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Fluid lipid bilayers: Intermonolayer coupling and its thermodynamic manifestations

Per Lyngs Hansen,* Ling Miao, and John Hjort Ipsen
Department of Chemistry, Building 207, The Technical University of Denmark, DK-2800 Lyngby, Denmark

~Received 8 December 1997!

A fluid membrane of lipid bilayer consists of two individual molecular monolayers physically opposed to
each other. This unique molecular architecture naturally necessitates the need to treat a lipid-bilayer membrane
as one entity of twocoupled two-dimensional systems~monolayers!, each of which possesses ‘‘in-plane’’
degrees of freedom that characterize its physical or chemical state. Thermally excitable deformations of a lipid
bilayer in its geometrical conformation further impart to it ‘‘out-of-plane’’ degrees of freedom. In this paper we
discuss the issue ofintermonolayer couplingin terms of a phenomenological model that describes the neces-
sary types of degrees of freedom and their interplay, which reflects different modes of intermonolayer cou-
pling. Furthermore, we investigate, based on the phenomenological model, the manifestations of the inter-
monolayer coupling both in the lateral ordering processes of the ‘‘in-plane’’ degrees of freedom and in the
conformational behavior of the bilayer membrane.@S1063-651X~98!05508-1#

PACS number~s!: 87.22.Bt, 68.10.2m, 82.65.Dp, 87.22.As
m
o
r

s
am
fi-
e

a
ca
nd
ic
-

bi
s,

o

-
m

s
at

pr
ng
n

ee
ond

e.

ri-

l-
as
by

,’’

rs.
ge-
es
ight
av-

nt
id
o-

of

lar
ay

e-
or
oci-
the
In-
en

-
-
ing
o-
in

g
a

I. INTRODUCTION

One structural element universal in all biological me
branes is a bilayer entity, consisting of two individual mon
layers that are composed of an astonishingly large numbe
types of amphiphilic lipid molecules. Artificial lipid bilayer
may form spontaneously when one or several types of
phiphilic lipid molecules, native to biomembranes or arti
cially synthesized, are dispersed in an aqueous environm
under a wide range of physicochemical conditions. They
the simplest model systems of biomembranes, which
both mimic, at different levels, the molecular complexity a
retain some of the essential physical properties of biolog
lipid bilayers @1#. Our study deals with such model lipid
bilayer membranes.

One of the most recognized properties of model lipid
layers is the following: Under typical laboratory condition
model lipid bilayers often appearfluid, as their biological
counterparts do, lacking any lateral positional ordering
lipid molecules; also, they areflexible, easily~at the impact
of typical thermal fluctuations! changing their surface con
figurations. A phenomenological model, containing an i
portant notion ofbending rigidity, was proposed by Canham
@2# and Helfrich@3# to describe this property or the physic
governing ‘‘external’’ degrees of freedom. The model tre
a fluid lipid bilayer as asingle incompressible surface with
the elastic free energy

Hel5s0A1E dAFk2 ~H2H0!21k̄gKG . ~1!

A represents the total area of the bilayer surface and is
portional to the total number of lipid molecules composi
the bilayer. Thus, if the bilayer is in equilibrium with a
external lipid reservoir,s0, being conjugate toA, is propor-
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tional to the chemical potential of the reservoir. The fr
energy also involves local surface invariants up to the sec
derivatives of the surface: the mean curvatureH51/R1

11/R2 and the Gaussian curvatureK51/R1R2, where R1

andR2 are the two principal radii of curvature of the surfac
One of the physical parameters in the modelk measures the
degree of the membrane flexibility and is called bending

gidity. k̄g is another bending rigidity, which becomes irre
evant when the surface topology of the membrane is fixed
is often the case. The bilayer aspect is accounted for only
the constantH0, termed ‘‘bilayer spontaneous curvature
which allows for asymmetry~difference! in either the chemi-
cal or the physical nature of the two constituting monolaye
For a single-component lipid bilayer immersed in a homo
neous environment,H0 is assumed to be zero. Many studi
based on this model have provided a great deal of ins
into the conformational aspect of the thermodynamic beh
ior of fluid lipid bilayers @1,4#.

Apparently, this model neglects the effects of the differe
types of ‘‘in-plane’’ degrees of freedom that pertain to a lip
bilayer: translationaldegrees of freedom to describe the p
sitions of lipid molecules within each monolayer,conforma-
tional degrees of freedom to describe the large number
conformations each lipid chain can assume, and finally,com-
positional degrees of freedom to describe the molecu
compositions of each monolayer. On the other hand, it m
be expected that under changes of thermodynamic~and
chemical! conditions these different types of degrees of fre
dom will undergo changes in their collective behavior
lateral ordering processes and that large fluctuations ass
ated with these degrees of freedom may arise naturally in
ordering processes, leading to in-plane heterogeneity.
deed, biophysical studies of model lipid bilayers have be
providing mounting evidence for this@1,5#. For example, a
study of lipid bilayers of a binary mixture of dimyris
toylphosphatidylcholine~DMPC! and distearoylphosphatidyl
choline (DSd54PC) based on a small-angle neutron-scatter
technique@6# clearly revealed the presence of coherent d
mains rich in DSPC, a signature of the ordering
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the compositional degrees of freedom. Furthermore, the c
cal nature of the ordering in systems of equimolar mixture
the two lipids was indicated by the divergence of a cohere
length as a particular temperature was approached. Sim
critical demixing processes also take place in PC-cholest
mixtures, which are of particular interest to membrane ph
ics @5,7#. Another important type of lateral ordering pro
cesses, known as the ‘‘main transition’’ or the ‘‘chai
melting transition,’’ involve the conformational degrees
freedom and can occur even in single-component lipid bil
ers. During these transitions, hydrocarbon chains of li
molecules collectively undergo a change between a~high-
temperature! disordered state, characterized by a large nu
ber of conformations, and a~low-temperature! ordered state,
characterized largely by thetrans conformation. It has also
been demonstrated that such chain-melting processes in
model systems of lipid~with the PC headgroup and saturat
acyl chains! bilayers studied appear pseudocritical, involvi
large fluctuations in the molecular densities in the two mo
layers. Clearly, these cases necessitate the need to dea
the in-plane degrees of freedom.

Any modeling of a fluid lipid bilayer has to reflect it
unique molecular architecture and properties. A lipid bilay
actually consists of two two-dimensional systems~monolay-
ers!, each of which possesses a distinct set of ‘‘interna
degrees of freedom. While the internal degrees of freedom
one monolayer can in principle behave differently from tho
in the other, there exists coupling between them: The
that the two monolayers have to follow the same geome
~for surface deformations on length scales larger than
bilayer thickness! imposes one form of coupling; direct mo
lecular interactions, which may depend on the states of
two individual sets of internal degrees of freedom, constit
another. Finally, the geometry of the bilayer surface, or
‘‘external’’ degrees of freedom, is thermodynamically re
evant due to the flexibility of the bilayer. Thus the therm
dynamic behavior of systems of fluid lipid bilayers will b
the result of a complex interplay between lateral order
processes of relevant internal degrees of freedom and
conformations of membrane surfaces. It is the theme of
paper both to discuss, in terms of a phenomenological mo
the issue ofintermonolayer couplingby examining the pos-
sible modes of the coupling and to investigate, on the b
of the model, some specific manifestations of the coupling
both lateral ordering phenomena and in conformational
havior of bilayers.

Recently, a number of theoretical studies@8–17# have
modeled the intermonolayer coupling with a simple form
bilinear coupling between bilayer local geometry~specifi-
cally, local curvatures! and a local difference in the two in
dividual in-plane density or concentration fields characte
ing, respectively, the physical or chemical state of the t
monolayers and have further explored some of the ther
dynamic consequences of this particular form of coupling
some studies@10–12,14# care has been taken to explicit
deal with the possibility that both of the monolayers m
undergo ordering processes. However, any form of in
monolayer coupling arising from direct molecular intera
tions has been neglected, presumably based on the ass
that direct interactions may have only aweakdependence on
specific states of the in-plane fields and therefore are ir
ti-
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evant to a first approximation@12#. In this paper we will
explicitly take into account contributions of direct intera
tions to intermonolayer coupling and will argue, based
our calculations, that such contributions, even when they
weak, are relevant in determining the thermodynamic beh
ior of lipid bilayers.

One of the major predictions given by those studies m
tioned above is that in lipid bilayers under one form or a
other of mechanical constraints, lateral ordering proces
may often be characterized by the appearance of modul
structures. In these modulated structures, domains with b
distinctly different degrees of ordering in the in-plane fiel
and distinctly different curvatures appear in well-defin
sizes and in a spatially alternating fashion. The well-defin
sizes and surface corrugations of ordered domains find
analog in lateral ordering processes in ordinary~simple! flu-
ids and have been used to interpret ripple phases and o
ordered-domain phenomena@9,14#. In our work we have
made efforts to further the characterization of the modula
structures. In this paper we will demonstrate that, under
ferent thermodynamic conditions, modulated structures
different characteristics may exist and that, depending
thermodynamic control parameters, the change from
type of modulated structure to another in principle may
may not correspond to thermodynamic transitions.

The studies and the results described so far are all ba
on mean-field analyses of the models, in which effects
thermal fluctuations both in the in-plane degrees of freed
and in the geometrical conformation of a membrane are
glected. The mean-field approximation concerning me
brane conformation is certainly valid in situations where m
chanical constraints are imposed on a bilayer membran
suppress its strong conformational fluctuations. However,
have also been particularly interested in understanding h
the intermonolayer coupling may manifest itself in the co
formational behavior of fluid lipid-bilayer membranes whe
strong fluctuations in both the internal and the external
grees of freedom are present, a question that has not
seriously addressed before. To this end we have consid
situations where the effect of mechanical constraints
comes vanishingly small and have necessarily extended
study beyond the scope of the mean-field approximation
this paper we will also describe a simplified analysis ba
on a field-theory approach, which we have carried out to d
with fluctuation effects, and present the result of the analy
Previously, it has already been demonstrated that a fluid l
bilayer under no mechanical constraints will display at~often
extremely! large length scales a conformational instabil
towards branched-polymer configurations@18#, even if the
effect of in-plane fluctuations is neglected. One may th
intuitively expect that strong fluctuations in in-plane degre
of freedom will only promote this conformational instability
Indeed, our analysis shows that strong in-plane fluctuati
reinforce shape fluctuations and that consequently, the c
formational instability sets in on much, much shorter~there-
fore, perhaps experimentally accessible! length scales.

II. PHENOMENOLOGICAL MODEL

In this section we describe a phenomenological model
fluid lipid bilayers and discuss its physical significance. T
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model emphasizes the fact that a fluid lipid bilayer is
entity of two coupledmonolayers that always assume~ap-
proximately! the same geometrical conformations, but th
can display different behavior as far as the in-plane deg
of freedom are concerned. As is implicitly assumed in a p
nomenological description of a physical system, specific
croscopic details can largely be neglected and the large n
ber of any relevant degrees of freedom and the phy
governing them may be ‘‘coarse grained’’ into a few loc
~spatially varying! fields and a small number of phenomen
logical parameters, respectively. Particularly in our mode
a fluid lipid bilayer, Eq.~1! is taken as the basic descriptio
of the external degrees of freedom in terms of local surf
curvatures, the bending rigidity, and the bilayer spontane
curvature. Similarly, in-plane degrees of freedom with
each of the two monolayers~labeled, arbitrarily, as 1 and 2!

are represented by a local scalar field on the surfacef i(xW )
and the essence of the physical mechanisms underlying
ordering processes is captured in a few physical parame
Explicitly, the total free energy of a bilayer is given as

Fbilayer5E dAH s01
k

2
H22

kC̄0

2
~f12f2!H1

g12

4
f1f2

1
1

2F c

2
~¹W f1!21

t

2
f1

21
g

4!
f1

42mf11
c

2
~¹W f2!2

1
t

2
f2

21
g

4!
f2

42mf2G J . ~2!

In defining the local principal curvatures, we adopt the f
lowing sign convention: Once the two monolayers are
beled as 1 and 2, the surface normal is then chosen to p
from monolayer 2 to 1;Ri ( i 51,2 here denotes the two loca
principal directions, respectively! is defined to be positive
~negative! if the corresponding local principal curve is co
cave~convex! with respect to the chosen surface normal.

As is apparent in Eq.~2!, we have employed a canonic
model, the Landau-Ginzburgf4 theory @19#,

Fi5
1

2E dAH c

2
~¹W f i !

21
t

2
f i

21
g

4!
f i

42mf i J , i 51,2,

~3!

as a generic description of any in-plane degrees of freed
under consideration@20#. The bilayer nature of the system
reflected by the possibility that each monolayer can unde
an ordering process governed by the Landau free energyFi .
It is worth emphasizing that the physical parameters in
~3! should be defined as those that characterize the orde
process that takes place when the bilayer is mechanic
constrained to beflat.

We have in mind specifically two types of ordering pr
cesses, to which this generic phenomenological descrip
applies, although the description may also be relevan
other classes of phenomena such as adsorptions to m
branes of small molecules~sterols, anesthetics, etc.! @21#.
One type is a phase separation process in a binary mixtu
lipids, in which case the following correspondance can
made:
t
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, ~4!

wherer i is the local composition field andrc andTc are the
composition and temperature, respectively, characteriz
the critical demixing that takes place in a flat monolayer.m
is in effect the chemical potential regulating the composit
andm50 corresponds to the situation where the composit
is set at the critical value. The other type of ordering p
cesses is the chain-melting processes in single-compo
lipid bilayers, as described in the Introduction. Since t
chain conformational change involved in the chain melting
also manifested in a corresponding change in the molec
densityr i , we choose the density field as the representat
The chain melting can then be approximately described
Eq. ~3! also, with

f i5~r i2r0!/r0 , m}~T2Tm!, ~5!

and t,0. Herer0 is a properly chosen average of the tw
densities corresponding to the chain-ordered and the ch
disordered states andTm is the chain-melting temperatur
@5,22#.

The main theme of our paper,intermonolayer coupling, is
specifically represented by the last two terms in the first l
of Eq. ~2!. The first form2kC̄0(f12f2)H/2 is an explicit
model expression of the notion ofbilayer spontaneous cur
vature and is based on the following reasoning. In gene
any two opposing local elements of the two monolayers
be different in their chemical or physical states, represen
by f1(xW ) and f2(xW ). It is thought that the different loca
fields imply the preferences of the two monolayers for d
ferent local mean curvatures@12,14,23#. Hence the constrain
that the two monolayers must conform to the same lo
mean curvatures simply means that the different preferen
of the two monolayers cannot be satisfied simultaneou
leaving either one monolayer or both frustrated. Howev
the degree of the frustration due to such local transve
asymmetry can be minimized if a particular local mean c
vature is assumed. This particular value is the localbilayer

spontaneous curvatureand is approximated byC̄0(f1

2f2)/2, whereC̄0, having the physical dimension of th
inverse length, is a phenomenological constant that depe
on the material properties of the bilayer. This form of co
pling is precisely the bilinear coupling that has been p
posed in models similar to Eq.~2! to model the interplay
between in-plane degrees of freedom and membrane con
mations@8–17#.

The second form of intermonolayer couplingg12f1f2 is
introduced to describe the possibility that direct intermon
layer interactions may also depend on the physical or che
cal states of the monolayers and give contributions to
total free energy of a bilayer. Molecular interactions of d
ferent origins may be responsible for this effect. For e
ample, lipid molecules residing separately in the two mon
layers interact via van der Waals interactions that dep
both on the chain-conformational states and on the spa
packing of the interacting molecules and in turn on the lo
lateral densities of the two monolayersf1 andf2. The con-
tribution from the cohesive part of van der Waals intera
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tions may be modeled, to a first approximation, by the p
posedg12f1f2, where g12 takes on negative values. In
bilayer containing charged lipids, electrostatic interact
may lead to coupling between the two constituent monol
ers, in situations where ionic concentrations of the aque
solutions surrounding the bilayer are very low so that
hydrocarbon interior of the bilayer appears ‘‘transparent’’
electrostatic fields@24#. In this case,f1 andf2 may repre-
sent, respectively, the densities or concentrations of
charged lipids in the two monolayers andg12 can be either
positive or negative if the charged lipids in the two mon
layers carry electric charges of either the same or oppo
signs, respectively. There is experimental evidence that
termonolayer coupling of this nature is relevant in bilaye
formed from lipids with charged head groups@25#. Thus, for
a given system of lipid bilayer, the phenomenological para
eterg12 will contain contributions from the different source
and its specific value will depend both on molecular deta
and packing properties of the consitituent lipids and on
lution properties of the aqueous environment surrounding
bilayer. Conventional approximations have so far neglec
this form of direct interactions between monolayers@12,14#,
based on the argument that such direct interactions may
be significant in their strength compared to other relev
effects such as bending and that neglecting them will
therefore lead to qualitative changes in our understandin
the systems@12#. However, we will demonstrate with ou
study that this coupling, even when it is weak, plays a n
trivial role in determining the characteristics of in-plane o
dering processes in a bilayer.

The last physical parameter in Eq.~2! to comment on is
s0. It has the physical dimension of energy per unit area,
of surface tension, i.e., it measures the energy cost of
creasing somearea of a bilayer. Its definition and physica
interpretation depend on whatarea is being considered. If
the area refers to the total area of a lipid bilayer in equilib
rium with some external reservoir of the lipid molecules,s0
is simply proportional to the chemical potential of the res
voir. However, only when the bilayer is subject to mecha
cal constraints@26# doess0 become a relevant parameter
determining the thermodynamic behavior of the bilayer:
has been understood that no matter whats0 is, a freely sus-
pended~i.e., under no mechanical constraints! fluid mem-
brane always appears crumpled on large length scales@27–
29#. When mechanical constraints are present,s0 may be
related to the strength of the mechanical force needed
enforce the constraints. There are different ways of imp
menting mechanical constraints on a fluctuating fluid bilay
such as those discussed in@26# or that of confining the bi-
layer between two walls@12#. In this paper we choose, fo
the sake of simplicity, to represent mechanical constra
with a planar frame of a total areaAp , which the bilayer
spans, and we carry out our calculations in this represe
tion. It turns out that ifs0 exceeds some threshold valu
~which depends on other physical parameters such as
peraturek, etc.!, the mechanical constraint can be appli
with a finite mechanical force~see below! and the bilayer in
its thermodynamic equilibrium state assumes a certain
tended, instead of ‘‘crumpled’’ mean conformation. The a
of this mean conformationAm may be different fromAp , but
scales with itlinearly, and it is also different from the mea
-
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value of the total area of the bilayer^A& as a consequence o
thermal fluctuations of the bilayer surface about the me
conformation. The mechanical forcet can be related to the
amount of mechanical worktDAp required to change the
frame area byDAp ~in turn, changeAm) and is often called
frame tension@26,30#. Its magnitude must be larger thans0

in the presence of surface fluctuations and also has a spe
dependence ons0 @31#. Equivalently, an effective tension
may be associated with the area of the mean bilayer con
mation Am , which is also related to the ‘‘bare’’s0. Since
most of our work only concerns the determination of me
bilayer conformations and does not explicitly treat the th
mal fluctuations of the bilayer surface, the ‘‘surface tensio
that we will refer to should be thought of as the effecti

tension, denoted bys̄0, that is conjugate to the area of th
mean equilibrium conformation. When in-plane fields a
their ordering become relevant, such an effective tens
contains also contributions from the ordering of the in-pla
fields. To make the contributions of the in-plane fields e
plicit, we defines̄0 to be the effective tension in a bilaye
state where the in-plane fields are disordered. It is impor
to keep in mind that this effective tension contains the
tropic contributions from all the degrees of freedom asso
ated with the membrane surface and therefore depend
temperature and the bare physical parameters contro
those degrees of freedom.

Our last remark on the phenomenological model~2! con-
cerns the different types of symmetry it possesses. Firs
all, the physics of a bilayer must be invariant under trans
tions and rotations in the three-dimensional Euclidean e
bedding space. This symmetry is reflected in the fact that
surface-related quantities present in the model are invari
such as the total surface area and the mean surface curva
Second, Eq.~2! is invariant under the ‘‘relabeling’’ or ‘‘in-
version’’ of the two monolayers, which is formulated a
$f1↔f2 ,H→2H% and will be referred to asO1 hence-
forth. This symmetry is simply a formal expression of th
statement that the two monolayers composing the bilayer
considered to be subject to identical macroscopic phys
and chemical conditions and that their phenomenolog
physical properties are considered identical as well. Sit
tions where this symmetry is absent have been considere
other studies@9,32#, but are outside the scope of the prese
paper. One of the most interesting thermodynamic con
quences of the model~2! concerns this symmetry: Unde
certain conditions the two monolayers actually acquiredif-
ferent macroscopic states, despite the symmetry of the f
energy. In other words, the symmetry may be spontaneo
broken.

In addition to the above two types of principal symmetr
the phenomenological model~2! also possesses various a
ditional types of invariances, which hold as different phy
cal parameters are set to zero. Whenm is zero, the ‘‘re-
duced’’ form of Eq.~2! is invariant under an operationO2,
defined as$f1→2f1 ,f2→2f2 ,H→2H%. The origin of
this invariance lies partly in the formal symmetry of th
Landau-Ginzburg free energy@Eq. ~3!# with respect to trans-
formation$f i→2f i% whenm50. This formal symmetry is,
within the framework of thef4 theory, a statement about th
fact that there are two coexisting phases below a crit
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point. O2, together withO1, forms another operationO3
5O1O25O2O15$f1→2f2 ,f2→2f1 ,H→H%, which
also leaves Eq.~2! invariant whenm is set to zero@33#.

Finally, another observation concerning symmetry m
help us understand the role of the parameterg12, which
characterizes the strength of direct intermonolayer inte
tions. It is easy to see that for a bilayer constrained to be
theflat configuration~conforming to the frame!, the two con-
stituting monolayers become independent of each other w
g1250. Consequently, whenm50, the effective (H50)
free energy respects the symmetry of each of the monol
free energies with respect to$f i→2f i%, i.e., is invariant
under the following two transformations:$f1→2f1 ,f2
→f2 ,% and $f1→f1 ,f2→2f2 ,%. A nonzerog12 explic-
itly breaks this symmetry. We will elaborate on the point
more detail when we present and discuss our results.

We end this section of description of our phenomenolo
cal model with an alternative expression of Eq.~2!, which
will be more convenient to use in our calculations and
written in terms off[(f12f2)/2 andc[(f11f2)/2:

Fbilayer5E dAH s01
k

2
~H222C̄0fH !1

c

2
~¹W f!21

tD

2
f2

1
g

4!
f41

c

2
~¹W c!21

tD1g12

2
c2

1
g

4!
c41

g

4
f2c22mcJ , ~6!

wheretD[t2g12/2. We will sometimes refer tof andc as
the ‘‘difference field’’ and the ‘‘average field,’’ respectively

III. MEAN-FIELD CALCULATIONS: LATERAL
ORDERING IN FLUID LIPID BILAYERS

In this section we focus on one aspect of the thermo
namic behavior of a fluid lipid bilayer~lateral ordering pro-
cesses! to elucidate some of the thermodynamic con
quences of the intermonolayer coupling mechanisms
discussed in the preceding section. Our calculations
based on ‘‘mean-field’’ considerations, which assume t
the thermodynamic state of a bilayer is determined by m
mizing the free energy given in Eq.~6! with respect to both
the external and the in-plane fields. In other words, we
only neglect the effects of strong in-plane fluctuations,
also do not explicitly treat the conformational fluctuations
the bilayer. Furthermore, we mostly consider situations
which the mean equilibrium geometrical conformation of t
bilayer is, if it is indeed not flat, not too far from the fla
configuration. These considerations about the external
grees of freedom are valid whens̄0 is sufficiently large.

There are a number of physical parameters in the mo
@Eq. ~6!# to be dealt with:s̄0, tD , g12, g, andm, which all
have the physical dimension of surface energy density;k and
c, which have the unit of energy; andC̄0, the inverse of
which sets a length scale in the problem. It turns out that
precise values ofc and g do not influence the qualitative
features of the thermodynamic behavior of the mod
Hence, for computational convenience, they are set to 1.
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lowing this convention,Ac/g, having the physical dimension
of length, then becomes the normalization unit for all leng
scales in the problem. This implies that henceforth, all phy
cal parameters should be considered dimensionless, nor
ized by the chosen energy unitc and the length unitAc/g. k

and C̄0 are considered to take on some fixed values, fr
which we obtain a~normalized! length scalelsc, where
lsc

22[kC̄0
2 . The inverse oflsc may then be thought of as a

effective bilayer spontaneous curvature. We will thus co
sider situations wheretD , g12, m, and s̄0 are the relevant
control parameters.

Specifically, we have in mind a bilayer membrane th
spans a flat frame of areaAp and assumes a nearly flat equ
librium configuration. Hence the external degrees of freed
can be formulated precisely in terms of

RW 5„x,y,Z~x,y!…5„xW ,Z~xW !…, ~7!

wherexW5(x,y) are coordinates designated to the flat fram
andZ(x,y) is the deviation from the flat configuration. Bot
the surface area and the mean curvature of the bilayer
then be expressed in terms of the first and second deriva
of Z and expanded in a power series ordered byZ. Z(x,y) is
considered small enough~for nearly flat configurations! so
that in the following calculations aharmonic approximation
will be used in treatingZ(x,y), in which the surface-related
terms in the free energy are approximated only by terms
are quadratic inZ.

The minimization of the free energy~6! can be performed
conveniently in the Fourier space where all the fields
expressed in terms of their Fourier components

Z~xW !5E d2q

~2p!2
Z~qW !eiqW •xW,

f~xW !5E d2q

~2p!2
f~qW !eiqW •xW,

c~xW !5E d2q

~2p!2
c~qW !eiqW •xW. ~8!

Minimization with respect toZ(qW ) leads straightforwardly to
the relationship between the equilibrium bilayer deformat
and the equilibrium configuration of the in-plane differen
field f,

Z~qW !5
2kC̄0

kq21s̄0

f~qW !. ~9!

Substituting this relationship into the free energy~6! yields

Fbilayer5s̄0Ap1 f effAp , ~10!

where f eff is an effective free energy density associated w
the in-plane fieldsf(qW ) andc(qW ), given by
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f effAp5
1

2E d2q

~2p!2
@pf~qW !f~qW !f~2qW !

1pc~qW !c~qW !c~2qW !#

1E dx dyF 1

4!
f41

1

4!
c41

1

4
f2c22mc G .

~11!

pf(qW ) andpc(qW ) have the expressions, respectively,

pf~qW !5tD1q22
lsc

22q2

q21jc
22

, pc~qW !5tD1g121q2,

~12!

wherejc5Ak/s̄0 is a length scale determined by two com
peting physical effects, the bending rigidity and the surfa
tension.

Equation~11! shows that in the presence of the biline
coupling term, removing the ‘‘out-of-plane’’ degrees of fre
dom introduces an extra contribution topf(qW ), as expressed
by the last term inpf(qW ). One of the most important conse
quences of this effect is that, when the lateral ordering p
cess, for example, the phase separation, takes place, th
dered phases are often not macroscopically homogene
but rather appear to be spatially modulated, i.e., consistin
domains that alternate between the two coexisting orde
states and have characteristic sizes. The mechanism und
ing this appearance of specific length scales in lateral or
ing processes can be revealed by analyzing both Eqs.~11!
and ~12! ~for the case ofm50, for simplicity!. Mean-field
solutions for the two fieldsf andc are given by minimizing
f eff with respect to both of the fields and the signs ofpf(qW )
and pc(qW ) primarily determine whether nonzero solutio
for f or c exist. Sincepf(qW ) andpc(qW ) are proportional to
the reduced temperaturet;T2Tc when other parameter
lsc, jc , and g12 are held fixed, reducing the temperatu
amounts to decreasingpf(qW ) and pc(qW ). At high tempera-
tures, bothpf(qW ) andpc(qW ) are positive; consequently, bot
f andc are zero, corresponding to a flat, completely dis
dered (D) state. As the temperature is lowered, the minim
of either pf(qW ) or pc(qW ) reaches zero first at a particula
temperature and then becomes negative, leading to non
solutions of the corresponding field. This particular tempe
ture marks the onset of instability of the flat and disorde
state of the bilayer with respect to the ordering of either
f field or the c field. The presence of the extra term
pf(qW ) imparts a nontrivial characteristics to the ordering
f field: In a weak-tensionregime, wherejc

2/lsc
2 .1 or

0,s̄0,s̄0* where

s̄0* 5k2C̄0
2 , ~13!

the minimum ofpf(qW ) occurs at anonzero q0 given by

q0
25jc

22~Ajc/lsc21!. ~14!
e
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Hence a specific length scale 1/q0 is associated with the ap
pearance of nonzero solutions off. In other words, the or-
dering off proceeds through the appearance of ordered
mains of particular size 1/q0.

The basic physical forces driving this appearance of
dered domains of well-controlled sizes are also apparen
see. The length scalejc defined above is in fact a lengt
scale for crossover: The bending rigidityk, whenf becomes
ordered ~nonzero!, tends to bend the bilayer towards th
nonzero spontaneous curvature (C̄0f) in order to minimize
the bending energy and is more effective on short len
scales, whiles̄0 more effectively controls deformations o
long wavelengths and tends to keep the bilayer flat on la
length scales.jc separates these two different regimes
length scales. The compromise between these two compe
effects leads to the selection of the specific length scale 1q0.
Similar mechanisms have been discussed in other stu
@9,12,14#.

In the actual determination of the phase diagrams,
focus on four types of principal states that are obvious
consider:~i! the flat, disordered~D! state, characterized b
f50 andc50; ~ii ! a flat, homogeneously ordered~HO1!
state, represented by

f50, c5constÞ0, ~15!

where there isno bilayer transverse asymmetry, i.e., whe
the two monolayers are in exactly the same ordered st
~iii ! a flat, homogeneously ordered~HO2! state, represented
by

f5constÞ0, c5const, ~16!

in which the two monolayers actually assume different sta
as a nonzero value of thef field indicates; in other words
the bilayer develops aglobal transverse asymmetry; and~iv!
curved, spatially modulated~M! states, described by

f5f~1! cos~ q̄0x!, c5c~0!1c~2! cos~2q̄0x!, ~17!

where the bilayer acquires alocal transverse asymmetry, in
contrast with the HO2 state.

The description of the field configurations in the mod
lated states given in Eq.~17! is an ansatz. The basic reaso
for using this ansatz lies in the length-scale selection ass
ated with the ordering of thef field. The part of the ansatz
for thec field follows from an observation of the nonlinea
ity of the effective free energy~11! or, more specifically, of
the termf2c2 in Eq. ~11!. If the sum fieldc were expressed
in terms of the cosine series of periodq̄0, f2c2 would yield
a nontrivial term involving the lowest mode
(f (1))2c (0)c (2). It is not difficult to see that whenf (1) be-
comes nonzero, having nonzeroc (0) and c (2) of opposite
signs may lead to lower free energy. Thus we propose
ansatz to include this possibility. The numerical eviden
presented in Ref.@14# also supports this ansatz. Another r
lated point is that in our ansatz the wave number of
modulation q̄0 is also considered as a variational variab
along with all the relevant amplitudes. Finally, our ansa
implies that the domains in the modulated states appea
the form of stripes. In other words, we do not expect he
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agonal or circular domains to appear. Such modulated ph
were predicted in both Refs.@9# and @32# only for bilayer
systems where thermodynamic or chemical conditions
plicitly impose a bilayer transverse asymmetry; in oth
words, the phenomenological free energies for those syst
will no longer have the symmetry under the bilayer invers
(O1). Such cases are not considered in this paper.

The relative energetics of the types of principal states
scribed above are then calculated, numerically and ana
cally whenever possible, as different control parameters
varied. The results of the calculations are summarized in
following series of two-dimensional phase diagrams wh
two specific physical parameters are chosen as the co
parameters@34#. Analytical expressions that can be obtain
for certain phase boundaries and special points are releg
to the Appendix.

Figure 1 is a phase diagram illustrated in the param
space spanned bytD and g12, but for a fixed value oflsc

22

51 and a fixed value ofjc
22[s̄0 /k50.04 @36# and for the

special value ofm50. This phase diagram serves to illu
trate the basic predictions from our study of the phenome
logical model~6!. All the principal states under our consid
erations appear in this phase diagram as equilibrium pha
The physics underlying the appearance of these diffe
phases in different regions of the parameter space can lar
be understood intuitively. The flat, disordered~D! phase ap-
pears in the high-temperature region. The low-tempera
HO1 phase, where the two monolayers are in an ident
ordered state, shows up in the region where the direct in

FIG. 1. Mean-field phase diagram in the parameter sp
spanned bytD andg12, for jc

22[s0 /k50.04,lsc
2251, andm50.

The labeling of the phases is the same as defined in the text.
that the M1 region is actually a region of two-phase coexistence
M2 region that of four-phase coexistence, the HO1 region tha
two-phase coexistence, and the HO2 region also that of two-p
coexistence. Dashed lines represent lines of second-order p
transitions; solid lines represent lines of first-order transitions
particular, the line ofg1250 is a line of four-phase~illustrated in
the cartons where solid lines and dashed lines represent the
degenerate states each of the two monolayer fields can ass!
coexistence. Open circles denote critical points~a Lifshitz point
PL , two critical end pointsPce,1 and Pce,2); filled circles denote
points of multiple-phase coexistence (Pm). Analytical expressions
for some of the transition lines are available and are given in
Appendix, as well as the coordinates of the special points.
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monolayer interaction is attractive (g12,0) and relatively
strong, for such an interaction favors commensuration of
two monolayers. As this direct interaction becomes less
tractive and then repulsive, the energetic requirement for
monolayer to behave commensurately with the other
comes less stringent; consequently, either a modulated
phase, where the bilayer develops a local transverse as
metry, or the HO2 phase, where the bilayer acquires a glo
transverse asymmetry, becomes the equilibrium phase,
pending on both the interaction and the temperature.

The presence and the relative energetics of the D, M,
HO1 states have already been largely understood for the
cial case whereg1250, due to the previous studies reporte
in Refs.@12# and @14#. However, our study reveals two ne
results. First, there can exist more than one type of mo
lated bilayer structures as distinct thermodynamic phases
thermodynamic singularities may arise, associated with
transitions between the different modulated structures.
particular, by adopting the ansatz given in Eq.~17!, we have
discovered that, for a range of values of 0,jc

22,jc,M
22 ~see

the Appendix for the definition ofjc,M
22 ), a line of second-

order transitions~ending at two critical end points,Pce,1 and
Pce,2) exists, separating two distinct types of modulat
structures: a M1 structure, wheref (1) is nonzero, butc50,
i.e., where the modulation is solely associated with the d
ference field, and a M2 structure, where the average fielc
also becomes nonzero and modulated~at half of the wave-
length forf), with nonvanishing amplitudes ofc (0) andc (2)

@37#. Schematic representations of the surface conforma
and the in-plane states of a bilayer in these two types
modulated phases are given in Fig. 2. Forjc

22.jc,M
22 , the

region of the M2 structure disappears and the two critical e
points merge with the multiple-phase coexistence pointPm .

Second,g12, representing somedirect intermonolayer in-
teractions, plays a relevant role, even when it is small,
determining the thermodynamic behavior of a bilayer.
Fig. 1 shows, in the low-temperature region,g1250 is actu-
ally a line of coexistence of four degenerate phases, the
HO1 phases and the two HO2 phases, as a result of the
type of additional symmetry discussed in Sec. II. A nonze
g12, however small, performs the role of a ‘‘symmetr
breaking field’’ and removes this degeneracy: Wheng12,0,
the HO1 phases are the equilibrium phases; wheng12.0, the
HO2 phases become the equilibrium phases, where the
layer transverse symmetry is spontaneously broken.

Similarly, both the second-order D-M1 and M1-M2 tra
sitions can be put in the context of symmetry~see Sec. II!. It
is easy to see that, at the D-M1 transitions, the symmetry
the free energy~6! under the operations represented byO1
andO2 is spontaneously broken, while the symmetry und
the operation ofO3 is still respected by the M1 structure
The second-order transition between the M1 and the
structures finally breaks theO3-associated symmetry.

Situations where the ‘‘chemical potential’’m is nonzero
are perhaps more often encountered than the special ca
m50. In Fig. 3 we display a collection of six phase diagram
illustrated in the parameter space spanned bytD andm, for
six different values ofg12, respectively. The values oflsc

22

andjc
2 are the same as those used for obtaining Fig. 1. E
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of these phase diagrams has its distinct topology an
change in the value ofg12 may lead to the evolution of the
topology of thetD-m phase diagram from one type to a
other. This figure again demonstrates the relevance of
direct intermonolayer interactions. Several characteristic f
tures of thetD-m phase diagrams can be related to the ph
diagram in Fig. 1. In most of the six phase diagrams,
second-order transition from the flat, disordered D to
modulated M phases persists over a range of small value
m and can be seen as the evolution of the second-order D
transition in Fig. 1 asm becomes nonzero. The HO1-M tran
sition becomes first order at the two tricritical pointsPce,1
and Pce,2. This mechanism is the same as that discusse
Ref. @12#. The critical pointPc,M terminating a line of two-
M2-phase coexistence directly corresponds to the sec
order M1-M2 transition line in Fig. 1. Finally, the lines o
coexistence between the HO1 and HO2 phases in the p
diagrams shown in Figs. 3~e! and 3~f! are also the direc
consequence of the four-phase coexistence line in Fig. 1@as
also shown in Fig. 3~d!#.

The phase diagram@Fig. 3~d!# for the special case wher
g1250 deserves further comments on its relation to
phase diagrams obtained in some of the previous wo
@12,14#, which deal with only the situation ofg1250. The
gross topology of the phase diagram in Fig. 3~d! is similar to
those of the previously obtained phase diagrams. Howe
two specific features can be distinguished in Fig. 3~d!: First,
there exists a line of the first-order transitions between

FIG. 2. Schematic illustration of the corresponding surface c
formation (Z) and individual profiles of the two in-plane fields (f1

andf2) of a bilayer in~a! the M1 structure and~b! the M2 struc-
ture. The local bilayer transverse asymmetry is indicated by
phase shift in the profiles off1 andf2.
a
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modulated phases~of the M2 nature! that ends in a critical
point Pc,M; second, below the point of multiple-phase coe
istencePm two HO2 phases also exist on them50 line, in
addition to the two HO1 phases that have already been
dicted @12#.

What is also clear from Fig. 3 is that the M2 structure
the more prevalent form of modulation predicted by t
model, occupying considerable regions in the parame
space. One characteristic of this structure is that the wa
length of modulation 1/q̄0 varies with the control parameters
in contrast to the M1 structure, in whichq̄0 remains fixed at
the value given by Eq.~14!.

Of course, the phase diagrams presented above donot
imply theabsolutethermodynamic stability of the considere
principal phases. In other words, there may exist in so
regions of the parameter space other types of phases that
have lower free energy than those we have considered.
likely candidate of such other phases would be a phas
‘‘vesicle chains’’ ~if the bilayer surface is thought to keep i
topology of a single connected surface!. It could be imagined
that this phase may have lower free energy in regions of
temperatures and low effective surface tensions, than
HO1 and the HO2 phase, for example. In fact, the relat
thermodynamic stability of lamellar phases~HO1-like! to
vesicle phases has been explored in Ref.@11#.

At the outset of this section we pointed out that our me
field calculations are only valid when a ‘‘sufficiently large
s̄0 is present. We end this section with a remark on
breakdown of the mean-field considerations. Our mean-fi
calculations state that the free energy density of an equ
rium state is given by@see Eq.~10!#

f bilayer[
Fbilayer

Ap
5s̄01 f eff~ s̄0 /k,lsc

22,tD ,g12,m!, ~18!

where f eff is the equilibrium contribution from the in-plan
fields and is always negative~the disordered phase corre
sponds to the zero value!. Hence there will be loci in the
parameter space wheref bilayer becomes zero. For example
we may imagine a situation in which all parameters buttD

are fixed. ReducingtD leads to more and more negative va
ues of f eff , and at some particular value oftD , the negative
contribution from the in-plane fields cancels outs̄0. Hence
the mean-field theory itself suggests that below this point
mean-field state is no longer thermodynamically stable. I
certain, therefore, that in the absence of mechanical c
straints the mean-field approach does not apply.

IV. FIELD-THEORY CALCULATION:
CONFORMATIONAL INSTABILITY

The purpose of this section is again to demonstrate
importance of theintermonolayer coupling, in particular, the
aspect represented by the bilinear coupling between m
brane conformation and the in-plane difference field, by
amining the manifestation of the coupling in the conform
tional behavior of fluid lipid bilayers. The mean-fiel
calculations presented in the preceding section require
there should be sufficiently strong mechanical force or ‘‘s
ficiently large’’ s̄0 to suppress strong conformational flu
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FIG. 3. Collection of six phase diagrams i
the parameter space spanned bytD andm, calcu-
lated correspondingly for six different values o
g12: ~a! g12520.75, ~b! g12520.5, ~c! g125
20.25, ~d! g1250, ~e! g1250.25, and~f! g12

50.5. jc
2250.04 andlsc

2251 are again fixed, as
in Fig. 1. The conventions for labeling th
phases, phase boundaries, and special points
the same as those used in Fig. 1. In additio
dotted lines are used to indicate the loci in th
parameter space where the corresponding mo
lated structures are of the M1 type, althoug
these loci are not phase boundaries. Three ty
of critical points appear in these phase diagram
two tricritcal points Ptc,1 and Ptc,2, a critical
point terminating the line of coexistence betwe
two HO1 statesPc,HO , and a critical point termi-
nating the line of coexistence between two M
states. Points of multiple-phase coexistence
Pm , Pm,1 , and Pm,2 . Analytical expressions for
the two tricritical points are given in the Appen
dix. Note that only the M2 and the HO2 region
in these phase diagrams are regions of~two-
phase! coexistence, corresponding to the dege
eracy of the states inf and 2f. Note also the
difference between the scale of them axes used
in ~a!–~c! and that used in~d!–~f!.
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tuations of a fluid membrane and keep it in a nearly
equilibrium configuration. In that case, the conformation
behavior of the membrane appears ‘‘trivial.’’ In this sectio
we extend our analysis beyond the scope of the mean-
theory and consider limit situations whens̄0 approaches 0
i.e., when mechanical constraints are no longer enforced

Such situations are particularly interesting. As we ha
already~briefly! mentioned~see Sec. II!, a fluid membrane
under no mechanical constraints does not maintain exten
conformations, or rather, appears crumpled, on large len
scales even when the in-plane degrees of freedom are
relevant. In fact, there exists a specific length scalejp , the
persistence length, beyond which the bilayer surface lose
correlation in its local orientations@38#. In other words,jp
separates two distinct regimes of length scales (l ), corre-
sponding to two types of membrane conformational beh
t
l

ld

e

ed
th
ot

-

ior: ~a! On small length scalesl<jp , the bending rigidity is
in control and the membrane appears flat~if H050) and is
stable against thermal fluctuations and~b! on large length
scales l @jp , conformational entropy dominates and th
membrane surface collapses into a large collection
strongly fluctuating ‘‘branched-polymer’’-like configuration
@18#.

The physical mechanism underlying the crumpling of
fluid membrane is purely entropic and lies in the nonlinear
inherent in the bending elastic energy in Eq.~1!, which leads
to interactions between bending modes of different wa
lengths. The consequence of such interactions is that theef-
fective bending rigidity governing a long-wavelength (l )
bending mode is actually smaller than that controlling
shorter-wavelength (l 0) bending mode. In other words, th
membrane appears ‘‘softer’’ on large length scales. Stat
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cal mechanical analysis of Eq.~1! has provided a quantita
tive expression of this entropic effect@27,28#:

ke,0~ l !5k~ l 0!2
3kBT

4p
lnS l

l 0
D . ~19!

An estimate of the persistence length, which has been c
firmed by computer-simulation studies@39#, follows imme-
diately from Eq.~19!,

jp. l 0expS 4pk~ l 0!

3kBT D , ~20!

corresponding to the length scale at whichke,0 becomes
zero. Model systems of lipid bilayers that are common
used in laboratory studies do not exceed micrometer-ra
sizes; also, they typically havek( l 0);10kBTroom, wherel 0
.10 nm. A quick calculation based on Eq.~20! reveals that
jp for these systems is far larger than their sizes. Hence
conformational stability of these systems is ensured in p
ciple, as is often the case. However, we will argue with o
results that such statements may no longer hold when
plane fields and their thermal fluctuations become releva

It is intuitively easy to anticipate that the effects of the
mal fluctuations of in-plane fields, specifically, the differen
field f, would be enhancing conformational fluctuations
the membrane surface. In fact, the mean-field theory alre
points towards such effects. For simplicity, we will only co
sider situations where the physical parameterm is zero and
the generalization to cases wherem is nonzero is fairly
straightforward. The mean-field theory, which neglects
nonlinearity of the bending energy, then makes the follow
prediction for the height-height (Z-Z) correlation function
G0(qW ) in the high-temperature region where the in-pla
fields are disordered:

1

G0~qW !
5

kq4

kBTF12
lsc

22

j̄f
221lsc

221q2G , ~21!

wherej̄f , defined byj̄f
22[tD2lsc

22 , may be considered a
an effective correlation length for the in-plane differen
field. Hencej̄f increases as the temperature is reduced.
effective bending rigidityke , identified as the coefficient o
theq4 term in the small-q expansion@40# of 1/G0(qW ), is then
given by

ke5kS 12
lsc

22

j̄f
221lsc

22D . ~22!

The effect that the fluctuations in thef field have in reduc-
ing the bending rigidity is made apparent by the mean-fi
correction to the bending rigidity. Furthermore, Eq.~22!,
which predicts the onset of strong surface fluctuations asj̄f
becomes divergingly large, itself signals the breakdown
the mean-field theory when the membrane is no longer s
ject to mechanical constraints.

Taking into consideration the nonlinearity of the bendi
energy, therefore, becomes necessary in dealing with
presence of strong surface fluctuations. To this end, we
pand our model free energy~6! in terms of the power serie
n-

e

he
-
r
n-
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f
dy

e
g

e

d

f
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he
x-

in Z(x,y) and include anharmonic terms up to the quar
power in Z ~while retaining only quadratic terms in the in
plane difference field! and perform a simplified analysis o
the free energy based on a field-theory approach@41#. In this
analysis, the renormalization of the physical paramet
other thank is neglected, an approximation that does n
affect our principal conclusions~a more systematic analysi
based on renormalization-group theories is presented e
where @42#!. The present analysis yields a ‘‘renormalized
height-height correlation functionG(qW ) that contains nonlin-
ear corrections calculated to one-loop order and the effec
bending rigidity is again obtained as the coefficient of theq4

term in the small-q expansion of@G(qW )#21. An inspection of
the expanded elastic free energy@28# shows that only two
Feynman~self-energy! diagrams contribute to theq4 term of
the renormalized@G(qW )#21. These diagrams have the sam
topologies as those involved in the calculation that led to
renormalized bending rigidity given in Eq.~20! @27#; the
only difference is in the expression for the linear~harmonic!-
order correlation functionG0(qW ), which in our calculations
is given by Eq. ~21!. Furthermore, the nonlinear~anhar-
monic! contribution arising from the bilinear coupling be
tweenf and the mean curvature generates only vertices
make no contributions at the one-loop level. Summing o
the two diagrams thus gives the renormalized@G(qW )#21 ~in
the form of a Dyson equation!

1

G~qW !
5

1

G0~qW !
2kBTS 11

1

2D F E
p0

L

p2G0~pW !Gkq4, ~23!

where p051/l and L51/a0 represent the long- and shor
wavelength cutoffs, respectively.

An expression for the effective bending rigidity follow
from the evaluation of the integral in Eq.~23!:

k̄e~ l !5k~a0!S 12
lsc

22

j̄f
221lsc

22D
2

3kBT

4p F ln~L l !1
1

2

j̄f
2

lsc
2

lnS 11 l 2j̄f
22

11L22j̄f
22D G .

~24!

The first term is the result from the harmonic approximatio
which we have already encountered in Eq.~22!. The second
term arises from the one-loop correction and consists of
parts: The first is the same nonlinear contribution given
Eq. ~19! and the second is a nontrivial nonlinear contributi
from the bilinear coupling, which, to our knowledge, has n
been reported and considered before.

From Eq.~24! an effective persistence lengthj̄p , ‘‘renor-
malized’’ by the fluctuations of the in-plane~difference!
field, can be derived as a function of the effective in-pla
correlation lengthj̄f by settingk̄e( l )50 and replacingl by
j̄p in the equation.j̄p decreases as the in-plane correlati
length increases at lowering the temperature. To illustr
semi-quantitatively the extent of the reduction in the me
brane persistence length due to the in-plane fluctuations
consider a particular situation where the persistence len
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coincides with the in-plane correlation length. The order
magnitude of the persistence length then depends onk(a0)
and lsc. A numerical investigation shows that, with a re
sonable estimate oflsc5O(10)a0 and k(a0)510kBT, the
persistence length will be of the orderj̄p5 j̄f5O(102)a0.
By comparing this witha0exp@4pk(a0)/3kBT#, the ‘‘bare’’
persistence length, it is easy to see that the reduction in
magnitude of the persistence length is rather striking. F
thermore, this remarkable extent of the reduction is very
bust, not significantly influenced by the precise value of
cutoff.

V. DISCUSSION

We have presented a phenomenological model for fl
lipid bilayers, which focuses particularly on the interplay b
tween monolayer cooperative phenomena and intermo
layer coupling within a bilayer. One basic aspect of int
monolayer coupling, which has its origin in both the bilay
architecture and the flexibility typical of a fluid bilayer, ha
been described in many previous studies of lipid bilayers
terms of a bilinear coupling between local transverse as
metry ~represented by the difference in the local ord
parameter fieldsf1 andf2 of the two monolayers! and local
mean curvature of the bilayer. However, we have included
our model another aspect of intermonolayer coupling, wh
arises from direct interactions between monolayers and h
modeled it in terms of the simplest phenomenological fo
g12f1f2. Furthermore, we have modeled with a plan
physical frame and an effective physical tensions̄0 the ef-
fects of mechanical constraints that stabilize bilayer con
mations.

Our study of the phenomenological model has larg
been based on a mean-field analysis, in which neither
thermal fluctuations in the in-plane fields nor those in
bilayer conformation are explicitly dealt with. The main r
sults of the analysis are summarized in Figs. 1–3 in term
a series of phase diagrams illustrating both the equilibri
phases, a flat, disordered~D! phase, a flat, homogeneous
ordered~HO1! phase with no bilayer transverse asymmet
another flat, homogeneously ordered~HO2! phase, but with
bilayer transverse asymmetry, and finally, phases of mo
lated~M1 and M2! structures and thermodynamic transitio
between the different phases.

Similar types of mean-field calculations have been p
formed in other studies of phenomenological models of li
bilayers and modulated phases have also been pred
@9,12,14#. Our analysis has not only been more systema
and extensive in exploring the effects of different pheno
enological parameters, but more importantly has also
vealed two new results. First, we have shown that, in diff
ent regions of the parameter space, modulated structure
different characteristics, specifically M1 and M2, can ex
and changes from one structure to another can involve t
modynamic singularities~phase transitions!. Second, we
have demonstrated the nontrivial role of the direct int
monolayer interaction~as represented byg12), even when it
is weak. Explicitly, we have shown that an attractive int
monolayer interaction (g12,0) tends to reduce the region o
stability of the modulated phases in the parameter sp
while a repulsive interaction (g12.0) always favors phase
f
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where the bilayer transverse symmetry is spontaneously
ken, either locally~as in the modulated phases! or globally
~as in the HO2 phase!. Moreover, we have pointed out th
effect of ~even weak! g12 as a ‘‘symmetry-breaking’’ field,
which in the low-temperature region of the parameter sp
selects the HO1 phases while attractive and selects the
phases while repulsive.

The model we have presented and studied is only a p
nomenological one and even at this level only a minimal o
We have no concrete knowledge on how to establish a s
cific, quantitative link between some of the model para
eters and a given experimental system of lipid bilayers.
example, the parameterC̄0 has not been quantitatively an
systematically analyzed and determined; we have introdu
an effective tensions̄0 to model the effects of mechanica
constraints, while in experiments mechanical constraints
often imposed in the form of confinement~as in large mul-
tilamellar vesicles!, a fixed area-volume ratio~as in the case
of single large unilamellar vesicles!, etc. Also the model,
being phenomenological, inevitably misses some specific
tails of complicated interactions at work in an experimen
system, as well as some other degrees of freedom prese
a lipid bilayer, e.g., the molecular-tilt degrees of freedo
However, we still believe that the predictions of this mod
are useful as guidelines to systematically study and as
through experiments the complexity of the ordering pheno
ena in a fluid bilayer. First of all, a very crude estimate bas
on the order-of-magnitude values of some of the relev
physical parameters shows that the predicted domain size
the modulated phases@see Eq.~14!# fall into the range of
length scales that are experimentally accessible or enc
tered. Typical values of the effective surface tension (s̄0) in
giant vesicles have been measured@30#, which span the
range from e27 ~0.001! to e21 ~0.4! dyn/cm. The often
quoted value of the bending rigidityk is 5310213 ergs
;10kBTroom. If c is chosen to be comparable tokBTroom and
C̄0

21 is taken to be in the range of tens of nanometers, the
is straightforward to see that the period of modulation
predicted to lie in the range of several hundreds to thousa
of angstroms. Moreover, the phase diagrams we have
sented constitute a generic picture of the complexity t
might be encountered in experiments. As the lipid spec
composing a bilayer are varied~which a varyingg12 may
represent!, as the molecular composition of a lipid mixture
changed~which may amount to changingm), or as the area-
volume ratio is tuned~which may result in a change ins̄0),
individual sequences of equilibrium phases and thermo
namic transitions observed may resemble or differ from o
another. At the same time, however, the phenomenolog
theory also indicates the possibility of ‘‘simple’’ mecha
nisms underlying complex phenomena.

Some of the characteristic features of the predicted ph
behavior may have already been observed in certain exp
mental systems. For lipid bilayers of PC near their ma
~chain-melting! transitions, the relevance of the coupling b
tween bilayer deformations and the monolayer density fie
~or chain conformational states! has been supported by ex
periments@17#. Thus, in the presence of a nonzero surfa
tension or, equivalently, a nonzero osmotic pressure dif
ence across a bilayer or a confinement potential, one m
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expect that the main phase transition is accompanied b
approximately sinusoidal modulation of the bilayer confo
mation as well as a periodical modulation of the density
thickness profile characteristic of the M2 structure, as
corresponding Landau-Ginzburg description involves a n
zero ordering fieldm}T2Tm @see Eq.~5!#. Recent experi-
ments @43# in fact show that upon cooling from the high
temperature fluid phase, PC lipid bilayers transform into
metastable ‘‘ripple phase’’Pb8(m), which is stable for hours
@44#. This phase is characteristically different from the we
known primary ripple phase, with a larger periodici
~around 270 Å, compared to a typical 130 Å of the prima
ripple!, a symmetric profile of the ripple~contrasting the
asymmetric profile of the primary ripple phase!, and an ap-
preciable lateral variation in the bilayer thickness@43#. This
Pb8(m) may turn out to be the same as a so-calledL-Pb8
phase observed in earlier freeze-fracture studies@45#. The
bilayer structure in theL-Pb8 phase also has a symmetr
profile of modulation and sometimes characteristic groo
are found on the ridges of the ripples. Analysis of the late
defects suggests that there is no acyl-chain tilt with respec
the overall bilayer plane@46#. These properties would be th
characteristics expected of the predicted M2 structure of
model should the thickness of each monolayer be though
depend on the corresponding in-plane fieldf i @5#. Moreover,
upon further cooling, thePb8(m) phase becomes unstab
with respect to a nonmodulatedLb8 phase@43#. This se-
quence of phase transitions and the characteristic phase
volved overall seem to be qualitatively consistent with t
predicted cooling scenarios that involve modulated structu
~see the phase diagrams in Fig. 3!. This rather plausible in-
terpretation of thePb8(m) would imply that the ripple phase
involves alternating domains where lipid chains appear ei
ordered or disordered. In fact, this idea has been advoc
by several other studies@47,48# and is supported by the ex
perimental finding that more than 20% of the lipids in th
particular ripple phase appear in a state more character
of the fluid phase of lipid bilayers@49#.

Another class of lipid systems that display phenomena
length-scale selection are systems of lipid mixtures. Bila
surface modulations of very long lengths with accompany
compositional variation have been found@50#. For example,
in PC-cholesterol mixtures that show coexistence of the
and the liquid-ordered phases@5# domains have been ob
served by using scattering techniques to have sizes that r
from 40 to 60 Å and that depend on both the temperature
the overall composition of the mixtures@51,52#. It has also
been found that the domain size and the associated~scatter-
ing! intensity actually grow as the temperature is decreas
This trend is also predicted for the M2 phase by our mo
calculations.

We note, however, that the mean-field analysis discus
so far is based on the specific model~2!, which presents
perhaps the simplest phenomenological description of a fl
lipid bilayer and therefore inevitably implies certain simp
fication of some physical effects. One such effect, neglec
in our model, is the dependence of the bending rigidity o
monolayer on the corresponding in-plane field. Theoret
studies of lipid bilayers of mixtures@53# have predicted a
linear dependence, i.e.,km(f i)'k01akf i , and recent ex-
periments@54# have started to explore this issue. Taking th
an
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linear dependence into account would give rise to terms s
ascH2 andfcH, which could also be written down base
on considerations of the inversion symmetry of the bilayer
would be expected that the presence of these terms in
bilayer free energy leads to certain modifications of o
mean-field predictions. However, it may be argued that th
terms do not affect the existence of the D-M1 and M1-M
transitions, although they must lead to quantitative chan
both in the precise locations of these transitions in the
rameter space and in the wavelength of modulation of
modulated phases. It may also be readily seen that th
terms will not influence the transitions between those pha
in which the bilayer remains flat.

Of course, thermal fluctuations, which have been
glected in the mean-field analysis, may also modify t
mean-field predictions in various aspects. The modula
phases in our analysis are considered to be striped. Base
an argument formulated by Toner and Nelson, however
may be anticipated that thermal fluctuations eliminate a
long-range correlations between the orientations of
stripes. In other words, topological defects may be expec
to decorate the modulated~striped! phases@55#. The region
of stability of the modulated phases in the mean-field ph
diagrams may also be modified by thermal fluctuations
has been established that in systems involving mechan
of length-scale selection thermal fluctuations can destab
a homogeneous, disordered phase towards a modu
phase and furthermore change the nature of the trans
between the two phases from second order to first order@56#.
Thus, in the presence of thermal fluctuations, the D-M ph
boundaries may appear in different locations in the para
eter space from those shown in the mean-field phase
grams and may be of first order rather than second orde

In Sec. IV we have extended our analysis of the pheno
enological model~2! beyond the scope of the mean-fie
theory to investigate some of the macroscopic effects of
intermonolayer coupling in situations where mechanical c
straints are no longer enforced and consequently strong
tuations in the bilayer conformation are expected. Qual
tively stated, our main conclusion is that strong fluctuatio
in the in-plane fields, through the bilinear coupling betwe
bilayer local mean curvature and the in-plane differen
field, enhance bilayer conformational fluctuations and t
interplay leads to a dramatic reduction of the effective be
ing rigidity. This result implies that in the absence of exte
nal mechanical constraints, a fluid lipid bilayer may lose t
correlation between its surface normals beyond a persiste
lengthj̄p @38,57# that can be reduced by ‘‘turning on’’ stron
fluctuations in the in-plane fields. As our estimate made
Sec. IV shows, this effective persistence length may be
duced to a range that is likely accessible to laboratory
periments. In other words, the ‘‘crumpling instability,’’ o
the conformational collapse, of a bilayer may be observe
realistic length scales~see Sec. IV!. Moreover, this mecha-
nism may provide a minimal explanation for the drama
influence that cosurfactants can have on the structural st
ity of amphiphilic multimembrane systems@38,57#.

Finally, it is worth pointing out that the bilayer softenin
effect of in-plane fluctuations is also present in bilayers t
are under mechanical constraints, although it does not im
conformational instability of the bilayers. This effect has a
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tually been used to interpret the phenomenon of ‘‘anomal
swelling’’ observed in multilamellar systems of on
component PC lipids when the systems are cooled tow
their main phase transition points@17,58#. The measuremen
of an effective or ‘‘apparent’’ bending rigidity by an analys
of flicker noise ~bilayer shape fluctuations! of individual
vesicles has also demonstrated this effect@59#.
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APPENDIX

This appendix collects the available analytical expressi
for some of the lines of phase transitions and special po
in the phase diagrams shown in Figs. 1 and 3. In Fig. 1
line of the second-order transitions between the D and H
phases is simply given by

tD52g12. ~A1!

The critical line separating the D and the M1 phases is
scribed by

tD5a~q0!, ~A2!

whereq0 is the wave number of modulation whose definiti
is given in Eq.~14!

a~q0!5jc
22SA jc

2

lsc
2

21D 2

. ~A3!

The line of first-order transitions between the HO1 and
M1 phases is expressed as

tD5
2A 3

2 g122a~q0!

A 3
2 21

. ~A4!
ef
to

.

s

m

s

ds

.

ch

s
ts
e
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The regions of the M1 and the M2 structures are separa
by a line of second-order transtions, given by

tD52~2q0
21g12!2A2~a~q0!12q0

21g12!
224q0

4.
~A5!

Finally, the first-order transitions between the M1 and t
HO2 phases fall onto a straight line, described by

tD5
2a~q0!

A 3
2 21

. ~A6!

Some of the special points denoted in Fig. 1 are de
mined as follows:PL is the point of intersection of the tran
sition line given by Eq.~A1! and the line described by Eqs
~A3! and~A4!. The two critical end points,Pce,1andPce,2are
the points of intersection of the critical M1-M2 line@Eq.
~A5!# with the first-order M12HO1 line @Eq. ~A4!# and the
first-order M12HO2 @Eq. ~A6!#, respectively. For a fixed
lsc, jc,M

2 defines the value ofjc
2 at which Pce,1 and Pce,2

merge.
In Fig. 3 the critical surfaces separating the hig

temperature~D! phase from the modulated~M! phase are
given by

~ tD1g12!c
~0!1

1

6
~c~0!!35m,

tD5a~q0!2
1

2
~c~0!!2. ~A7!

The coordinates of the two tricritical pointsPtc,1 andPtc,2
are obtained by substituting into Eq.~A7! the following two
expressions forc (0), respectively:

c~0!56A @g121a~q0!14q0
2#@g121a~q0!#

2@g121a~q0!14q0
2#1@g121a~q0!#

.

~A8!
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