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Reconstructing random media. II. Three-dimensional media from two-dimensional cuts

C. L. Y. Yeong and S. Torquato
Department of Civil Engineering and Operations Research and Princeton Materials Institute,

Princeton University, Princeton, New Jersey 08540
~Received 31 October 1997!

We report on an investigation concerning the utilization of morphological information obtained from a
two-dimensional~2D! slice ~thin section! of a random medium to reconstruct the full three-dimensional~3D!
medium. We apply a procedure that we developed in an earlier paper that incorporates any set of statistical
correlation functions to reconstruct a Fontainebleau sandstone in three dimensions. Since we have available the
experimentally determined 3D representation of the sandstone, we can probe the extent to which intrinsically
3D information~such as connectedness! is captured in the reconstruction. We considered reconstructing the
sandstone using the two-point probability function and lineal-path function as obtained from 2D cuts~cross
sections! of the sample. The reconstructions are able to reproduce accurately certain 3D properties of the pore
space, such as the pore-size distribution, the mean survival time of a Brownian particle, and the fluid perme-
ability. The degree of connectedness of the pore space also compares remarkably well with the actual sand-
stone. However, not surprisingly, visualization of the 3D pore structures reveals that the reconstructions are not
perfect. A more refined reconstruction can be produced by incorporating higher-order information at the
expense of greater computational cost. Finally, we remark that our reconstruction study sheds light on the
nature of information contained in the employed correlation functions.@S1063-651X~98!04807-7#

PACS number~s!: 44.30.1v
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I. INTRODUCTION

The reconstruction of the structure of three-dimensio
~3D! random heterogeneous media, such as porous and
posite media, from the information obtained from a tw
dimensional~2D! micrograph or image has manifold pote
tial applications. Such reconstructions are of great value
wide variety of fields, including petroleum engineering, b
ology, and medicine, because in many cases, only 2D ima
are available for analysis. An effective reconstruction pro
dure enables one to generate accurate structures at will,
subsequent analysis can be performed on the image to o
desired macroscopic properties~e.g., transport, electromag
netic, and mechanical properties! of the media. A successfu
reconstruction procedure could provide a nondestructive
relatively low-cost means of estimating the macrosco
properties of a heterogeneous medium.

An extensively examined reconstruction approach is
Gaussian filtering method@1–3# which utilizes only the stan-
dard two-point probability function~obtainable from small-
angle scattering experiments@4#! for reconstruction. These
methods use linear and nonlinear filters on Gaussian ran
fields to match the correlation function in the reconstruct
process. Clearly, the conventional two-point correlat
function alone may not be adequate to characterize the
crostructure of the medium for accurate reconstructi
Moreover, it is difficult to extend Gaussian filtering metho
to incorporate other correlation functions for two-phase i
tropic media, and practically impossible to extend them
general multiphase and anisotropic media. In many ca
additional correlation functions will be required to captu
the structural characteristics of a medium~e.g., see the com
ments in Ref.@5#!. It is therefore desirable that a reconstru
tion procedure have the ability to incorporate as much cru
PRE 581063-651X/98/58~1!/224~10!/$15.00
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microstructural information as possible to capture the sal
features of the reference structure.

Recently, Rintoul and Torquato@6# developed a recon
struction procedure which can incorporate any set of co
lation functions to reconstruct dispersions of particles. In
first paper of this series@7# ~hereafter referred to as paper I!,
we extended this method to reconstructD-dimensional ran-
dom media ofarbitrary topology by considering digitized
representations of the systems. To illustrate the method,
applied it in paper I to reconstruct various 1D and 2D ra
dom systems from 1D and 2D representations of them,
spectively@7#. Further extension of the method to reconstru
3D media from 3D representations is straightforward bu
not the focus of the present work.

In this paper, we concentrate our attention on using
crostructural measures obtained from a 2D slice of the m
dium to reconstruct the full 3D system. However, the ext
to which such structural quantities are able to reproduce
trinsic 3D information, such as the pore-size distribution
more generally, connectedness of the phases, needs t
closely examined. The purpose of this paper is to carry
such a study. An exploration of this kind can shed light
the nature of the information contained in the morphologi
quantities that are being implemented. This can help on
identify the appropriate morphological descriptors that c
effectively characterize classes of structures in order to g
erate accurate structures for analysis.

A variety of morphological measures for 3Disotropicme-
dia are obtainable exactly from 2D planes of the medium
the infinite-volume limit. Thus the determination of the
quantities from 2D slices will be the same~apart from small
error! as the corresponding quantities determined from
3D image. These quantities, to name a few, include the v
224 © 1998 The American Physical Society
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PRE 58 225RECONSTRUCTING THE STRUCTURE . . . . II. . . .
ume fractionf i of phasei , the specific surfaces, the two-
point probability functionS2, and the lineal-path functionL,
all of which will be described in detail later.

For present purposes, we will use the two-point proba
ity function and the lineal-path function to reconstruct a 3
Fontainebleau sandstone sample. We showed in paper@7#
that using a combination of both of these correlation fu
tions is superior to using either of the correlation functio
alone. Nonetheless, we will begin by reconstructing
sandstone using only the two-point probability function f
purposes of comparison. Subsequently, we will incorpora
combination ofboth the two-point probability function and
the lineal-path function as the morphological information
reconstruction. We will then compare the 3D morphologi
quantities and transport properties~mean survival time and
fluid permeability! of the different reconstructions to the co
responding quantities of the 3D representation of the ac
sandstone. Although we focus on the two-phase sands
for purposes of illustration in this paper, we emphasize t
our reconstruction procedure is general enough to treat m
tiphase media@7#. Finally, we graphically display our recon
structions as 3D perspectives of the void space and as su
cuts.

We would like to point out that there are many oth
reconstruction methods in the literature, especially in
fields of data compression and tomographic reconstruct
These methods, to name a few, include the wavelets or m
tiwavelets reconstruction and reconstruction from Fou
spectra or power spectral data. However, these proced
are only used for image compression and subsequent ex
sion of data, problems that are not related to the quest
that we are addressing, namely, the treatment of a singl
multiple correlation functions as the input data and sub
quent reconstruction of the corresponding image. Furth
more, since these methods are not able to target partic
morphological correlation functions for reconstruction, th
generally cannot give insight into morphological charact
ization. The aim of our reconstruction procedure is not
produce an exact duplicate of the original image. On
contrary, the intent is to utilizelimited information~measur-
able correlation functions! about the random media to reco
struct a family of microstructures that have the same co
lation functions.

The outline of the rest of the paper is as follows: In S
II, we define and discuss the structural quantities and
macroscopic properties that we will employ in this paper.
Sec. III, we outline briefly the reconstruction procedure
digitized media, and discuss, among others things, how
incorporate the two-point probability function and the line
path function as the input information, although the tec
nique is capable of treating any number of correlation fu
tions. In Sec. IV, we apply the procedure to perform 3
reconstructions of the Fontainebleau sandstone sampl
utilizing the aforementioned structural information asc
tained from 2D cross-sectional images. We also evalu
transport properties of the resultant reconstructions,
compare them to those of the real sandstone. We illust
our reconstructions as 3D perspectives of the void space
as surface cuts. In Sec. V, we make concluding remarks
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II. MORPHOLOGICAL QUANTITIES
AND MACROSCOPIC PROPERTIES

The two-phase random medium is a domain of sp
V(v)PR3, where the realizationv is taken from some prob
ability space of volumeV which is composed of two region
or phases: phase 1, the regionV1 of volume fractionf1; and
phase 2, the regionV2 of volume fractionf2. Let ]V denote
the surface or interface betweenV1 andV2. For a given re-
alization v, the characteristic functionI (x) of phase 1 is
given by

I ~x!5H 1 if xPV1

0 if xPV2 .
~1!

The characteristic functionM (x) for the interface is defined
as

M ~x!5u“I ~x!u. ~2!

In this paper, we denote phase 1 as the void or pore phas
the Fontainebleau sandstone, and phase 2 as the mater
grain phase.

A. One- and two-point probability functions

For statistically homogeneous media, the simplest m
phological measure is the volume fractionf1 of phase 1,
which is the one-point correlation function defined by

f15^I ~x!&, ~3!

where angular brackets denote an ensemble average.
volume fraction can be interpreted as the probability of fin
ing a point in phase 1. In a digitized medium,f1 can simply
be found by directly counting the number of phase 1 pix
over the whole medium. For simplicity, we will use the ter
‘‘pixel’’ throughout the paper, with the understanding th
we mean ‘‘voxel’’ for a pixel in three dimensions.

The specific surfaces of a two-phase medium is the are
of the two-phase interface per unit total volume of the m
dium. The inverse quantitys21 is an important characteristi
length scale of the medium. The specific surface is itse
one-point correlation function defined by

s5^M ~x!&. ~4!

For the 3D digitized media in this study, we evaluates by
directly counting the interfacial area of each thre
dimensional pixel belonging to the material phase. For s
tems that do not have periodic boundary conditions, car
taken to avoid including the system boundary as the inte
cial area.

The two-point probability function is defined as

S2~x1 ,x2!5^I ~x1!I ~x2!&, ~5!

wherex1 andx2 are two arbitrary points in the system. Th
can be interpreted as the probability of finding two points
positionsx1 andx2 both in phase 1. For statistically isotrop
media, the two-point probability function depends only
the magnitude of the separationr 5ux12x2u between the two
points, and therefore can be expressed simply asS2(r ). For
all isotropic media without long-range order,
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S2~0!5f1 and lim
r→`

S2~r !5f1
2 . ~6!

In general, we can define then-point probability function

Sn~x1 ,x2 , . . . ,xn!5^I ~x1!I ~x2! . . . I ~xn!&. ~7!

There are many othern-point correlation functions apar
from then-point probability function, and we refer the read
to Ref.@8# for a thorough review. We note in passing that t
two-point functionS2 for porous media is obtainable from
small-angle scattering experiments@4#.

For a 3D continuum medium, it has been shown that
slope of the two-point probability function of either phase
r 50 is related to the specific surfaces via the relation@4,9#

dS2~r !

dr U
r 50

52s/4. ~8!

For a 3Ddigitized medium, due to the effect of discretiza
tion, the slope is instead@7#

dS2~r !

dr U
r 50

52s/6. ~9!

It should be emphasized that the two-point probability fun
tion cannot distinguish between phase 1 and phase 2 ma
als sinceS2

(1)(r )2f1
25S2

(2)(r )2f2
2 ~the superscripts denot

the phase!, nor does it reflect information about the conne
edness of the phases.

In evaluatingS2(r ) of a digitized medium, the discret
nature arising from the digitization means that the distancr
can conveniently be measured in terms of pixels and acqu
integral values, with the end points ofr located at the pixel
centers. Also, it can be shown that when sampled along
direction of rows of pixels,S2(r ) is a linear function be-
tween adjacent pixels:

S2~r !5~12 f ! S2~ i !1 f S2~ i 11! for i<r , i 11,
~10!

wherei is an integer, andf 5rmod1. Because of this linea
property, the evaluation ofS2(r ) at integral values ofr is
sufficient to characterize the structure, and determining it
noninteger values ofr is not necessary. Consequently,S2(r )
can be evaluated simply by successively translating a lin
r (5 i ) pixels in length at a distance of one pixel at a tim
and spanning the whole image, counting the number of s
cesses of the two end points falling in phase 1, and fin
dividing the number of successes by the total number
trials. We employed periodic boundary conditions in all r
constructed systems, and therefore the total number of t
is the system size in those cases. For aD-dimensional iso-
tropic system, we sample only alongD orthogonal directions
in the rows of pixels. It is observed that this sampling p
cedure can be more accurate, and produces a smoothS2
profile than that by random sampling~throwing random
points into the system!, because the former exhaustively i
corporates information from every pixel in the entire syste
Of course, at additional computational cost, one co
sampleS2 in more directions than the orthogonal directio
only.
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B. Lineal-path function

Another important morphological descriptor of the stru
ture of random media is the lineal-path functionL(x,x1r ),
which is defined as the probability of finding a line segme
with end points atx andx1r entirely in phase 1@10#. This
function contains some connectedness information, at l
along a lineal path, and hence reflects certain long-range
formation about the system. In an isotropic medium,
lineal-path function depends only on the distancer between
the two end points and can be expressed simply asL(r ).
Clearly, for all media having a volume fraction off1,

L~0!5S2~0!5f1 . ~11!

To evaluateL(r ) in a digitized system, it is again sufficien
to let r take on integer values; sampling is again perform
only along orthogonal directions@7#. In this respect, the sam
pling procedure to evaluateL reduces merely to a problem o
identifying the lengths of the chords of the correspond
phase in the system. Provided the system is isotropic,
method of determiningL is considerably more efficient tha
throwing random lines into the system.

C. Pore-size distribution and cumulative pore-size
distribution function

The pore-size distribution function@11# P(d) is defined in
such a way thatP(d)dd is the probability that a randomly
chosen location in the pore phase~phase 1 here! lies at a
distance betweend and d1dd of the nearest point on the
pore-solid interface. The functionP(d) can be obtained only
from a three-dimensional representation of the structure,
containsconnectedness information about spherical regio
in the pore space@12#. Some useful properties of this func
tion are

E
0

`

P~d!dd51 and P~`!50, ~12!

with

P~0!5
s

f1
, ~13!

wheres is the specific surface as defined above. The m
pore size is defined by the first moment ofP(d), i.e.,

^d&5E
0

`

dP~d!dd. ~14!

The quantity^d&2 provides a lower bound on the mean su
vival time t associated with a Brownian particle diffusin
through the pore phase of a system of traps~see Sec. II E!.

The cumulative distribution functionF(d) associated
with P(d) is defined as

F~d!5E
d

`

P~z!dz, ~15!

with

F~0!51 and F~`!50. ~16!
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F(d) is the fraction of pore space that has a pore diam
greater thand. The mean pore size may also be defined
terms of the cumulative pore-size distribution function

^d&5E
0

`

F~d!dd. ~17!

In evaluating the pore-size distribution functionP(d) in a
3D digitized medium, random points are thrown into the s
tem and, for each point, the smallest distance from the p
to the nearest pore-solid interface is recorded. The quan
P(d) is then obtained by binning these distances and div
ing by the total number of sampled distances. The mean p
size ^d& is calculated simply by averaging these distanc
The cumulative pore-size distribution functionF(d) is ob-
tained by taking the list of the distances and incrementing
counters associated with distances less than or equal
given distance. In the end, all counters are divided by
total number of distances. This method of using a list
distances closely parallels the method used to determine
lineal-path function.

D. Percolating volume fraction

Pore regions can either be disconnected or percola
between two ends of a medium. The fraction of the p
region that percolates over the total volume of the mediu
denoted byf1* , provides important morphological informa
tion. Unlike the volume fraction, this quantity is an intrins
cally 3D quantity which cannot be obtained without a 3
representation of the medium as it containsthe degree of
connectednessof the pore space. The quantityf1* can be
evaluated efficiently by a ‘‘burning algorithm’’ for digitized
media@13#. One starts by choosing the pore-phase pixels
one end of the system. These pore-phase pixels are
‘‘burnt,’’ and their surrounding neighbors which have th
same phase are iteratively burnt. The burning process
tinues until there is no more accessible unburnt pixels. If
‘‘fire’’ reaches the opposite end of the system, then a c
tinuous cluster of the pore phase exists, and these burnt
els are marked as percolating pixels. The percolating frac
of porosity f p5f1* /f1 is easily evaluated from the numbe
of the percolating pixels. This quantity measures the deg
to which the pore space is percolating in the porous medi

E. Mean survival time and fluid permeability

We consider estimating two important transport proper
of the sandstone: the mean survival timet and the fluid
permeabilityk. The mean survival timet ~obtainable from a
nuclear magnetic resonance experiment@14–16#! is the av-
erage time a Brownian or diffusing particle takes to diffu
in a trap-free region~with diffusion coefficientD) in a sys-
tem of partially absorbing traps before it becomes absor
by the trapping phase. Therefore, the quantitytD, which has
a dimension of(length)2, is intimately related to the charac
teristic length scale of the pore space. We will hereafter re
to tD as the ‘‘scaledmean survival time.’’ The quantityt is
also equal to the inverse of the trapping rate in diffusio
controlled reactions, which arise in a host of phenomena
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the physical and biological sciences. It was shown to be
orously bounded from below in terms of the mean pore-s
^d& via the relation@17#

t>^d&2/D. ~18!

In the Fontainebleau sandstone system that we cons
the void phase is identified with the trap-free region, and
grain phase is identified with the trap region. The mean s
vival time is measured by simulating the Brownian motion
diffusing particles in the void phase. The time for each p
ticle to diffuse to the void-grain boundary is measured
each particle, and then averaged over all such particles.
use an efficient first-passage time algorithm first develo
for continuum materials by Torquato and Kim@18#, and then
adapted by Coker and Torquato@19# for digitized media. The
latter researchers also showed that measurement oft in a
digitized medium provides a lower bound on the true co
tinuum mean survival time.

The slow flow of an incompressible viscous fluid throu
porous media is often described by Darcy’s law@20#,

v52
k

m
“p, ~19!

wherev is the average velocity of the fluid flowing throug
the medium,k is the fluid permeability of the medium,m is
the dynamic viscosity of the fluid, and“p is the applied
pressure gradient. Torquato@8# developed a rigorous cross
property relation that relates the fluid permeabilityk to the
mean survival timet:

k<f1tD. ~20!

Thus a measurement of the mean survival time provides
upper bound on the fluid permeability. Avellaneda a
Torquato@21# derived the first rigorous equality connectin
the permeability to the effective electrical conductivityse of
a porous medium containing a conducting fluid of condu
tivity s1 and an insulating solid phase,

k5
L2

8F , ~21!

whereF5s1 /se is the formation factor andL is a length
parameter which is a weighted sum over the viscous re
ation times associated with the time-dependent Stokes e
tions.

Since it is difficult to obtainL2 exactly, rigorous treat-
ments can only provide bounds onL2. It has been conjec-
tured@22# that for isotropic media possessing an arbitrary b
connected pore space, the following relation holds:

k<
tD

F . ~22!

In practice, the bound~22! overestimates the permeability b
roughly a factor of the porosityf1. Accordingly, it has been
proposed@23# that the approximate relation

k'f1

tD

F ~23!
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should be accurate for a large class of porous media. T
relation will be used to provide an estimate of the fluid p
meability of the Fontainebleau sandstone, and will be co
pared to the experimental value.

III. FORMULATION OF THE
RECONSTRUCTION PROCEDURE

The approach that we will use to reconstruct a 3D rand
medium is an extension of the procedure that we propose
paper I for digitized media@7#, and applied to reconstruct
variety of random media in one and two dimensions. T
method is a variation of the simulated annealing method
troduced by Rintoul and Torquato@6# to reconstruct disper
sions of particles. It involves finding a state of minimu
‘‘energy’’ among a set of many local minima by interchan
ing the phases of the pixels in the digitized system. T
energy is defined in terms of the squared difference of
reference and simulated correlation functions. Our rec
struction procedure has a number of useful features: it is~i!
simple to implement,~ii ! generally applicable to multiphas
and anisotropic structures, and~iii ! able to include any type
and number of correlation functions as microstructural inf
mation. In the interest of completeness, we will briefly o
line the procedure for reconstructing an isotropic two-ph
medium using the two-point probability functionS2 and the
lineal-path functionL as the morphological input. For a mor
detailed description of the general methodology, we refer
reader to paper I@7#.

Consider reconstructing a medium where the ‘‘referenc
correlation functionsf o

(k)(r ) are given information~the su-
perscriptk identifies the different correlation functions th
are being used!. In this study, we could identifyf o

(1)(r ) with
the two-point probability functionS2, and f o

(2)(r ) with the
lineal-path functionL of the reference medium. We will re
fer to the reconstruction procedure that uses onlyS2 as the
input microstructural information for the ‘‘S2 reconstruc-
tion,’’ and the one that usesboth S2 and L as the ‘‘hybrid
reconstruction.’’ The superscriptk is therefore equal to 1 in
the former case, andk5@1,2# in the latter. To begin the
reconstruction process, an initial guess of the system c
figuration is made. Without loss of generality, we use the
random checkerboard with the same volume fractionf1 of
the reference system as the initial structure. This structur
constructed by randomly choosing the correct number of p
els according to the volume fraction of the system and
signing phase 1 to them.

Now let f s
(k)(r ) be the corresponding correlation functio

of the reconstructed digitized system at some time step
ing the reconstruction process. It is this system that we s
attempt to evolve toward the reference structure from
initial system configuration. Once thef s

(k)(r ) at a particular
time step are evaluated, a variableE which plays the role of
the ‘‘energy’’ in the simulated annealing can be calculated

E5(
k

(
i

@ f s
~k!~r i !2 f o

~k!~r i !#
2. ~24!

To evolve the digitized system toward the reference med
~or in other words, to minimizeE), we interchange the state
of two arbitrarily selected pixels of different phases. Th
is
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phase interchange procedure has the nice property of a
matically preserving the volume fraction of both phases d
ing the reconstruction process. After the interchange is p
formed, we can calculate the energyE8 of the resulting state
and the energy differenceDE5E82E between two succes
sive states of the system. This phase interchange is then
cepted with probabilityp(DE) via the Metropolis method as

p~DE!5H 1, DE<0

exp ~2DE/T!, DE.0,
~25!

whereT is the ‘‘temperature.’’ This method causesf s
(k)(r ) to

converge gradually tof o
(k)(r ), and is carried out successive

until the evolving system’sf s
(k) matches the referencef o

(k)

within a tolerance limit. The cooling schedule, which go
erns the value and the rate of change ofT, is chosen to allow
the system to evolve to the desired state as quickly as
sible, without getting trapped in any local energy minim
We adopt the suggestion that the startingT should have a
value such that the initial acceptance rate is 0.5@24#. Note
that at the ground state, the energyE can be viewed as a
least-squares error@25#.

In paper I, we examined a diverse number of rand
model microstructures. The reconstructions generally c
tured the salient features of the reference systems, inclu
the interfacial surface area@7#. However, even though the
reference and reconstructed correlation functions were vi
ally identical, we found that the reconstructions deviat
from the reference systems as measured by difference
other higher-order correlation functions of the system. T
nonuniqueness is expected since lower-order correla
functions generally do not contain complete morphologi
information. Indeed, in Sec. I we showed~by way of ex-
amples! how different microstructures can have the sa
two-point functionS2. However, we note that since the ‘‘en
ergy’’ that we use@Eq. ~24!# is not a real Hamiltonian, it is
highly nontrivial to elucidate quantitatively the selectio
mechanism that the simulated annealing uses to converg
the ground state.

We would like to note that in evaluatingf s
(k) of the initial

configuration, the sampling procedures described in Sec
can be used. However, for the evolving structures gener
during the reconstruction process, it is not necessary
sample the intermediate structures fully all over again by
same sampling methods to calculate the correlation fu
tions. For instance, a change inS2 from the previous struc-
ture is only due to the change of the success rate~the occur-
rence of the two end points fall in phase 1) along the rows
columns that cross each altered pixel. This change inS2 can
simply be evaluated by invoking the sampling techniqueonly
along those rows and columns crossing the altered pix
Therefore, to evaluate theS2 profile of a succeeding struc
ture,S2 of the preceding structure can be stored beforeha
and that of the subsequent structure can be updated
ciently by correspondingly adjusting the storedS2 using the
calculated change. This technique can similarly be applie
the lineal-path function evaluation: we only need to ke
track of the length of the chords being destroyed and crea
due to the phase interchange of pixels, so thatL can be
efficiently updated according to these changes. This te
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nique should be exploited for any other correlation functio
whenever possible, in order to make the reconstruction a
rithm more efficient.

IV. 3D RECONSTRUCTION
OF FONTAINEBLEAU SANDSTONE

As stated in Sec. I, many morphological quantities for
isotropic media are obtainable exactly from 2D planes of
medium in the infinite-volume limit. What is not clear is th
extent to which information contained in such correlati
functions will be able to reproduce intrinsic 3D informatio
such as connectedness. We now address this issue by a
ing our reconstruction procedure to reconstruct a 3D F
tainebleau sandstone sample by measuring the two-point
relation function S2 and lineal-path functionL from 2D
slices of the sample. These sections do not have peri
boundary conditions, and therefore sampling of the corre
tion functions are adjusted from those described in Sec
accordingly.

A. Morphology and transport properties of sandstone

The tomographic image of the Fontainebleau sandst
sample we use is the same as that studied by Co
Torquato, and Dunsmuir@26#. It consists of 300 planar slice
separated by a distance of 7.5mm, and each of the slices ha
dimensions of 5123512 pixels with a resolution of 7.5mm
per pixel. Therefore, the digitized image, which we w
hereafter refer to as the ‘‘reference’’ sandstone image, c
sists of 51235123300 pixels, each of which constitutes
cubic region of size 7.537.537.5 mm3. The useful infor-
mation of the sandstone is contained in a cylindrical reg
of around 420 pixels in diameter. A sample slice of t
digitized sandstone is shown in Fig. 1. An image of
12831283128 pixels subregion of the complicated 3D po
space and the 3D perspective of the surface cuts of the
region is shown in Figs. 2~a! and 2~b!, respectively.

FIG. 1. Sample filtered slice of Fontainebleau sandstone.
white region corresponds to the pore phase. The diameter o
cylindrical core is 3 mm, with a pixel resolution of 7.5mm.
,
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As reported in Ref.@26#, some of the internal slices wer
discarded due to experimental difficulties, reducing the nu
ber of useful slices to 296. In addition, the number of slic
encompassing the largest region of the sandstone sam
where neighboring slices are not missing, is restricted to 2
When evaluating the structural quantities or the effect
properties of the sandstone, we make use of these con
ously run slices. Moreover, instead of extracting only a re
angular portion of the image as in Ref.@26# for data calcu-
lation, we retain and use all the useful information provid
in the cylindrical region of the slices to give more reliab
results.

We evaluate the morphological measures of the refere
sandstone using the algorithms described in Sec. II. Th
results are summarized in Table I and Figs. 3–5. The co
lation functions are found to be in close agreement w
available experimental values@27#. The one-point probability
function or the porosityf1 of the reference sandstone
found to be 0.1485, which is to be compared with the exp
mental measurement of 0.1484. The specific surfaces of the
reference sandstone is found to be 1.96231022 mm21.
Corrected for the digitization effect using Eqs.~8! and ~9!,
the specific surface becomes 1.54131022 mm21, which
is to be compared with the experimental measuremen
1.54631022 mm21.

Certain intrinsically three-dimensional quantities, whi
are not obtainable from 2D cross-sectional images, are
evaluated. The percolating fraction of the pore space is fo
to be 98.8% by using the burning algorithm. The cumulat
pore-size distribution functionF(d) is shown in Fig. 3. The
mean pore sizêd& and the scaled mean survival timetD are
evaluated to be 6.47mm and 89.11mm2, respectively.
These 3D quantities will be compared to those of the rec
structed structures later. Employing these evaluated va
and the rigorous lower bound of the formation factorF pro-
vided in Ref. @26# (F21<0.089), the permeability of the
sandstone is estimated by Eq.~23! to be 1.18 mm2. This
value is quite close to the experimental value of 1.3mm2

@27#, thereby validating the reliability of the evaluated mo
phological quantities from the reference sandstone imag

B. Reconstruction results

To reconstruct the Fontainebleau sandstone, for purpo
of efficiency, we take the target phase to be the pore ph

e
he

FIG. 2. ~a! The pore space in a 12831283128-pixel subregion
of the Fontainebleau sandstone. The pore space is white
opaque, and the grain phase is black and transparent.~b! 3D per-
spective of surface cuts of the subregion depicted in~a!. The color
code is the same as in~a!.
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TABLE I. Morphological measures and effective properties of the reference and reconstructed Fo
bleau sandstone. The specific surfaces is corrected for digitization effect by Eqs.~8! and ~9!. The perme-
ability k is from the approximate relation~23!.

Morphological measures Effective properties
Structure f1 f p (%) s (1022 mm21) ^d& (mm) tD (mm2) k (mm2)

Reference sandstone 0.1485 98.8 1.541 6.47 89.1 1.1
S2 reconstruction:

Slice 1 0.1464 84.7 1.575 5.87 71.6 0.93
Slice 2 0.1475 88.6 1.609 5.59 64.6 0.85
Slice 3 0.1476 86.2 1.564 5.83 71.4 0.94
Slice 4 0.1480 89.9 1.554 5.91 71.2 0.94

Hybrid reconstruction:
Slice 1 0.1464 95.2 1.576 6.44 92.3 1.20
Slice 2 0.1475 91.2 1.611 6.66 89.8 1.18
Slice 3 0.1476 89.2 1.565 6.79 101.5 1.33
Slice 4 0.1480 94.5 1.555 6.51 89.3 1.18
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since it has a lower volume fraction. The reconstructed str
tures have system sizes of 12831283128 pixels. We begin
the reconstruction process by choosing a 2D slice of the
mographic image of the Fontainebleau sandstone, and
extract from it the structural functionsS2 andL for use in the
reconstruction@28#. For illustration purposes, we provid
here results of a few examples where the slices have app
mately the same porosity as the reference sandstone~see col-
umns 1 and 2 in Table I!. The S2 and L profiles obtained
from these 2D slices are shown in Figs. 4 and 5. Note th
profiles match closely the respective profiles of the origi
3D image shown in the same figures. This validates thaS2
andL obtained from 2D slices represent well the correlat
functions of the original 3D structure.

A typical S2 reconstruction of the Fontainebleau san
stone is shown in Fig. 6 in 3D perspectives. While the
surface cuts of the reconstructed structure are not subs
tially different from the cuts of the reference sandsto
@compare Figs. 6~b! and 2~b!#, it is seen that the 3D pore
topologies are not as close in appearance@compare Figs. 6~a!

FIG. 3. Cumulative pore-size distribution functionF(d) of the
Fontainebleau sandstone. One pixel is equal to 7.5mm.
c-

o-
en

xi-

se
l

-

n-
e

and 2~a!#. Visually, the hybrid reconstruction~see Fig. 7!
provides a slightly better rendition of the true sandstone
crostructure. The pore space of the reference sandston
quite irregular in shape and size, containing ‘‘platelike’’ r
gions. By contrast, the complex pore spaces of the rec
structions do not appear to contain platelike regions,
rather are more globular in appearance. Note that in all of
reconstruction examples, the profiles of theemployedcorre-
lation functions match the reference ones virtually exactly
shown in Figs. 8 and 9. Therefore, it can be misleading s
ply to compare the employed correlation functions and
2D sections of the reference and reconstructed structure
validate the success of a reconstruction. As discusse
Refs.@6# and @7#, nonuniqueness is expected due to the f
that lower-order correlation functions generally do not co
tain complete morphological information. Certainly, a mo
refined reconstruction can be produced by incorporating~in
addition to the structural quantities that we have studi!
higher-order morphological information@8#. However, from
a practical point of view, it is important to realize that if th

FIG. 4. Two-point probability functionS2(r ) of the Fontaine-
bleau sandstone and the sample slices of the sandstone. One p
equal to 7.5mm.
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deemed crucial structural and effective properties of the
construction agree closely with that of the reference medi
then the reconstruction can be considered to be succes
even if appearances suggest otherwise.

Consequently, in order to judge whether the reconstr
tions arequantitativelysuccessful, we will seek to measu
and compare other important morphological measures
effective properties. The additional microstructural measu
we choose for comparison include the percolating fraction
pore spacef p , specific surface areas, cumulative pore-size
distributionF(d), and the mean pore size^d&. The percolat-
ing pore space is defined here as the pore space that is a
percolate through the medium from the three orthogo
faces as shown in Figs. 6~b! and 7~b! to the corresponding
opposite faces. The effective properties such as the sc
mean survival timetD and the permeabilityk @as obtained
from the approximate relation~23!# will also be compared.
Except for the specific surfaces, all of the aforementioned
quantities are intrinsically three dimensional, and cont

FIG. 5. Lineal-path functionL(r ) of the Fontainebleau sand
stone and the sample slices of the sandstone. One pixel is equ
7.5 mm.

FIG. 6. S2 reconstruction of the Fontainebleau sandstone us
the two-point probability functionS2 obtained from slice 1. The
system size is 12831283128 pixels, and one pixel is equal t
7.5 mm. ~a! Pore space of theS2 reconstruction. The pore space
white and opaque, and the grain phase is black and transparen~b!
3D perspective of surface cuts of the reconstruction. The color c
is the same as in~a!.
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some level of connectedness information about the p
space.

Table I compares the morphological quantities of the r
erence sandstone to those of the reconstructions. Figur
shows the cumulative pore-size distribution functions of t
reconstructions from a typical slice, and the data for all oth
slices are very close to the shown data~and hence are no
displayed!. As expected, the specific surfaces of all recon-
structions match well with that of the reference sandsto
since theS2 profiles matches virtually exactly the referenc
ones@see Eq.~9! and note thats can be determined by the
slope ofS2(r ) at r 50]. Also, it can be seen that all of the
3D morphological descriptors and effective properties of t
reconstructions, especially those of the hybrid reconstr
tions, have very similar values to those of the reference sa
stone. TheS2 reconstructions, however, are found genera
to underestimate all of the measures that characterize
pore space, including the lineal-path functionL ~see Fig. 8!
and the aforementioned 3D quantities. The hybrid rec

l to

g

e

FIG. 7. Hybrid reconstruction of the Fontainebleau sandsto
using a combination of the two-point probability functionS2 and
the lineal-path functionL obtained from slice 1. The system size
12831283128 pixels, and one pixel is equal to 7.5mm. ~a! Pore
space of the hybrid reconstruction. The pore space is white
opaque, and the grain phase is black and transparent.~b! 3D per-
spective of surface cuts of the reconstruction. The color code is
same as in~a!.

FIG. 8. S2 of the reference sandstone andS2 reconstruction
from slice 1. Also shown is the lineal-path functionL for both
systems.
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structions have correlation functions and effective proper
that are strikingly similar to those of the reference sandsto
except for f p , which will be commented on shortly. Not
that the 3D quantities are more complicated functionally th
the correlation functions that are being used for reconst
tion, and they are derived onlyindirectly from the informa-
tion obtained from the 2D images via the reconstruction p
cess. Nonetheless, the 3D quantities of the hyb
reconstructions and the reference structure are remark
similar, leading us to conclude that the correlation functio
that we utilize in the hybrid reconstructions are sufficient
capture the relevant morphological information of the act
Fontainebleau sandstone.

The percolating fraction of the pore spacef p of theS2 and
hybrid reconstructions are on the average about 12% and
lower than that of the actual sandstone, respectively. Th
lower values off p indicate that the reconstructed structur
have in general a lower degree of connectedness than th
the actual sandstone. Compared to the values off p , the hy-
brid reconstructions can be seen to capture better the de
of connectedness of the pore space than theS2 reconstruc-
tions. Consequently, of the two methods of reconstructi
the hybrid reconstruction yields structures that more clos
agree with all of the aforementioned intrinsically 3D mo
phological measures and effective properties of the refere
sandstone. This confirms that the lineal-path function p
vides a level of connectedness information thatS2 does not
have, albeit not sufficient to capture fully connectedness
formation. This shows that the reconstruction exercise
shed light on the nature of the information contained in
morphological quantities that are incorporated in the rec
struction process. This is invaluable in helping one to id
tify the appropriate quantities that can effectively charac
ize classes of structures.

V. CONCLUSIONS

For a random heterogeneous medium, intrinsically thr
dimensional morphological measures such as the percola
pore space, pore-size distribution, mean pore size, mean
vival time, and permeability are not obtainable directly fro

FIG. 9. S2 andL of the reference sandstone and hybrid reco
struction from slice 1.
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a two-dimensional image. However, one can make use
other structural measures which can be obtained exactly f
the available 2D planes to reconstruct the medium in th
dimensions. From the reconstructed 3D structure, intrin
cally 3D quantities can subsequently be evaluated. Natura
in order to produce an accurate reconstruction, one must
lize microstructural information which captures the salie
features of the reference medium. We have developed
employed a reconstruction method that can incorporate
type and number of correlation functions, and specifica
applied it to reconstruct a 3D Fontainebleau sandst
sample. We showed that it is sufficient to incorporate b
the two-point probability functionS2 and the lineal-path
function L ~obtained from the 2D cross sections! for the
reconstruction in order to reproduce accurately certain
morphological measures and macroscopic properties of
sandstone.

Of course, sinceS2 and L contain only limited morpho-
logical information, such a reconstruction will not captu
fully every feature of the reference medium. Howev
higher-order correlation functions@8# can easily be incorpo-
rated in our reconstruction if one desires a more refined
construction. Indeed, it is expected that for other classe
random media, other morphological quantities will b
needed to capture the salient features. The sandstone re
struction we carried out here sheds light on the nature of
information contained in the structural quantities that
implemented. This exercise is useful in identifying approp
ate morphological descriptors that can effectively charac
ize different classes of structures.
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FIG. 10. Cumulative pore-size distribution functionF(d) for the

reference Fontainebleau sandstone,S2 reconstruction from slice 1,
and the hybrid reconstruction from slice 1. One pixel is equal
7.5 mm.
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