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Radiative transport in the diffusion approximation: An extension for highly absorbing media
and small source-detector separations
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The diffusion approximation to the Boltzmann transport equation is commonly used to analyze data obtained
from biomedical optical diagnostic techniques. Unfortunately, this approximation has significant limitations to
accurately predict radiative transport in turbid media, which constrains its applicability to highly scattering
systems. Here we extend the diffusion approximation in both stationary and frequency-domain cases using an
approach initially formulated independently by Prahl@Ph.D. thesis, University of Texas at Austin, 1988~un-
published!# and Star@in Dosimetry of Laser Radiation in Medicine and Biology, edited by G. J. Mu¨ller and D.
H. Sliney ~SPIE, Bellingham, WA, 1989!, pp. 146–154; inOptical-Thermal Response of Laser-Irradiated
Tissue, edited by A. J. Welch and M. J. C. van Gemert~Plenum, New York, 1995!, pp. 131–206#. The solution
is presented in the stationary case for infinite media with a collimated source of finite size exhibiting spherical
symmetry. The solution is compared to results given by standard diffusion theory as well as to measurements
made in turbid phantoms with reduced single scattering albedosa8 ranging from 0.248 to 0.997. Unlike the
conventional diffusion approximation, the approach presented here provides accurate descriptions of optical
dosimetry in both low and high scattering media. Moreover, it accurately describes the transition from the
highly anisotropic light distributions present close to collimated sources to the nearly isotropic light distribu-
tion present in the far field. It is postulated that the ability to measure the transition between this near and far
field behavior and predict it within a single theoretical framework may allow the separation of the single
scattering anisotropyg from the reduced scattering coefficientms8. The generalized formulation of diffusion
theory presented here may enable the quantitative application of present optical diagnostic techniques to turbid
systems which are more highly absorbing and allow these systems to be probed using smaller source-detector
separations.@S1063-651X~98!13408-6#

PACS number~s!: 87.90.1y, 05.60.1w, 42.62.Be
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I. INTRODUCTION

The diffusion approximation for radiative transport in tu
bid media is used as the conceptual basis to analyze m
surements made in many diagnostic biomedical laser ap
cations. These applications, which include photon migrat
and fluorescence spectroscopy, have been successfully
ployed to determine and image tissue optical propert
quantify concentrations of physiologically relevant biomo
ecules, and extract accurate fluorescence and Raman sp
of turbid tissues@1–5#. Furthermore, it has been demo
strated that data of this type can form the basis for nonin
sive discrimination between normal and diseased tissues@6#.

Despite these successes, the standard diffusion app
mation and its generalized variant, theP1 approximation,
have significant limitations@7–9#. These models provide ac
curate predictions for radiative transport only when the
sorption coefficientma is much lower than the reduced sca
tering coefficient ms8 for the standard diffusion
approximation or much lower than the scattering coeffici
ms for the P1 approximation. Further, even when the app
priate condition is satisfied, the resulting predictions are

*Author to whom correspondence should be addressed. F
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accurate when applied to positions proximal to the laser
radiation site. This occurs because the diffusi
approximation is unable to accommodate a strong ang
anisotropy in the light field such as that created in the nei
borhood of a collimated light source. Also, the solution pr
vided by the diffusion approximation in semi-infinite geom
etries is inaccurate proximal to interfaces where there i
refractive index mismatch. This inaccuracy arises due to
sues concerning the modeling of the photon sources, the
tive magnitudes of the diffuse fluence rate relative to
radiant flux, and the treatment of boundary conditions us
monopole and dipole approximations@10#. All these factors
result in an approximate solution to an equation that in its
represents an approximation to radiative transport theory

Following an approach proposed independently by Pr
@11# and Star@12,13#, we provide a generalized diffusio
approximation to the Boltzmann transport equation for b
stationary and frequency-domain cases. This general
model explicitly includes a collimated source in the radian
approximation. It is the scattering of this collimated sour
that ‘‘generates’’ the diffuse light. In addition, thed-
Eddington approximation is employed to model the sin
scattering phase function and better accommodates m
that display strong forward scattering such as tissue. We
vide the solution for the stationary case in an infinite medi
containing a collimated spherical source of finite size a
compare it to experimental measurements made in tu
:
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phantoms with reduced single scattering albedoa8 varying
from 0.248 to 0.997. We also compare the solution to t
given by the standard diffusion approximation and will de
onstrate that the generalized approach shown here is acc
over a broader range of optical properties and at positi
proximal to a collimated source.

II. THEORETICAL FORMULATION

A. Governing equations

Following the approach outlined by Star@13#, but with the
inclusion of all time-dependent terms, the following equ
tions specify the diffuse fluence ratewd(r ,t) and the radiant
flux j (r ,t) within the P1 approximation to the Boltzmann
transport equation~BTE! using thed-Eddington approxima-
tion for the scattering phase function:

¹2wd~r ,t !23mam trwd~r ,t !

2
3

v2

]2wd~r ,t !

]t2 2
3~ma1m tr!

v
]wd~r ,t !

]t

523ms* m tr P~r ,ŝ0 ,t !13g* ms*“P~r ,ŝ0 ,t !ŝ0

2
3

v2

]2P~r ,ŝ0 ,t !

]t2 1
3~m tr2ms* !

v
]P~r ,ŝ0 ,t !

]t

2
3

v
“

]

]t
@ ŝ0P~r ,ŝ0 ,t !#, ~1!

j ~r ,t !5K21H 2
1

3
“wd~r ,t !1g* ms* P~r ,ŝ0 ,t !ŝ0

2
1

v
]

]t
@ ŝ0P~r ,ŝ0 ,t !#J , ~2!

where the operatorK[@(1/v)(]/]t)1m tr#. In these equa-
tions, P(r ,ŝ0 ,t) is the irradiance distribution of the colli
mated source,r the position in the medium,t the time,v the
speed of light in the medium, andŝ0 the unit vector collinear
with the direction of the collimated source.m tr is the trans-
port coefficient equivalent to@ma1ms(12g)#, g being the
single scattering anisotropy.ms* is a reduced scattering coe
ficient equivalent toms(12 f ), where f is the fraction of
light scattered directly forward in thed-Eddington approxi-
mation to the scattering phase function.g* is a reduced
single scattering anisotropy equivalent tog/(g11). A com-
plete derivation of the above equations and a descriptio
the parameters is given in Appendix A. Within this formul
tion, the total fluence rate in the mediumw(r ,t) is given by
the sum of the diffuse fluence ratewd(r ,t) and the collimated
fluence ratewc(r ,t) defined as

wc~r ,t !5E
4p

Lc~r ,ŝ,t !dV5P~r ,ŝ0 ,t !, ~3!

whereLc(r ,ŝ,t) is the collimated radiance,ŝ the unit vector
in the direction of photon travel, andV the solid angle.
t
-
ate
s

-

of

B. Boundary conditions

For semi-infinite geometries, we must specify conditio
at the top boundary, that is, the interface between the tu
media and its surroundings, as well as at infinity. At a
interface where there is a refractive index mismatch, we
quire conservation of the diffuse radianceLd(r ,ŝ,t). Denot-
ing the inward surface normal at such an interface asŝ0 , this
condition is expressed by

E
ŝ• ŝ0>0

Ld~r ,ŝ,t !~ ŝ• ŝ0!dŝ

5E
ŝ• ŝ0,0

Ld~r ,ŝ,t !r F~2 ŝ• ŝ0!~2 ŝ• ŝ0!dŝ, ~4!

wherer F(2 ŝ• ŝ0) is the Fresnel reflection coefficient for un
polarized light. Note that we conserve only the diffuse co
ponent of the radiance because the collimated compone
really a source. Substituting the radiance approximat
specified by theP1 approximation@see Eq.~A15! in Appen-
dix A# into this conservation equation and simplifying giv

wd~r ,t !2Ah“wd~r ,t !• ŝ01
3h

2v
]wd~r ,t !

]t

523AhFg* ms* P~r ,ŝ0 ,t !• ŝ02
1

v
ŝ0

]P~r ,ŝ0 ,t !

]t G , ~5!

where A5(11R2)/(12R1), h52/3m tr , R1

52*0
1r F(n0)n0dn0 , and R253*0

1r F(n0)n0
2dn0 . n0 is the

cosine of the angle between the photon direction unit vec
ŝ and the outward unit surface normal2 ŝ0 . The condition at
infinity simply requires that the diffuse radiance go to ze
i.e.,

wd~r ,t !~r→`,t !→0. ~6!

III. THE CASE OF A SEMI-INFINITE SPHERICAL
MEDIUM

A. Problem formulation and solution

Consider, as shown in Fig. 1, a semi-infinite medium w
an inner radius ofr 0 representing a collimated source
finite size that is amplitude modulated in time. In this ca
the collimated irradianceP(r ,ŝ,t) takes the form

P~r ,ŝ,t !5
P0exp@2m t* ~r 2r 0!#

4pr 2

3d~12 ŝ• r̂ !$11M exp@2 i ~vt1e!#%, ~7!

whereP0 is the output power of the source,M the amplitude
of the power modulation,v the angular frequency, ande an
arbitrary phase offset. The reader should note that in
spherical geometry a ‘‘collimated’’ source is one where t
photons are emitted in a direction perpendicular to the sou
surface as shown in Fig. 1.

To solve the governing equations, we separate the diff
fluence rate into a time invariant or dc contribution and
oscillating or ac contribution, i.e.,
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wd~r ,t !5wd
dc~r !1wd

ac~r !exp@2 i ~vt1e!#. ~8!

Substituting Eqs.~7! and~8! into Eq.~1! generates the equa
tions

¹2wd
dc~r !23mam trwd

dc~r !

523ms* ~m t* 1g* ma!
P0exp@2m t* ~r 2r 0!#

4pr 2 ,

~9!

¹2wd
ac~r !23Fmam tr2

v2

v22
iv~ma1m tr!

v Gwd
ac~r !

523Fms* ~m t* 1g* ma!2
v2

v2 1
iv~m tr1ma!

v G
3

P0M exp@2m t* ~r 2r 0!#

4pr 2 , ~10!

wherem t* is the effective interaction coefficient equivalent
ma1ms* . In an analogous fashion we generate two sets
boundary conditions. For the interface between the sou
surface and the turbid media, i.e., atr 5r 0 , we substitute Eq.
~8! into Eq. ~5!, which yields

wd
dc~r !2Ah“wd

dc~r !• r̂5
23Ahg* ms* P0

4pr 0
2 , ~11!

wd
ac~r !2S 2Ahv

2v23ivhD“wd
ac~r !• r̂

5
26Ahv

2v23ivh S g* ms* 1
iv

v D P0M

4pr 0
2 . ~12!

For r→` we substitute Eq.~8! into Eq. ~6!, which gives

wd
dc~r !,wd

ac~r !→0 ~13!

In this study we consider only the solution of the dc co
ponent for the diffuse fluence rate. The method of solution

FIG. 1. Schematic of model geometry.
f
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-
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detailed in Appendix B. The solution to Eq.~9! subject to the
boundary conditions specified by Eqs.~11! and ~13! is

wd
dc~r !5

3ms* ~m t* 1g* ma!P0exp~m t* r 0!

8pmeff r

3H FE1~m t* r 02meff r 0!2E1~m t* r 01meff r 0!

2
2g* sinh~meff r 0!

r 0~m t* 1g* ma!exp~m t* r 0!

2E1~m t* r 2meffr !Gexp~2meff r !

1E1~m t* r 1meff r !exp~meff r !J , ~14!

wheremeff is the effective attenuation coefficient equivale
to (3mam tr)

1/2 andE1(z) the exponential integral defined a
*z

`@exp(2t)/t#dt. Thus the total fluence rate is given b
wd

dc(r )1wc
dc(r ), wherewd

dc(r ) is given by Eq.~14! and the
collimated fluence rate is given by

wc
dc~r !5Pdc~r ,ŝ0 ,t !5

P0exp@2m t* ~r 2r 0!#

4pr 2 . ~15!

At this point, the radiant fluxjdc(r ) can also be deter
mined. The expression forjdc(r ) is given by substituting Eq.
~8! into Eq. ~2!:

jdc~r !5
1

3m tr
@“wd

dc~r !13g* ms* Pdc~r ,ŝ0 ,t !ŝ0#. ~16!

Substituting Eqs.~14! and ~15! into Eq. ~16! yields

jdc~r !5
1

3m tr
H FGS meff

r
1

1

r 2Dexp~2meff r !

2FHS meff

r
2

1

r 2Dexp~meff r !

13gms* P0

exp@2m t* ~r 2r 0!#

4pr 2 J , ~17!

where

F5
3ms* ~m t* 1g* ma!P0exp~m t* r 0!

8pmeff
, ~18!

G5FE1~m t* r 02meff r 0!2E1~m t* r 01meff r 0!

2
2g* sinh~meff r 0!

r 0~m t* 1g* ma!exp~m t* r 0!
2E1~m t* r 2meff r !G ,

~19!

H5E1~m t* r 1meff r !. ~20!
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TABLE I. Intralipid volume fractions and NiSPC concentrations used for the five turbid phantom
which measurements were made. The optical properties of these phantoms are also listed for the wa
testedl5674 nm. All phantoms had a single scattering anisotropyg50.71.

Sample No.
Intralipid

~%!
NiSPC
~mg/ml!

ma

(mm21)
ms8

(mm21) ms8/ma a8 a*
l !

~mm!

1 0.100 0.00 4.1131024 0.12 290 0.9966 0.9980 8.31
2 0.100 1.20 8.5731023 0.12 14 0.9333 0.9599 7.78
3 0.100 5.72 3.9331022 0.12 3.1 0.7534 0.8391 6.28
4 0.050 8.41 5.7631022 0.06 1.0 0.5102 0.6403 8.50
5 0.025 13.30 9.0931022 0.03 0.33 0.2482 0.3607 8.28
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B. Limiting cases

Unique features of the solution for the diffuse fluence r
can be better seen by examining certain limiting cases.
treat an infinite medium with a true point source, we consi
Eq. ~14! in the limit r 0→0, where it reduces to

wd
dc~r !5

3ms* ~m t* 1g* ma!P0

8pmeff r

3H exp~meff r !E1~m t* r 1meff r !1exp~2meff r !

3F lnS m t* 1meff

m t* 2meff
D 2

2g* meff

m t* 1g* ma

2E1~m t* r 2meff r !G J . ~21!

We compare Eq.~21! to the solution for a point source in th
conventional diffusion approximation where the fluence r
and radiant flux are given by the expressions@14#

wdc~r !53m tr

P0exp~2meff r !

4pr
, ~22!

jdc~r !5
P0exp~2meff r !

4p S meff

r
1

1

r 2D . ~23!

We expect that when scattering is dominant, Eq.~21! should
reduce to Eq.~22! in the far field. To verify this, we conside
Eq. ~21! in the limit wherem t* @meff andr→`. In this case,
the contribution of collimated light is negligible and the tot
fluence rate is dominated by the diffuse contribution. F
large z, E1(z);exp(2z)/z. Thus both terms involving the
exponential integral go to zero much faster than the nat
log and constant terms. Further, sincem t* @meff , the natural
log term is accurately approximated by the first term in
power series

ln
z11

z21
52S 1

z
1

1

3z2 1¯ D for uzu.1, ~24!

wherez5m t* /meff . Making use of the power series expa
sion, the total fluence rate reduces to
e
o
r

e

r

al

e

wdc~r !;
3ms* ~m t* 1g* ma!P0

8pmeff r

3S 2meff

m t*
2

2g* meff

m t* 1g* ma
Dexp~2meff r !

53m tr

P0exp~2meff r !

4pr
, ~25!

which is identical to Eq.~22!. Thus the generalized mode
agrees with standard diffusion theory in the far field for t
case of dominant scattering.

Now consider the far-field behavior of Eq.~21! in the
limit of high absorption, i.e.,m t* !meff . This occurs when
ms*→0 and results inwd

dc(r )→0. Thus, when absorption i
dominant the total fluence rate is governed solely by
collimated contribution, i.e.,

wdc~r !5wc
dc~r !5S P0

4pr 2Dexp~2mar !. ~26!

So, unlike the standard diffusion approximation, the gene
ized model correctly recovers Beer’s law in the limit of n
scattering.

IV. EXPERIMENT MATERIALS AND METHODS

To test the generalized model described above we
formed measurements in a cylindrical Plexiglas container
cm in diameter and 25 cm tall filled with 6 l of turbid solu-
tion consisting of intralipid, an absorber@nickel tetrasul-
fonated phthalocyanine~NiSPC!#, and deionized water
Table I gives the intralipid volume fraction and NiSPC co
centration used for each of the five solutions tested and t
optical properties at the wavelength used for the meas
ments,l5674 nm. The scattering properties of each pha
tom were determined using the published values for
tralipid @15#. The absorption coefficient of each phantom w
determined using published absorption spectra of water@16#
and the measurement of NiSPC absorption when solubili
in deionized water. The latter was done using a spectrop
tometer ~Model DU-7, Beckman Instruments Inc., Irvine
CA! and yielded a value of (6.860.1)31023 mm21 for a
concentration of 1mg/ml at l5674 nm.

A general schematic of the experiment setup is given
Fig. 2. Measurements were conducted using a 674-nm l
diode ~Model 7421, SDL Inc., San Jose, CA! whose output
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was delivered via a 400-mm fiber coupled to an 800-mm-
diam spherical diffuser~Rare Earth Medical, Yarmouth
MA !. For detection, a flat-cut optical fiber was oriented
ther radially or tangentially to the diffuser. The transport
light within the phantom was measured at a number of d
tances ranging from placing the diffuser and the detec
fiber in virtual contact to a source-detector separation of
to approximately 50 mm. To further investigate the angu
distribution of radiation within the phantom, three differe
detection fibers were used at each orientation:~a! a 550-mm-
core-diam silica multimode fiber with a numerical apertu
N50.22, ~b! a 600-mm-core-diam silica multimode fibe
with N50.37, and~c! a 600-mm-core-diam hard clad multi
mode fiber withN50.48. The light collected by the detec
tion fiber was modulated by means of an optical chopper~SR
540, Stanford Research Systems, Sunnyvale, CA! and di-
rected to an optical meter~1835-C, Newport Corporation
Irvine, CA!. The electronic output from the chopper contro
ler and optical meter were directed to a lock-in amplifier~SR
830, Stanford Research Systems, Sunnyvale, CA!, which
gave a reading of the collected laser diode power.

These measurements are compared to predictions m
by the models described above. The measurements do
give the fluence rate in the medium directly and thus furt
calculations are necessary to allow a direct comparison of
model predictions with the measurements. Specifically, w
the optical fiber is oriented radially or tangentially relative
the spherical source, the measured irradiancesI r and I t are
functions of the source-detector separationr and the numeri-
cal aperture N of the collection fiber. Defining u
[@sin21(N)/n#, n being the refractive index of the phantom
the measured irradiances are given by the expressions

I r~r ,u!5wc
dc~r !1 1

4 @sin2uwd
dc~r !12~12cos3u!jdc~r !#,

~27!

FIG. 2. Experiment setup for measurement of light transp
within turbid phantoms.
-
f
-
n
p
r

de
not
r
e
n

I t~r ,u!5
sin2u

4
wd

dc~r !. ~28!

The derivation of Eqs.~27! and~28! is given in Appendix C.
The measurements were conducted such that an abs

value of the irradiance was not determined. Thus, after
quisition, the data were scaled to the predictions given by
models. In the cases presented below, the predictions g
by the models approach each other at large source-dete
separations. The data were scaled to the model prediction
this region and thus the accuracy of the models relative to
data is established in an absolute sense.

V. RESULTS AND DISCUSSION

Figure 3 presents the measured variation of irradia
with radial distance from the center of the spherical diffus
for both radial and tangential orientations using a detect
fiber with N50.48. These measurements were made in ph
tom 1, where optical scattering dominated absorption s
that ms8/ma5290. This ratio of scattering to absorption sa
isfies the requirements for the validity of the standard dif
sion approximation@17#. The figure also displays the irrad
ance predicted by both the standard diffusion approxima
and the generalized model presented here. To calculate
measured irradiance in the generalized formalism, Eqs.~14!,
~15!, and~17! are substituted in Eqs.~27! and~28!, while for
the standard diffusion approximationwc

dc(r )50 and Eqs.
~22! and ~23! are substituted in Eqs.~27! and ~28!.

There are several notable features in this figure. Fi
even in the far field~i.e., at larger! the measured irradianc
for radial and tangential detection are noticeably differe
This demonstrates that the magnitude of the radiant flu
significant and should not be neglected. Second, at th

rt
FIG. 3. Irradiance vs radial position as measured within ph

tom No. 1 with (ms8/ma)5290 andl .58.31 mm. Measurement
using radial~s! and tangential~L! detection are shown and em
ploy an optical fiber withN50.48. Predictions given by the gene
alized diffusion model are shown by the solid curves while tho
given by standard diffusion theory are shown by the dashed cur
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large distances the data~symbols! and the predictions given
by both standard diffusion theory~dashed curves! and the
generalized diffusion model presented here~solid curves! are
congruent. Third, the predictions given by standard diffus
theory and the generalized model begin to diverge
r &3l . for radial detection and atr &2l . for tangential
detection, wherel . is the transport mean free path and
defined byl .[m tr

21. Fourth, once the predictions given b
the two models diverge, the generalized model provides
better prediction. Finally, atr & l ./5 for radial detection and
& l ./3 for tangential detection, the prediction given by t
generalized diffusion model and the data begin to disagr

Figures 4~a! and 4~b! present results in the same phanto
but for cases where the numerical aperture of the detec
fiber is 0.37 and 0.22, respectively. The basic features of
3 are retained in Fig. 4~a!. The only notable difference is tha
the ratio of the irradiance detected via radial vs tangen

FIG. 4. Irradiance vs radial position as measured within ph
tom No. 1 with (ms8/ma)5290 andl .58.31 mm. Measurement
using radial~s! and tangential~L! detection are shown and em
ploy an optical fiber with~a! N50.37 or ~b! N50.22. Predictions
given by the generalized diffusion model are shown by the s
curves while those given by standard diffusion theory are shown
the dashed curves.
n
t

e

.

n
g.

al

detection is larger. This is because for radial detection th
is a significant contribution from light that is strongly fo
ward directed, as is evident through the collimated and ra
ant flux terms in Eq.~27!, while for tangential detection the
collected light is essentially isotropic. Thus a smaller n
merical aperture will reduce the tangential signal roughly
direct proportion to the reduction in solid angle collected
the fiber. In contrast, the radial signal will not be reduced
greatly since the collimated fluence rate and the radiant
contributions are weighted along the fiber axis and not
effectively rejected through a reduction in numerical ap
ture. In Fig. 4~b! we see that for a detection fiber with nu
merical aperture of 0.22 the generalized model significan
overestimates the measured irradiance for radial detec
but still gives adequate predictions for tangential detecti
The failure of the generalized model at this small numeri
aperture results from the inaccuracy of thed-Eddington
phase function approximation that tends to overestimate
light scattered directly into the forward peak forg values
deviating significantly from unity@18#. This inaccuracy is
particularly evident here since scattering is so dominant o
absorption. However, note that the prediction given by
generalized model is no worse than that given by stand
diffusion theory. Further, in the far field the data approa
the prediction given by the generalized model more rapi
than that given by standard diffusion theory.

The performance of the generalized model continues to
impressive even for phantoms with stronger absorpti
while the performance of standard diffusion theory degrad
Figures 5~a!–5~c! and 6~a!–6~c! present the measured irrad
ance and corresponding model predictions for both ra
and tangential detection with fibers having numerical ap
tures of 0.48, 0.37, and 0.22 in phantoms 2 and 4, resp
tively. These phantoms have a ratio of reduced scatterin
absorptionms8/ma514 and 1.0, respectively. There are se
eral notable changes in the light field that occur with t
reduction ofms8/ma .

First, since the probability of absorption relative to sc
tering is greater in these phantoms, photons on average
dergo fewer scattering events before they are absorbed.
results in an angular distribution of light that remains fo
ward directed even at large depths within the medium. T
is manifest by a large ratio of the measured irradiance us
radial vs tangential detection in the far field@see, e.g., Fig.
6~c!#. This effect is well predicted by the generalized mod
which is congruent to the data in the far field. Predictio
made by standard diffusion theory do not fare as well a
consistently underestimate the measured irradiance for ra
detection. Further, in the case of dominant absorption, s
dard diffusion theory predicts the fluence rate to dec
;exp(2)ma) @see Eq.~22!#, which violates Beer’s law. The
performance of standard diffusion theory to predict the ir
diance measured using tangential detection is notably be
However, this prediction also degrades with increasing
sorption.

Second, the accuracy of the generalized model in the n
field appears to degrade slightly for tangential detection w
increasing absorption. Specifically, for phantom 4 the d
and model fits begin to disagree noticeably forr &2l !/3,
while the accuracy in the radial configuration is maintaine
Although this may be a true deficiency in the model, w
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FIG. 5. Irradiance vs radial position as measured within ph
tom No. 2 with (ms8/ma)514 andl .57.78 mm. Measurements us
ing radial ~s! and tangential~L! detection are shown and emplo
an optical fiber with~a! N50.48, ~b! N50.37, or ~c! N50.22.
Predictions given by the generalized diffusion model are shown
the solid curves while those given by standard diffusion theory
shown by the dashed curves.
-

y
e

FIG. 6. Irradiance vs radial position as measured within ph
tom No. 4 with (ms8/ma)51.0 and l .58.50 mm. Measurement
using radial~s! and tangential~L! detection are shown and em
ploy an optical fiber with~a! N50.48, ~b! N50.37, or ~c! N
50.22. Predictions given by the generalized diffusion model
shown by the solid curves while those given by standard diffus
theory are shown by the dashed curves.
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suspect that it may be due to an inability of the experimen
apparatus to achieve certain conditions assumed by the
cal model. Specifically, the model treats the light source
being spherically collimated, that is, all photons supplied
the source are assumed to be emitted normal to the surfa
the spherical diffuser. This is not achieved by the spher
diffuser that we employ. Rather, each point on the surfac
the spherical diffusing tip likely emits light with a significan
angular spread. The difference between the model and
perimental conditions is shown graphically in Fig. 7.

For tangential detection, this difference permits so
minimally scattered or even unscattered photons to enter
detection fiber and results in a measured irradiance hig
than that predicted by theory. Further, as scattering
creases, we expect the inaccuracy to be seen at larger so
detector separations. This is because if a photon is trave
on a path that would be collected by the fiber, a reduction
scattering reduces the probability that the photon would
scattered off this path. Both these characteristics are see
Figs. 5~a!–5~c! and 6~a!–6~c!. For radial detection, the inac
curacy results in a measured irradiance lower than that
dicted by theory. This is because light not emitted at an an
normal to the spherical diffuser has a reduced probability
being captured by the optical fiber. In this case, the inac
racy should be insensitive to the albedo of the solution
optical scattering should not bias the probability that lig
emitted at an angle oblique to the diffuser surface will
detected by the fiber.

Finally, an important observation can be made when co
paring measurements using radial detection with two diff
ent numerical apertures. To illustrate this we display in F
8 the data for phantom 1 using fibers with numerical ap
tures of 0.48 and 0.37. In the near field the data and
prediction given by the generalized model agree and both
insensitive to the difference in numerical aperture. This
because in the near field, virtually all the light is collimat
and captured equally by both optical fibers. However, ar
increases, an increasing number of photons are scattere
of the forward peak and the irradiance measured by a sm

FIG. 7. Illustration of the difference between the modeling
the spherical photon source and its behavior in experiment. In
periment, the source is not collimated but emits diffusely from
surface. In tangential detection, light emitted from the source
location where the surface normal is not parallel with the fiber f
may enter the fiber as shown. For radial detection, all light emi
from the source at the location directly opposite the fiber will not
captured due to the angular spread in the emission as shown.
ther of these effects is accounted for in the optical model. See
for further details.
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numerical aperture fiber decays faster withr than for a large
numerical aperture fiber. Finally, in the far field, the angu
distribution of the radiance is nearly isotropic and pred
tions given by both the generalized and standard diffus
models are accurate. Conceptually, measurement of the
diance decay in the near and far fields can determine va
for m t* andmeff , respectively. These two values can be alg
braically manipulated to givema andms8 . What is important,
however, is the spatial location of the transition betwe
near- and far-field behavior. We can effectively sample
evolution of the angular distribution of light as it trave
away from the source by making measurements using
fibers of different numerical aperture at a number of rad
locations within this transition region. Thus, for a fixed val
of ma and ms8 , the location of this transition region is no
fixed but is dependent on the single scattering anisotropg.
This is because for lower values ofg fewer scattering events
are required on average to scatter photons out of the forw
peak.

Figure 9 demonstrates this by displaying the ratio of
measured irradiance using radial detection with a 0.37
merical aperture fiber vs a 0.48 numerical aperture fiber
predicted using the generalized diffusion model. The irra
ance ratio is given for fixed values ofma andms8 , but with
values ofg ranging from 0.7 to 0.95. The values ofma and
ms8 were chosen to be identical to that of phantom 1. Th
curves clearly show the near- and far-field behavior; in
near field the irradiance ratio is near unity, while in the f
field the ratio depends solely on the numerical apertures
ployed and the values forma andms8 of the medium. How-
ever, while the values ofma andms8 are held fixed, increas
ing values ofg shift the transition region between the nea
and far-field behavior to smaller source-detector separati
This observation may provide the conceptual basis for de
mining the single scattering anisotropy of a turbid mediu
through multiple distance measurements using de
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FIG. 8. Irradiance vs radial position as measured within ph
tom No. 1 with (ms8/ma) and l * 58.31 mm. Measurements usin
radial detection are shown and employ optical fiber withN50.48
~s! andN50.37 ~L!. Predictions given by the generalized diffu
sion model are shown by the solid curves while those given
standard diffusion theory are shown by the dashed curves.
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tion fibers with different numerical apertures.
While these curves have been generated solely from

generalized model, we are confident that they are accu
for two reasons. First, Figs. 3 and 4~a! demonstrate that fo
phantom 1, where the single scattering anisotropyg50.71,
the prediction of the generalized model for detection us
fibers with numerical aperture of 0.48 and 0.37 is excelle
Thus we have full confidence in the model results forg
50.7. Second, the remaining curves are generated by ch
ing the value ofg while keepinga8 fixed. Thus the only
potential difficulty for these other curves is the fidelity of th
d-Eddington phase function. Fortunately, the accuracy of
d-Eddington phase function increases for increasingg @18#.
Thus, for the higherg values, the model results should be
worse than those given forg50.7, which we know to be
accurate through our experimental study.

The benefits that this generalized diffusion model off
for time-independent~dc! measurements will likely transfe
over to cases where the source is pulsed or intensity mo
lated. The inability of standard diffusion theory to accurate
predict the phase and dc amplitude of photon density wa
at positions proximal to a source has already been do
mented by Fantini, Franceschini, and Gratton@19#. These
investigators have also shown that an effective photon so
term can be constructed and used within standard diffus
theory to generate predictions that match experiment. H
ever, these source terms were empirically derived and
developed using first principles. In contrast, the generali
diffusion model presented here is derived from the BTE a
provides accurate predictions of the dc irradiance at posit
proximal to the source. It thus seems reasonable to ex
that once the governing equations are solved in the freque
domain@i.e., Eqs.~10!, ~12!, and~13!#, the prediction of the
propagation characteristics of photon density waves clos
photon sources and in strongly absorbing media should
possible as well.

FIG. 9. The irradiance ratio detected in radial orientation us
an optical fiber withN50.37 vsN50.48 is plotted vs radial posi
tion. The values used forma andms8 are fixed and equal to those o
phantom No. 1 but curves are shown for values ofg over the range
0.7–0.95 as indicated.
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VI. SUMMARY AND CONCLUSIONS

In this paper we have presented the governing equat
for a generalized diffusion model in steady-state a
frequency-domain cases for optical transport in turbid me
based on initial work by Prahl@11# and Star@12,13#. The
principal advantages this approach offers over standard
fusion theory are that it provides accurate predictions of
light distribution within turbid media at positions proximal t
collimated sources and over a full range of single scatter
albedo. These improvements are achieved by deviating f
the standard diffusion theory approach in two ways. First,
radiance is separated into collimated and diffuse compon
where the optical scattering of the collimated light provid
the source of diffuse light. Second, thed-Eddington approxi-
mation is employed for the single scattering phase functi
which is more accurate than the conventional Eddington
proximation in modeling optical transport in media wi
large anisotropy.

The generalized diffusion model was applied to measu
ments made using a finite spherical source immersed in ‘
finite’’ turbid phantoms with reduced single scattering alb
dos ranging from 0.248 to 0.997. In all cases, predictio
made by the generalized diffusion model outperformed th
given by standard optical diffusion theory. Moreover, unli
standard optical diffusion theory, the generalized model
the capacity to accurately predict the transition region
tween the highly forward-directed light distribution proxim
to the source and the nearly isotropic light distributi
present in the far field. We have demonstrated that the sp
location of this transition zone is sensitive to the single sc
tering anisotropyg even whenma andms8 are held constant
This indicates that it may be possible to separateg from ms8
through an appropriate combination of measurement
theory.

The use of this generalized diffusion theory shows pro
ise to expand the situations in which spectroscopic meas
ments can be used to quantify optical properties of tur
media. Specifically, the model will likely permit the probin
of turbid media using small source detector separations
allow the measurement of media with high absorption. F
biomedical applications, this may allow the development
site-specific tissue probes and the utilization of shorter wa
lengths to quantify tissue optical properties as well as c
centrations of physiologically important analytes that disp
negligible optical absorption in the red and near infrared
gions of the optical spectrum.
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APPENDIX A: DERIVATION OF GENERALIZED
DIFFUSION THEORY FROM THE BOLTZMANN

TRANSPORT EQUATION

Here we derive the governing equations of the generali
diffusion model as given by Eqs.~1! and ~2! above. We
begin with the Boltzmann transport equation, which d
scribes linear transport of photons traveling in a turbid m
dia,

1

v
]L~r ,ŝ,t !

]t
1 ŝ•“L~r ,ŝ,t !

52m tL~r ,ŝ,t !1msE
4p

L~r ,ŝ8, t !p~ ŝ,ŝ8!dV

1S~r ,ŝ,t !, ~A1!

whereL is the radiance andS the volumetric radiance pro
vided by a source.v, ms , andm t are the speed of photons i
the medium, the scattering coefficient, and the interac
coefficient, i.e.,5ma1ms , respectively.r , ŝ, t, andV are the
position vector, unit direction vector, time, and solid ang
respectively.p( ŝ,ŝ8) is the scattering phase function, whic
is a normalized density function giving the probability th
photons traveling in a range of directionsŝ6D ŝ get scattered
to the range of directionŝ86D ŝ8.

1. Approximating the phase function

To solve Eq.~A1! we assume functional forms for th
phase function and the radiance that converts the BTE in
system of linear partial differential equations that can be a
lytically solved. We begin by substituting our approximatio
for the scattering phase function. We choose thed-Eddington
phase function, which takes the form

pd2E~ ŝ,ŝ8!5
1

4p
$@~12 f !~113g* !~ ŝ• ŝ8!#

12 f d~12 ŝ• ŝ8!%. ~A2!

In Eq. ~A2! f is the fraction of light that is scattered direct
forward, whileg* governs the asymmetry of the phase fun
tion. Taking the first moment of this equation gives the re
tion between the scattering anisotropyg and thed-Eddington
parameters, namely,

g5 f 1~12 f !g* . ~A3!

The d-function component within thed-Eddington ap-
proximation effectively reduces the forward scattering t
must be accommodated by theŝ• ŝ8 term in the phase func
tion. This allows the diffuse component of the radian
Ld(r ,ŝ,t) ~defined below! to be less anisotropic and improve
the radiance approximation close to boundaries. We note
for biological tissues, optical scattering is well described
the Henyey-Greenstein phase function@20#. To best approxi-
mate the Henyey-Greenstein phase function we require
second moment of thed-Eddington phase function to matc
that of the Henyey-Greenstein phase function. This result
the following expressions forf andg* @18#:
d

-
-

n

,

a
a-

-
-

t

at
y

he

in

f 5g2, g* 5
g

g11
. ~A4!

To incorporate thed-Eddington approximation into the
BTE, we substitute Eq.~A2! into Eq. ~A1! which gives

1

v
]L~r ,ŝ,t !

]t
1 ŝ•“L~r ,ŝ,t !

52m t* L~r ,ŝ,t !1ms* E
4p

L~r ,ŝ8,t !pE~ ŝ,ŝ8!dV

1S~r ,ŝ,t !. ~A5!

In Eq. ~A5! ms* 5ms(12 f ), m t* 5(ma1ms* ), andpE( ŝ,ŝ8)
is the Eddington phase function given by

pE~ ŝ,ŝ8!5
1

4p
@113g~ ŝ• ŝ8!#. ~A6!

2. Approximating the radiance

We now implement a functional form for the radianc
approximation. We decompose the radianceL(r ,ŝ,t) into
contributions from collimated lightLc(r ,ŝ,t), which repre-
sents unattenuated light from external or internal sourc
and diffuse lightLd(r ,ŝ,t), which represents light that ha
been scattered from these sources. This gives

L~r ,ŝ,t !5Lc~r ,ŝ,t !1Ld~r ,ŝ,t !. ~A7!

Substituting Eq.~A7! into Eq. ~A5! and dropping the source
term gives

1

v
]

]t
@Lc~r ,ŝ,t !1Ld~r ,ŝ,t !#1 ŝ•“@Lc~r ,ŝ,t !1Ld~r ,ŝ,t !#

52m t* @Lc~r ,ŝ,t !1Ld~r ,ŝ,t !#1ms* E
4p

@Lc~r ,ŝ8, t !

1Ld~r ,ŝ8,t !#pE~ ŝ,ŝ8!dV. ~A8!

The collimated contribution to the radiance is given by

Lc~r ,ŝ,t !5
1

2p
P~r ,ŝ,t !d~12 ŝ• ŝ0!, ~A9!

whereP(r ,ŝ,t) is the irradiance of the collimated source a
the factord(12 ŝ• ŝ0)/2p has units sr21. The factor of 1/2p
is present because the source light is collimated and
hemispheric. Thus, in the medium the collimated portion
the fluence ratewc(r ,t) is

wc~r ,t !5E
4p

Lc~r ,ŝ,t !dV5P~r ,ŝ0 ,t !. ~A10!

Simplifying Eq. ~A8! using the relations

ŝ•“Lc~r ,ŝ,t !52m t* Lc~r ,ŝ,t !, ~A11!

E
4p

msp~ ŝ,ŝ8!Lc~r ,ŝ8, t !dV5ms* P~r ,ŝ0 ,t !pE~ ŝ,ŝ0!

~A12!
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and replacingLc(r ,ŝ,t) with Eq. ~A9! results in a transpor
equation forLd(r ,ŝ,t) with two terms representing the con
tribution from a ‘‘primary’’ light source as

1

v
]Ld~r ,ŝ,t !

]t
1 ŝ•“Ld~r ,ŝ,t !1m t* Ld~r ,ŝ,t !

5ms* E
4p

Ld~r ,ŝ8, t !pE~ ŝ,ŝ8!dV

1ms* P~r ,ŝ0 ,t !pE~ ŝ,ŝ0!2
1

2pv
]

]t
P~r ,ŝ,t !d~12 ŝ• ŝ0!.

~A13!

Equation~A13! is simply a variant of the BTE with the
collimated and diffuse portions of the radiance separated
the d-Eddington approximation for the phase function spe
fied. We now adopt an approximate functional form for t
diffuse radiance. Specifically, we approximate the diffuse
diance by the sum of the first two terms in the series
Legendre polynomials. This is theP1 approximation and ex-
presses the diffuse radiance as a linear combination o
isotropic term and a term that varies with cosu. Thus

Ld~r ,ŝ,t !'
1

4p E
4p

Ld~r ,ŝ,t !dV

1
3

4p E
4p

Ld~r ,ŝ8,t !ŝ8• ŝ dV8 ~A14!

5
1

4p
wd~r ,t !1

3

4p
j ~r ,t !• ŝ,

~A15!

wherewd(r ,t) is the diffuse~i.e., isotropic! component of the
fluence rate defined by

wd~r ,t !5E
4p

Ld~r ,ŝ,t !dV ~A16!

and j (r ,t) is the radiant flux defined by

j ~r ,t !5E
4p

Ld~r ,ŝ8,t !ŝ8• ŝ dV8. ~A17!

3. Governing equations in theP1 approximation

To get the first of the governing equations in the diffusi
approximation, an energy balance is performed by subst
ing Eq. ~A15! into Eq. ~A13! and integrating over all 4p
steradians. This gives

1

v
]wd~r ,t !

]t
1“• j ~r ,t !1mawd~r ,t !

5ms* P~r ,ŝ0 ,t !2
1

v
]P~r ,ŝ0 ,t !

]t
. ~A18!

The second equation is generated by performing a flux
ance. This is done by substituting Eq.~A15! into Eq. ~A13!,
nd
-

-
f

an

t-

l-

multiplying each term in the resulting equation byŝ, and
integrating over all 4p steradians. This gives

1

v
] j ~r ,t !

]t
1m tr j ~r ,t !

52
1

3
“wd~r ,t !1g* ms* P~r ,ŝ0 ,t !ŝ0

2
1

v
]

]t
@ ŝ0P~r ,ŝ0 ,t !#. ~A19!

We wish to eliminatej (r ,t) to get an equation that relate
the diffuse fluence ratewd(r ,t) with the collimated fluence
rate or irradianceP(r ,ŝ0 ,t). Solving Eq. ~A19! for j (r ,t)
gives an expression that is identical to Eq.~2!. Substituting
Eq. ~2! into Eq.~A18! and simplifying gives theP1 approxi-
mation to the radiative transport equation using thed-
Eddington phase function approximation and is identical
Eq. ~1!.

APPENDIX B: DC SOLUTION FOR A SEMI-INFINITE
SPHERE

In this appendix we present the method of solution for
dc diffuse fluence rate in a semi-infinite spherical geome
as represented by Eq.~9! and subject to boundary condition
given by Eqs.~11! and ~13!. Equation~9! is an inhomoge-
neous Helmholtz equation that we solve by convolving
inhomogeneous~or source! term with the Green’s function
for this equation@21# and satisfies the boundary condition
with appropriate surface integrals. Following the approa
taken by Prahl@22#, we start with Green’s second identity
which states@23#

E ~u¹2v2v¹2u!dV85E S u
]v
]n

2v
]u

]nDdS8, ~B1!

wheren is the direction defined by the outward normal to t
surfaceS8, which encloses the volumeV8 containing the
sources. Settingu5Gdc(r ur 8) andv5wd

dc(r 8), we have

E @Gdc~r ur 8!¹2wd
dc~r 8!2wd

dc~r 8!¹2Gdc~r ur 8!#dV8

5E FGdc~r ur 8!
]wd

dc~r 8!

]n
2wd

dc~r 8!
]Gdc~r ur 8!

]n GdS8,
~B2!

whereGdc(r ur 8) is understood to be the solution to the equ
tion

¹2Gdc~r ur 8!23mam trG
dc~r ur 8!52d~r2r 8!, ~B3!

with homogeneousboundary conditions, that is,Gdc(r ur 8)
2Ah“Gdc(r ur 8)• r̂50 at r 5r 0 and Gdc(r ur 8)→0 as r
→`.

To simplify the left-hand side of Eq.~B2!, we first sub-
tract*Gdc(r ur 8)3mam trwd

dc(r 8)dV8 and reduce using Eq.~9!.
We then add back this same term and simplify using E
~B3!. This gives
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E @Gdc~r ur 8!¹2wd
dc~r 8!2wd

dc~r 8!¹2Gdc~r ur 8!#dV8

5wd
dc~r !23ms* ~m t1g* ma!E Gdc~r ur 8!Pdc~r 8!dV8.

~B4!

We expand the right-hand side of Eq.~B2! by noting that at
r 5r 0 , ]/]n52]/]r , while at r→`, ]/]n5]/]r ; thus

E FGdc~r ur 8!
]wd

dc~r 8!

]n
2wd

dc~r 8!
]Gdc~r ur 8!

]n GdS8
52E

r 5r 0

FGdc~r ur 8!
]wd

dc~r !

]r
2wd

dc~r !
]Gdc~r ur 8!

]r GdS8
1E

r→`
FGdc~r ur 8!

]wd
dc~r !

]r
2wd

dc~r !
]Gdc~r ur 8!

]r GdS8.
~B5!

Substituting the inhomogeneous boundary condition sp
fied by Eq.~11! into Eq. ~B5!, equating the result with Eq
~B4! and solving forwd

dc(r ) gives

wd
dc~r !53ms* ~m t* 1g* ma!E Gdc~r ur 8!Pdc~r 8!dV8

23g* ms* F E
r 85r 0

Pdc~r 8!Gdc~r ur 8!dS8

2E
r 8→`

Pdc~r 8!Gdc~r ur 8!dS8G , ~B6!

wherePdc(r )5P0exp@2mt* (r2r0)#/4pr 2.
Using Eq. ~B6!, we can now solve forwd

dc(r ). The
Green’s function for Eq.~9! is @21#

Gdc~r ur 8!5
1

4pur2r 8u
exp~2meffur2r 8u!. ~B7!

Direct substitution of Eqs.~7! and ~B7! into Eq. ~B6! gives
the solution to Eq.~9! as

wd
dc~r !53ms* ~m t* 1g* ma!E

V

1

4pur2r 8u

3exp~2meffur2r 8u!
P0exp@2m t* ~r 82r 0!#

4pr 82 d3r 8

23g* ms* F E
r 85r 0

1

4pur2r 8u
exp~2meffur2r 8u!

3
P0exp@2m t* ~r 82r 0!#

4pr 82 d2r 8

2E
r 8→`

1

4pur2r 8u
exp~2meffur2r 8u!

3
P0exp@2m t* ~r 82r 0!#

4pr 82 d2r 8G . ~B8!

Note that the third integral is equal to zero sin
i-

exp@2mt* (r82r0)#→0 asr 8→`. Since the problem exhibits
radial symmetry, we perform the integration using spheri
coordinates. Thusd3r 85r 82dr8sinu8du8df8 and d2r 8
5r 82sinu8du8df8. The result is identical to that stated b
Eq. ~14!.

APPENDIX C: DERIVATION OF THE MEASURED
IRRADIANCE FOR RADIAL AND TANGENTIAL

DETECTION

Here we derive expressions for the measured irradian
I r and I t in terms of the collimated and diffuse fluence rat
and the radiant flux. Figure 10 is a schematic of the geom
used for the calculations in radial and tangential fiber ori
tations. We assume that the light field does not vary sign
cantly across the fiber face. In this case, the measured
diance for radial orientationI r(r ,u) is given by

I r~r ,u!5wc
dc~r !1E

u85p/22u

p/2 E
f850

2p Fwd
dc~r !

4p
cosu8

1
3jdc~r !

4p
cos2u8Gsin u8du8df8, ~C1!

where u8 is the altitude,f8 is the azimuthal angle, and
u[@sin21(N)/n#, whereN is the numerical aperture of th
collection fiber, andn is the refractive index of the turbid
media.

For tangential detection, there is no contribution from t
collimated fluence rate since the orientation of the fiber is
collinear with the photon emission from the source. Furth
there is no contribution from the radiant flux since its ma
nitude varies as cosu8 and displays odd symmetry with re
spect to the fiber axis which is atu85p/2. Thus only the
diffuse fluence rate contributes and the measured irradia
for tangential orientationI t(r ,u) is given by

I t~r ,u!5E
u850

u E
f850

2p wd
dc~r !

4p
sinS p

2
2u8D sin u8du8df8.

~C2!

Integration of Eqs.~C1! and ~C2! results in Eqs.~27! and
~28!,

FIG. 10. The coordinate system for the solid angle integrati
used to calculate the measured irradiance for radial and tange
fiber orientations.
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