the power modulationy the angular frequency, andan
arbitrary phase offset. The reader should note that in a
. . spherical geometry a “collimated” source is one where the
pe(r, )= L Le(r,s6)dQ=P(r,5,1), (3 photons are emitted in a direction perpendicular to the source
i surface as shown in Fig. 1.
To solve the governing equations, we separate the diffuse
whereL.(r,5t) is the collimated radiance,the unit vector fluence rate into a time invariant or dc contribution and an
in the direction of photon travel, ard the solid angle. oscillating or ac contribution, i.e.,
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FIG. 1. Schematic of model geometry.

@1, 1) =5 + @34 exd —i(wt+e)]. ®)

Substituting Egs(7) and(8) into Eq. (1) generates the equa-
tions

V203r) = 3papmeedi(r)

Poexd — uf (r=ro)]

=—3us (uf +9* ua) Amr? '
©)
V2¢gc(r)—3[/‘a/‘tr_ 2)22 iw(ﬂermr)}ﬁDgc(r)
:_3[@(#“9*#&)_%%}
 PoM eXF[_MZt*(r_rO)]’ (10)

4ar

whereu{ is the effective interaction coefficient equivalent to
Mat ps -

surface and the turbid media, i.e. ratr,, we substitute Eq.
(8) into Eq. (5), which yields

_3Ahg*,lL*P0
do oy de oy £ s
S~ ANY (r) F=
2Ahv
al I al 'A
eq (1) (2v—3iwh)v¢dc(r)r
B —6Ahv . iw\ PoM 12
" 2v-3iwh g Ms+v 47Tr(2)' (12

For r—oo we substitute Eq(8) into Eq. (6), which gives

@3, ¢34(r)—0 (13

In this study we consider only the solution of the dc com-
ponent for the diffuse fluence rate. The method of solution is

RADIATIVE TRANSPORT IN THE DIFFUSION . . .

In an analogous fashion we generate two sets of
boundary conditions. For the interface between the source

2397

detailed in Appendix B. The solution to E(R) subject to the
boundary conditions specified by Ed41) and (13) is

3us (i +9* pa) Poexp(uf ro)
BT e I
X[
_ 2g*sinh(pef o)
Fo(pt +0* ma)eXpl i o)

ed(r)=

E1(miro— et o) — E1( g Fot teft Mo)

—E1(uf 1 — et ) [€Xp(— s )

FE1(uf T+ tesr T)EXP test r)]. (14)

where u.f is the effective attenuation coefficient equivalent
to (3uauy)Y? andE;(2z) the exponential integral defined as
[F[exp(t)/tldt. Thus the total fluence rate is given by
@3%(r) + ¢%%r), where od(r) is given by Eq.(14) and the
collimated fluence rate is given by

Poexd — uf (r—ro)]
4qrr? ’

@d(r)=P(r,§,t)= (15)

At this point, the radiant flu9%(r) can also be deter-
mined. The expression fgf(r) is given by substituting Eq.
(8) into Eq. (2):

. 1 A n
j%r)= 3, [Ved(r)+3g* nk PY(r,&%,0%]. (16)
r

Substituting Eqs(14) and (15) into Eq. (16) yields

o

.

Meeff

+dc en
J%4(r) —trz

exXp( — Mer T)

- 3y

- 2 expl e ')

exd —ut (r—ro)]
+3gus Po Amr2 . (17)
where
Bus(ur+9* ua)Poexp uiro)
F— s (g +9% wa) PoeXp( uy 0, (18
8T et
G=|Eq(u{ro— e Fo) —E1(uf o+ et o)
29™ sinh( e o)
- Eq(ufr— r|,
ro(uf +9* ma)expuire) T Met
(19
H=Eq(u{r+pen ). (20)
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TABLE 1. Intralipid volume fractions and NiSPC concentrations used for the five turbid phantoms in
which measurements were made. The optical properties of these phantoms are also listed for the wavelength
testedA =674 nm. All phantoms had a single scattering anisotrgpy0.71.

Intralipid  NiSPC Ha e I
Sample No. (%) (ug/ml) (mm™Y (mm™Yy  wliua a’ a* (mm)
1 0.100 0.00 4.1%10°4 0.12 290 0.9966  0.9980 8.31
2 0.100 1.20 8.5%10 3 0.12 14 0.9333 0.9599 7.78
3 0.100 5.72 3.9810 2 0.12 3.1 0.7534  0.8391 6.28
4 0.050 8.41 5.7810 2 0.06 1.0 0.5102 0.6403 8.50
5 0.025 13.30 9.0910°? 0.03 0.33 0.2482 0.3607 8.28
B. Limiting cases g 3l (uk +9* ma)Po
Unique features of the solution for the diffuse fluence rate ¢ (r) 87 s T
can be better seen by examining certain limiting cases. To .
treat an infinite medium with a true point source, we consider % 2pett 207 Mett exXp(— fteg )
Eq. (14) in the limit r,— 0, where it reduces to ury ur ot ua Fret
1) = 3us (uf +9* na)Po g, PoeXH—per 1) 25
Pall)= 87 e T Hor 4qrr '
* B which is identical to Eq{(22). Thus the generalized model
X1 explpeft M E1(pg I+ tef T) +XP— fefr ') agrees with standard diffusion theory in the far field for the
. case of dominant scattering.
Myt et 29" peft Now consider the far-field behavior of EqR1) in the
X! In % - — " .. . . . % .
uy—pert)  Mr+0*ua limit of high absorption, i.e.u; <ue. This occurs when
ne—0 and results inng(r)Ho. Thus, when absorption is
dominant the total fluence rate is governed solely by the
J— * p—
Ealpem = pen 1)1 @D collimated contribution, i.e.,
. . . Po
We compare E_q(.21_) to the solgtlon_ for a point source in the o%r) = (ch(r): ( = expl — par). (26)
conventional diffusion approximation where the fluence rate T

and radiant flux are given by the expressi¢h4|
So, unlike the standard diffusion approximation, the general-

ized model correctly recovers Beer’s law in the limit of no
PoeXp(— et 1) y

©%(r)=3uy ypn , (22)  scattering.
IV. EXPERIMENT MATERIALS AND METHODS
Poexp(— r) 1
j9%r)= (ﬂ% (@4— r_2> (23 To test the generalized model described above we per-

formed measurements in a cylindrical Plexiglas container 18
cm in diameter and 25 cm tall filled vhit6 | of turbid solu-
We expect that when scattering is dominant, &) should  tion consisting of intralipid, an absorbénickel tetrasul-
reduce to Eq(22) in the far field. To verify this, we consider fonated phthalocyaningNiSPQO], and deionized water.
Eq. (21) in the limit whereu{ > uo¢ andr —o. In this case, Table | gives the intralipid volume fraction and NiSPC con-
the contribution of collimated light is negligible and the total centration used for each of the five solutions tested and their
fluence rate is dominated by the diffuse contribution. Foroptical properties at the wavelength used for the measure-
large z, E1(z)~exp(—2)/z. Thus both terms involving the ments,\ =674 nm. The scattering properties of each phan-
exponential integral go to zero much faster than the naturabm were determined using the published values for in-
log and constant terms. Further, singg> ue, the natural  tralipid [15]. The absorption coefficient of each phantom was
log term is accurately approximated by the first term in thedetermined using published absorption spectra of wWaigjr
power series and the measurement of NiSPC absorption when solubilized

in deionized water. The latter was done using a spectropho-

tometer (Model DU-7, Beckman Instruments Inc., Irvine,
for |z|>1, (24 CA) and yielded a value of (6:80.1)x10 3 mm™* for a

concentration of lug/ml atA =674 nm.

A general schematic of the experiment setup is given in

wherez= u{/uqs. Making use of the power series expan- Fig. 2. Measurements were conducted using a 674-nm laser
sion, the total fluence rate reduces to diode (Model 7421, SDL Inc., San Jose, CAvhose output

1
_+_+...
z 37°

| z+1 5
NZ—1°7
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FIG. 2. Experiment setup for measurement of light transport

within turbid phantoms. FIG. 3. Irradiance vs radial position as measured within phan-

tom No. 1 with (ui/u,)=290 andl*=8.31 mm. Measurements
using radial(O) and tangential ¢) detection are shown and em-
ploy an optical fiber withN=0.48. Predictions given by the gener-
was delivered via a 40@:m fiber coupled to an 80@gum-  alized diffusion model are shown by the solid curves while those
diam spherical diffuser(Rare Earth Medical, Yarmouth, given by standard diffusion theory are shown by the dashed curves.
MA). For detection, a flat-cut optical fiber was oriented ei-

ther radially or tangentially to the diffuser. The transport of

light within the phantom was measured at a number of dis- Sirfe de

tances ranging from placing the diffuser and the detection 1(r,0)=—— ¢q(r). (28)
fiber in virtual contact to a source-detector separation of up

to approximately 50 mm. To further investigate the angularrhe derivation of Eqgs(27) and(28) is given in Appendix C.
distribution of radiation within the phantom, three different The measurements were conducted such that an absolute
detection fibers were used at each orientatiana 550um-  yalue of the irradiance was not determined. Thus, after ac-
core-diam silica multimode fiber with a numerical apertureqyisition, the data were scaled to the predictions given by the
N=0.22, (b) a 600um-core-diam silica multimode fiber models. In the cases presented below, the predictions given
with N=0.37, and(c) a 600um-core-diam hard clad multi- py the models approach each other at large source-detector
mode fiber withN=0.48. The light collected by the detec- separations. The data were scaled to the model predictions in
tion fiber was modulated by means of an optical chogS&  this region and thus the accuracy of the models relative to the
540, Stanford Research Systems, Sunnyvale) @Ad di-  data is established in an absolute sense.
rected to an optical metgil835-C, Newport Corporation,
Irvine, CA). The electronic output from the chopper control-
ler and optical meter were directed to a lock-in ampliféeR
830, Stanford Research Systems, Sunnyvale), Gahich
gave a reading of the collected laser diode power. Figure 3 presents the measured variation of irradiance
These measurements are compared to predictions maedth radial distance from the center of the spherical diffuser
by the models described above. The measurements do nfgr both radial and tangential orientations using a detection
give the fluence rate in the medium directly and thus furthefiber with N=0.48. These measurements were made in phan-
calculations are necessary to allow a direct comparison of thism 1, where optical scattering dominated absorption such
model predictions with the measurements. Specifically, whethat w./u,=290. This ratio of scattering to absorption sat-
the optical fiber is oriented radially or tangentially relative to jsfies the requirements for the validity of the standard diffu-
the spherical source, the measured irradiarigceand|; are  sjon approximatiori17]. The figure also displays the irradi-
functions of the source-detector separatiaand the numeri- ance predicted by both the standard diffusion approximation
cal aperture N of the collection fiber. Defining#  and the generalized model presented here. To calculate the
=[sin"(N)/n], n being the refractive index of the phantom, measured irradiance in the generalized formalism, Eig,
the measured irradiances are given by the expressions  (15), and(17) are substituted in Eq$27) and(28), while for
the standard diffusion approximatio¢|§°(r)=0 and Egs.
(22) and(23) are substituted in Eq$27) and (28).
There are several notable features in this figure. First,
1(r,0)=@3%r) + $[sir0e§(r) +2(1—cos )] %(r)], even in the far fieldi.e., at larger) the measured irradiance
for radial and tangential detection are noticeably different.
This demonstrates that the magnitude of the radiant flux is
(27)  significant and should not be neglected. Second, at these

V. RESULTS AND DISCUSSION
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detection is larger. This is because for radial detection there

is a significant contribution from light that is strongly for-
T T TS ward directed, as is evident through the collimated and radi-
() pg) = 2907 ant flux terms in Eq(27), while for tangential detection the
N =037 i collected light is essentially isotropic. Thus a smaller nu-
merical aperture will reduce the tangential signal roughly in
direct proportion to the reduction in solid angle collected by
the fiber. In contrast, the radial signal will not be reduced as
greatly since the collimated fluence rate and the radiant flux
contributions are weighted along the fiber axis and not as

effectively rejected through a reduction in numerical aper-

ture. In Fig. 4b) we see that for a detection fiber with nu-
e merical_aperture of 0.22 the g_enerz_alized model _significant_ly
s overestimates the measured irradiance for radial detection

Measured lrradiance [arb. units]

f

but still gives adequate predictions for tangential detection.
The failure of the generalized model at this small nhumerical
aperture results from the inaccuracy of tldeEddington
phase function approximation that tends to overestimate the
light scattered directly into the forward peak fgrvalues
deviating significantly from unity18]. This inaccuracy is
TS particularly evident here since scattering is so dominant over
(1y/1g) = 2003 absorption. However, note that the prediction given by the
N =022 ] generalized model is no worse than that given by standard
diffusion theory. Further, in the far field the data approach
the prediction given by the generalized model more rapidly
than that given by standard diffusion theory.

The performance of the generalized model continues to be
impressive even for phantoms with stronger absorption,
while the performance of standard diffusion theory degrades.
Figures %a)—5(c) and G§a)—6(c) present the measured irradi-
ance and corresponding model predictions for both radial
and tangential detection with fibers having numerical aper-
tures of 0.48, 0.37, and 0.22 in phantoms 2 and 4, respec-
tively. These phantoms have a ratio of reduced scattering to
absorptionu/ u,=14 and 1.0, respectively. There are sev-
eral notable changes in the light field that occur with the

FIG. 4. Irradiance vs radial position as measured within phanfeduction ofug/u, .
tom No. 1 with (ul/u,)=290 andl*=8.31 mm. Measurements First, since the probability of absorption relative to scat-
using radial(O) and tangentia( ¢) detection are shown and em- tering is greater in these phantoms, photons on average un-
ploy an optical fiber with(@) N=0.37 or(b) N=0.22. Predictions dergo fewer scattering events before they are absorbed. This
given by the generalized diffusion model are shown by the solicdresults in an angular distribution of light that remains for-
curves while those given by standard diffusion theory are shown byvard directed even at large depths within the medium. This
the dashed curves. is manifest by a large ratio of the measured irradiance using

radial vs tangential detection in the far fidlsee, e.g., Fig.
large distances the dataymbolg and the predictions given 6(c)]. This effect is well predicted by the generalized model,
by both standard diffusion theoridashed curvgsand the which is congruent to the data in the far field. Predictions
generalized diffusion model presented heelid curvegare  made by standard diffusion theory do not fare as well and
congruent. Third, the predictions given by standard diffusionconsistently underestimate the measured irradiance for radial
theory and the generalized model begin to diverge atletection. Further, in the case of dominant absorption, stan-
r=<3I* for radial detection and at<2I* for tangential dard diffusion theory predicts the fluence rate to decay
detection, wherd* is the transport mean free path and is ~exp(—v3u,) [see Eq(22)], which violates Beer's law. The
defined byl *=pu, . Fourth, once the predictions given by performance of standard diffusion theory to predict the irra-
the two models diverge, the generalized model provides thdiance measured using tangential detection is notably better.
better prediction. Finally, at<|*/5 for radial detection and However, this prediction also degrades with increasing ab-
<I1*/3 for tangential detection, the prediction given by thesorption.
generalized diffusion model and the data begin to disagree. Second, the accuracy of the generalized model in the near

Figures 4a) and 4b) present results in the same phantomfield appears to degrade slightly for tangential detection with
but for cases where the numerical aperture of the detectiomcreasing absorption. Specifically, for phantom 4 the data
fiber is 0.37 and 0.22, respectively. The basic features of Figand model fits begin to disagree noticeably foe2]*/3,

3 are retained in Fig.(4). The only notable difference is that while the accuracy in the radial configuration is maintained.
the ratio of the irradiance detected via radial vs tangentiahlthough this may be a true deficiency in the model, we
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FIG. 5. Irradiance vs radial position as measured within phan-

an optical fiber with(a) N=0.48, (b) N=0.37, or(c) N=0.22.

N=10.48

Ma) =14

T T
.
,

1072

108

/

o

4

24 28

Source-detector separation » [mm]

w
N

1) = 14

037

PT T T ETT

Fa s e A 4|

gl o1 cml

TTTTOT 7T T 173

Naag
ng

-
S
IS

0 4

24 28
Source-detector separation » [mm]

rTrirvTt

Hy) = 14
N =0.22

102

/)

10°°

10

/.

(=)

24
Source-detector separation » [mm]}

4

[N
[=2)

w
N

RADIATIVE TRANSPORT IN THE DIFFUSION . . .

Measured lrradiance [arb. units]

—_
Q
L=

Measured lrradiance [arb. units]

—
(=1
-~

Measured lrradiance [arb. units]

(©

2401

T

T T T TTT

ty) = 1.0

.48

=rad

1

IO T TT

m‘]@é{’;}

T

Lol IIIIIL|,|,| L1111 F AR

TTTO T T 11T

T |

24 28
Source-detector separation r [mm]

Source-detector separation r [mm]

Ko) = 1.0

N=10.22

24 28
Source-detector separation » [mm]

32

FIG. 6. Irradiance vs radial position as measured within phan-

tom No. 2 with (u,/ 45) = 14 andl*=7.78 mm. Measurements us- t©om No. 4 with (u{/u,)=1.0 andI*=8.50 mm. Measurements
ing radial (O) and tangential ¢ ) detection are shown and employ Using radial(O) and tangentia( &) detection are shown and em-

ploy an optical fiber with(a) N=0.48, (b) N=0.37, or(c) N

Predictions given by the generalized diffusion model are shown by=0.-22. Predictions given by the generalized diffusion model are
the solid curves while those given by standard diffusion theory aréhown by the solid curves while those given by standard diffusion

shown by the dashed curves.

theory are shown by the dashed curves.
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model experiment l*
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FIG. 7. lllustration of the difference between the modeling of > 4g2[ [ R e SO
the spherical photon source and its behavior in experiment. In ex- s E Wé—@e@_
periment, the source is not collimated but emits diffusely from the = C ]
surface. In tangential detection, light emitted from the source at a 10 L L L L b b e 1
location where the surface normal is not parallel with the fiber face 0 4 8 12 16 20 24 28 32

may enter the fiber as shown. For radial detection, all light emitted Source-detector separation » [mm]
from the source at the location directly opposite the fiber will not be ) ] - o
captured due to the angular spread in the emission as shown. Nei- FIG. 8. Irradiance vs radial position as measured within phan-

ther of these effects is accounted for in the optical model. See texPM No. 1 with (ug/u,) andl* =8.31 mm. Measurements using
for further details. radial detection are shown and employ optical fiber vtk 0.48

(O) andN=0.37 (¢). Predictions given by the generalized diffu-

suspect that it may be due to an inability of the experimentapion model are shown by the solid curves while those given by
apparatus to achieve certain conditions assumed by the opfitandard diffusion theory are shown by the dashed curves.

cal_ model. Specifical!y, the mode! treats the light SOUrCe agmerical aperture fiber decays faster witthan for a large
being spherically collimated, that is, all photons supplied by, \erical aperture fiber. Finally, in the far field, the angular
the source are assumed to be emitted normal to the surfaceai X '

; . g . -~ distribution of the radiance is nearly isotropic and predic-
the spherical diffuser. This is not achlev_ed by the sphericafj, g given by both the generalized and standard diffusion
diffuser th_at we em_ploy_. R_ather, ez_;tch_pomt on the_ su_r_face %%hodels are accurate. Conceptually, measurement of the irra-
the spherical diffusing tip likely emits light with a significant di

angular spread. The difference between the model and e ance decay in the near and far fields can determine values
. I : ; o or uf andue, respectively. These two values can be alge-
perimental conditions is shown graphically in Fig. 7. M Fett P y 9

For tangential detection, this difference permits som praically manipulated to give., ands . What is important,

minimally scattered or even unscattered photons to enter tﬁ%owever, is the spatial location of the transition between

detection fiber and results in a measured irradiance highé}ear' and far-field behavior. We can effectively sample the

than that predicted by theory. Further, as scattering ge€Volution of the angular distribution of light as it travels
X : vay from the source by making measurements using two

creases, we expect the inaccuracy to be seen at larger sour ) ; )
detector separations. This is because if a photon is travelin ers of dnffe_rent _numen_c_al aperture at a numbe_r of radial
on a path that would be collected by the fiber, a reduction i cations W't?m this tran;mon region. Thl_Js’ for a T'Xe‘?‘ value
scattering reduces the probability that the photon would bé’f Ha and_ ps, the location of th|s tran5|t|on region 1s not
scattered off this path. Both these characteristics are seen {ff€d but is dependent on the single scattering anisotgpy
Figs. 5a)—5(c) and Ga)—6(c). For radial detection, the inac- This is b_ecause for lower values gffewer scattering events
curacy results in a measured irradiance lower than that pré® required on average to scatter photons out of the forward
dicted by theory. This is because light not emitted at an angl@82k- _ _ _ _
normal to the spherical diffuser has a reduced probability of Figure 9 demonstrates this by displaying the ratio of the
being captured by the optical fiber. In this case, the inaccuM€asured irradiance using radial detection with a 0.37 nu-
racy should be insensitive to the albedo of the solution a&"€rical aperture fiber vs a 0.48 numerical aperture fiber as
optical scattering should not bias the probability that lightPredicted using the generalized diffusion mogel. The irradi-
emitted at an angle oblique to the diffuser surface will beNCe ratio is given for fixed values pf; and ug, but with
detected by the fiber. values ofg ranging from 0.7 to 0.95. The values pf, and
Finally, an important observation can be made when comus Were chosen to be identical to that of phantom 1. These
paring measurements using radial detection with two differcurves clearly show the near- and far-field behavior; in the
ent numerical apertures. To illustrate this we display in Fig.near field the irradiance ratio is near unity, while in the far
8 the data for phantom 1 using fibers with numerical aperfield the ratio depends solely on the numerical apertures em-
tures of 0.48 and 0.37. In the near field the data and theloyed and the values fqu, and u¢ of the medium. How-
prediction given by the generalized model agree and both arever, while the values of., and u. are held fixed, increas-
insensitive to the difference in numerical aperture. This ising values ofg shift the transition region between the near-
because in the near field, virtually all the light is collimated and far-field behavior to smaller source-detector separations.
and captured equally by both optical fibers. Howevery as This observation may provide the conceptual basis for deter-
increases, an increasing number of photons are scattered autning the single scattering anisotropy of a turbid medium
of the forward peak and the irradiance measured by a smalléhrough multiple distance measurements using detec-
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I* VI. SUMMARY AND CONCLUSIONS

1 —— Jr In this paper we have presented the governing equations
for a generalized diffusion model in steady-state and
frequency-domain cases for optical transport in turbid media
based on initial work by PraHhlll] and Star[12,13. The
9= ] principal advantages this approach offers over standard dif-
{ g=08 ] fusion theory are that it provides accurate predictions of the
L light distribution within turbid media at positions proximal to
collimated sources and over a full range of single scattering
albedo. These improvements are achieved by deviating from
the standard diffusion theory approach in two ways. First, the
radiance is separated into collimated and diffuse components
where the optical scattering of the collimated light provides
I R B the source of diffuse light. Second, th€ddington approxi-
0 4 8 12 16 20 24 mation is employed for the single scattering phase function,
Source-Detector Separation r [mm] which is more accurate than the conventional Eddington ap-
proximation in modeling optical transport in media with
FIG. 9. The irradiance ratio detected in radial orientation using|arge anisotropy.
an optical fiber withN=0.37 sz=0.4$ is plotted vs radial posi- The generalized diffusion model was applied to measure-
tion. The values used fqr, and; are fixed and equal to those of |06 made using a finite spherical source immersed in “in-
ghamom No. 1 t.)Ut curves are shown for valueg okver the range finite” turbid phantoms with reduced single scattering albe-
.7-0.95 as indicated. . .
dos ranging from 0.248 to 0.997. In all cases, predictions
made by the generalized diffusion model outperformed those
tion fibers with different numerical apertures. given by standard optical diffusion theory. Moreover, unlike
While these curves have been generated solely from thgtandard optical diffusion theory, the generalized model has
generalized model, we are confident that they are accuraiie capacity to accurately predict the transition region be-
for two reasons. First, Figs. 3 anda# demonstrate that for tween the highly forward-directed light distribution proximal
phantom 1, where the single scattering anisotrgpy0.71,  to the source and the nearly isotropic light distribution
the prediction of the generalized model for detection usingyresent in the far field. We have demonstrated that the spatial
fibers with numerical aperture of 0.48 and 0.37 is excellent|pcation of this transition zone is sensitive to the single scat-
Thus we have full confidence in the model results ¢pr tering anisotropyg even whenu, and . are held constant.
=0.7. Second, the remaining curves are generated by changyis indicates that it may be possible to sepaafeom u!

ing the value ofg while keepinga’ fixed. Thus the only yhq,gh an appropriate combination of measurement and
potential difficulty for these other curves is the fidelity of the theory.

&-Eddington phase function. Fortunately, the accuracy of the ' the yse of this generalized diffusion theory shows prom-
&-Eddington phase function increases for increagiid8]l.  jse 1o expand the situations in which spectroscopic measure-
Thus, for the higheg values, the model results should be N0 . ants can be used to quantify optical properties of turbid

worse than those given fay=0.7, which we know to be  yegia. Specifically, the model will likely permit the probing
accurate through our experimental study. of turbid media using small source detector separations and
The benefits that this generalized diffusion model offersy;;o\v the measurement of media with high absorption. For
for time-independentdc) measurements will likely transfer ;o medical applications, this may allow the development of
over to cases where the source is pulsed or intensity moduse_specific tissue probes and the utilization of shorter wave-
Iated.. The inability of standard f:ilffusmn theory to ac.curately|engthS to quantify tissue optical properties as well as con-
predict the phase and dc amplitude of photon density waveggnrations of physiologically important analytes that display

at positions proximal to a source has already been doCusegjigible optical absorption in the red and near infrared re-
mented by Fantini, Franceschini, and Grat{d®]. These gions of the optical spectrum.

investigators have also shown that an effective photon source
term can be constructed and used within standard diffusion
theory to generate predictions that match experiment. How-
ever, these source terms were empirically derived and not
developed using first principles. In contrast, the generalized This work was made possible, in part, by the Laser Mi-
diffusion model presented here is derived from the BTE andcrobeam and Medical Program at the University of Califor-
provides accurate predictions of the dc irradiance at positionsia, Irvine. This facility is supported by the National Insti-
proximal to the source. It thus seems reasonable to expetites of Health under Grant No. RR-01192. Support was also
that once the governing equations are solved in the frequengyrovided by the Department of Energy under Grant No. DE-
domainli.e., Egs.(10), (12), and(13)], the prediction of the FG03-91ER61227, and the NIH Institute of General Medical
propagation characteristics of photon density waves close t8ciences under Grant No. GM-50958. V.V. acknowledges
photon sources and in strongly absorbing media should bsupport from the Whitaker Foundation. We thank Joshua
possible as well. Fishkin and Scott Prahl for many helpful discussions.
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APPENDIX A: DERIVATION OF GENERALIZED g
DIFFUSION THEORY FROM THE BOLTZMANN f=g° 0"
TRANSPORT EQUATION

Here we derive the governing equations of the generalize

% To incorporate thes-Eddington approximation into the
diffusion model as given by Eqgl) and (2) above. We

TE, we substitute EqA2) into Eq. (A1) which gives

begin with the Boltzmann transport equation, which de- 1 L(r,51)
scribes linear transport of photons traveling in a turbid me- - ++§-VL(r,§,t)
dia,
1dL(r,5t) . . =—,qu(r,§,t)+,u§f L(r,s,t)pe(58)dQ
————+s- VL(r,51) 4ar
v at
+S(r,51). (A5)
— o + o oo A Ay
p (30 s [ LOF0PEH 1y £ (a8 2 =1 1), = (a2, andpe(a)

. is the Eddington phase function given by

+95(r,5.1), (A1) 1
wherelL is the radiance an& the volumetric radiance pro- Pe(58)= 4 [1+3g(s-$)]. (A6)
vided by a sourceu, ug, andu, are the speed of photons in
the medium, the scattering coefficient,A and the interaction 2. Approximating the radiance
coefficient, i.e.= u,+ us, respectivelyr, s, t, andQ are the
position vector, unit direction vector, time, and solid angle,
respectivelyp(s,3') is the scattering phase function, which
is a normalized density function giving the probability that
photons traveling in a range of directiosis AS get scattered
to the range of directios’ + AS'.

We now implement a functional form for the radiance
approximation. We decompose the radiarog,s,t) into
contributions from collimated light..(r,S,t), which repre-
sents unattenuated light from external or internal sources,
and diffuse lightL4(r,S,t), which represents light that has
been scattered from these sources. This gives

1. Approximating the phase function L(r,5t)=L(r,5t)+Lg4(r,5t). (A7)

To solve Eq.(Al) we assume functional forms for the g hstituting Eq(A7) into Eq. (A5) and dropping the source
phase function and the radiance that converts the BTE into gy, gives

system of linear partial differential equations that can be ana-

lytically solved. We begin by substituting our approximation 1 ¢ . . . . .
for the scattering phase function. We choosedigddington 3 7; [Le(r SO+ La(rSH]+S V[Lc(r,s+Ly(rs)]
phase function, which takes the form

L 1 o =—,uf[Lc(r,ét)+Ld(r,é,t)]+,u§J [Lo(r,8,1)

Ps-e(88)=7—{[(1-F)(1+3g")(s5)] am

L218(1-3)). (A2) +Ly(r,s,t)]pe(s,s)dQ. (A8)
The collimated contribution to the radiance is given by

In Eqg. (A2) fis the fraction of light that is scattered directly

forward, whileg* governs the asymmetry of the phase func- Lo(r,5t)= i P(r,5t)8(1-5 &), (A9)

tion. Taking the first moment of this equation gives the rela- 2m

tion between the scattering anisotrapgnd thes-Eddington

parameters, namely, whereP(r,s,t) is the irradiance of the collimated source and

the factors(1—$-§)/2 has units srl. The factor of 1/2r

is present because the source light is collimated and thus
hemispheric. Thus, in the medium the collimated portion of
the fluence ratep (r,t) is

g=f+(1-f)g*. (A3)

The &function component within thes-Eddington ap-
proximation effectively reduces the forward scattering that N -
must be accommodated by tBes’ term in the phase func- ee(r.t)= L Le(r,sdQ=P(r,5,t).  (A10)
tion. This allows the diffuse component of the radiance i
L4(r,St) (defined belowto be less anisotropic and improves Simplifying Eq. (A8) using the relations
the radiance approximation close to boundaries. We note that . . .
for biological tissues, optical scattering is well described by S VL(r,st)=—ufLc(r,St), (A11)
the Henyey-Greenstein phase functj@]. To best approxi-
mate the Henyey-Greenstein phase function we require the f Y o R 2 a2
second moment of thé-Eddington phase function to match 4ﬂ'usp(s’s JLe(1 S DAL =g PN S, DPe(S5)
that of the Henyey-Greenstein phase function. This results in (A12)
the following expressions fdrandg* [18]:
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and replacing_.(r,5,t) with Eq. (A9) results in a transport multiplying each term in the resulting equation Byand
equation forL 4(r,S,t) with two terms representing the con- integrating over all 4 steradians. This gives

tribution from a “primary” light source as

1 9j(r,t)

+ ey j(r,1)
1Ly(r,st) . . ~ Mr ]
;d(T+S'VLd(r,S,t)+/.L?Ld(r,S,t) v ot

1 o
3 22 _§V<Pd(r.t)+g*M§P(r,so,t)so
:M§f Lg(r,8,t)pe(5,8)dQ
A7

10 . R
A . 1 9 . . — 5 5 [SP(ns. bl (A19)
+ ps P(r,S0, 1) pe(S,S0) — 270 7t DS AL=s S)-
(A13) We wish to eliminatg(r,t) to get an equation that relates

the diffuse fluence ratey(r,t) with the collimated fluence

Equation(A13) is simply a variant of the BTE with the 'ate or irradianceP(r,S,t). Solving Eq.(A19) for j(r,t)
collimated and diffuse portions of the radiance separated an@VeS an expression that is identical to EB). Substituting
the &-Eddington approximation for the phase function speci-Ed- (2) into Eq.(A18) and simplifying gives thé, approxi-
fied. We now adopt an approximate functional form for themMation to the radiative transport equation using the
diffuse radiance. Specifically, we approximate the diffuse raEddington phase function approximation and is identical to
diance by the sum of the first two terms in the series ofEd. (1).

Legendre polynomials. This is tHe, approximation and ex-
presses the diffuse radiance as a linear combination of an APPENDIX B: DC SOLUTION FOR A SEMI-INFINITE
isotropic term and a term that varies with adsThus SPHERE

1 In this appendix we present the method of solution for the
Ld(r,g,t)%ﬂr_ f Ly(r,5t)dQ dc diffuse fluence rate in a semi-infinite spherical geometry
™ Jam as represented by E() and subject to boundary conditions
given by Egs.(11) and (13). Equation(9) is an inhomoge-
+— Lyq(r,8,1)8-5dQ’  (Al4) neous Helmholtz equation that we solve by convolving the
At Jax inhomogeneousor source term with the Green’s function
for this equation21] and satisfies the boundary conditions
3 . . with appropriate surface integrals. Following the approach
i ea(r,H)+ Ej(r't)'s’ taken by Prah[22], we start with Green’s second identity,
(A15)  Which stateq23]

wheregy(r,t) is the diffuse(i.e., isotropig component of the j 2 o2 ,_J o auy
fluence rate defined by UV —oVandV'= | |u———v ——JdS’, (B1)

_ - wheren is the direction defined by the outward normal to the
¢a(r, )= 4WLd(r,s,t)dQ (A16) surfaceS’, which encloses the volum¥’ containing the
sources. Setting=G(r|r") andvchgc(r’), we have

andj(r,t) is the radiant flux defined by
| 16l v e - ety vEGH |y v
j(r,t)=J Ly(r¥.03-3d0". (AL7) d d
o dg(r’) aG%(r|r")
— dc, ’ d _dc/r '

f[G (r|r") o eg(r") o ds’,
3. Governing equations in theP, approximation (B2)

To get the first of the governing equations in the diffusion
approximation, an energy balance is performed by substitutwhereG(r|r’) is understood to be the solution to the equa-
ing Eg. (A15) into Eq. (A13) and integrating over all #  tion
steradians. This gives

V2G¥(r|r") = BuauyGo(r|r")=—6(r—r"), (B3

1 ﬁ(Pd(r!t) .
T TV ALY+ pae(r,t) with homogeneousoundary conditions, that i€Ge(r|r")
A —AhVGY(r|r')-f=0 at r=r, and G%r|r')—0 asr
. . 1 9P(r,5,t) — 0,
=pusPrs - ————. (A18)

To simplify the left-hand side of EqB2), we first sub-

tract [ GOr|r") 3 myeS%(r')dV’ and reduce using E¢9).
The second equation is generated by performing a flux baWe then add back this same term and simplify using Eq.
ance. This is done by substituting E&15) into Eq. (A13), (B3). This gives
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f [GU(r[r)V2e§ir') — edr ) VG *(r|r’)]dV’

=<p§°<r>—3u:<m+g*ﬂa>f GU(r|r")PU(r ) dV.
(B4)

We expand the right-hand side of E@2) by noting that at
r=rqg, d/on=—4a/dr, while atr—oo, 9/gn=4g/dr; thus

aed(r") Plels
Hed%rh')"";—n—cpﬂ% >&}

I@F(r)
= - Gdc rlr’'y ———

ded(r) aGY(r|r")
dc, ’ _ . dc I
+JHOO[G (rfr’) e —;

ds’

aG(r|r")

s

@S(r)
o

(B5)

Substituting the inhomogeneous boundary condition speci-
fied by Eq.(11) into Eq (B5), equating the result with Eq.

(B4) and solving f0r<p “r) gives
0= (1t + 0" ma) | Gl )PS0V

—3g* ug

f PY(r")G™(r|r")dS’
r'=rq

—f Pdc(r’)Gdc(rlr’)dS’}, (B6)
r’'—ow
wherePI(r) = Poexd — u; (r—ro) V4ar2.
Using Eq. (B6), we can now solve for<p “r). The
Green’s function for Eq(9) is [21]
Gr|r’)= (B7)

- _ !
4,n_|r_r/|exfi Meff|r r|)

Direct substitution of Eqs(7) and (B7) into Eq. (B6) gives
the solution to Eq(9) as

ed'(r) =3uf (uf +g* P«a)f m

Poexd — uy (1’ —fo)]
4ar'?

Xexq_ﬂeﬁ“_r’“

—30* ug

1
- _ !
jr’—ro 477|r—r’| exp( Meff|r r |)

Poexq g (r _ro)]
4ar'?

1
—Jr, ) mexp(—#eff“—r'b

PoeXF[ ey (1! —fo)]
41’2

(B8)

Note that the third integral
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radial

-

tangential

L

FIG. 10. The coordinate system for the solid angle integrations
used to calculate the measured irradiance for radial and tangential
fiber orientations.

exgd—u (r'—rg)]—0 asr’—«. Since the problem exhibits

radial symmetry, we perform the integration using spherical

coordinates. Thusd®'=r'?dr'sin#'d¢’d¢’ and d?r’

=r'2sin @'d#’'d¢’. The result is identical to that stated by
Eq. (14).

APPENDIX C: DERIVATION OF THE MEASURED
IRRADIANCE FOR RADIAL AND TANGENTIAL
DETECTION

Here we derive expressions for the measured irradiances
 andl; in terms of the collimated and diffuse fluence rates
and the radiant flux. Figure 10 is a schematic of the geometry
used for the calculations in radial and tangential fiber orien-
tations. We assume that the light field does not vary signifi-
cantly across the fiber face. In this case, the measured irra-

diance for radial orientatioh,(r,#) is given by

| 0 dc J‘ﬂ'/Z JZW (r) 0
r,0)= r)+ cos 6’
r(1,6)=¢c(r) o'=ml2-9J ¢'=0| 4T

3j99r

14( ) cogd’' |sin 0'de’de’, (CY

where 6’ is the altitude,¢’ is the azimuthal angle, and
6=[sin ¥(N)/n], whereN is the numerical aperture of the
collection fiber, andh is the refractive index of the turbid
media.

For tangential detection, there is no contribution from the
collimated fluence rate since the orientation of the fiber is not
collinear with the photon emission from the source. Further,
there is no contribution from the radiant flux since its mag-
nitude varies as cog and displays odd symmetry with re-
spect to the fiber axis which is & = 7/2. Thus only the
diffuse fluence rate contributes and the measured irradiance
for tangential orientatiom(r,#) is given by

(r.6)= fe’ OJ” 0

Integration of Egs(C1) and (C2) results in Eqs(27) and

°(r)

o
i (2— 6’)sin 0'do’'de’.
(C2

is equal to zero since(28),
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