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Equation of state for fluid mixtures of hard spheres and linear homonuclear fused hard spheres
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This paper develops a theoretically based equation of state for fluid mixtures consisting of hard spheres and
linear homonuclear fused hard spheres. The procedure is based on the equation of state previously developed
for monocomponent athermal fluids. The equation of state only requires two parameters, namely the averaged
effective molecular volume of the molecules in the mixture and the corresponding effective nonsphericity
parameter. These parameters can be obtained from the geometry of the molecules forming the mixture. The
results are in excellent agreement with simulation data and compare favorably with those obtained from other
theories for athermal fluid mixturepS1063-651X98)12508-4

PACS numbd(s): 05.70.Ce, 64.16:h

I. INTRODUCTION accurate for mixtures of highly asymmetrical molecyles).
Moreover, the nonsphericity parameter for large asymmetri-
For several decades, athermal fluids and their mixture§al polyatomic molecules must be calculated numerically,

have been the subject of a great deal of research from Which means that analytical equations of state cannot be ob-
theoretical viewpoint as well as with computer simulation, fained for those fluids and their mixtures. TPT and GF or

This is because these fluids have many properties in commo(ﬁ':llj th%oriﬁs apply to fﬂ?‘Xible chains, bUtf r:othto r.igidfmol—_
with real fluids but are simpler to understand and deal with €CU'€S: Perhaps one of the most successiul theories for mix-

Moreover, one of the most fruitful approaches for studyingturels. isblthe Btl)—|Shthe%ry, V(\j'r:ciICh.le anallyticalll, accurate, and
fluids with more realistic intermolecular forces is by means@PPplicable to both rigid and flexible molecules. However, it
iv@nly applies to fluids consisting of fused hard sphételS)

forces as a perturbation of repulsive ones, which in turn ar&°l€cules, but not to pure fluids or mixtures of convex mol-

often modeled through infinitely steep repulsive otentials.eCUIeS' ) .
9 y b rep P In a previous pap€rl4], an accurate equation of state for

To do so, the thermodynamic properties of the real fluid ar X X

usually expanded in power series of the inverse of the absf‘hard g;onvdex bo;b(HCB) ﬂu'd :cnlxturez wasddeviiop?d. It

lute temperature around the infinite temperature limit. At thig/@S based on the equation of state derived eaigf for
pure HCB fluids. In the present paper we will derive an

limit, real molecular fluids behave like athermal fluids, so X ¢ ¢ : t hard soh d i
that we must first know the properties of a suitable referenc quation of state for mixtures of hard spheres and linear
omonuclear fused hard spheres. Formally, the generaliza-

athermal fluid. The most convenient choice is one whose: . o

molecules are similar in shape to those of the real fluid. Th lon fr.om the equatllo'n of state of HCB fluid mlxt'ures tp that

same is true for fluid mixtures or mixtures containing nonconvex molecules is similar to
' fthe generalization from the equation of state of pure HCB

Although the Percus-Yevick equation for a mixture of _ ) X
hard spheres was solvet] in 1964, it was not until the early flu_lds to that for pure F.HS fImdBlG]._However, fof mixtures
dt is necessary to derive the required expressions to deter-

1970’s that a sufficiently accurate equation of state was d ) e
mine the effective molecular volumes and nonsphericity pa-

veloped[2,3] for this mixture. This can be considered the for the mi Th i q d h
starting point of an increasing interest in athermal fluid mix-rameters for the mixtures. These expressions depend on the
eometrical characteristics of the molecules that form the

tures. Nearly at the same time, the scaled particle theory™
(SPT) was developed4] for hard convex bodyHCB) fluid Ixture. . N .
mixtures. The SPT equation of state for mixtures was further Section Il summarizes th? derivation of the equation of
improved in several different way$,6] on a semiempirical state for pure ha}rd-body f'“"?'s-, In Sec. Il the equation 9f
basis. state for fluid mixtures consisting of convex molecules is
About one decade later, a theory for chain molecular fluigd€fived and further generalized to mixtures of nonconvex
mixtures, thermodynamic perturbation the¢FPT), was de- molecules. In Sec. IV, expressions are obtained that allow us

veloped[7,8]. Since then, advances in this field have speedetri0 de_termine the parameters ipvolved in the equation of state
up. In the 1990's, equations of state for athermal fluid mix-Of mixtures of spheres and linear homonuclear fused hgrd
tures have been derived from Percus-Yevié) theory spheres. Finally, in Sgc. V, we compare the results Wl'th
[9,10], bonded hard-spher@®HS) theory [11], generalized those from o;her theories and with simulation data, and dis-
Flory (GF) theory[12], and generalized Flory dimg¢6FD) ~ Ccuss the findings.
theory[13].
At present, all the above-mentioned theories suffer from I EQUAJ 'IAORI\EI)_(;';S\T(A;_EJEOSR PURE
some limitations. Those based on SPT are not expected to be
Consider a one-component fluid at number dengitpn-
sisting of HCB molecules. Leg®(0) denote the contact
*Author to whom correspondence should be addressed. value of the pair correlation function, anef¥ the average
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distance between the centers of a pair of molecules projecteal molecule excludes to any point of another molecule is
onto the normal to the surface at the contact point, with botlgreater than the molecular volurme as Fig. 1 shows. There-
averages being taken over all possible orientations of the pafore, we had to introduce an effective molecular voluni&

of molecules. LetS, ., be the surface area of the body de- and subsequently, an effective packing fractyqn, instead
fined by the center of molecule 2 moving around molecule Iof the molecular volume and the packing fractiop. More-
while the two molecules remain in contact. Then, the com-over, as the nonsphericity parameter cannot be obtained from

pressibility factor can be expressgt7] in the form Eq. (4) for nonconvex molecules, a definition bag@f] on

iy 1 the effective molecular volume was used. If this shape factor

HCB_ _a T avav is denoted bya., the resulting equation of state has the
For identical molecules$, , ,=2S+87R?, whereS is the ZMS=1+ a o Z%(yerr) — 1] 9)
surface of the molecule and the (1/47) multiple of the
mean curvature integral. This equation was shown to provide very good agreement
As a particular case for hard spheres of diameteex-  with simulation data for both homonuclegk6] and hetero-
pression(1) gives nuclear[19] FHS fluids.
ZHS— 1+ gﬂ'pa'?’gHS(O). 2) lll. EQUATION OF STATE FOR HARD-BODY

FLUID MIXTURES

For a given density, if we consider spheres with volume Let us first consider mixtures of HCB molecules. The
v=(m/6)c® equal to those of the HCB molecules, from Eqgs. generalization of expressidi) for these fluid mixtures is
(1) and(2), we easily arrive at

1
ZHCB_l 1 ( % 7TR3) o gaV(O) Z:%(B: 1+ g IE’] pXinS+jg-ﬁVgﬁV(0), (10)
o

Zs—1 " 2 v ) 2R g"™0)" ©®
o wherex; andx; are the mole fractions of typeandj mol-
where the nonsphericity parameter or shape factor ecules in the mixture. If we assume that the procedure out-

lined in the preceding section can be applied to each term of

a= R_S (4) the sum on the right-hand side, we will obtain
3v
has been introduced. ZHB=1+ 3 ;[ Z%(yij) — 11, (11
It has been showfil5] that the approximations b
o gaV(o) Whereyij IpXinUij , with Vij= (Uii +Ujj)/2-
R —Hs@~1 ) If we consider separately each of the pure fluids forming
9 the mixture, from Eq(7), we will have
and 2 _q
L iR —— =2y -1, (12
1
= | a+ : )%a, (6)
2 v

where the right-hand side is the excess compressibility factor
which are exact for hard spheres, that is, do 1, also hold ~ Of @ pure fluid of hard spheres, each of them with the same
very accurately for nonspherical HCB molecules with mod-volume as the HCB molecule. From E(L2), the excess
erate values ofv. Moreover, the small errors introduced by compressibility factor of a pure HCB fluid forming the mix-
these two approximations largely cancel each other out whefire, when scaled by means of the shape factor, reduces to

they are put into Eq(3). that of a pure HS fluid. Therefore, mixing all those “scaled”
Combining Egs(3), (5), and(6), we obtain the final form fluids together we will obtain a hard-sphere fluid mixture. So
of the equation of state for HCB fluids: that, introducing a suitable nonsphericity parametgy, for
the mixture, we can put
ZHCB=1+ o (ZHS-1), (7)
ZB—1
which showed[15] very good agreement with simulation T=Zﬂi(ymix)—l. (13
data, when the Carnahan-Starling equafib8] mix
o LHy+y?-y? Here, Z;15 is the compressibility factor of a mixture of hard
:ﬁ’ (8)  spheresyix=pvmix iS the packing fraction of the mixture,
y and
wherey=puv is the packing fraction, was used f@f'S.
Equation of stat€7) was extendedl16,19 to FHS fluids Umix:iEj XiX[Vij (14)

by taking into account the fact that, for them, the volume that
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that is, we would obtain the equation of state of the HS

mixture as the CS equation of state of a pure fluid having the
same packing fraction as the mixture. Although this seems
reasonable, the fact is that if each of the pure HS fluids obeys
the Carnahan-Starling equation, the compressibility factor
for the m-component hard-sphere mixture[3 3]

i LN O RS TZR < <15
M mp \1-43 (1-43)° (1-43)° (1-43)°)
(21)
a) b)
. _where
FIG. 1. Shaded area represents the difference between effective
and real molecular volume of a hard dumbh@)l as “seen” by a TP
hard sphere of the same diameter as each of the spheres of the §|=? xi(o-i)'. (22

dumbbell andb) as “seen” by a bigger sphere.

n the latter equatiom is the total number density ang is

is the averaged volume of a molecule of the mixture either o diameter of spheres of compon&nso thatZ, represents
HCB molecules or of hard spheres, because the spheres P PONE, 3 ep
e packing fractiory,,;, of the mixture. If we take into ac-

he H h h I h
species in the HS mixture have the same volume and t e count thatp=y,. /v, it is clear that thez, can be ex-

same mole fraction as molecules of spedies the HCB
pressed in terms of ., and the same is true for expression

mixture. (22). If we do so, we will arrive at an expression that does
On the other hand, the low density expansion of @) not coincide with the CS equation. In particular, at low

up to first order gives enough densities, instead of E48) we will have

UVij Umi HS H
ZﬁﬁB 1%2 aij4Yij:2 ajj i4}’ij — Znx— 1~ B:mx mix » (23
0] i U mix Uij
where B! is the second virial coefficient of the HS mix-
=AY, > aininﬂ. (15  ture, which, from Eq(21), is given by
[ U mix

1/3 213
As a particular case, for a mixture of hard spheres, taking Ej X'XIU'J“L?’Zj XiXjvi vj
a;j=1 for everyi andj we have BxHS= =1+3al>
> XiXjuj;
1)

v
Zni— 1~4ymixi2j XX~ (16) (24)

U mix

where o> is a sort of shape factor for the HS mixture,

which in general differs from unity, unlike what occurs for
the pure HS fluid. Therefore, from E¢l3), the compress-

ibility factor of HCB fluid mixtures can be expressed
Zmi 1%4ymix- (17)

If we take into account expressidh4), the preceding equa-
tion reduces to

ZHOB= 1 + o[ 255 (y i) — 11, (25)
Introducing this result into Eq13) we obtain m it Smbc Zmix

together with Eqs(14) and(19), andZ! > (ymix) given by Eq.

ZrljnﬁB 1~ amixdYmix, (18 (22).
Note that, for a binary mixture of spheres with different
so that sizes,a;;=1 anday,=1. This givesa;,=1 and, from Eq.

(19), amix=1, and Eq(25) is reduced to the equation of state
Uij (19 (22) for the hard sphere fluid mixture. Therefore, although
Umix expression19) has the form of a mixing rule, it is not ex-
actly so, because it is not used in combination with the pure
A|though expressior(lg) has been derived from a low HCB fluid equation of state to obtain the equation of state of
density expansion, it should hold at any density becayge  the HCB fluid mixture. ey, as given by Eq(19), scales
is a geometrical parameter that depends on the shape of tHe excess compressibility factor ohard sphere fluid mix-

=3 Vij
Qpmix= " XiX; aij

molecules forming the mixture but not on density. ture to obtain that corresponding to the HCB fluid mixture.

If a procedure similar to that used to derive Etg) were Equation(25), which showed 14] very good agreement
applicable for higher order terms in the expansion, we wouldvith simulation data for binary mixtures of hard spheres with
arrive at hard spherocylinders, can be readily extended to mixtures

having nonconvex molecules. To do so, we must introduce

ZHS —1~4y o+ 10y2 +18y3 . 4+ =Z(ymi) — 1, an effective packing fraction of the mixturgST =pve |

(200  wherev®" is the effective molecular volume of the mixture
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FIG. 2. Value of the ratioZH2 —1)/[ZH5 (yef y—1] for different HMD-HS mixtures as a function of the effective packing fractdh
of the mixture. Points: results from simulation data from Rg4] (circles and[22] (squares Continuous line: Eq(26). Error bars account

for the inaccuracyA Z in the simulation data, when known, accordingAt@/[ 275 (ye y—1].

and the effective nonsphericity parametey, for the same Where
reasons pointed out within the context of pure FHS fluids.
Thus, we will have y%fifX:iEj xixjyiej“ (27)

ZB =1+ a2 (ye)—1], (26 and
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FIG. 3. As in Fig. 2 for HMLST-HS mixtures. Points: simulation data from R28].
Z uiejff o8 o 1 (v 90) (9?0 d0?) (30
at XX oS — | a == ,
m|x ] |] U‘ranix ( ) 3 Ueff
with where o is the diameter of one of the spheres that form the
molecule and, for a FHS molecule consistingrogpheres
with center to center distant¢ethe effective volume is given
by [20
v 2 %o (29 bY[20]
ueff=—03 1+3L*—L2—3(n—1)h* 9} (32
and it is clear thaygf,=pvgy, andy'=puf'". 6 2(n—1)

For convex moleculesf]'=u;; anda *f—a;, so that for a
mixture containing only HCB moleculesm,x Umix and
o =amy, and Eq.(26) is reduced to Eq(25). Therefore,

where L*=L/o=(n—-1)I*, I*=Il/o, h*=hlo=(1
—1*2/4)}2 and 6=sin"%(1*/2), so that

Eq. (26) applies to hard-body mixtures regardless of whether  , eff 2 5L* L*29
they have only convex molecules or not. However, we must = 1+ —-3(n—=1)h*6— —*}
take into account the fact that, when spediendj are both do 2 2 4(n—1)h 32
convex molecules, it holds that;=v; and a;j=a; . By (32
contrast, when one, or both, of the molecules is nonconvey

vi"#u%" and aEﬁiaﬁ“, in general. This is because for non-
convex molecules, as Fig. 1 shows, the effective voluiile % eft 3L*?9
corresponding to moleculeas “seen” by another molecule o2 —mo|1+2L* —3(n—1)h* 6 8(n—1)h*
of the same species is not the same, in general, as the volume
v,J of a molecule of speciesas “seen” by a molecule of N L*3 N L*%g 33
specieg, which in turn is different fromy ", the volume of 16(n—1)?h*2 "~ 32(n—1)3h*3|’ (33

a molecule of speciesas “seen” by a molecule of species

i. For the mixtures in which we are interested here, namely

binary mixtures of linear fused hard spheres with hard

spheres, expressiol30), (31), (32), and(33) withn=2 or 3

can be used to obtainSh and aS", that is, the parameters
For a pure fluid consisting of linear homonuclear FHScorresponding to the interaction of two identical FHS mol-

molecules, the effective nonsphericity paramei&f can be  ecules. For the sphere-sphere interaction we will have

defined[20] in the form v =0v,,=(/6)c® and aSh=a,,= 1. These expressions also

IV. DETERMINATION OF THE PARAMETERS
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FIG. 4. Compressibility factor of HMD-HS mixtures for spheres ~ FIG. 5. As in Fig. 4 for spheres with volume, equal to the
with the same diameter as that of each of the spheres that form th@'umevl of the dumbbellgthe two lowest curvesand for spheres
dumbbell, as a function of the packing fractignof the mixture.  With v,=3v; (the two highest ongsin all cases«,=0.5. Points:
Points: simulation data from Ref§21] and [22], for x;=0.1  simulation data from Re{22] for I* =0.6 (circles and diamonds
(circles, x;=0.25 (squarel x;=0.5 (diamond$, x,=0.75 (tri- I* =1 (squares and trianglesContinuous line: Eq¥26) and (40),
angles, andx;=0.9 (crosses Continuous line: Eqg26), (40), and  indistinguishable at the scale of the figure. Dashed line: (Eg).

(45), indistinguishable at the scale of the figure. For clarity, eachFrom top down, for clarity the first, second, and third curve, and the
curve, and the corresponding simulation data, have been displacé@rresponding simulation data, have been displaced upwards six,
upwards a unit with respect to that immediately below. five, and one unit, respectively.

apply forvgflf anda21, the volume of a sphere as “seen” by These derivatives can be readily obtained from &%) in
a FHS molecule and the corresponding nonsphericity parantl® form

eter. Forvlz, the effective volume of a FHS molecule as * 2 %
“seen” by a sphere, expressi@Bl) is no longer valid unless vizeff:zgi{ 1+ L (203 :202 D 3h*(n—1)0% 0
the diameter of the sphere is equal to the diameter of each of 2 oy +1
the spheres that form the dumbbell. Fcoﬁ” definition (30) L2g% g (052=1)0% 0
also needs to be modified, because now, in general, we have — 927 192 — 2 (n-1)|, (39)
two different diameters. 4h*(n—1) 4h
To determinev$s, consider Fig. (b). We will have q
an
vei=" o 1+3|_*( 241) o3 (30% +5)
12 1 ”
6 2 Ulzeff:’]T(Tl[l‘f‘ 1+W
L*3 2
T 2n=1)2 . L*30% +L*a’z‘(a’z‘z—l)
(03 +1)8h*2(n—1)2 (o} +1)8h*?2
—3h*(n—1)60%?|, (34) 3L*2 L*4
0

_ * — _
3N =1)0- g =) O 3 ein—1)3

where now h=[(o+0,)%4—1%/14]1*?  6=arcsifl/(oy

* 2 * 2 *2__
+05)], and an asterisk on a quantity means that it is in units (=303°+20; +1)L*0  (03°-1)0

of ay. B 32h*3(n—1) T (D
Then, we can generalize definitig80) to the form (39)
1 eff. n eff
o= 1 vy ”1ze (35) It can be seen that, far;=o0,=0, expressiong34), (39),
12737 e and (39) reduce to Eqs(31), (32), and(33), respectively.
12
where V. RESULTS AND DISCUSSION
eff eff From the expressions derived in the preceding section,
UEY URY; . .
v;2= . o (36)  together with Egs(28) and (29), we have determined the
71 72 values of the parameters for the types of mixtures considered
d in this paper. They are listed in Table I.
an According to the considerations of Sec. lll, the ratio
e e 2 [2HB —17/[ 25 (ye" )—1] should be a constant for any den-
Urlrzeff:( ;2) +2( 12 ) +( 12) (37) sity. In order to test whether this is the case, we have plotted
doy do1d0; 302 this ratio in Fig. 2 for several different mixtures of hard
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spheres with homonuclear hard dumbbé&MMD) and in
Fig. 3 for mixtures of hard spheres with hard homonuclear
linear symmetric triatomicfHMLST). For Zmlx we have
used the simulation daf@21-24, and forz"> Eq. (21). Al-
though in several cases the simulation data are scarce, it can
. be seen that the constancy holds very accurately.

On the other hand, according to Eg6) the value of the
above-mentioned ratio must be very approximateﬁfx. In
the same figures we have plotted the values of this parameter
showing that they are consistent with the value of the ratio.

0 I ) ! ! In Figures 4—6 the results from equation of st6) are
0.0 0.1 02 0.3 0.4 0.5 compared with those from the equation of state
y
spr__ 1 Say
FIG. 6. As in Fig. 4 for HMLST-HS mixtures. The three lowest 2 _(1 v) (1—y)2

curves correspond to spheres with the same diameter as that of each

sphere that forms the triatomic molecule, and the two highest 2[(49a 3)-y(1lla—7)— y2(25a 21)]

curves correspond to spheres with volumeequal to the volume 6(1— y)3

v, of the triatomic molecules. In every cake=0.8. Points: simu-

lation data from Refs[23, 24]. For the four highest curves, the (40

continuous line represents the results from @&), and the dashed

line represents those from Eqg0) and (45), indistinguishable at Wherey is the packing fraction of the mixture and

the scale of the figure. The three equations are indistinguishable in

the lowest curve at the scale of the figure. Dashed line:(&5). E X R'E xS

From top down, for clarity, the first, second, third, and fourth : !

curves, and the corresponding simulation data, have been displaced

upwards seven, six, two, and one unit, respectively. 32 Xiv;
1

(41)

N
Il

TABLE |. Parameters involved in equation of st4g8) for the IS the nonsphericity parameter of the mixture. For homo-
mixtures considered. Lengths are in unitseof, and volumes in  Nuclear FHS with diametes and reduced center to center

units of . v iy is the mean volume of a molecule in the mixture. distance* =1/0>0.5, parameterR, S, andv are given by
In every case, subscript 2 refers to the spheres.

R=[(m—-1)I* +2]o/4, (42
X _ off eff
1 U mix U mix X mix S=[(m—1)|*+1]7702, (43)
HS+HMD
|1:1/0'1:0'2 and
0.10 0.5760 0.5833 1.0605 . o a3 5
0.25 0.6545 0.6728 1.1379 v=[z(M=1)(3I* =1**)+1]7o”/6. (44)
852 8';223 g'giﬁ iégji Equation(40) was derived 25] on the basis of the form of
' ' ' ' the SPT equation of state, and proJ@é] to be very accu-
0.90 0'9948_ 3 1.0606 1.3831 rate for the kind of mixtures we are considering here.
11=0.6l0, =0, The same figures also include the results from BHS
0.50 0.7309 0.7383 1.0717 theory, which expresses the equation of state for a multicom-
ly=1lv1=0, ponent mixture of polyatomic molecules in the foff]
0.50 1.0472 1.0876 1.2055
|l:0.6/l)1:l)2 ZBHS PV
0.50 0.9383 0.9463 1.0711 mix — N KT
m
|1: l/U 1= (2/3)1}2
0.50 1.1729 1.1814 1.0633 HS ;
(I)Ng(i)Z Xm(i
1,=0.6b,=(2/3)v, E. ) mix Z ()
0.50 1.3090 1.3518 1.1811
HS+HMLST p [ 995op)
X > |1+ , (45
|1:O.8/0'1:0'2 bonds gjk (Ulk)\ é)p TN
0.25 0.7732 0.7887 1.2079
0.50 1.0229 1.0538 1.3460 whereN,, is the total number of molecules ang(i) is the
0.75 1.2726 1.3188 1.4564 mole fraction of molecules of specieseach of them formed
l,=0.8k;,=0, by Ng(i) hard spheres. The sum over bonds is taken over the
0.25 15222 1.5423 1.1362 number of bonding contaci& between the sphergsandk
0.75 152292 15732 14118 of a molecule of species and gj (o) is obtained from

Eq. (21). Although, in principle, BHS theory applies to fluids
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consisting of molecules formed by nonoverlapping spherediMD and HS-HMLST mixtures and compare favorably with
it can also be used for FHS fluid41]. To do so, the FHS those from SPT and BHS theories.
molecule is replaced by an equivalent BHS, in which the The derived equation of state is intended for use in the
relative diameters of the spheres are chosen in such a wayrmal fluid density range. It should be interesting to test its
that the relationarys=agns is satisfied. The nonsphericity performance for higher densities but, to the best of our
parameter is determined from Eg) using expressions &, knowledge, simulation data are not available in that range for
S, andv derived for diatomid27] and triatomic[28] mol-  the mixtures considered here. Moreover, we must be careful
ecules. in applying this equation of state to higher densities, because
As can be seen in Figs. 4 and 5, for HS-HMD mixtures,evidence has been fourl@9,30 of demixing phase transi-
Eq. (26) and the SPT Eq40) give nearly the same accuracy tions in different binary hard-core mixtures at high densities.
in all cases. The BHS results from Eg5) agree with those Additionally, binary mixtures of prolate and oblate mol-
from the two preceding equations for mixtures in which ecules can exhibit a variety of phases at high dendi8e§
HMD molecules consist of tangent spheres, but its accurachefore demixing occurs.
worsens when the spheres of the diatomic molecule overlap. On the other hand, it has been shol@i] that the equa-
With regard to the results for HS-HMLST mixtures, Fig. tion of state(21) for hard sphere mixtures, in which is based
6 shows that there is excellent agreement betweenZg)y. the equation of state derived here, is unaccurate at densities
and simulation in all cases. The accuracy of SPT and BH$lose to the solid-fluid transition for large size ratios. Theo-
results is very good for mixtures with low values of the moleretical evidence has been providggP] about the possible
fraction of HMLST, but worsens slightly as the concentra-existence of a demixing phase transition in additive hard
tion of HMLST molecules increases. sphere mixtures, which could explain this inaccuracy. There-
To summarize, in this paper we have extended an equdere, it seems likely that our equation will also fail at densi-
tion of state previously developed for HCB fluid mixtures to ties higher than those corresponding to the normal fluid.
mixtures in which at least one of the components consists of
nonconvex molecules. The parameters involved in the equa- ACKNOWLEDGMENT
tion of state can be determined from the geometry of the
molecules forming the mixture. To do so, expressions for We are grateful to the Spanish DireccidGeneral de
determining these parameters have been obtained. The rBnsémnza SuperiofDGES for the financial support under
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