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Reconstructing random media. Il. Three-dimensional media from two-dimensional cuts
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We report on an investigation concerning the utilization of morphological information obtained from a
two-dimensional2D) slice (thin section of a random medium to reconstruct the full three-dimensi¢88)
medium. We apply a procedure that we developed in an earlier paper that incorporates any set of statistical
correlation functions to reconstruct a Fontainebleau sandstone in three dimensions. Since we have available the
experimentally determined 3D representation of the sandstone, we can probe the extent to which intrinsically
3D information(such as connectedngss captured in the reconstruction. We considered reconstructing the
sandstone using the two-point probability function and lineal-path function as obtained from 2z ross
section$ of the sample. The reconstructions are able to reproduce accurately certain 3D properties of the pore
space, such as the pore-size distribution, the mean survival time of a Brownian particle, and the fluid perme-
ability. The degree of connectedness of the pore space also compares remarkably well with the actual sand-
stone. However, not surprisingly, visualization of the 3D pore structures reveals that the reconstructions are not
perfect. A more refined reconstruction can be produced by incorporating higher-order information at the
expense of greater computational cost. Finally, we remark that our reconstruction study sheds light on the
nature of information contained in the employed correlation functif®$063-651X98)04807-1

PACS numbd(s): 44.30+v

I. INTRODUCTION microstructural information as possible to capture the salient

. . . eatures of the reference structure.
The reconstruction of the structure of three-dimensional .
) Recently, Rintoul and Torquatf] developed a recon-
(3D) random heterogeneous media, such as porous and com- . . .
. : . . . struction procedure which can incorporate any set of corre-
posite media, from the information obtained from a two-

. ; : : . lation functions to reconstruct dispersions of particles. In the
dimensional(2D) micrograph or image has manifold poten- _. . .
. o . . first paper of this seriel’] (hereafter referred to as papéy |
tial applications. Such reconstructions are of great value in a : . :
i ; . . . . ) . We extended this method to reconstriicidimensional ran-
wide variety of fields, including petroleum engineering, bi- : : L -
oloav. and medicine. because in manv cases. onlv 2D ima éjsom media ofarbitrary topology by considering digitized
gy, X y » Oy g representations of the systems. To illustrate the method, we

are available for analysis. An effective reconstruction proce plied it in paper | to reconstruct various 1D and 2D ran-

re enabl n ner r r r will, an ;
dure enables one to generate accurate structures at will, a om systems from 1D and 2D representations of them, re-

sub;equent analy5|§ can be performed on the image to Obtag;])ectively[?]. Further extension of the method to reconstruct
desired macroscopic propertiés.g., transport, electromag-

netic, and mechanical propertjasf the media. A successful 3D media from 3D representations is straightforward but is

reconstruction procedure could provide a nondestructive an@Ot the focus of the present work.

. S . In this paper, we concentrate our attention on using mi-
relatively low-cost means of estimating the macroscopic . .
. . crostructural measures obtained from a 2D slice of the me-
properties of a heterogeneous medium.

. . . . dium to reconstruct the full 3D system. However, the extent
An extensively examined reconstruction approach is thet- hich h structural it ble t d -~
Gaussian filtering methdd —3] which utilizes only the stan- 0 Which such structural quantities are able to reproduce in
dard two-point probability functiorfobtainable from small- trinsic 3D information, such as the pore-size distribution or,
angle scattering experimengd]) for reconstruction. These More generally, connectedness of the phases, needs to be
methods use linear and nonlinear filters on Gaussian randof0S€ly €xamined. The purpose of this paper is to carry out
fields to match the correlation function in the reconstructionSUch @ study. An exploration of this kind can shed light on
process. Clearly, the conventional two-point correlationthe nature of the information contained in the morphological
function alone may not be adequate to characterize the mpuantities that are being implemented. This can help one to
crostructure of the medium for accurate reconstructionidentify the appropriate morphological descriptors that can
Moreover, it is difficult to extend Gaussian filtering methods effectively characterize classes of structures in order to gen-
to incorporate other correlation functions for two-phase iso-€rate accurate structures for analysis.
tropic media, and practically impossible to extend them to A variety of morphological measures for 38btropicme-
general multiphase and anisotropic media. In many caseslja are obtainable exactly from 2D planes of the medium in
additional correlation functions will be required to capturethe infinite-volume limit. Thus the determination of these
the structural characteristics of a medigeng., see the com- quantities from 2D slices will be the sant@part from small
ments in Ref[5]). It is therefore desirable that a reconstruc-erron as the corresponding quantities determined from the
tion procedure have the ability to incorporate as much cruciaBD image. These quantities, to name a few, include the vol-
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ume fractiong; of phasei, the specific surfacs, the two- Il. MORPHOLOGICAL QUANTITIES
point probability functionS,, and the lineal-path functioh, AND MACROSCOPIC PROPERTIES

all of which will be described in detail later. _ _ The two-phase random medium is a domain of space
For present purposes, we will use the two-point probabllv(w) e !,3, where the realizatiom is taken from some prob-

ity function and the lineal-path function to reconstruct a 3Dabi|ity space of volume/ which is composed of two regions
Fontainebleau sandstone sample. We showed in padr | o phases: phase 1, the regivpof volume fractions,; and
that using a combination of both of these correlation funC'phase 2, the regiom, of volume fractiong,. Let 31 denote
tions is superior to using either of the correlation functionsine surface or interface betweeh andV,. For a given re-

alone. Nonetheless, we will begin by reconstructing theyjization w, the characteristic function(x) of phase 1 is
sandstone using only the two-point probability function for given by

purposes of comparison. Subsequently, we will incorporate a
combination ofboth the two-point probability function and 1 if xeV;

the lineal-path function as the morphological information for H(x)= 0 if xe),. @)
reconstruction. We will then compare the 3D morphological

guantities and transport propertiéeean survival time and The characteristic functioM (x) for the interface is defined
fluid permeability of the different reconstructions to the cor- as
responding quantities of the 3D representation of the actual
sandstone. Although we focus on the two-phase sandstone

for purposes of illustration in this paper, we emphasize thaj this paper, we denote phase 1 as the void or pore phase of

our reconstruction procedure is general enough to treat muthe Fontainebleau sandstone, and phase 2 as the material or
tiphase medi7]. Finally, we graphically display our recon- grain phase.

structions as 3D perspectives of the void space and as surface
cuts. A. One- and two-point probability functions

We would like to point out that there are many other - . .
reconstruction methods in the literature, especially in the For _statlstlcally hqmogeneous medla_, the simplest mor-
fields of data compression and tomographic reconstructiorf?hqlog.ICaI measure 15 the volpme fragtum OT phase 1,
These methods, to name a few, include the wavelets or muv—vhICh is the one-point correlation function defined by
tiwavelets reconstruction and reconstruction from Fourier d1={(1(x)), (3)
spectra or power spectral data. However, these procedures
are only used for image compression and subsequent expawhere angular brackets denote an ensemble average. The
sion of data, problems that are not related to the questiongolume fraction can be interpreted as the probability of find-
that we are addressing, namely, the treatment of a single ¢fg @ point in phase 1. In a digitized mediugh, can simply
multiple correlation functions as the input data and subsebe found by directly counting the number of phase 1 pixels
quent reconstruction of the corresponding image. Furtherover the whole medium. For simplicity, we will use the term
more, since these methods are not able to target particulaPxel” throughout the paper, with the understanding that
morphological correlation functions for reconstruction, theyV& mean “voxel” for a pixel in three dimensions.
generally cannot give insight into morphological character- , 1€ Specific surface of a two-phase medium is the area

ization. The aim of our reconstruction procedure is not toOf the two-phase interface per unit total volume of the me-

dium. The inverse quantity ! is an important characteristic

rodu n exact duplicate of the original image. On th . o o
produce a exac d plicate of the origina’ Image © GI\ength scale of the medium. The specific surface is itself a
contrary, the intent is to utilizémited information (measur- . : . ,

one-point correlation function defined by

able correlation functionsabout the random media to recon-
struct a family of microstructures that have the same corre- s={(M(x)). (4
lation functions.

The outline of the rest of the paper is as follows: In Sec.For the 3D digitized media in this study, we evaluatey
I, we define and discuss the structural quantities and théirectly counting the interfacial area of each three-
macroscopic properties that we will employ in this paper. Indimensional pixel belonging to the material phase. For sys-
Sec. IIl, we outline briefly the reconstruction procedure forteéms that do not have periodic boundary conditions, care is
digitized media, and discuss, among others things, how W@ken to avoid including the system boundary as the interfa-
incorporate the two-point probability function and the lineal- €ia! area. _ . o _
path function as the input information, although the tech- 1€ two-point probability function is defined as
qique is capable of treating any number of correlation func- Sy(Xq %) = (1 (X)) (X)), (5)
tions. In Sec. IV, we apply the procedure to perform 3D
reconstructions of the Fontainebleau sandstone sample hyherex,; andx, are two arbitrary points in the system. This
utilizing the aforementioned structural information ascer-can be interpreted as the probability of finding two points at
tained from 2D cross-sectional images. We also evaluatpositionsx; andx, both in phase 1. For statistically isotropic
transport properties of the resultant reconstructions, anthedia, the two-point probability function depends only on
compare them to those of the real sandstone. We illustratdhe magnitude of the separatior |x; — x| between the two
our reconstructions as 3D perspectives of the void space ambints, and therefore can be expressed simpl$.&s). For
as surface cuts. In Sec. V, we make concluding remarks. all isotropic media without long-range order,

M(x)=[VI(x)[. 2
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S,(0)=¢; and limS,(r)= (ﬁ. (6) B. Lineal-path function
r—e Another important morphological descriptor of the struc-
ture of random media is the lineal-path functibfx,x+r),
which is defined as the probability of finding a line segment
Sn(X1, X2, « . X)) =(TX)T(X2) « . . 1(Xn)). (7) ~ Wwith end points ak andx+r entirely in phase IlQ]. This
function contains some connectedness information, at least
There are many othen-point correlation functions apart along a lineal path, and hence reflects certain long-range in-
from then-point probability function, and we refer the reader formation about the system. In an isotropic medium, the
to Ref.[8] for a thorough review. We note in passing that thelineal-path function depends only on the distandeetween
two-point functionS, for porous media is obtainable from the two end points and can be expressed simply@3.

In general, we can define thepoint probability function

small-angle scattering experiments. Clearly, for all media having a volume fraction ¢,
For a 3D continuum medium, it has been shown that the
slope of the two-point probability function of either phase at L(0)=S5,(0)= 1. 1D
r=0is related to the specific surfasasia the relatior{4,9] To evaluatelL(r) in a digitized system, it is again sufficient
dSy(r) to letr take on integer values; sampling is again performed
ar = —s/4. (8)  only along orthogonal directiorf]. In this respect, the sam-
r=0 pling procedure to evaluatereduces merely to a problem of

identifying the lengths of the chords of the corresponding
phase in the system. Provided the system is isotropic, this
method of determinind. is considerably more efficient than
throwing random lines into the system.

For a 3Ddigitized medium, due to the effect of discretiza-
tion, the slope is insteaf¥]

dSy(r)
dr

= —g/6. 9
r=0 C. Pore-size distribution and cumulative pore-size
distribution function

It should be emphasized that the two-point probability func-
tion cannot distinguish between phase 1 and phase 2 materi- The pore-size distribution functidd 1] P(5) is defined in
als sinceSiM(r) — ¢3=Si2)(r) — ¢3 (the superscripts denote such a way thaP(5)dé is the probability that a randomly
the phasg nor does it reflect information about the connect-chosen location in the pore phagehase 1 hepelies at a
edness of the phases. distance betwee@ and §+dé of the nearest point on the

In evaluatingS,(r) of a digitized medium, the discrete pore-solid interface. The functid®( ) can be obtained only
nature arising from the digitization means that the distance from a three-dimensional representation of the structure, as it
can conveniently be measured in terms of pixels and acquiregontainsconnectedness information about spherical regions
integral values, with the end points pflocated at the pixel in the pore spac¢l2]. Some useful properties of this func-
centers. Also, it can be shown that when sampled along théon are
direction of rows of pixelsS,(r) is a linear function be-

tween adjacent pixels: fxp(é)dazl and P(x)=0, (12)
0
S (r)=(1-1) Sy(i)+f S(i+1) for isr<i+1,
(100  with
wherei is an integer, and=rmodl. Because of this linear S
property, the evaluation 08,(r) at integral values of is P(0)= 1 (13

sufficient to characterize the structure, and determining it for

noninteger values af is not necessary. Consequents(r)  wheres is the specific surface as defined above. The mean

can be evaluated simply by successively translating a line gfore size is defined by the first momentR{s), i.e.,
r (=i) pixels in length at a distance of one pixel at a time

and spanning the whole image, counting the number of suc- *

cesses of the two end points falling in phase 1, and finally (6)= JO oP(6)dé. (14
dividing the number of successes by the total number of

trials. We employed periodic boundary conditions in all re-The quantity( 5)2 provides a lower bound on the mean sur-
constructed systems, and therefore the total number of triakgval time = associated with a Brownian particle diffusing
is the system size in those cases. FdD-@imensional iso- through the pore phase of a system of trégee Sec. Il E
tropic system, we sample only aloBgorthogonal directions The cumulative distribution functiorF(8) associated
in the rows of pixels. It is observed that this sampling pro-with P(6) is defined as

cedure can be more accurate, and produces a smo8ther

profile than that by random samplinghrowing random *

points into the systeinbecause the former exhaustively in- F(9)= L P(z)dz, (15
corporates information from every pixel in the entire system.

Of course, at additional computational cost, one couldyith

sampleS, in more directions than the orthogonal directions

only. F(0)=1 and F(«»)=0. (16



PRE 58 RECONSTRUCTING THE STRUCTUR. .. . I. ... 227

F(4) is the fraction of pore space that has a pore diametethe physical and biological sciences. It was shown to be rig-
greater thans. The mean pore size may also be defined inorously bounded from below in terms of the mean pore-size
terms of the cumulative pore-size distribution function (0) via the relation17]

7=(6)?ID. (18

(0)= fo F(d)dé. 17 In the Fontainebleau sandstone system that we consider,
the void phase is identified with the trap-free region, and the
grain phase is identified with the trap region. The mean sur-

In evaluating the pore-size distribution functi®(s) ina  vival time is measured by simulating the Brownian motion of
3D digitized medium, random points are thrown into the sys-iffusing particles in the void phase. The time for each par-
tem and, for each point, the smallest distance from the poinficle to diffuse to the void-grain boundary is measured for
to the nearest pore-solid interface is recorded. The quantityach particle, and then averaged over all such particles. We
P(0) is then obtained by binning these distances and dividuse an efficient first-passage time algorithm first developed
ing by the total number of sampled distances. The mean poffer continuum materials by Torquato and K[rh8], and then
size () is calculated simply by averaging these distancesadapted by Coker and Torqudttf] for digitized media. The
The cumulative pore-size distribution functiéi() is ob-  |atter researchers also showed that measurementinfa
tained by taking the list of the distances and incrementing albligitized medium provides a lower bound on the true con-
counters associated with distances less than or equal tot@uum mean survival time.
given distance. In the end, all counters are divided by the The slow flow of an incompressible viscous fluid through
total number of distances. This method of using a list ofporous media is often described by Darcy’s IE2@],
distances closely parallels the method used to determine the

lineal-path function. k
ineal-path function V:—;Vp, (19

D. Percolating volume fraction wherev is the average velocity of the fluid flowing through

Pore regions can either be disconnected or percolatinghe mediumk is the fluid permeability of the mediunp, is
between two ends of a medium. The fraction of the porehe dynamic viscosity of the fluid, an¥p is the applied
region that percolates over the total volume of the mediumpressure gradient. Torquaf8] developed a rigorous cross-
denoted byg? , provides important morphological informa- property relation that relates the fluid permeabiltyo the
tion. Unlike the volume fraction, this quantity is an intrinsi- mean survival timer:
cally 3D quantity which cannot be obtained without a 3D
representation of the medium as it contathe degree of k<¢,7D. (20
connectednessf the pore space. The quantity; can be
evaluated efficiently by a “burning algorithm” for digitized T
media[13]. One starts by choosing the pore-phase pixels
one end of the system. These pore-phase pixels are th
“burnt,” and their surrounding neighbors which have the
same phase are iteratively burnt. The burning process co
tinues until there is no more accessible unburnt pixels. If th

hus a measurement of the mean survival time provides an

pper bound on the fluid permeability. Avellaneda and
rquato[21] derived the first rigorous equality connecting
the permeability to the effective electrical conductivity of

[ porous medium containing a conducting fluid of conduc-

divity o and an insulating solid phase,

“fire” reaches the opposite end of the system, then a con- L2
tinuous cluster of the pore phase exists, and these burnt pix- k= —, (21)
els are marked as percolating pixels. The percolating fraction 8F

of porosity f,= ¢1/¢, is easily evaluated from the number . : : :
of the percolating pixels. This quantity measures the degre\é\’heref_ o1/0% is the formation factor andl is a length

. . o 2 “Barameter which is a weighted sum over the viscous relax-
to which the pore space is percolating in the porous medlunfition times associated with the time-dependent Stokes equa-

tions.
Since it is difficult to obtainL? exactly, rigorous treat-
We consider estimating two important transport propertiesnents can only provide bounds @#. It has been conjec-

of the sandstone: the mean survival timeand the fluid tured[22] that for isotropic media possessing an arbitrary but

permeabilityk. The mean survival time (obtainable from a connected pore space, the following relation holds:

nuclear magnetic resonance experimgiat—16) is the av-

erage time a Brownian or diffusing particle takes to diffuse k< E 22)

in a trap-free regiorfwith diffusion coefficientD) in a sys- S F

tem of partially absorbing traps before it becomes absorbed

by the trapping phase. Therefore, the quantily, which has  In practice, the boun{22) overestimates the permeability by

a dimension oflengthy, is intimately related to the charac- roughly a factor of the porosity;. Accordingly, it has been

teristic length scale of the pore space. We will hereafter refeproposed 23] that the approximate relation

to 7D as the ‘scaledmean survival time.” The quantity is

also equal to the inverse of the trapping rate in diffusion- K~ 2 23)

controlled reactions, which arise in a host of phenomena in !

E. Mean survival time and fluid permeability



228 C. L. Y. YEONG AND S. TORQUATO PRE 58

should be accurate for a large class of porous media. Thighase interchange procedure has the nice property of auto-
relation will be used to provide an estimate of the fluid per-matically preserving the volume fraction of both phases dur-
meability of the Fontainebleau sandstone, and will be coming the reconstruction process. After the interchange is per-
pared to the experimental value. formed, we can calculate the energy of the resulting state
and the energy differenc@fE=E' — E between two succes-
lll. FORMULATION OF THE sive states of the system. This phase interchange is then ac-
RECONSTRUCTION PROCEDURE cepted with probabilityp(AE) via the Metropolis method as

The approach that we will use to reconstruct a 3D random 1. AE=0
medium is an extension of the procedure that we proposed in P(AE)= ' (25)
paper | for digitized medif7], and applied to reconstruct a exp(—AE/T), AE>O0,
variety of random media in one and two dimensions. This
method is a variation of the simulated annealing method inwhereT is the “temperature.” This method causlag)(r) to
troduced by Rintoul and Torqua{6] to reconstruct disper- converge gradually ttbf)k)(r), and is carried out successively
sions of particles. It involves finding g.state o_f minimum 41 the evolving system’sfgk) matches the referenck{,k)
f‘energy” among a set of many_local minima by interchang- within a tolerance limit. The cooling schedule, which gov-
ing the phases of the pixels in the digitized system. The‘erns the value and the rate of changé ofs chosen to allow

energy is defined in terms of the squared difference of th‘?he system to evolve to the desired state as quickly as pos-
reference and simulated correlation functions. Our recon:

i ...~ Sible, without getting trapped in any local energy minima.
struction procedure has a number of useful features:(if) is We adopt the suggestion that the startiigshould have a
simple to implement(ii) generally applicable to multiphase

d anisotronic struct i) able to includ ¢ value such that the initial acceptance rate is [@%]. Note
and anisotropic structures, axd) able to include any type that at the ground state, the energycan be viewed as a

e T e eas-squares erofZs)
: P ' y In paper |, we examined a diverse number of random

line the procedure for reconstructing an isofropic tWo'ph"’ls(la'nodel microstructures. The reconstructions generally cap-

r_ned|um using the two-point probablllt_y fu_nchcﬁ;z and the tured the salient features of the reference systems, including
Ilneql-path fun_ctl_orL as the morphological input. For a more the interfacial surface are@]. However, even though the
detailed description of the general methodology, we refer th‘?eference and reconstructed correlation functions were virtu-

reader to paper [I7]. . . . ,ally identical, we found that the reconstructions deviated
Cons_|der reco_nstru(%tmg a me(_d|um yvhere the reference from the reference systems as measured by differences in
correlation functionsfy”(r) are given informatior(the su-  gther higher-order correlation functions of the system. This
perscriptk identifies the different correlation functions that nonuniqueness is expected since lower-order correlation
are being usedn this study, we could identify$"(r) with  functions generally do not contain complete morphological
the two-point probability functiors,, and f?)(r) with the  information. Indeed, in Sec. | we showedy way of ex-
lineal-path functiorL of the reference medium. We will re- ample$ how different microstructures can have the same
fer to the reconstruction procedure that uses dglyas the  two-point functionS,. However, we note that since the “en-
input microstructural information for the S, reconstruc- ergy” that we usg Eq. (24)] is not a real Hamiltonian, it is
tion,” and the one that usesoth S, andL as the “hybrid  highly nontrivial to elucidate quantitatively the selection
reconstruction.” The superscrifitis therefore equal to 1 in mechanism that the simulated annealing uses to converge to
the former case, and=[1,2] in the latter. To begin the the ground state.
reconstruction process, an initial guess of the system con- We would like to note that in evaluatirfé") of the initial
figuration is made. Without loss of generality, we use the 3Dconfiguration, the sampling procedures described in Sec. Il
random checkerboard with the same volume fraciignof  can be used. However, for the evolving structures generated
the reference system as the initial structure. This structure iguring the reconstruction process, it is not necessary to
constructed by randomly choosing the correct number of pixsample the intermediate structures fully all over again by the
els according to the volume fraction of the system and assame sampling methods to calculate the correlation func-
signing phase 1 to them. tions. For instance, a change 8 from the previous struc-
Now Ietf(sk)(r) be the corresponding correlation functions ture is only due to the change of the success (thie occur-
of the reconstructed digitized system at some time step durence of the two end points fall in phase 1) along the rows or
ing the reconstruction process. It is this system that we shattolumns that cross each altered pixel. This chang®,inan
attempt to evolve toward the reference structure from thesimply be evaluated by invoking the sampling techniqoby
initial system configuration. Once tH&“(r) at a particular ~along those rows and columns crossing the altered pixels.
time step are evaluated, a varialevhich plays the role of Therefore, to evaluate th®, profile of a succeeding struc-

the “energy” in the simulated annealing can be calculated agure, S, of the preceding structure can be stored beforehand,
and that of the subsequent structure can be updated effi-

_ K K 2 ciently by correspondingly adjusting the stor8gusing the
E_Ek“ Z [fg ()= ff) ()T (24 calculated change. This technique can similarly be applied to
the lineal-path function evaluation: we only need to keep
To evolve the digitized system toward the reference mediuntrack of the length of the chords being destroyed and created
(or in other words, to minimiz&), we interchange the states due to the phase interchange of pixels, so thatan be
of two arbitrarily selected pixels of different phases. Thisefficiently updated according to these changes. This tech-
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(b)

FIG. 2. (a) The pore space in a 128128x 128-pixel subregion
of the Fontainebleau sandstone. The pore space is white and
opaque, and the grain phase is black and transpai@®n8D per-
spective of surface cuts of the subregion depictetainThe color
code is the same as Q).

As reported in Ref[26], some of the internal slices were
discarded due to experimental difficulties, reducing the num-
FIG. 1. Sample filtered slice of Fontainebleau sandstone. Th&€r Of useful slices to 296. In addition, the number of slices
white region corresponds to the pore phase. The diameter of thgNcompassing the largest region of the sandstone sample,
cylindrical core is 3 mm, with a pixel resolution of 7.Gm. where neighboring slices are not missing, is restricted to 211.
When evaluating the structural quantities or the effective
nique should be exploited for any other correlation functions,proﬁ)ert'es ?f the sandstone, we rgal;e use of thesle continu-
whenever possible, in order to make the reconstruction a|goc_)us y run slices. Moreover, instead of extracting only a rect-
fithm more efficient. angular portion of the image as in R¢26] for data calcu-
lation, we retain and use all the useful information provided
in the cylindrical region of the slices to give more reliable
IV. 3D RECONSTRUCTION results.
OF FONTAINEBLEAU SANDSTONE We evaluate the morphological measures of the reference
sandstone using the algorithms described in Sec. Il. These
~ As stated in Sec. |, many morphological quantities for 3Dresults are summarized in Table | and Figs. 3-5. The corre-
isotropic media are obtainable exactly from 2D planes of thqation functions are found to be in close agreement with
medium in the infinite-volume limit. What is not clear is the available experimenta| Va|u@27]_ The One-point probabmty
extent to which information contained in such Correlationfunction or the porosity¢1 of the reference sandstone is
functions will be able to reproduce intrinsic 3D information, found to be 0.1485, which is to be compared with the experi-
such as connectedness. We now address this issue by apphfental measurement of 0.1484. The specific suréagkthe
ing our reconstruction procedure to reconstruct a 3D FOMreference sandstone is found to be 18492 um™ L.
tainebleau sandstone sample by measuring the two-point cofgrrected for the digitization effect using Eq8) and (9),
relation functionS, and lineal-path functionL from 2D the specific surface becomes 1.5410°2 xm 1, which

slices of the sample. These sections do not have periodig to be compared with the experimental measurement of
boundary conditions, and therefore sampling of the correla] 546< 102 um L.

tion functions are adjusted from those described in Sec. Il Certain intrinsically three-dimensional quantities, which

accordingly. are not obtainable from 2D cross-sectional images, are also
evaluated. The percolating fraction of the pore space is found
A. Morphology and transport properties of sandstone to be 98.8% by using the burning algorithm. The cumulative

ore-size distribution functiof () is shown in Fig. 3. The
mean pore sizé€s) and the scaled mean survival timB are
evaluated to be 6.47um and 89.11um?, respectively.
These 3D quantities will be compared to those of the recon-
structed structures later. Employing these evaluated values

The tomographic image of the Fontainebleau sandston
sample we use is the same as that studied by Coke
Torquato, and Dunsmuj@6]. It consists of 300 planar slices
separated by a distance of 7/m, and each of the slices has

dimensions of 51 512 pixels with a resolution of 7.5.m and the rigorous lower bound of the formation facpro-

per pixel. Therefore, the digitized image, which we will . ; ) .
hereafter refer to as the “reference” sandstone image, con\-/Ided in Ref.[26] (7 <0.089), the permeability of the

. . 2 .
sists of 51X 512x 300 pixels, each of which constitutes a \S/Zﬂjcjesﬁgneu;igse islgsrr]eatt?)dthbg eli@g)rirg?er?; Il\./;?ug rr;f. ;Q,:?
cubic region of size 7.87.5x7.5 um?®. The useful infor- q P

mation of the sandstone is contained in a cylindrical re iorpﬂ’ thereby validating the refiability of the evaluated mor-
. o ylinar g phological quantities from the reference sandstone image.
of around 420 pixels in diameter. A sample slice of the

digitized sandstone is shown in Fig. 1. An image of a
128x 128x 128 pixels subregion of the complicated 3D pore
space and the 3D perspective of the surface cuts of the sub- To reconstruct the Fontainebleau sandstone, for purposes
region is shown in Figs.(3) and 2b), respectively. of efficiency, we take the target phase to be the pore phase

B. Reconstruction results
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TABLE I. Morphological measures and effective properties of the reference and reconstructed Fontaine-
bleau sandstone. The specific surfacis corrected for digitization effect by Eq&8) and(9). The perme-
ability k is from the approximate relatiof23).

Morphological measures Effective properties
Structure 1 fp(%) s (1002 um™Y) (8) (um) D (um?) k (umd)

Reference sandstone 0.1485 98.8 1.541 6.47 89.1 1.18
S, reconstruction:

Slice 1 0.1464 84.7 1.575 5.87 71.6 0.93

Slice 2 0.1475 88.6 1.609 5.59 64.6 0.85

Slice 3 0.1476 86.2 1.564 5.83 71.4 0.94

Slice 4 0.1480 89.9 1.554 5.91 71.2 0.94
Hybrid reconstruction:

Slice 1 0.1464 95.2 1.576 6.44 92.3 1.20

Slice 2 0.1475 91.2 1.611 6.66 89.8 1.18

Slice 3 0.1476  89.2 1.565 6.79 101.5 1.33

Slice 4 0.1480 945 1.555 6.51 89.3 1.18

since it has a lower volume fraction. The reconstructed strucand 2a)]. Visually, the hybrid reconstructiofsee Fig. 7
tures have system sizes of 12828x 128 pixels. We begin provides a slightly better rendition of the true sandstone mi-
the reconstruction process by choosing a 2D slice of the toerostructure. The pore space of the reference sandstone is
mographic image of the Fontainebleau sandstone, and thequite irregular in shape and size, containing “platelike” re-
extract from it the structural functior®, andL for use inthe gions. By contrast, the complex pore spaces of the recon-
reconstruction[28]. For illustration purposes, we provide structions do not appear to contain platelike regions, but
here results of a few examples where the slices have approxiather are more globular in appearance. Note that in all of the
mately the same porosity as the reference sandssagecol- reconstruction examples, the profiles of #rmaployedcorre-
umns 1 and 2 in Table)l The S, and L profiles obtained lation functions match the reference ones virtually exactly as
from these 2D slices are shown in Figs. 4 and 5. Note thesghown in Figs. 8 and 9. Therefore, it can be misleading sim-
profiles match closely the respective profiles of the originalply to compare the employed correlation functions and the
3D image shown in the same figures. This validates $gat 2D sections of the reference and reconstructed structures to
andL obtained from 2D slices represent well the correlationvalidate the success of a reconstruction. As discussed in
functions of the original 3D structure. Refs.[6] and[7], nonuniqueness is expected due to the fact
A typical S, reconstruction of the Fontainebleau sand-that lower-order correlation functions generally do not con-
stone is shown in Fig. 6 in 3D perspectives. While the 2Dtain complete morphological information. Certainly, a more
surface cuts of the reconstructed structure are not substarefined reconstruction can be produced by incorporafing
tially different from the cuts of the reference sandstoneaddition to the structural quantities that we have studied
[compare Figs. ®) and 2b)], it is seen that the 3D pore higher-order morphological informatid®]. However, from
topologies are not as close in appeargmoepare Figs. @)  a practical point of view, it is important to realize that if the

1.0 T T
0.15 4 i
0.8 r ]
—— 3D image
© 2D Slice 1
10 | @ 0 2D Slice 2 i
0.6 r E . 0.10 & 2D Slice 3
. = < A 2D Slice 4
o )
g
0.4 - .
0.05
0.2 - i
0.00 L 1 L L
0.0 ‘ ‘ ‘ . .o 0 10 20 30 40
o 1 2 3 4 5 6 r (pixels)

r (pixels)
FIG. 4. Two-point probability functiorS,(r) of the Fontaine-

FIG. 3. Cumulative pore-size distribution functiéi{ ) of the bleau sandstone and the sample slices of the sandstone. One pixel is
Fontainebleau sandstone. One pixel is equal to ZrB. equal to 7.5 um.
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0.15 .
3D image
© 2D Slice 1
L & 0 2D Slice 2 i
. 010 F © 2D Slice 3
= % A 2D Slice 4
0.05 |-
FIG. 7. Hybrid reconstruction of the Fontainebleau sandstone
using a combination of the two-point probability functi® and
the lineal-path functio. obtained from slice 1. The system size is
0.00 128x128x 128 pixels, and one pixel is equal to 7&m. (a) Pore
0 _ space of the hybrid reconstruction. The pore space is white and
r (pixels) opaque, and the grain phase is black and transpaf®n8D per-
spective of surface cuts of the reconstruction. The color code is the

FIG. 5. Lineal-path functiorL(r) of the Fontainebleau sand- a
stone and the sample slices of the sandstone. One pixel is equal %
7.5 pm.

me as ina).

some level of connectedness information about the pore
pace.
Table | compares the morphological quantities of the ref-
rence sandstone to those of the reconstructions. Figure 10
ows the cumulative pore-size distribution functions of the

deemed crucial structural and effective properties of the re>
construction agree closely with that of the reference medium
then the reconstruction can be considered to be successflé

even if appearances suggest otherwise. reconstructions from a typical slice, and the data for all other

. Consequent_ly, n order fo judge Whe_ther the reCONSIUCyjicag are very close to the shown désad hence are not
tions arequantitativelysuccessful, we will seek to measure ﬂ

; ; isplayed. As expected, the specific surfaseof all recon-
and compare other important morphological measures an, played P P

ffective properties. The additional microstructural m ; ructions match well with that of the reference sandstone
effective properties. 1he additional microstructural measureg;, o, theS, profiles matches virtually exactly the reference
we choose for comparison include the percolating fraction o

e ) . ones[see Eq.9) and note thas can be determined by the
pore spacd ,, specific surface ares, cumulative pore-size

A . slope ofS,(r) atr=0]. Also, it can be seen that all of the
distributionF(4), and the mean pore siZ@). The percolat- 3D morphological descriptors and effective properties of the
ing pore space is defined here as the pore space that is abl

elo . . .
percolate through the medium from the three orthogon a[Iéconstructlons, especially those of the hybrid reconstruc-

faces as shown in Figs(§ and Tb) to the correspondin ions, have very similar values to those of the reference sand-
gs: p 9 stone. TheS, reconstructions, however, are found generally

?nz?nszirl:/ai‘\(/:zlsiir-rl]—telreDe;fr?gu’[\r/\Z pg‘;?ég%ﬁitsufgsa;bgﬁ] esdcalq underestimate all of the measures that characterize the
P X pore space, including the lineal-path function(see Fig. 8

from the approxma’@ relatio(®3)] will also be compgred. and the aforementioned 3D quantities. The hybrid recon-
Except for the specific surfacg all of the aforementioned

guantities are intrinsically three dimensional, and contain

0.16 T T T T
e S,(r) of reconstruction
0.12 = L(r) of reconstruction 1
S,(r) of reference sandstone
L(r) of reference sandstone
5
= 0.08 -
col\l
0.04
FIG. 6. S, reconstruction of the Fontainebleau sandstone using -\;';; . L
the two-point probability functiorS, obtained from slice 1. The 0.00 ‘ BeLLLTTTT VPR .
system size is 128128x 128 pixels, and one pixel is equal to 0 10 20 30 40 50
7.5 um. (a) Pore space of th, reconstruction. The pore space is r (pixels)

white and opaque, and the grain phase is black and transpésent. FIG. 8. S, of the reference sandstone afd reconstruction
3D perspective of surface cuts of the reconstruction. The color codéom slice 1. Also shown is the lineal-path functidn for both
is the same as ifa). systems.
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0.16 T T 1.0 T
® S,(r) of reconstruction 0.8 4
0.12 = L{r} of reconstruction 7
S,(r) of reference sandstone b Reference Sand_Stone
------------ L(r) of reference sandstone =4 S,—reconstructoin
—_ 06 - o — -+ hybrid reconstruction i
g
—~ 0.08 - ©
g g
%
0.4 ]
0.04
02 | - 1
n
Ly Ny
Sug II.‘.V.V -’~... .
0.00 I | Ll TR EF T - o ..\'\ .
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FIG. 9. S, andL of the reference sandstone and hybrid recon-

struction from slice 1. FIG. 10. Cumulative pore-size distribution functiBs) for the

reference Fontainebleau sandsto8g reconstruction from slice 1,

. . . . . _and the hybrid reconstruction from slice 1. One pixel is equal to
structions have correlation functions and effective propertle§ 5 um

that are strikingly similar to those of the reference sandstone,

except forf,, which will be commented on shortly. Note 2 two-dimensional image. However, one can make use of

that the 3D quantities are more complicated functionally tha other structural measures which can be obtained exactly from
the correlation functions that are being used for reconstruc; y

tion, and they are derived onipndirectly from the informa- the avqllable 2D planes to reconstruct the medium n thrge
dimensions. From the reconstructed 3D structure, intrinsi-

tion obtained from the 2D images via the reconstruction pro- ally 3D quantities can subsequently be evaluated. Naturally,

cess. Nonetheless, the 3D quantities of the hybri order to produce an accurate reconstruction, one must uti-
reconstructions and the reference structure are remarkab)) : p . : . ! y
e microstructural information which captures the salient

similar, leading us to conclude that the correlation function eatures of the reference medium. We have develooed and
that we utilize in the hybrid reconstructions are sufficient to y P

capture the relevant morphological information of the actuafmglz);%d r?u:ﬁggrsg;usgrorg|;?i?)tr?c;ﬂnt:t?;n(;anal:gosrpggi‘tiiaﬁny
Fontainebleau sandstone. yp ) p y

The percolating fraction of the pore spefceof the S, and applied it to reconstruct a 3D Fontainebleau sandstone
hybrid reconstructions are on the average about 12% and 6% g‘?\}f&_vgienfhc;gs:bmtat ]'{ILsct?gﬁ'C'e;rt]dtotk'lgcﬂrnp:;ﬁteat?th
lower than that of the actual sandstone, respectively. The P P y nS, P

lower values off , indicate that the reconstructed structures Unction L (obtained from the 2D cross sectigrior the

have in general a lower degree of connectedness than that :(ﬁg?ns;:gcgg; megrsduerreéoa:]%pﬁggf:sfgciiratgyeﬁﬁé?gf ?Ee
the actual sandstone. Compared to the valuef, ofthe hy- b 9 pic prop

brid reconstructions can be seen to capture better the degrgggszzzerée since, and L contain only limited morpho-
of connectedness of the pore space thanheeconstruc- logical inforrr,1ation such a reconstruct?lon will not cg ture
tions. Consequently, of the two methods of reconstruction g ' P

the hybrid reconstruction yields structures that more closelyzgIIy every feature .Of the r_eference medmm. _However,
: ; L igher-order correlation functiorj8] can easily be incorpo-
agree with all of the aforementioned intrinsically 3D mor-

. . . rated in our reconstruction if one desires a more refined re-
phological measures and effective properties of the referencc?onstruction Indeed, it is expected that for other classes of
sandstone. This confirms that the lineal-path function pro- ' ' b

. . . random media, other morphological quantities will be
vides a level of connectedness information tBatdoes not .
. L . needed to capture the salient features. The sandstone recon-
have, albeit not sufficient to capture fully connectedness in- X ) ;
: ; . : struction we carried out here sheds light on the nature of the
formation. This shows that the reconstruction exercise caf . . . >
: , . : . information contained in the structural quantities that we
shed light on the nature of the information contained in the ; L g e )
) L : . implemented. This exercise is useful in identifying appropri-
morphological quantities that are incorporated in the recon- . . .
. oY : ; . ate morphological descriptors that can effectively character-
struction process. This is invaluable in helping one to iden- .
. - o . ize different classes of structures.
tify the appropriate quantities that can effectively character-

ize classes of structures.
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