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Stochastic dynamics of the diffusive Haken model with subthreshold periodic forcing
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We demonstrate a noisy resonance phenomenon in a winner-takes-all neural network. We derive an expres-
sion for the theoretical transition rate between states and show that this rate matches the driving frequency. We
further show that this effect persists when a diffusive coupling is introduced into the network leading to a more
robust system[S1063-651X98)00308-0

PACS numbegps): 87.10+e€, 05.40+j

[. INTRODUCTION Haken'’s original model the network evolves according to the
gradient dynamic$3]
Neurobiologists have noted that in many regions of the
cortex, groups of adjacent neurons appear to form higher . av(q) 2
functional units that serve to analyze some particular stimu- Un= "~ q =[1=2A(a)+aa]dn, @)
lus feature such as the orientation of an edge of an iikge A
or the position of a sensory stimulus on the skiih Neural  with
network models of the formation and behavior of these co-
herent structures in brain activity generally involve two as-
pects:(i) a selection mechanism that determines the center of
a localized excitation in response to an input, did an
interaction mechanism that serves to spread the responsad
over a neighboring region of the network, leading to a dis-
tributed response. HakgB] has constructed a simple neural A _2 P 3
network model to dynamically implement the selection (@)= = Gn )
mechanism. The network obeys a competitive gradient dy-
namics and has ground states that are strictly localized statagpresents a form of global coupling. Note that the lack of
a single neuron is active and all others quiescent. Recembcal interactions implies that there is no natural network
work [4-6] has extended this model to take into account aopology. Figure 1 shows a plot of the potenti4lq) for a
simple interaction mechanism, leading to a distributed reprenetwork of two neuronsg, andgs.
sentation. Equation (1) is invariant under the transformatiamp—
Another important subject currently the focus of much —q. Moreover,q,(t)=0 for all t>0 andn if q,(0)=0 for
attention is that of noise induced phenomena in biologicahll n. For suppose that,(t)=0 andqg,,(t)=0 for all m
systems. There is grov’ving evidence that the phenomenon afn. Settingg,=0 on the right-hand side of E¢1) shows
stochastic resonance(SR) [7] may play a role in the €x- 4t (1)=0. That is,q, cannot cross over to the negative

trgme sensitivity exhibited by variou; Sensory neurons. th‘?eal axis. The network converges to one of the stationary
cricket cercal systeni8], human tactile sensatiof®], and g ias of the potential, that is

hair mechanoreceptors in the tail fan of the crayfish].
However, these processes all occur at the periphery of the
nervous system, and it is interesting to consider whether
similar phenomena may occur within the brain. In fact, SR

has been shown to occur in a hippocampal sliceitro [11] Potential V
but it is not clear whether this effect serves any purpose or is

1 1 1
V(== 7A@+ 5@ 72 d @

merely an artifact. 02
In this paper we examine and analyze the dynamics of the

periodically driven noisy Haken model. We show that it un- 0

dergoes a resonant type behavior which is reminiscent of 03

stochastic resonance, and suggest a biological interpretation
of our results.
-0.5 Activation q,

Activation q 0.5 -1

II. HAKEN'S COMPETITIVE NETWORK
FIG. 1. Plot of the potential for the two neuron nondiffusive

Consider a single-layer network df neurons and denote network. Minima are shown atl,0), (0,1), (—1,0), (0,—1) and a
the state of thenth neuron byg,e R with n=1,... N. In maximum at(0,0). All quantities are in dimensionless units.
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oV all have the same size basins of attraction. For a truly bio-
——=g3+(1-2A)q,=0 (4)  logical system one would want the facility to learn new cat-
On egories, and also to emphasize or deemphasize others. In
T . fact, Haken’s original formulation includes variable synaptic
for all n. Thus the equilibria of Eq(1), which we denote by g0aths but for our purposes we set them all to be equal to

g, satisfy g,=0 or g,=y2A—1 with A determined self- ynity and thus neglect their effect.
consistently. Hence the set of stationary states can be divided

into N+ 1 classes, each of which is determined by the num-

ber p of excited sites. For a givep, A=p/(2p—1) and the lll. THE DIFFUSIVE HAKEN MODEL

corresponding potential at a stationary state is It is clear that competitive networks with single output
neurons are not robust to degradation: if a single neuron is
v = _ L_ (5) destroyed then the entire corresponding category is lost. Re-

(8p—4) cently, one of ug5] has shown that the inclusion of a diffu-

: . . . sive term in the potential of the original Haken model can
Linear stability analysig3,6] establishes that only the sta- ye|gcalize the ground states. For certain values of the cou-

tionary statep=1 are stable, whereas all other stationaryjing strength there can exist a balance between the effects of
states are either unstablp<0) or saddle pointsg>1).  tne diffusion and of the localizing potential, which yields
For each state in the claps=1, there exists a single excited pey states that are localized excitatidos bubbles distrib-

site, ng say, such thag,= &, . MoreoverA=1 andV®  uted over many neurons. These “bubbles” represent a very
=—1/4. These are thdl strictly localized ground states of robust coding of information since neighboring cells aid the
the network. There are two homogeneous stationary statégconstruction of lost information following the “death” of

given by thevacuumstatep=0 and thedissipativestatep @ single cell. Furthermore, Kohondd5] has shown that
=N. The former satisfies,=0 for all n andV(®’=0 and such “bubbles” enable the construction @bpographic

the latter has maps
We now impose a-dimensional square lattice topology
_ 1 on the network; the diffusive Haken model has a potential
On=—"=—=Vn (6)
2N-1 N
U(a)=+ —dn)?+V(q), 8
and (=32 (An= 0"+ V() ®
viN = — N 7 where(m,n) denotes summation over nearest neighbor pairs.
(8N—-4)° The first term on the right-hand side of E®) represents a

o o ~diffusive interaction with coupling strengtia. Using the idea
In the largeN limit the dissipative state becomes pointwise of an anticontinuum limit[16] a uniform continuation from

identical to the vacuum state but has lower eneMf)=  the zero diffusive coupling¢=0) case can be performed.
—1/8. Also note that for an infinite lattice the dissipative We denote the state of the network B «,A). Stationary
state is marginally stable. states satisfy

We conclude that the ground states of the system consist
of strictly localized states in which only one site is excited
and the remainder guiescent; the particular ground state se- (1—2A)q,+ qﬁ+a E (dm—9n)=G(Q,a,A)=0. (9)
lected depends on the initial data and/or additional applied (m,n)
inputs. If there are no external inputs, then the excited neu- ) T
ron is the one with the highest initial activity. In other words, ~OF @ 9iVenA=A4, Ao>1/2, anda =0 the equilibria of Eqg.
the network dynamically realizesveinner-takes-alstrategy.  (9) satisfyq,=0 or g,= = y2A,—1 (if negative solutions
Such networks are typically termezbmpetitivenetworks. ~ are includedt Denote the JacobianG/dQ by 6G. Since
Competitive networks signify their outputs by the firing of a [ 6G(Q,0,A0) Jnm= 8nmAn With N\y=—(2A,—1) if q,=0
single neuron, or a small proximal group of neurons. Theyang) .=2(2A,-1) if g,#0, 5G is invertible at the station-
thus classify data by the firing of the same neusbfor all ry point (Q,0,A). Hence one can use the implicit function

inputs .that belong toa single category. Electrophysiologic_ heorem to show that for sufficiently small coupliagthere
recordings from single cortical cells indicate that in the brain™

the representation of sensory information is not encoded b§XiSt local continuations of ead@ for sufficiently smalle:

the global activity of the entire cortex, but rather by the firing[2)- Furthermore one can show that to a first approximation

patterns of small groups of neurofeee Ref[12], and ref- each state has a potential

erences therejn Competitive networks therefore provide ru-

dimentary models of how perception and categorization oc- Unmin(@)~Vmint da. (10

cur in real brains[13]. It can also be shown that such

networks are equivalent to associative memofik4, and In fact, such states persist for all values®in one dimen-

Haken has demonstrated that this particular network can pesion, whereas fod>1 there exists a critical coupling(d)

form associative recall of digitized photogradiag. beyond which localized ground states cease to exist and the
One obvious drawback to this model is its inability to effects of diffusion dominate. The critical coupling can also

learn. Output states are “hard wired” into the dynamics, andbe computed5] and is found to be
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! ETN
= —_— .| [z X
a(d) 10d° (11 _ 0.05Hz o
£
The analysis of Ref[5] holds for more general couplings % J(m\ [ N N
than just a diffusive one, the only criteria being that the £ Y mete)
coupling strength decays exponentially with distance. @
=
b
IV. STOCHASTIC DYNAMICS OF THE NONDIFFUSIVE &
MODEL g
2
We select two neurons=1,2, say, and drive the network 2
with the weak periodic bias
1n(t) = 6[ 5,,1C0Z(Q) + 5, SIP(Q)]. (12) 0 005 01 015 02 025 03 035 04

noise o (sec -172)

We further imposes small, so that the bias itself is unable to  FiG. 2. variation ofh, with noise strengthr for the nondiffu-
cause transitions between states, i.e., we have a subthreshe|ge network. Three different values of the driving frequemcgre
forcing. We also introduce a local additive Gaussian noisghown, and as increasesr,, increases. The inset shows a typical
for each neuron. This corresponds to an internal noise okxponentially decreasing histogram of residence times: time is in

say, thermal origin. Equatiofl) then becomes multiples of T, (see texk
V() maximized. However, the connection between Gammaitoni
an(t)=— q +oéa(t)+14(0), (13)  etal’s definition and a maximum in the power spectral den-
dqn sity of the system, which is the signature of stochastic reso-

nance, has yet to be established. In fact this loose end is
where £,(t) is a zero-mean Gaussian white noise procesgresently the subject of some controversy, and for this reason
with (£n(1))=0 and (&n(t1)én(t2))=3mnd(t1—ty). Thus  we hesitate to describe this effect as stochastic resonance, but
the noise is uncorrelated between neurons, and has variantcestead name it a “resonance in the sense of Gammaitoni
D=2 et al” With this caveat, Fig. 2 shows how; for the Haken
Numerical simulations show that at low noise levels thenetwork varies with noise strength. Several values of the
network tends to remain in one of two possible output statesjriving frequency are shown. It is seen that the maximal
and that switching events between these two states occwalue of h; occurs at a nonzero value @f and that asv
exceedingly rarely. In the limit of zero noise these statesncreases, this maximum is shifted to higher noise levels.
correspond ta,= 6, andq,= &, ,, and the occupied one Noise assisted synchronization and a dependence of the op-
depends on initial conditions. As the noise is gradually in-timal noise strength on the driving frequency are features
creased the network begins to jump between output stateshared with systems displaying stochastic resonance.
with a transition rate that is partly entrained with the driving It is not a priori obvious that we can reduce the effective
force. For high noise levels the network randomly flips be-dimensionality of our system. However, for low noise levels
tween output states and there is no synchrony with the drivg,,(t)~0Vn# 1,2, and thus to a good approximation ELB)
ing signal. Simulations also show that in the entrained rereduces to a two-dimensional system=1,2) withV given
gime there is a clear separation of time scales for the systerby Eq. (1) for N=2. In the positive quadrant the potential
the two scales are the time to relax to an output stgig  V(q;,9,) has two minimag, at (1,0) and (0,1), and a
and the mean residence time of an output stafe, with  saddle atg,=(1/\/3, 1A/3) with V(qs)=—1/6, see Fig. 1.
te>treax- We therefore make the adiabatic assumption angince the periodic forcing is chosen to be positive valued the
neglect the relaxation time. system is retained in the positive quadrant and thus one can
To quantify the behavior of the network we tabulate andneglect the effects of the minima at-(,0) and (0;-1).
histogram the residence times of an output stathich is  Recall that the system remains in the positive quadrant in the
equivalent to the transition time out of the sja@epending  absence of any noise or external forcing. We may therefore
on the level of noise, the resulting distribution typically dis- reduceV to a two-dimensional bistable potential, provided
plays peaks centered at that € is not too small and the noise is not too large.
To qualify as a resonance phenomenon, some internal fre-
(14) quency of the system must match the driving frequency. In
Ref. [17] it was proposed that resonance takes place when
the driving frequency matches, oresonatesvith the mean
where To=7/{) is the driving period. These peaks are su-transition rate due to noise of the unforced system. It was
perimposed on an exponentially decaying backgro(see  further suggested that this occurs whiepis maximal. In
inset to Fig. 2. We denote the height of tHeth peak byh,.  fact, whenh, is maximal very few transitions occur at other
Eachh, passes through a maximum as a function of bothharmonics, and thus the first harmonic dominates the histo-
noise strength and the forcing peri?]. In Ref.[17]itwas  gram. Under these conditions, the mean first passage time,
suggested that for a particular driving frequeney: Ty, which is equal to the first moment of the histogram, is close
stochastic resonance is attained at the particular nois® the driving period. Thus we justify naming this effect a
strengtho for which the height of the first harmonib,, is  resonance.

1
T,= p—§>T0, peZ
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FIG. 3. The matching of the theoretical escape ratéth twice
the driving frequency. 03 J
We assume that all transition events occur at the saddle
point, reasoning that transitions at all other points are expo- o
nentially less likely. It can therefore be shown that the mean'§
escape rate from a given minimum in an unperturbed multi- § o1s L |
dimensional multistable potential is given by the Kramers 8
rate formula[18] &
A detH(q,) —26V
r(o)=5- - 2 (15 0 | . . .
|deH(qs)] o 100 120 140 160 180 200
lattice site n
The HessiarH of the potential has components . )
FIG. 4. Two snapshots of the evolution of the network with
2 diffusive couplinge=0.5: before and after the network has flipped
v ; ; :
_ between states. For clarity the low noise case is shown.
mn— (16)
dqmdQn
V. STOCHASTIC DYNAMICS OF THE DIFFUSIVE MODEL
and is evaluated at the minima, , and the saddleys. A is For concreteness, consider a one-dimensional lattice and

the positive eigenvalue of the Hessian of the potential at thge|ect two neurons separated byattice sites withr suffi-
saddle, andV=Vs—V,=1/12 is the height of the potential cijently large such that the ground states centered at the two
barrier at the saddle. For our system the prefactor in(E8.  sjtes have very little overlap. As in the nondiffusive case we
has the value 0.39. introduce local additive noise together with a periodic stimu-
Resonance occurs when the time for the system’s meagation of the two selected neurons given bgo(Qt) and

residence in one minimum is close to half the driving periodg sir?(Qt), respectively. The equations of motion are thus of
[17]. This is equivalent to the condition=2v. Therefore, the form
given a driving frequency we may experimentally ascertain

oopt, the optimal noise level for resonance in the system. au(q)
Using Eq.(15), o,p; determines ,,;, the corresponding the- qn(t)z — +aén(H)+1,(1), (17
oretical escape rate. Thus we may compggg with the Un

original driving frequencyv. Figure 3 shows plots af(o)

versus noise strengtlhr, and 2v versus optimal noise Wwith U(q) given by Eq.(8). A resonant effect is again ob-
strengtho. It is seen that the optimal noise level matchesserved with the system switching between the states local-
well that predicted by the theory. ized about the two centefsee Fig. 4.

Note that in the absence of any periodic forcing the his- Plots ofh; versuso are shown in Fig. 5 for various cou-
togram of residence times is essentially a decaying exponempling strengths. We observe that @ass increased, the maxi-
tial as predicted from Kramers’ theory, which is in contrastmum of h, corresponding to resonance, is shifted to lower
to the multimodal structure shown in Fig. 2. If one deter-noise levels. This may be explained by noting that increasing
mines the variation in the height of the histogram at a resi«w causes a decrease in the barrier he@b{«) and thus an
dence time equal to one of the periods of the forced case, oniacrease in the unperturbed transition rété). We indicate
also sees the histogram height pass through a maximurbelow a method for calculatingU («).

However, this occurs at much lower noise lev@ks., there is Whene is sufficiently large, the localized solutions of the
no matching of time scalg¢®nd is simply an artifact of the one-dimensional diffusive Haken modgh the absence of
sampling. noise and external forcingare distributed over many lattice
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FIG. 6. The variation of the instanton amplitudeg, andq,
with coupling strengthw. The dashed curve shows the singlet am-
plitude [Eg. (25)], the bold one shows the doublet amplityde.
(28)]. Simulation results are also shown: results for the singlet state
are represented by a plus sign, and for the doublet state by a circle.

. . . Inset: The variation of the barrier height with coupling strengtis
sites suggesting that they can be approximated by a CORhown both analyticallysolid line) and numerically(circles.

tinuum version of the model. The potential governing the
gradient dynamics of the continuum model takes the form

FIG. 5. Variation ofh; with noise strengthr for the diffusive
network. Three different values of the coupling strengthare
shown, and as increasesr,, decreases. The driving frequeney
is held constant.

Keeping only the lower energy solution, the amplitude of

) the instanton as a function of the couplingis
°° a [ dq(x) qax)* A 1
U[q,a]=f dx| = — - =

Cw 2\ ox 4 2+§A2' o -
(18) Qo(a)="\/2=1—\/1——]. (25)
o o

It follows that the energy of the instanton [isote that Eq.

with

(10) is only valid in the limita— 0]
A[q]=J dx g(x)? (19
K Umin(a):F(qO(a)-a)u (26)
and « a renormalized diffusion constant. By means of theyhere
Euler-Lagrange equation, stationary solutions of the dynam-
ics satisfy qg
i F(do,@)=—2aqy+4aqi— 2a (@D

d°q
a— =(2A[q]-1)q(x) —q(x)*. (20) _ . . .
dx We can now determine the barrier height for transitions be-
tween two single-instanton states centered at different sites
Localized states can now be interpreted as finite energy corx, andx, (cf. Fig. 4 under the assumptions thef,x, are

figurations or instantons of the continuum model. Usingwell separated on the lattice and that the most probable path
phase-plane analysis it can be shown that for fixeshe has  of escape is via a saddle consisting of an instanton doublet

the following analytical expression for an instanfeentered  centered about the two selected sites. Solving the self-
atx=0) [4,6]: consistency condition foA we find that the height of each
cos Hox
V2a

. instanton in the doublet is
The amplitude of the instanton is

a(x)=do

(22) » >
q(’)(a)=\/2:<2— \/4—j), with gy<qo. (298
o o

Figure 6 shows how the amplitudes of the single instanton,
do=V(2A—1)2. (220 and a member of the doublet, vary with the coupling strength

) ) N a; as expected, the continuum limit becomes invalid for
This leads to a self-consistency condition forof the form  gmall .

The energy of the doubléassuming that the local inter-
A=4Va(2A-1), (23)  action energy of the two instantons can be negleded

which has real solutions provided that Ug(a)=2F(qy(a),a)+8aqgy(a)? (29)

a=a=1/16. (24)  and the required barrier height is
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SU(a)=Uy(a)—Uyin(a). (30)  nottoet al.[19] have shown that SR may be exploited during
the recognition of static visual images that have been dis-
The inset to Fig. 6 demonstrates that the barrier height raported by time varying noise. Chialvo and Apkarig20] and
idly decreases with increasing coupling strength, as we eXRijani and Simonottg21] report on psychophysical experi-
pect. One consequence of this is that there appears to bepgents where SR is observed in the perceptual transitions
tradeoff between the strength of the local coupling,and  petween either facet of an ambiguous figure, such as the
hence the system’s ability to withstand damage, and the royecker cube. In both Ref20] and Ref.[21] the image, or

bustness of _the system to hoise. Strong COUp"‘?@O_'Z) ambiguous figure, is given a weak periodic transformation
means that information .abOUt an output state Is d'Spersegorresponding to a weak signal but the noise has different
over many neurons, making a resilient system. However, thi

8rigins. If we ascribe a ground state of Haken’s model to

also means that the bgrrle_r height betwggn output stattes bgéch possible interpretation of the ambiguous figure, then our
comes so small that noise induced transitions become impof- ti i fth its. Riani and Si it
tant, even for low noise levels. Thus the network is unable t(trea ment IS suggestive of tnese results. iani and SImonoto
function as a classifier. 22] use the aIter.natllve formulauon of a cc_)nstralnt sz_msfac-
tion network, which is equivalent to a suitably configured

Hopfield network, to model their experimental results. Such
a formulation was first introduced by Rumelhattal. within

We have shown that a competitive neural network modethe context ofconnectionist modelf23], but was then ex-
with weak noise and a subthreshold driving signal can extended by Riani and Simonotto to demonstrate stochastic
hibit a resonant behavior that is akin to stochastic resonanceesonance. Connectionist models describe psychological
Stochastic resonance is a phenomenon whereby random flughenomena in terms of such mental processes as ideas and
tuations and noise can enhance the detectability and/or thechemata, and are thhggh levelexplanations: in the model
coherence of a weak signal in certain nonlinear dynamicabf Rumelhartet al. each node of the network corresponds to
systemgsee, e.g., Ref.7], and references therginVe have a possible hypothesis about the network’s input, rather than
also seen that this resonance persists when diffusive coupliran individual neuron. In contrast, competitive networks at-
is introduced into the model: a feature which induces stabiltempt to provide a low level description of neural activity,
ity and robustness into the network. We believe that Haken'sind therefore such models may help to explain how a neural
model provides a useful model for classification tasks in thearchitecture can subsume mental activity.
same way that the Hopfield model, though biologically im-  Despite superficial similarities, the behavior of our model
plausible, is a viable metaphor for associative memory.  must be distinguished from “array enhanced stochastic reso-

Recalling that a main impetus for investigating competi-nance”[24] which is a noise induced phase locking phenom-
tive networks is to model mental categorization tasks, weenon. Our analysis has shown that for small diffusive cou-
look for commensurate resonant behavior in biological syspling the stochastic Haken model can be approximated by a
tems. Recent psychophysical evidence suggests that stochdsstable system and thus has more in common with tradi-
tic resonance may feature in high level brain function: Simo-tional SR models.

VI. CONCLUSION
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