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Learning in the hypercube: A stepping stone to the binary perceptron
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The learning problem for storing random patterns in a perceptron with binary weights can be facilitated by
pretraining an appropriate precursor network with continuous weights. Unlike previous studies which compare
the performance of different continuous-weight perceptrons on the hyperggpéegrical constraifntwe also
consider weight vectors constrained to the volume of the hyper¢tidgical constraint We compare the
performance of the maximally stable networks on the hypersphere and in the hypercube, and show that the
latter is superior for predicting the weights of the maximally stable binary perceptron. We further determine an
upper bound for the fraction of binary weights that any precursor is able to predict correctly, and introduce a
precursor in the hypercube that closely approaches this upper bound. We finally demonstrate the value of this
hypercube precursor by carrying out simulations for a perceptron with up to 100 weights.
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[. INTRODUCTION determined[1] the optimal continuous-weight perceptron
that, on weight clipping, predicts the largest number of bi-
In a recent papdr], we introduced a learning strategy for nary weights for the MSB correctly. We have, in addition,
the binary perceptron. It is based on previous work by Penpresented a simple cost function for use in numerical calcu-
ney and Sherringtof2] which showed that a strong correla- lations that produces an excellent approximation to these op-
tion exists between the signs of the synaptic weights of théimal precursor weights.
continuous-weight perceptron of maximum stabiliiySN) In the present paper, we want to show how a significantly
and those of the binary-weight perceptron of maximum stabetter continuous-weight precursor for the MSB can be con-
bility (MSB). Since excellent algorithmis3,4] exist for de-  structed. To describe this precursor clearly, we first introduce
termining the MSN weights, it is natural to try exploiting this oyr notation. As usual, we cal the number of input neu-
cor_relation to collect valuable information about the MSB 55 of the perceptron, ang= aN the number of input vec-
weights. _ o torsé&* (u=1, ... p). TheseN-dimensional vectors are ran-
A first, albeit rather poor apprc_)xmauon of the MSB domly chosen on the hypersphefeé=N. Without loss of
weight vector can be obtained by clipping all MSN We'ghts'generality, we can assume that all outputs are. The N

Penney and Sherringtd2] calculated that, near the satura- >~ . : . .
T 0 ! . .. weights of the binary perceptron are described by the weight
tion limit «=0.83, about 20% of these clipped weights d|fferveCtor B with componentsB;e{-1,+1}, (i=1,... N),

in sign from the corresponding components of the MSB" ™~ _
weight vector. To improve on the clipped weights, it is nec-Wh',le those of the gontmuous precursor perceptron are de-
essary to identify some of the incorrect components. On th&Cfibed by the weight vectod with componentsJie R,
basis of numerical experiments for small systems, Pennel) =1, - - - ,l\_l).ZFor the latter it is usual to impose the spheri-
and Sherrington suggested that the components of the MSK§@l constraind®=N. The input vectorg* generate the fields
likely to give a wrong prediction by weight clipping, are to _Au:B'f’L/\/ﬁ in the binary perceptron, a”du:‘]'fﬂ(\/ﬁ
be found predominantly among the weakest MSN compoln the continuous perceptron. Learning the MSB m_volves
nents. We have demonstratf] that this suggestion is in- finding the vectoB, such thatA =K, (#=1, ... p) with
deed correct by focusing on the MSN weights that exceed #he largest possible value of the stabilky,. Similarly for
threshold value, and calculating the probability that they prethe MSN, learning means finding the vectbsuch that ,
dict the correct sign for the MSB. Our result indicates that=K (#=1,...p) with the largest possible value of the sta-
few errors will be generated by clipping the strongest 409@ility K. More general learning rules for the continuous per-
components of the MSN. However, the prediction, of theceptron are usually formulated as an optimization problem
remaining MSB weights by clipping the weaker componentd5—7]. Learning then consists of finding the vectbrthat
of the MSN becomes increasingly more dubious. An addiminimizes a cost function of the general forf&(J)
tional learning stage therefore is necessary to determine these2 ,V(\ ). The optimal continuous precursor weight vec-
weights. Numerical simulatior|d] for a perceptron with 50 tor referred to above corresponds to the optimal choice of the
input neurons confirm that such a two-stage learning proce-potential” V(\) [1].
dure yields satisfactory agreement with theoretical expecta- TO construct an even better continuous precursor, one ei-
tions. ther has to modify the form dE(J) or give up the spherical
Although the MSN would seem like the obvious constraint. Perez Vicente, Carrabina, and Valderf8hased
continuous-weight perceptron for serving as a precursor foa modified cost function, containing a teri;(J2—1)2
the MSB—since both strive to maximize the stability—it which shifts the minimum towards the binary vectors. Un-
turns out that the MSN is not the optimal choice. We havefortunately, this new term also creates a huge number of

1063-651X/98/58)/23788)/$15.00 PRE 58 2378 © 1998 The American Physical Society



PRE 58 LEARNING IN THE HYPERCUBE: A STEPPII . . . 2379

local minima in which the minimization becomes trapped.convex set, any cost function of the forlE(J)=2,V(\,)

We keep the cost function unchanged, but replace th@iith a convex potentiaV/(\) will have a unique minimum
“spherical” constraintJ’=N by the “cubical” constraint which can easily be found by standard gradient descent al-
|Ji/=<1 (i=1,... N). The geometrical terminology is evi- gorithms.

dent: the weight space in which learning has to proceed |n Sec. II, we study the optimization problem of a general
changes from the surface of a hypersphere to the volume @ost function in the hypercube. In Sec. Ill, we examine the
an inscribed hypercube. Two features of the hypercube makegorrelations between the weights of the MSB and those of
it attractive as a weight space for constructing a precursor fogifferent learning rules in the hypercube. More specifically,
the MSB. Unlike the hypersphere, which has lost all infor-we calculate the probability that weight clipping produces
mation about the directions of the binary vectors, the hyperthe correct MSB weights. In Sec. IV, we focus on the strong
cube retains a clear memory of them: they are the directionsomponents of the precursor, and demonstrate that they give
pointing toward the corners of the cube. Moreover, sinces reliable prediction of the MSB weights. The quality of the
these vectors are the longest vectors in the hypercube, theypercube precursor is further tested in Sec. V by carrying
have an edge over the other vectors for generating large vabut numerical simulations for a perceptron with up to 100
ues of the fields\ , . This is nicely illustrated for the simple input units. In Sec. VI, we discuss our results and look out to
potential V(\) = —\, for which minimization in the hyper- further improvements and applications of the hypercube pre-
cube directly leads to the clipped Hebb vector while minimi-cursor.

zation on the hypersphere yields the standard Hebb vector.

Similarly, for more general potentials, as when we search for Il. LEARNING IN THE HYPERCUBE
the maximally stable vector in the hyperculflSC)—
defined as the weight vectdr with |J;|<1 (i=1,...N) We consider an energy function of the form

and satisfying)\ﬂzlgf‘/\/ﬁ? Ko (v=1,...p) with the E(J)=Z,V(r,), and want to determine the minimum of the
largest possible value of the stabili.—the binary vectors energy in the hypercubld;|<1 (i=1,... N). We use the
have a competitive advantage and become favored candsame definition of the fieIdB,L:J-f“/\/N as on the hyper-
dates. It is therefore reasonable to expect that the maximallyphere, even though the weight veciioin the hypercube is
stable vector in the hypercube will be a close neighbor of thenot normalized toN. This means that the fields no longer
MSB, closer than the maximally stable vector on the hyperdepend only on the angle betwe&rand & but also on the
sphere. The second attractive feature of the hypercube is itength ofJ. In the following, we will always assume that the
convexity. If we want to use the MSC or any other learningpotential V(\) is a convex function so thaE(J) has a
rule in the hypercube as a precursor for the MSB, clearly ainiqgue minimum in the hypercube.

reliable learning algorithm is required to construct the pre- Following standard replica techniqug8], we calculate
cursor weights in the first place. Since the hypercube is #he free energy (B8)

1 200+ -
f dJ exp( - y\]%z\]\/a”
-1
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The lowest energg, is then obtained as

with g, andq as their conjugate variables. The labaland

b refer to different replicas, and replica symmetry has been y
assumed in deriving Eq(1). This assumption is justified e0=—Extr[§ do—ys’
since E(J) is supposed to have a single minimum in the Goxys
hypercube.
To obtain the lowest possible value of the energy, we let —J Dz Min (JZ—ZZSJ)}
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31 ! surprisingly, where— 2, K //qo goes to zero liké («) for
'-\ the MSN. More interesting, however, is the behavior at the
251 0.8 other enda—0, whereK./\/qq is found to coincide with
5| ‘-‘ Ky(a@). The overall impression emerging from Fig. 1 is that
1 0.6 the MSC interpolates smoothly between the M@Ba =0)
Kis{ ‘.\ y and the MSN(at «=2). This impression is substantiated by
W\ T 0.4 looking aty(«), the fraction of MSC components that have
14 ‘ "\.\ E—v—" a magnitude smaller than 1. This fraction increases from 0 at
AN N b et I a=0—indicating that the MSC a=0 is indeed a binary
05 S vector—up to the value 1 at= 2, indicating thaP(J) trans-
o = o forms into the pure Gaussian distribution of the MSN. At the
0 05 1 15 2 saturation limita=0.83 where the MSB ceases to exist, 43%
o of all MSC weights are still binary. These general findings

strengthen our confidence in the MSC weight vector as an

FIG. 1. Maximum stabilityK obtained for three different types excellent precursor for the MSB. especiallv at small values
of constraints on the weights: binary, spherical, and hypercube. Thé P » €SP y

rescaled hypercube stabilik,(a)/ /g, is shown to obtain a mean- of a, but gradually declining in quality whea increases.
ingful comparison with the other cases. The dotted curve shows

y(a), the fraction of weights in the maximally stable hypercube

vector that have magnitude smaller than 1. Ill. PRECURSORS FOR THE BINARY PERCEPTRON

The extremum yields four saddle-point equations which de- 'n this section we estimate the significance of the MSC
termine the four order parametegg, x, y, ands as func- and othgr hypercube vectors as precursors of the_ MSB. As
tions of a. These equations are written down in Appendix A. Preparation for the subsequent discussion, we first recall
In comparison with the corresponding minimizationE() some general charapter|§t|cs of the MSB wh!ch_are derived
on the hyperspherd®=N, where only the parametar ap- from replica calculations in the thermodynamic lirf;,10].
pears, we need three extra order parameters in the hypercutb&like the continuous MSN and MSC weight vectors which
The meaning ofjoN follows from Eq.(2) as the norm of the &ré unique yectors for any va_lue of different binary vec-
lowest-energy vectod. The meaning ofy and's becomes tors exist with the same maximum vallg(«) of the sta-

clear when we write down the distribution of the componentglility- The different vectors of the MSB ensemble have a
of J: typical mutual overlapQ which decreases from 1 at=0

down to 0.56 atv=0.83. Since it is impossible to distinguish
the individual vectors, all theoretical results relate to aver-

_(12/9c2
P(J)= e 7601 J[] ages over this ensemble of MSB vectors. The implication is
s that any algorithm for constructing the MSB on the basis of
1 theoretical arguments will at best be directed toward the av-
+H|=[([I-1]+8[I+1]) (5) erage(B) of this ensemble of vectors, not to a particular
S individual vectorB. The lack of uniqueness of the MSB

weights constitutes a major obstacle to any theoretical algo-
where, as usuaki[u]= [;Dz=Erfc[u/v2]/2. The compo- rithm.
nents ofJ that have a magnitude smaller than 1 follow a  An obvious measure for gauging the quality of a continu-
Gaussian distribution with variana®. The two tails of this  ous precursor vectat is given by the proportion of binary
Gaussian are compressed into tA@eaks at—1 and+1.  weightsJ is able to predict correctly. This number can be
The saddle-point equatiofA1) shows that -y represents derived from the joint probability distributioR(B,J) of cor-
the fraction of components aF with magnitude equal to 1. responding components in the weight vectBrand J. To
Note that the form of the distributioR(J) changes withe  calculateP(B,J), we follow the approach of Wong, Rau,
through its dependence on the paramet€efhis entails that and Sherringtofl1], and consider the combined system of a
the fraction of components greater than a fixed valge  binary and a continuous perceptron, both trained by the same
given byfj’OP(J)dJ:H[JO/s], also varies witho. random input vectors. The weight vector of the continuous

We now specialize to the perceptron of maximum stabil-Pe€rceptron is defined by an energy functie(d) in the hy-

ity in the hypercube. Results for the MSC are obtained fromP€rcube, while the weight vector of the binary perceptron is
the general expressiori4) by choosing the potential the MSB. Besides the order parameters of the separate per-
V(A)=(K.—\)26(K.—\), and assigning the value infinity ceptrons, two new order parameter.s appear that rglate to both
to the order parameter [6,9]. The four saddle-point equa- perceptrons: the overlapof the continuous vec'go]wnh the
tions now determine the three remaining order parameter@/€rageB) of the binary vectors, and its conjugate param-
0o, S, andy, as well as the stability parametér, as func-  eterr. The saddle-point equations for these new order pa-
tions of a. Figure 1 shows the solution fé¢.(a) andy(a). rameters are written down in Appendix B. There, as well as
To obtain a meaningful comparison with the value of thein all subsequent equationsandr generally appear in com-
maximum stabilitieK («) for the MSN andK(«) for the  bination with an order parameter from each separate percep-
MSB, we plot the “normalized” valueK .(a)/\/qo, correct-  tron. It is expedient to introduce, a new notations for these
ing for the shorter length of the MSC weight vector. Not combinations:
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(6)

The parameterg andd are order parameters of the con-
tinuous perceptrod encountered in Sec. Il. The paramefer
is the mutual overlap of two binary vectors in the MSB en-

semble discussed above, afdis its conjugate[10]. The
new parametery and y have some further advantage over

andr. The denominatok/qQ corrects for the length of both
J and(B), so thaty equals the cosine of the angle between

and(B). Also, while bothr andq tend to infinity, y retains a

finite value. Lettingy increase and tend to its maximum
value 1 moves) closer to(B), so vy also tends to its maxi-

mum value. The parameter will play an important role in
the following discussion.
The probability distributiorP(B,J) can be expressed as

1 -
HBJ)=f‘[D%um)§U+umHBJ6w]
200+

o] - 2
X

+1

J djexp(—
-1

We recall thatBe{—1,+1} and Je[—1,+1]. The
shorthand notatio;(u,v) stands for the two-dimensional

Gaussian measure with correlatign

q(J—su)z)

(’;q(j—swz)

@)

29

dudv

27V1— 52

xex;{ -

The integrand in Eq(7) is the product of two factors,
each factor relating to one of the two perceptrons only. Th
first factor relates to the binary vectBrvia the order param-

Dy(u,v)=

1
m [U2+02—2A’yuv] . (8
—Y

eterQ of the MSB. The second factor relates to the hyper-

cube vector] via the order parameter encountered in Sec.

II. Recall that the other combination of parameters,2q
appearing in Eq(7) tends to infinity. The second factor in
Eq. (7) therefore has the character ofdunction.

Due to the symmetry(B,J)=P(—B,—J), we can con-
fine the following argument to the valulg=+1 only. The
fraction of positive components dfthat correctly predict the
binary componenB= +1 is given by

J,
mWJMJ'

T

P(1,J)dJ
f(a)=
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FIG. 2. Fraction of binary weights in the MSB that are correctly
predicted by clipping all continuous weights of the MSN, the MSC,
and the quasioptimal hypercube precursqy,. The dotted line
shows the upper bound.1).

We have explicitly indicated th&t depends orx which en-
ters via the order parameters®{B,J). Straightforward cal-

culation of the integral yields
( -
Vi-y2

The whole dependence on the choice of potei@l) in
the cost function enters via the parametetit is easy to see

that the value of the integral grows wit}n Hence a sharp
upper bound for the fractiof( «) can be obtained by taking

the limit y—1:

1
—+
2

+

f, wDu tanH \/EU)H

fla)= (10

f(aysgﬁ—ﬁjDutam{Jau) (11)

This bound only depends on the conjugate param@terf
the binary perceptron, and consequently cannot be surpassed
by any choice of potentiaV(\) in the hypercube. Because

the value ofQ is finite for all >0, the upper bound is less
than 1, and decreases steadily with growiagThe finite

value of Q is connected with the lack of uniqueness of the
MSB weights, as reflected by the mutual overi@pbeing
smaller than 1. Since for a perceptron with a spherical con-
straint, exactly the same expressid0) was obtained in Ref.
[1], the upper bound1l) is valid for any potential on the
hypersphere as well.

Figure 2 shows the fractiof10) of binary components of
the MSB, correctly predicted by clipping all weights of the
MSC. For comparison, we also show the corresponding frac-
tion predicted by clipping the weights of the M3R] as well
as the upper bound.1). As expected, for small values af
the MSC achieves a substantial improvement, and ap-
proaches the upper bound very closely. At larger valuas of
the improvement is smaller and the separation from the up-
per bound remains considerable. In an attempt to bridge the
gap, we have selected a different precursor vector in the
hypercube using the potential
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3 ! 3 IV. RELIABLE COMPONENTS OF THE HYPERCUBE
25 . "v”i?cube) e PRECURSORS
2 o Vlsphere | L2 Despite this large improvement, even the best of all pos-
. O wMsc sible precursors in the hypercube—represented by the upper

bound(11)—fails to predict about 16% of the MSB compo-
nents correctly near=0.83. A further learning stage there-
fore will always be necessary in which the incorrect compo-
nents have to be identified and corrected. Again we suspect
the weak components of the hypercube vectdo be the
dubious ones, while we expect the stronger components to be
more reliable. To check this expectation, we focus on the
"% 01 02 03 04 05 06 07 o8 components of) that are greater than a threshold value
o Jo>0. The fraction of these components that, on weight clip-

ping, correctly predict the corresponding componenBa$
FIG. 3. Minimum pattern stabilityk for a perceptron with  given by

N=50 as determined by numerical simulations. The binary weights

are obtained through full clipping from four different precursors. At *
small «, the results from the MSN coincide with those from the ; P(1,J)dJ
spherical quasioptimal precursor and, at largewith the MSC fi(a)= 0 . (13
results. ’ fwP(J)dJ
Jo
[ M(A=Kp) when A=K, Straightforward calculation of the integral yields
Vgo(N) = . (12
+ when A <Ky
Jo .

1 1 _ s
This simple potential, which we call the “quasioptimal po- f; (a)= 5+ BERY f Du tanh \/EU)H -,
tential,” was introduced in Ref[1] as a substitute for the oH “o 1—+?
optimal potential on the hypersphere. The strong repulsion, s
away from the boundaries of the Gardner volurhg] with (14

stability Ki,, pushes the minimizing vector toward its center _
of mass[7]. The center of mass would be the optimal pre-Which, for Jo=0, returns to expressiofi0) fof f(a). The
cursor, given that the sole information available about thevalue of the integral again grows steadily wigh so that an
position of the MSB is that it lies on the boundary of the upper bound forf; () can be obtained by taking the limit
Gardner volume with stabilit), [13]. The resulting value -

of f(a) is also shown in Fig. 2. It achieves a remarkably —1

large improvement at large values ef and closely ap- 1 1 % _

proaches the upper boutill) over the whole interval. fale)<5+—37 f Du tanhk @u» (15
Numerical simulations confirm the superiority of the hy- 2H —0) Jols

percube precursor that minimizE¢J) with the quasioptimal S

potential (12). Figure 3 shows the minimum stabilitg(«)

of the binary vector obtained by clipping all wgights of this of the hypercube precursor of magnitude greater tign
hypercube precursor for a perceptron with 50 input Neurong, "~ fraction H[J,/s] of the total number of compo-
For comparison, we also show the minimum stability ob- = fixed va(l)ue of- this fraction changes with
tained by clipping three other precursors: the MSC, th nents. orha |xde O’h ith ?’k

MSN, and the spherical precursor that minimizes the cos ecauhgetf € order pl)araruei;ex anfg;esd\{\#t I ahl € manf— h
function E(J) with potential (12). The quasioptimal hyper- ner, t.lsl ract|orfl also changes for di irent IC OIges of the
cube precursor stands out well above the results of the othgrOteht'a V(A). If we war]t to compare the value f’o(a)
precursors over the whole range af It narrows the gap for _dlfferent precursors, it Would_therefore not be reasonable
between the MSN and the theoretical cukg(e) by more to fix the value ofJ,, because dlffgrent numbers of compo-
than half. The outcome from the other two precursors is inf1€nts would be compared for different precursors. For a
termediate. As expected, the MSC result lies close to th@eaningful comparison, in which the same number of pre-
quasioptimal hypercube precursor at smalbut rapidly de- cursor_components are examined, we have to fix the value of
teriorates wheny increases to coincide with the MSN result the ratioJo/s. _

at largea. The outcome from the quasioptimal spherical pre- N Fig. 4, we plot the fractiorf, (a) for three values of
cursor coincides with the MSN result at smalland moves Jg/s, corresponding to the 40%, 60% and 80% strongest
only slightly above the MSN at large. These simulations components of the MSN, the MSC, and the quasioptimal
confirm the superiority of the quasioptimal hypercube pre-hypercube precursor. For each value Xyf/s, the upper
cursor, stressing that both the hypercube constraint and tH®und(15) is also shown. It forms a standard against which
guasioptimal potential are essential for excellent perforthe performance of the different precursors can be measured.
mance. The figure demonstrates the manifest superiority of the hy-

At this stage, it is important to recall that the components
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1 tion. In the last step, we determine the remaining weights by

I N A 098 the full enumeration method. Since enumerating more than
R N T~ 25 weights becomes time consuming, the number of weights
iy 10.96 left over after clipping may not exceed 25.

In the hypercube precursal, many components have

0.964

0-947 r0-94 magnitude 1, especially whenis small. In cases when more
Jo .92 | 0.92 components have magnitude 1 than we intend to clip, the
.............. - question arises as to how the strongest ones are to be iden-
0.9 ———— - 0.9 tified. We tackle this problem by adding to the cost function
088 s : L 0.88 E(J) a suitable “perturbation” which partly lifts the degen-

_________ uFber bound - eracy of the components of magnitude 1. An obvious choice
0.86 ‘ ‘ ‘ ‘ ‘ ‘ —~-J .36 of perturbation is a ternpJ? with p>0. This term clearly

¢ o1 02 08 04 05 06 07 08 exerts a force that pulls the minimum of the cost function
toward the originJ=0. Fine tuningp makes it possible to

FIG. 4. Fraction of binary weights in the MSB that are correctly Feduce the fraction +y of magnitude 1 components to a
predicted by clipping the strongest 40&op), 60% (middle), or  Prescribed value. The required strengthpofan simply be
80% (bottom) components of the MSN, the MSC, or the quasiopti- Calculated by adding the terp? to the cost functiorE(J).
mal hypercube precursdfy,. The dotted curve shows the upper This produces an additional terpgj, in expressior4) of the
bound(15). lowest energye,. Since this term depends solely on the or-

der parameteq,, only the saddle-point equatid®4) will
percube precursor with the quasioptimal potential. Comparetie altered, an extra term 2xp being added to the left hand
to the MSN result, there is a substantial improvement for allside of this equation. For gives we are now free to choose
values ofa. For smalla, this is completely due to the hy- the fraction -y of components that have magnitude 1
percube constraint, since it is also obtained for the MSQsmaller than the value obtained when=0). The four
precursor. At larger, part of the improvement comes from saddle-point equations then determine the parametgrs,
the hypercube constraint, but the major part comes from thg, andp.
guasioptimal potential. The numerical valuefgg(a) indi- It is to be noted that the additonal tepd? does not affect

cates that the 40% strongest components of the quasioptimile convexity of the cost functiotwhen p>0), so that a
hypercube precursor are highly reliable predictors of thelnique minimum continues to exist in the hypercube.
MSB weights. The probability of making a wrong prediction ~ Figures 5 and 6 show results from our numerical simula-
is small when the 60% strongest components are clipped. ffons. The minimum pattern stabilitg is plotted as a func-
increases further for the next 20% components. Comparisofion of « for the best binary vector obtained from the qua-
with Fig. 2, however, indicates that the greatest concentrasioptimal precursor in the hypercube. Each data point
tion of incorrect predictions occurs among the 20% weakestepresents the average over 200 samples. The input vectors
components of. used in the simulation are random Gaussian pattEt6
Figure 5 shows results for the relatively small systéim
=40. Figure %a) shows the effect of clipping different frac-
tions of the quasioptimal hypercube precursor. When only
So far, we have focused on themberof binary weights 16, i.e., 40%, of the precursor components are clipped, our
that are correctly predicted by clipping various fractions oftheoretical curves in Fig. 4 predict that all clipped compo-
components of the continuous precursors. For practical punents are very likely to give the correct binary weight. The
poses, a more appropriate quality measure of the precursor &mulations beautifully confirm this prediction, the numerical
the maximum possible value of ttetability that can be at- value of the stability lying even above the theoretical curve
tained, after clipping various fractions of strong componentsKy(«) for all values ofa. When 24, i.e., 60%, of the com-
by a perfect learning procedure for the remaining binaryponents are clipped, we deduce from Fig. 4 that, at large
weights. As it is difficult to determine this maximum stabil- values ofe, at least one of the clipped components is likely
ity analytically, we rely on numerical simulations to acquire to produce an incorrect binary weight. The numerical simu-
the relevant information. Clearly, determining the maximumlations continue to display excellent agreement with the the-
possible value of the stability precludes any approximatiorpretical curve for all values of, but the 60% clipping re-
in the determination of the remaining binary weights. Thissults lie very slightly below the 40% clipping points at large
implies that the full enumeration meth¢d4,15 has to be values ofa. Figure §b) compares results from two different
applied to obtain these weights. precursors: the quasioptimal hypercube and the MSN precur-
The numerical simulations were carried out using the fol-sor. In both cases, the strongest 60% components were
lowing simple “learning algorithm.” We start by minimiz- clipped. Although a doubling of the number of incorrect bi-
ing the cost functiorie(J) in the hypercube to determine the nary weights is to be expected for the MSN, the numerical
quasioptimal precursal. This is a fast and straightforward results continue to agree nicely wiky(«) at smalla, but
calculation, becausg(J) has a single minimum in the hy- the fit deteriorates slightly for large values @f
percube. In the second step, we clip a fraction of the strong Figure 6 shows results for larger networks=75 and
components ofl, assuming that they can be trusted to pro-100. In these cases, a much larger number of precursor com-
vide an excellent prediction for the MSB weights. The pri- ponents have to be clipped because our computational capa-
mary objective of our simulations is to verify this assump-bilities restrict enumeration to 25 components. This entails

V. NUMERICAL SIMULATIONS
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FIG. 5. Minimum pattern stabilityK for a perceptron with
N=40. (a) shows the value dk when 40% or 60% of the quasiop- )
timal hypercube precursor components are clipgei.compares = /2 (@) andN'=100 (b). Both figures compare the MSN and the
the MSN and the quasioptimal hypercube precursor when the strorﬁljas'olm'mal hypercube precursor. Since only 25 components are

gest 60% components are clipped. The full line shows the theorete_znumerated, a considerable number of incorrect clipped weights are
ical curveK(a). expected. The agreement with the theoretical cufyéa) never-

theless remains very satisfactory. The full line shows the theoretical

FIG. 6. Minimum pattern stabilityK for a perceptron with

) ) ) ) curveKp(a).
that many more clipped components will predict an incorrect
binary welght. For the qugs_|opt|mal hypercube precursor, the V1. DISCUSSION
number of incorrect predictions, as deduced from Fig. 4, can
be estimated as equal to three fb+ 75 and equal to six for In this paper, we have examined continuous-weight vec-

N=100 at largex. The interesting point now is to investigate tors in the hypercube as precursors for learning the binary
how these many incorrect weights effect the value of theweigths of the MSB. We have demonstrated that the vektor
minimum stabilityK. Surprisingly, forN= 75 with 50 com-  that minimizes the cost functiog(J)=%,V(\,) with the
ponents of the hypercube precursor clipped, the numericglotential (12) is nearly optimal in its ability to predict the
value obtained from the simulations still follows nicely the largest number of MSB weights correctly. We have shown,
theoretical curveK,(a) over the whole range ofv. For in addition, that the strongest componentsJoére highly
N=100 with 75 clipped components, the agreement withreliable predictors of the binary weights while the majority
Ky(a) remains excellent for smalk and the deviation at of uncertain predictors are to be found among the weakest
large values ofw is small. This unexpected result indicates components of]. The substantial increase in predictive
that the various incorrect weights generated by clipping thgpower of our new precursor, in comparison to previous pre-
hypercube precursor do not destroy the high stability, as thegursors like the MSN, is achieved through both the hyper-
might have done, but only affect a small reduction of itscube constraint and the quasioptimal potential.

value. Apparently, the value of these particular weights is not The analytical results as well as numerical simulations
crucial for obtaining a large value for the minimum stability. indicate that the hypercube precursor can play a very helpful
This is a very gratifying result, because it shows that therole in reducing the overall difficulty of the learning problem
hypercube precursor performs even better than could be efer the binary perceptron. For small valuesmfat least 60%
pected from Fig. 4. For comparison, we again show the coref the binary weights can be reliably obtained from the pre-
responding results for the MSN precursor in which case amursor, while for larger values af, still 40% of the binary
even larger number of incorrect binary weights are predictedweights are correctly predicted. This replaces the original
The MSN, however, also performs splendidly at snaglbut ~ learning problem by a simpler one of smaller size. Our nu-
the results become markedly less good at large values of merical simulations foN=75 and 100 moreover indicate
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that even considerably larger fractions of the hypercube pre- The first two equations are independent of the choice of
cursor components may be clipped with only a tiny reductiorthe potential(\). The last two equations depend Wii\)

in the value of the minimum stability as a result. This nu-via the function\y(z,x) defined as

merical finding suggests that the hypercube precursor cor-

rectly predicts all the binary weights that are essential for (A —2)2
obtaining a high value of the minimum stability, and that No(Z,x)=Arg Min| V(\)+ } (A5)
those components where the precursor fails to predict the A 2X

correct sign are not crucial for a high stability. In our simu-
lations, we have used the full enumeration method to learn
the weights of the reduced problem, restricting for computa- APPENDIX B
tional reasons the number of weights to 25. More intelligent
methods, like branch and bourdd?7] could be applied to
enlarge this number up to 40.

The hypercube precursor is likely to play a similar sim-
plifying role in other learning problems with discrete

For the combined system of a binary and a continuous
perceptron considered in Sec. lll, the following equations are

obtained for the overlap and its conjugaté:

weights. We are currently exploring its usefulness in the =
storage problem for the diluted binary perceptfdr§] as r=f f D;(U’U)tanr[\/aU]Jmin(Sv), (B1)
well as in supervised learning with a binary teacftg].
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X(AONq_or,x)—Jq—or) -
APPENDIX A do—d ’

The extremum o0&, in Eq. (4) leads to the following four A
saddle-point equations for the parameters, x, andqg: wherey andy are defined in Eq6), D;(u,v) is the Gauss-
ian measurd8), andJ,,y(2) is defined by

1
y=1—2H(— , (A1)
S Jon(Z)=Arg  Min (J2—2zJ). (B3)
> Je[-1,+1]
Qo=S%y+1-y— \/; se V> (A2)

Equation(B1) simply expresses that is the average value
(BJ)=Z2g[dJIP(B,J)BJ of the product of corresponding

2 2=af D7\ 7.X) — 12, A3 components of] and B. It does not explicitly depend on
Y [ho( Vo7 )= Velo7] (A3) V(\). The form of Eq.(B2), on the other hand, does depend

on the potentiaV(\) via the function\¢(z,x) defined in Eq.
y=— | Dr[No(VagrX)— Vagr].  (A4)  (AD). Wheng—q it is clear thatr tends to infinity. But
Vao 5=1//qQ is finite, sincevq(ge—q) remains finite.
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