PHYSICAL REVIEW E VOLUME 58, NUMBER 2 AUGUST 1998

Electric field induced in cells in the human body when this is exposed
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A detailed analysis is carried out of the electric field induced in a cell when the body is exposed to an
incident axial electric field at 50—60 Hz. It is shown that the field in a spherical cell is effectively shielded by
the membrane so that the induced field in its interior is negligibly small. It is also shown that the induced
electric field in a cylindrical celiwhich is long compared to its radius the same as the axial field outside the
cell. In this case, the cell membrane has no shielding eff&dt063-651X98)09108-9

PACS numbds): 87.50—a, 87.10+e

I. INTRODUCTION tained. The cell has a radils=10"° m. It is bounded by a
thin membrane with the thicknegs-5x10"° m. The inte-
In his paper, Adaif1] states that the “internal elements rior of the cell with radiusa=b— & consists of protoplasm
of a cell, such as the nucleus and the genetic material, afgith o,~0.5 S/m. The conductivity of the membrane in its

shielded by the resistive membrane and the fields they angsting state isr,,~10"® S/m. The ratiar,/ o is the small
subjected to are quite negligible.” This statement appliesquantity
specifically to spherical cells with a radius of 1®m. No
proof is given, but reference is made to Foster and Schwan n 107°
[2]. It is the purpose of this paper to show analytically that n=— ﬁ=2>< 10°°. 1
the statement is true for small spherical cells, but incorrect '
for elongated cells like those found in muscle and also for The complete solution for the electric field inside a
long nerve cells. It is important for biophysicists and bio—S herical ceIFI)is iven in Appendix A. The ratio of the elec-
medical scientists to recognize this difference and not as,[-r?C field in the Cg” 1o that iF;\F():ident frém the outside is
sume that the cell membrane shields the interior of all cells.
This superficially paradoxical behavior is clarified in a quan-
titatively explicit analytical study. Ea(2) _ 97

Ei(z) (2+59+299)—2(1-275+ 7% (alb)®

S

[

2

1. BACKGROUND
) Here
At frequencies as low as 50-60 Hz or 10-30 kHz, all

parts of the human body are conductors, i3 we, with
conductivities that range fronor~0.02 to 0.85 S/m. The
conductivity of the saline tissue in which the organs are em-
bedded iss~0.5 S/m. Furthermore, the body is electrically . . .
extremely short. Accurate formulas are available for the totafinc€6/P<1. With this value andy<1,

axial currentl 1,(z), the current density,,(z), and the elec-

tric field E;,(z) induced in the body when this is exposed to ~ E2(2) _ 97 9

an electromagnetic fiel&;,By. These are given in Ref. Ei(z) 979+2(1-275+7%°)(356lb) 95+(64/b)
[3] when the arms are in contact with the sides and the body 1

is far from the earth or standing on it with rubber-soled -
shoes. Generalized formulas with the arms raised to any 1+(2613nb)"
angle are in Refl4] and for the electric field induced in the

individual organs in the body in Ref5]. These formulas For the spherical cell, »=2X 10 and &/b=5
provide explicit relations foiE,,(z)/EM®, whereE,(z) is X 10 %10 °=5X10"3, so that 2/37b=1.67x10%. It fol-
the electric field anywhere in the body including the arms,lows that

legs, and head. The next step is to derive relations between

E,,(2) in the saline tissues of the body aig,(z) in the E,(z) 37b 3x2x10 6x10°°
cells embedded in it. =

a

b

b

~1-— 3

b

3_ b—¢
b

“loeg -

4

=6x10"% (5

Ei(2) 25 2x5x10°
Il SPHERICAL CELL Hence, the electric fiel&,(z) in the protoplasm in the inte-

Consider first the rigorous determination of the electricrior of the spherical cell is negligibly small compared to the

field in a small spherical cell embedded in the conductindield E;(z) in the saline tissue in which the cell is embedded.
tissue witha;=0.5 S/m in which the fieldE;,(z) is main- The membrane acts as an excellent shield for the interior.
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IV. LONG CELL: NERVES A Ji,(p.2) =0, (p.2)

In addition to small approximately spherical cells, long
cylindrical cells are common in the human body. When the
body is exposed to an external axial electric fi&l°, an
axial currentl ,(z) is induced in the body as shown in Ref.
[3]. At 50—60 Hz, this current depends only on the length of
the body and is independent of the conductivity. However, it > p
adjusts its current densit¥,(p,z) at any cross section in
accordance with the conductivities of the organs and cells
in that cross section. The associated electric field is T T
Ei.(p.2)=Ji2(p.2) ;. E_ (.2 || 1T E, (.2

Consider a long cylindrical cell that extends froms
—h to h. Itis enclosed in a thin membrane with the thick- ¢J ©.2) |2 u\
ness 6=7.5<10"° m and conductivity o,=10"% S/m. 12(P2) L1235 Ny
The outside and inside radii of the cell ave=10"® m and L2b |
a=b—4. The entire cell is embedded in protoplasm with the £ 1. A long cell(length 2h, outside radius, inside radius,
conductivity o, =0.5 S/m. The interior of the cell has the and membrane thicknesy immersed in a conducting medium with

same conductivityr;=0.5 S/m. It is exposed to an electric cyrrent densityd,,(p,z) and electric fieldE,(p,z)=J1,(p,2)/ o1.
field E,,(p,z) parallel to the length of the cell. For simplic-

—» N
Y

ity, let it be assumed that the cell to be studied is located near —h=z<h (8)
the axial maximum of the currehj(z) and thatg,,(p,2) is
approximately constant over the length of the cell. Unlike the I1(p z)] Iyl p z)]

cylindrical surface of the cell along which the boundary con- —E;,(b,z)=
ditions are straightforward, the ends of the cell present a P |p=b ap
complicated problem. Fortunately, the actual shape and ©)
structure of the end surfaces are unimportant in determining\
the field in the interior of the cell at moderate distances from
the ends. Accordingly, the end surfaces will be assumed to ddy(p,2)
be flat and to consist of the same membrane as the cylindri- _
cal sides. Because of the low conductivity of the membrane,
the current in the ambient medium turns out radially near the
ends to travel around instead of through the cell. Since the
cross-sectional areab? of the ends is small, the axial cur- b1(p,2)=—2EL(p,2). (12)
rent that enters and leaves the cell through the ends is insig- v e
nificant. For simplicity, it will be taken to be zero by chang-
ing the conductivity of the membrane at the ends from the
small vlaluezrmzlolf6 to 0 S/m. Since the electric field in-  The condition(11) at large distances suggests the intro-
cident in the cell is parallel to the cylindrical sides, this gyction of the functiony(p,z) defined as

means that no current enters or leaves the cell. The only

| =—E21(a,Z).
p=a

t distancesp>b, Eq. (7) gives

= Eulp.2) 10

V. SOLUTION FOR THE SCALAR POTENTIAL

current in it is that generated by the electric fidlg,(p,z) é(p,2), p<a
induced inside the cell. 7)= 12
The model used to determine the electric field in the cell WP2D=) ¢(p.2)+2E1(p.2), p>b. 12

is shown in Fig. 1. The total upward current in the entire
body isl,(z). The current density in the vicinity of the cell is It follows that
JiA(2)~1,2)/A, whereA is the cross-sectional area of the

body. At all points, the scalar potential satisfies the equation dp(p,=h)
Tzo forall p (13
V2¢=0 (6)
and the symmetry conditio(p,—2z)=— ¢(p,2) applies. and
The boundary conditions are V24(p,2)=0. (14)
0, p<a . . . . .
E _ddp.)| A solution will be sought in terms of a Fourier series. The
71E1(p.2) =~ 01— h Jip,2), p>b. symmetry conditionp(p, —z) = — ¢(p,z) indicates the form
- %) sin(wkz2h) whenk is a positive integer and the factor 2 in
the denominator follows from Eq13), which requires the
From Eq.(B12) in Appendix B, withé= 8/ 9= o1 /o, period 4. Application of Eq.(13) gives
dp(p,z) wkz Tk
d1(p>b,2)— Pr(p<a,z)— & =0, cosz—| =0 or cosz—=0. (15
ap —a 2h ,oh 2
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This means thak is odd, i.e..k=2n+1. With IY(p,z)
y _(2n+Dm 16 p=a
n 2h (16) It is now necessary to express the right-hand side in a series

corresponding to Eq17) for (p,z). This is accomplished

the Fourier sine series is by noting that the coefficients are
- . 1 (2h 1 (h
W(p.2)= 2, To(kap)sinkyz. 17 —| dz zsink,z= —f dz zsink,z
n=0 2h —2h h —h
In the cylindrical coordinateg, z and with rotational sym- 4h _ "
metry, Eq.(14) gives = [(2n+ 1] sink,z|",
? 14d & ~ _ (=1)"8h (24
a2 pap TV R =0 a8 [2n+D)al
so that Hence
(9_2+£i_k2 f (kyp)=0 (19) o (-1"8h
ap® padp N ' Z:n:O m sin k,z. (25

The solution of Eq(19) is } ) )
With this value, Eq(23) gives

consX | o(Kpp), p<a
(knP) =1 constcKo(kop),  p>b, 20 Ko(knd) lo(kna) ]_ (-1reh o
n n|— 2-12\Ps4)-
o . Ko(k 1o(k [(2n+1)m]
wherel andK are the modified Bessel functions. Now let o(kn@)  To(kna) (26)
B f (k With the Wronskian formuld{(z)Kq(z) —1(2)K{(2) = 1/z,
Cn_d(knp) n( np)|p:b~a- (21) Eq (26) becomes
This is continuous ap=b~a. It follows that
l (-1%8h (02)
c , , —&Kn| = ronr )2 1 pi2)-
lo(kop) " kaaly(kaa)Ky(kea) 0 [@n+1)m]E
Chm——, (27)
lo(kna)
f(Kyp)= Ko(Kyp) (22)  Sincel =1, andK{j= —Kj, the final result is
CnK' kD)’ p>b.
o(Kn (—1)'4a
1= E1dp. 2 1(Kha) Ky (kna)
. i " . . 2n+1)m
However, the Bessel functions are insensitive to variations in Ch=— . (29
argument of the ordek,5 so thatb can be replaced bg. 1+ gakﬁll(kna)Kl(kna)
The application of the membrane conditi(8) yieldsc,. In
terms of(p,z) as defined in Eq(12), this is With this, the scalar potentiab(p,z) is
( (“1)74a K1 (kn@)l o knp)sin k
zoc: 2n+Dm 12(p,2)K1(Kn@) 1 o(Knp) sin knz p<a
=0 1+ £ak?l 1 (kha)K(kqa) ’
#(p,2)= (—1)"4a _ (29
o) i mh(kna)Ko(knp)Sln Knz p>b.
— ,Z 7Z—
IR 1 cakl (K (k)
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VI. ELECTRIC FIELD INSIDE THE CELL

The electric field inside the celi<a is given by

dp(p,z)
dz '’

Eop.2)=— p<a, (30

with ¢(p,z) given by Eq.(29). This gives

(—1)“2aK ol )
Ezz(/J,Z):2 h 1(kn@)1 o(Knp) cOsknz _
Ei,(p,2) n=0 1+§akﬁ|1(kna)K1(kna) p<<a.

(31)

Whenp<a, k,p is very small so thaky(k,p)~1. Similarly,
the small-argument formulas fdr;, and K; can be used.
These ard ;(k,a) ~k,a/2 andK(k,a)~1/k,a. Hence

Exlp2) 4« (—1)"cosk,z

A (32)
E Z =
ulp2) =0 oL 1+ éakd
With
w2 éa
p=2 12 33
Exnlp2) 2 (—1)"e'kn

= . (34
Ei1(p,2) wn;x(2n+1)[1+3(2n+1)2] (39

long cell and the incident fiel&,,(p,z) in the ambient me-
dium with the conductivityr,. The membrane has the thick-
nesss and the conductivityr, .

Consider a cell with the half-lengtth=0.25 m and
radius a=10"® m, enclosed in a membrane witd
=7.5x10"° m ando,=10"% S/m. The conductivity out-
side and inside the cell is;=0.5 S/m. With these values,

E,.(p,z 2x10°8
M =1- sec?( 0.25\/
E1.(p,2) 105%x7.5x10°9%x0.5

=1-secl{0.25x 2.3x 104
=1—secl{5.8x10°)~ 1. (38
For a short cylindrical cell with=a=10"% m,

EZZ(p!Z)

2~ —1-sechf10 ®x2.3x 10" =1-0.99970.
Erp.2) H )

(39
When the cell has a half-lengtih=250a=2.5x10"% m,

EZZ(pvz)

=1—sech2.5Xx 10" 4% 2.3x 10"
Erp.2) A )

=1—sech5.750.99. (40)

Thus the electric field inside the cell is the same as that
outside for cells with lengthst2>0.5 mm. For cells with
lengths comparable to or less than the diameter, the electric

The evaluation of this sum can be carried out with thefield inside is essentially zero and the membrane acts as a
help of the following contour integral, which is evaluated perfect shield.

over a large circle in the complex plane:

eiknz

e dz
2i 2(1+4B2%)cos 7z

)

(—1)"(2/mr)ekn?
==« (2n+1)[1+ B(2n+1)?]
1 cosi 7z/2\/Bh) o
cost{w/2\/B)
It follows with Eq. (34) that

Ez.(p,2) _cosr(wz/2\/ﬁh)
Eip.2) ~  cosh@/2{B)

(39

(36)

At the center of the celt=0 and with3 given by Eq.(33)
and £= 8o /o =7.5X10 °X0.5/10 6=3.75x10" 2 m, it
follows that

EZZ(plZ) _

T 2
Enipd) —1—sechZTE=1—sec){ h \/5

[20m
=1—secr6h aéal)' (37

This is the final formula for the ratio of the electric field
E,,(p,2) in the interiorp<a and near the cente=0 of a

The numerical calculations up to this point have been re-
stricted to unmyelinated cells with thin membranes and small
diameters. However, the formulas apply equally to all types
of long nerves cells, including the myelinated ones that have
much thicker membranes and larger diameters. Specifically,
for a myelinated cell with 6~200<10°° m and a
=10"° m, Eq.(37) gives

E,/p,2) 2x 1078
————=1—-sech h
E1.(p,2) 107 5% 2%x10°7%x0.5

=1-seclf1.4x 10°)h. (41)

With h=0.025 m=2.5 cm,

E ,Z
EadlpD) ) cech3s.41-8.8¢10 -1, (42)
ElZ(p!Z)
With h=250=2.5x10"% m=2.5 mm,
E Z
Eadpd) ) cech3541-0.058-0.94, (43)
Elz(P-Z)

Thus the electric field inside the myelinated cell is the same
as outside whent2>5 mm. This is ten times the length for
the unmyelinated cell, but is no significant restriction for the
long cells of interest here.

The simple formula37) is independent of the distanze
from the center of the cell. However, it is not applicable to
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points near the ends, owing to the approximations made in
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f=f(r)=Cyr+C,/r? (A8)

the boundary condition on the end surfaces. It can be as-
sumed that a reasonable estimate of distances from the emthere C; and C, are constants to be determined from the

where it should not be used in a long cell is whier z
<104 m=0.1 mm for an unmyelinated cell and whén
—z=<1 mm for a myelinated cell.
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APPENDIX A: ANALYTICAL FORMULATION
AND SOLUTION FOR THE ELECTRIC FIELD
IN A SPHERICAL CELL

Consider a spherical cell with inner radiasand outer

radiusb=a+ &, where§ is the thickness of the cell wall or
membrane. The conductivity of the saline fluid outside the
cell (region 1 is 0;=0.5 S/m. The conductivity of the pro-

toplasm in the interior of the cellregion 2 is o,=04
=0.5 S/m. The conductivity of the membrane is,
=10"° S/m. Let

n=0nlo,=2x10"5, (A1)

boundary conditiong,(r)=f(r) atr=a, f(r)="f,(r) at
r=b, andf(r)——rEJY atr—c.
In the three regiond,(r) must have the forms

fo(r)=A,r, r<a
fu(N)=ALr+AN/r2,  a<r<b (A9)
fo(r)=—rEM+A,/r?, r>b.
The conditions for determining the four constants

A, AL AL A, are obtained from Eq$A3a) and(A3b) with
E(r,0)=—[of(r)/dr]cosd. They are

Ior)  f(r)

fo(a)="fy(a), T U (r=a),
(A10a)
A of
f(b)=fa(b), 7T = ;ﬁ” (r=b).
(A10b)

With f(r) as given in Eq(A9), the four relations are, far

Since the frequency is low, the electric field can be deter=4.

mined from the scalar potentigl= ¢(r, 6):

E=-V¢, V2¢=0. (A2)
The boundary conditions between region rX@) and re-
gion m (a<r<b) and between regiom and region 1
>b) are

(r=a), (A3a)

b= bm
bm= b1

Eor=nEn,,

nEm=Ex1,, (r=b). (A3b)

Far from the cell,

E—ZE(Y, ¢——zE{s=—rcosd EfY (r—).

(Ad)

Since the spherical cell is rotationally symmetric and the
incident electric field is reasonably constant at the location of

the cell, the spherical coordinatesd can be used and

¢=¢(r,0)="F(r)cosé. (A5)
The differential equation foes(r, 6) is
1 a( . d¢\ 1 a ,op
2 - _ - 2| =
Vee(r.6) rZsin 6 Fm(sm 0(?0 +r_2 é)r(r (?r) 0.
(A6)
With Eq. (A5), this is readily transformed into
Pt 29f 2 2o A7
cos 6 W + F 07_I' — r—z =0. ( )

This has the solution

Aa=Aa+Al/a?,

A= (Al —2A"/a3), (Al11a)
and forr=b,
Alb+Al/b?=—bE[S+ A, /b2,
n(AL—2ANb%)=—EN—2A,/b%.  (Allb)

The solution of these equations fAp, which determines the
field inside the cell (<a), is

0o -1 -1ad 0
|0 - 2plad 0
AmD e g gps 3| AP
—EM° —29/0%  2/b®
where
1 -1 -1 0
1 —-» 2plad 0
P=lo 1 b —1bd|" (A13)
0 n -—29/b® 2
The evaluation of the matrices gives
1[2 ) 1 )
Dzﬁﬁ(n_l) —¥(277 +57+2) (Al14)

and
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Ei:FC 977 B]_:Bz, Aj_: 7]A2, (B4)
"D @ (15
A26+ BZZA35+ B3, ’)7A2:A3. (BS)

It follows that i )
W|th A2:A1/7], A3:Al, and 82: Bl! it f0||0WS that

97
. 1
2(a/b%) (= 1)*= (27 +59+2) O A+ Bi=A61Bs of By By 5(——1>A1.
(A16) 7 7

When Eq.(A16) is substituted in Eq(A9) with Eq. (A5),
the potentiakp, in the spherical cell is obtained explicitly. It Let
is

A=ET}

(B6)

1 5 1

—— 1) ~— since —=0.5x10>1. (B7)
7 7 7

with A, given by Eq.(A16). The electric fieldE,(z) in the With §=7.5x10"? m and7=2x10"°

spherical cell is obtained with EGA2). '

2,=A,r cos=A,z, (Al17) §=6

£=3.75x10"3 m. (B8)
APPENDIX B: BOUNDARY CONDITIONS

With Eg. (B6), Eq. (B2) gi
Since the membrane of a cell is extremely thin wah (B6), Eq. (B2) gives

~75x10°° m and a very poor conductor withr, S ALS
~10"% S/m, the boundary conditions relating the electric ¢(87)—¢(07)=A,6+B;—B;=A; 5+——5):—.
field on the outer surfaces to that on the inner surface have an K 77(89)

interesting form. This is best shown for a one-dimensional
model in which the membrane with its conductivity, is 2  From EQ.(B2), A= (9! 9X)x—o- andAz= (Il IX)y— s+. It
thin sheet defined by the coordinates=®< 6. The regions  fo|lows that Eq.(B9) becomes

x=0 and x=§ are characterized by the conductivity;

=0.5 S/m. At the low frequencies and electrically small di- 5/
mensions involved, the electric field can be derived from the #(67)—p(07)= —( a_x)
scalar potentiakp in the formE=—V¢, where ¢ satisfies 7 0
Laplace’s equatioV2¢=0. In the one-dimensional case,

d¢
= g(a—x)xo. (B10)

SinceAz=Aq,

_ % P
Ee=— o 2= (B1) (

d
X

x=8T

d¢p
ﬁ_x)x . (B11)

The solution of the second equation is
In terms of the outward normal to a cylindrical region, the

Aix+By, x<0 boundary conditions that connect the conducting region on
one side of the membrane with that on the other side are
¢(X) — A2X+ Bz, 0<x<é (BZ)
A3X+B3, X> 4. a(b 0’;¢ (a¢
—p_=&—, — == . B12
b= P-=85, (ﬂp)+ ﬁp)_ (B12

The boundary conditions are as followsp(x) is every-
where continuougthis corresponds to continuity for the tan- Here ¢=3.75< 103 m. Note that Eq(B12) relates the sca-

gential component of the electric figldnd lar potential and its normal derivative outside the cell di-
9 ¢ rectly to these quantities inside the cell. The membrane is
01<_> =Um<—) , involved only in the factog.
X/, X/ o+ In applying these conditions to a long cylindrical cell with
(B3) a radiusb=10"% m, it is interesting to note that the deriva-
(% _ (@) tive d¢ldp is taken atp=b and p=a=b— 8. This means
Im| x 5 71| 9x X_5+' that 9p is a small change ip at p=b=10"° m. In other

words, dp has a magnitude smaller thén In the first con-
These are the boundary conditions for the normal componemtition in Eq. (B12), the right-hand side has the factgr
of the electric field. When these conditions are applied to Eq= 1/267 multiplied by a factor greater than §a},,~ 10°.
(B2), with =0,/ o4, the results are Clearly, the potential differenceé, — ¢ _ is a large quantity.
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