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Nonlocal pseudopotential calculation for the electron-ion correlation in liquid metals

S. K. Lai,1,2 K. Horii,1 and M. Iwamatsu1
1Department of Computer Engineering, Faculty of Information Sciences, Hiroshima City University, 3-4-1 Ozuka-higashi,

Asaminami-ku, Hiroshima 731-31, Japan
2Department of Physics, National Central University, Chung-li 320, Taiwan, Republic of China

~Received 2 March 1998!

A full nonlocal model potential is employed to calculate the screened electron charge densitynEC(q) and to
construct the interatomic pair potential, which is then used in the modified hypernetted-chain integral equation
to determine the ion-ion static structure factorSii (q). These two basic quantities are subsequently used as input
data for the calculation of the electron-ion correlation. For the simple liquid metals Na, Mg, and Al, our
calculated electron-ion structure factorsSei(q) agree very well with the positions of extrema of the experi-
mental or computer-simulatedSei(q). Quantitative analysis of the two main contributions,nEC(q) andSii (q),
shows thatSei(q) obtained in a full nonlocal pseudopotential theory is in general different from that in the
local pseudopotential theory. Such disparities in the two theoretical frameworks arise from the nonlocality of
electron-ion pseudopotential, which, for a quantitative study, should be incorporated in the theory especially
when one is treating the correlations of electrons and ions on an equal footing. At the level of achievement
attained in this work, there is now a greater hope of understanding the electron-ion correlations if experimental
errors forSei(q) are considerably reduced.@S1063-651X~98!09208-3#

PACS number~s!: 61.25.Mv, 61.20.Gy
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I. INTRODUCTION

Coulomb interaction between charged bodies is one of
basic forces in nature. Liquid metal represents one sim
example whose constituents, ions and electrons, display
sical as well as quantum mechanical behaviors. Over the
twenty years tremendous efforts have been devoted to st
ing various physical properties of this system. In many
these applications one notices a common practice in tha
role of valence electrons, which is one of the two comp
nents in a liquid metal, has not been put on an equal foo
as ions. Instead one takes advantage of the electronic m
and its degenerate physical property to eliminate this deg
of freedom in mathematical formulation. Thus the tw
component nature of a liquid metal is commonly seen to
reduced to an effectively one-component system. Such a
ture for the liquid metal as a collection of weakly interacti
pseudoatoms has been widely accepted by the liquid-s
community and was applied in a different context over
last two decades. Recently there has been a revived int
both theoretically and experimentally in understanding
inherent two-component nature of a liquid metal. Expe
mentally there are now high resolution liquid structure d
for liquid metals by neutron scattering@1# and these data
when combined with those of x rays and with theoreti
results for the electron-electron correlations allow an extr
tion of the electron-ion structure factorSei(q) to a reason-
able precision. In this connection one should draw atten
to some recent developments in the homogeneous elec
gas theories. These more refined theories@2–4#, which gen-
erally recourse to the tool of quantal simulation, handle m
accurately the classic problem of the electron-elect
exchange-correlation~EC! effects. Progressing almost in pa
allel is the extensive use of computer simulations such as
Car-Parrinello molecular dynamics technique@5,6#, which
was applied quite successfully to study the correlations
PRE 581063-651X/98/58~2!/2227~10!/$15.00
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tween valence electrons and ions in the liquid metal. Th
computer-simulated experiments supplement the exis
laboratory experiments and have elucidated many struct
features pertinent to electrons and ions. It is therefore ap
priate and of great theoretical interest at this time to rev
this interesting problem of the partial liquid structure facto
of liquid metals that consist of electron-electron, electro
ion, and ion-ion correlations.

The interest in the two-component nature of liquid met
originates from the pioneering work of Cowan and Kir
wood @7#. These authors described the liquid metal as be
composed of two types of charged interacting particles
they presented results for the partial structure factors of
electrons and ions that are valid in a somewhat restric
regime. Their work has subsequently been further elabora
by Tosi and March@8# who discussed the issue from a man
body point of view focusing more on electrons. In fact e
plicit expressions for the partial structure factors and th
inter-relations in some limiting cases were derived conc
rently by Watabe and Hasegawa@9# using the Green function
method and by Chihara@10# employing the integral equation
approach. A similar effort has been reported by Trigger@11#
using an approach in close analogy with that of Watabe
Hasegawa@9#. Despite these fundamental studies progres
understanding the intrinsic two-component nature of the
uid metal seems to be slow. Beginning in the early 199
systematic neutron scattering experiments have been ca
out by Takedaet al. @1# who combined their neutron dat
with those of x rays and of theoretical many-body results
the interacting electron gas to deduce specifically
electron-ion partial structure factors and the valence elec
charge distribution for a number ofsp-type liquid metals.
Such experimental endeavors are extremely difficult a
delicate since both x-ray and neutron scattering dataa priori
have to be taken with high accuracy for the extrac
electron-ion structure factorSei(q) to be reliable. In connec-
2227 © 1998 The American Physical Society
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tion with the assessment of the experimentalSei(q), it may
be worthwhile to remark that there already appear in
literature critical comments on getting high quality resu
@12#. Concurrently, there are extensive works on compu
simulations whose studies provide direct information on
electron-ion correlations in liquid metals. The comparison
the latter with laboratory data have given us a much be
picture on the electron-ion interactions. It is the purpose
this paper to attempt to interpret some of these meas
data theoretically.

In this work the electron-ion structure factor is calculat
following the same means as used by Tosi and March@8#,
Trigger @11#, and others@13,14#. The method is essentially
perturbative approach assuming a weak interaction betw
electrons and ions. Since the electron-ion pseudopotentia
the sp-type liquid metals considered here can be conside
to be weak, the use of the linear response approximation
studyingSei(q) should be reasonably justified@15# provided
quantities involved can be accurately and reliably obtain
We show in this work that our nonlocal model pseudopot
tial @16,17#, combined with recent theoretical results in t
homogeneous interacting electron gas, describes quite
the microscopic correlations between conduction electr
and ions. Differing from previous works@8,13,14#, we shall
discuss in some detail the screened valence electron ch
density within the nonlocal pseudopotential. We reexam
the approximations applied to the electron charge den
that have not been discussed much in the literature for
of a detailed knowledge of the electron distribution in the i
cores. The paper is organized as follows. In Sec. II we giv
brief documentation of the expressions forSei(q) derived
within the functional derivative method. Next, we descri
with a fair amount of detail the generalized energy indep
dent nonlocal model pseudopotential~EINMP! theory for the
calculation of the screened electron charge density. Here
draw attention to some approximations in the nonlo
pseudopotential that we have made and applied success
in previous applications@18#. Then, we introduce the modi
e
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fied hypernetted-chain theory to the study of the ion-i
static structure factor. Numerical results for the screen
charge density,Sii (q) andSei(q) are the content of Sec. III
Here discussion of their characteristic features will be giv
Finally in Sec. IV we summarize our main results.

II. THEORY

In this section we first present the equation forSei(q)
within the functional derivative method. Then we review t
generalized EINMP theory@16# deriving an expression fo
the screened electron charge density that is needed in
calculation of Sei(q). Finally we summarize the essenti
equations appearing in the integral equation approach to
ion-ion static structure factor.

A. Electron-ion structure factor

Following the work of Cusacket al. @19#, let us begin
with the density-density time correlation function for th
electronn(r t) and ionr i(r t), which is defined as

^n~r1t1!r i~r2t2!&c5^n~r1t1!r i~r2t2!&

2^n~r1t1!&^r i~r2t2!&, ~1!

where the subscriptc means the cumulant average. The fun
tional derivative method is essentially a perturbative a
proach aimed at generating a series of perturbation exp
sion for ^T @n(r1t1)r i(r2t2)#&c , T being the time-ordered
operator. If one assumes the electron-ion interactionWei(x
2y) as an external potential, the functional derivati
method gives for the first and second order terms
d~1!^T @n~r1t1!r i~r2t2!#&c52~ i /\!E ^T @n~r10!n~xt !#&c^T @r i~r20!r i~yt !#&cWei~x2y!dx dy dt

5% i
2E xee

~1!~r1 ,x!Sii ~y2r2!Wei~x2y!dx dy ~2!

and

d~2!^T @n~r1t1!r i~r2t2!#&c5
1

2 S 2
i

\ D 2E ^T @n~r10!n~xt !n~x8t8!#&c^T @r i~r20!r i~yt !r i~y8t8!#&c

3Wei~x2y!dx dyWei~x82y8!dx8 dy8

5
% i

3

2 E xee
~2!~r1 ,x,x8!Siii ~r2 ,y,y8!Wei~x2y!Wei~x82y8!dx dy dx8 dy8, ~3!
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where% i is the mean ionic number density,xee
(1) andxee

(2) are
the linear and quadratic density response functions for
lium, andSii andSiii are the two and three particle correl
tion functions, respectively. For numerical computation it
more convenient to Fourier transform Eqs.~2! and~3!. Doing
this we obtain

Sei~q!5Wei~q!xee
~1!~q!Sii ~q!/AZ

1
1

2 E xee
~2!~q!Siii ~q,q82q,2q8!Wei~q8!

3Wei~q2q8!dq8/~2p!3. ~4!

SinceSiii is generally less understood and its numerical
curacy is more uncertain theoretically, we shall thus confi
our discussion to the first order term assuming therefor
weakWei @15#. It is interesting to note that the factor mult
plying Sii (q)/AZ is essentially the screened electron cha
densitynEC(q) @8#, which will be derived below. Thus, to
first order in the electron-ion pseudopotential, we obtain

Sei~q!5
nEC~q!Sii ~q!

AZ
, ~5!

which is the expression to be used in the following calcu
tion.

B. Model pseudopotential: Screened electron charge density

1. Nonlocal model pseudopotential

We begin with the Poisson’s equation for the total valen
electron densityn(r )5n01dn(r ) wheredn(r ) is the change
in electron density from the mean valuen0 due to the per-
turbation of ions. The corresponding total electronic pot
tial Ve(r ) will accordingly be written asVe(r )5Ve,0
1dVe(r ) where Ve,0 is an average potential for all of th
valence electrons. Substitutingdn(r ) and dVe(r ) into the
Poisson’s equation

¹2dVe~r !524pdn~r ! ~6!

and applying the Fourier transformation todVe(r ) and
dn(r ), it can be shown in the nonlocal pseudopoten
theory

^k1quVe~r !uk&[`~q!ve~q!5
4p

q2 ^k1qun~r !uk&, qÞ0,

~7!

where `(q)5N21(le2 iq•Rl, N being the total number o
ions in the system. To proceed, we write the total vale
electron densityn(r ) as @17#

n~r !5(
k

xk* ~r !xk~r !1(
k

@ck* ~r !ck~r !2xk* ~r !xk~r !#,

~8!

wherexk(r ) andck(r ) are respectively the pseudo and tr
wave functions. In Eq.~8! the second term accounts for th
difference between the true and pseudo charge densities
is more conveniently expressed as
l-

-
e
a

e

-

e

-

l

e

nd

(
l

r~r2Rl!5(
l

(
k

$ck* ~r2Rl!ck~r2Rl!

2xk* ~r2Rl!xk~r2Rl!%, ~9!

wherer(r2Rl) vanishes forur2Rlu.Rc , whereRc is the
ion core radius. We should emphasize that there is an a
trariness in the choice ofRc within which the depletion
charge density distributes. We shall return to this param
in the following discussion. To continue our calculation
n(r ), we can either expandxk(r ) as many others~for in-
stance, by Waxet al. @14#! by a low order perturbation, or a
Li, Li, and Wang@16# by a formal treatment of the choice o
the perturbation potential~see@16# and also@15# for further
quantitative details! by a higher order perturbation. Norma
izing the true charge densitŷcuc&51 as usual @17#,
^k1qun(r )uk& can be shown to read

^k1qun~r !uk&5`~q!F 1

2p3 E
k<kF

d3k
uNku2wq~k!

Ek
~0!2Ek1q

~0! G
1`~q!rq , ~10!

whereEk
(0) is the unperturbed energy anduNku2 is a renor-

malization constant such that̂cuc&51. Here wq(k)5
^k1quw(r )uk& is the screened electron-ion nonlocal pseud
potential and

rq5V0
21E

Vc

e2 iq•rr~r !d3r ~11!

in which V0 is the atomic volume andVc54pRc
3/3 is the

ion-core volume over which the depletion charge density
to be integrated. At this point it is appropriate to remark th
although the calculation ofrq , in principle, can be effected
by analytical continuation of the wave functions intoVc us-
ing the known magnitude and derivatives of these functio
on theVc surface, it is, however, practically intractable b
the presence of the exponential term. In view of this,
have followed Shaw and Harrison@20# by making two suc-
cessive approximations. The first approximation is to ign
the q dependence of the integral of Eq.~11! leading to

rd5~V0 /p2!E
0

kF
dk k2uNku2~ uNku2221!. ~12!

The associate potential is thus 4prd /(V0q2). This approxi-
mation is equivalent to assuming that the depletion cha
density is a point charge at the ion position. Oncerd is
evaluated numerically the second approximation is to reg
the depletion hole charge to have some form of distribut
within Vc stressing its deviation from pointlike. Now, ac
cording to Shaw and Harrison@20#, one accounts for such
deviation by introducing a modulation functionM(q). In this
way, we write the depletion hole potential asvdq
54prdM (q)/(V0q2), although the exact form ofM (q) is
in principle not known. Since in the present work our intere
is on the correlations between valence electrons and ions
appropriate study of the choice ofM (q) is certainly crucial
and important for understanding the electronic charge d
sity around ions. It should be noted here that the significa
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of M (q) in accounting for the metallic properties has be
previously discussed by several authors@21–23#. Given Eq.
~10! for ^k1qun(r )uk&, the correspondingve(q) in Eq. ~7!
can be written as

ve~q!5
2

p2q2 E
k<kF

d3k
uNku2wq~k!

Ek
~0!2Ek1q

~0! 1vdq

5vs~q!1vdq, ~13!

where we have denoted the screened potential per ion
vs(q). Our next task is to findwq(k). This can be done by
noting that the total screened electron-ion form factorW(r )
5(lw(r2Rl) and the total bare electron-ion form fact
Wb(r )5(lwb(r2Rl) are related by ^k1quW(r )uk&5
^k1quWb(r )uk&1^k1quVe(r )uk& and, in consultation of
Eqs.~7! and ~13!, can be written as@17#

^k1quW~r !uk&[`~q!wq~k!5`~q!@wq
b~k!1vs~q!1vdq#.

~14!

For our generalized EINMP,wq
b(k)5vq1 f (k1q,k) where

vq524pZ/(V0q2), Z being the nominal valence, is th
state-independent part of the ionic model pseudopoten
and f (k1q,k) is the state-dependent part. Notice thatwq(k)
appears also invs(q) @see Eq.~13!# and hence has to b
solved self-consistently with Eq.~14!. The result is

wq~k!5wq
b~k!

1
1

e~q! Fvdq11
2

p2q2 E
k<kF

d3k
uNku2wq

b~k!

Ek
~0!2Ek1q

~0! G ,

~15!

where

e~q!512
2

p2q2 E
k<kF

d3k
uNku2

Ek
~0!2Ek1q

~0! , ~16!

which, in the local pseudopotential theory, reduces to
well-known Lindhard dielectric function. Note that the abo
derivation for the screened electron density is within the r
dom phase approximation. The inclusion of EC correctio
runs almost in parallel. For example, one writes the vale
electron density with EC effects included~denoted by a su-
perscript EC! as

^k1qunEC~r !uk&5`~q!F 1

2p3 E
k<kF

d3k
uNku2wq

EC~k!

Ek
~0!2Ek1q

~0! G
1`~q!rq ~17!

and using the relation as suggested by Shaw@24#, we intro-
duce the local field EC factorF(q) into Eq. ~7! as

^k1quVe
EC~r !uk&[`~q!ve

EC~q!

5
4p

q2 ^k1qunEC~r !uk&@12F~q!#. ~18!

The screened form factor with the EC corrections then re
by

ial

e

-
s
e

s

wq
EC~k!5wq~k!2

F~q!

ẽ~q!
ve~q! ~19!

in which ẽ(q)511@e(q)21#@12F(q)#. After simplifica-
tion, we arrive at

nEC~q!5
1

ẽ~q! F 1

2p3 E
k<kF

d3k
uNku2wq

b~k!

Ek
~0!2Ek1q

~0! 1
q2

4p
vdqG ,

~20!

which is the screened electron charge density defined
^k1qunEC(r )uk&5`(q)nEC(q) and used in the following
calculation. It is interesting to note that when the pseudo
tential is taken to be local,vdq vanishes,wq

b(k) becomesk
independent@such as the bare-ion form factor of the Ashcro
empty core potential@25#, wq

b524pZ cos(rcq)/(V0q
2), r c

being an adjustable parameter representing an effective
radius#, and the result leads exactly to the expression in
local pseudopotential approximation@13#.

C. Ion-ion static structure factor

We are now left with the determination of the ion-io
static structure factor. This quantity, which describes ion-
correlations in the presence of other ions and also of
interacting valence electron gas can be calculated in m
different methods. Here we have chosen the modifi
hypernetted-chain~MHNC! integral equation approach
since this approach has been previously examined by u
be quite reliable. In this section we only summarize tho
essential equations that are needed in the following disc
sion; for complete documentation the reader is referred
original works for details@18,26#.

1. Interatomic potential

An important ingredient in the MHNC theory is the in
terionic potentialf~r!. As pointed out above, we shall us
the generalized EINMP theory@16# to constructf~r!. Ac-
cording to Wang and Lai@17#, f~r! can be written as

f~r !5
Zeff

2

r F12
2

p E
0

`

dqGN~q!
sin qr

q G , ~21!

whereGN(q) is the normalized energy-wave-number cha
acteristics in which is included the EC factor andZeff

2

5Z22rd
2. It is worthwhile to emphasize that in applying E

~21! we have followed Li et al. @16# by incorporating
through the one-electron energy and pseudo wave func
~via a model potential parameterb! the higher~than second!
order corrections into the bare-ion pseudopotential. The
orousness and reliability of such a procedure have been c
cally assessed in a series of successful applications to va
metallic properties@18,26#. For all liquid metals considered
here we have attempted three EC corrections, namely, th
of Singwi et al. @27#, Ichimaru and Utsumi@28#, and Moroni
et al. @2#. These three local field factors are representative
theories developed in the period 1970–1990.



-
e

e

-

l

na-

PRE 58 2231NONLOCAL PSEUDOPOTENTIAL CALCULATION FOR . . .
2. Modified hypernetted-chain theory

Having introducedf~r!, we turn to discuss the pair cor
relation functiong(r) in the integral equation approach. Th
study ofg(r) at given temperatureT and number density% i
can be obtained from the Ornstein-Zernike relation defin
by

g~r ![h~r !2c~r !5% iE h~r 8!c~ ur2r 8u!dr 8 ~22!

in which h(r )5g(r )21 andc(r ) is the total and direct cor
relation functions, respectively. To solve Eq.~22! one must
supplement it with a closure betweenh(r ) andc(r ). A for-
mally exact closure relation is
an
a
e

o
a
s

A
st
he
tu
x-
ut

nd
d

g~r !5exp@g~r !2f~r !/~kBT!2B~r !#, ~23!

where the bridge functionB(r ) ~equal to zero for the usua
hypernetted-chain approximation! is the sum of the
‘‘bridge’’ diagrams @29#. Given f~r! the pair correlation
function can be determined by iteratively solving Eqs.~22!
and~23! for a prescription of the functionB(r ). In this work
we have employed a highly accurate hard-sphereB(r )
proposed previously by Malijevsky´ and co-workers@30#. In
their original works these authors assumed an empirical a
lytic expression forB(r ), which is given asB(r )5b2(r ),
where
b~r !5 H @a11a2~r /s21!#@r /s212a3#@r /s212a4#/~a3a4!, r<a4s
A1 exp@2a5~r /s212a4!#sin@A2~r /s212a4!#/r , r>a4s ~24!
he
-
ru

of
ely,
wo

to

their
the
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its
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wheres is the hard-sphere diameter, andAi andai are con-
stants determined, respectively, by continuity conditions
by fitting to computer simulation data of all known structur
and thermodynamic properties of hard spheres over the
tire fluid range up to the density of freezing. Thus,B(r )
given by Eq.~24! ensures agreement with simulation data
hard spheres and is therefore an accurate empirical h
sphere bridge function that has in fact been shown by u
one recent work@26#.

III. NUMERICAL RESULTS AND DISCUSSION

We turn now to a discussion of our numerical results.
shown in Eq.~5! the electron-ion structure factor to the fir
order in electron-ion interaction is the product of t
screened electron charge density and ion-ion static struc
factor. It would therefore be more instructive if we first e
amine the change in each quantity and see how it contrib
to Sei(q).

FIG. 1. Screened electron charge densitynEC(q) for liquid met-
als Na ~thin full curve!, Rb ~dot-dashed curve!, Mg ~thick full
curve!, Zn ~long-dashed curve!, Al ~dotted curve!, and Ga~short-
dashed curve! calculated using the generalized EINMP a
exchange-correlation factor of Ichimaru and Utsumi@28#.
d
l
n-

f
rd-
in

s

re

es

A. Numerical results of nEC
„q…

Figure 1 reports ournEC(q) for the six liquid metals,
namely, Na, Rb, Mg, Zn, Al, and Ga, calculated using t
generalized EINMP theory@16# and for convenience in com
parison with experiments, with the EC factor of Ichima
and Utsumi@28# @which is the only local field factor used
experimentally to extractSei(q) @1## included in the model
pseudopotential. These materials are representative
monovalent, divalent, and trivalent metals and, respectiv
they are in the order of increasing electronic density. T
distinct features are observed.

~a! For the nearly-free-electron-like liquid metals
which Al, Mg, Na, and Rb belong, thenEC(q) of trivalent,
divalent, and monovalent metals each decreases from
respective valence and crosses zero quite generally in
order of Al→Mg→~Na, Rb! with Al and Mg showing clear
first minima, but those of Na and Rb are weakly visible.
contrast, nonsimple liquid metals such as Zn, which exhib
an asymmetry in the principal peak ofSii (q) @18# and Ga,
which contains a shoulderlike structure on the falling edge
Sii (q) @31#, separately displays a totally different behavio
Although the trend in crossing zero is similar, first trivale
metal Ga and then divalent metal Zn, the points of cross
zeros are located at a largerq.

~b! For the four polyvalent liquid metals, thenEC(q) of
nearly-free-electron metals~Al, Mg! decay more rapidly than
the nonsimple liquid metals~Ga, Zn!, which each shows an
initial stretchednEC(q) accompanied by a weakly oscillator
damped tail.

As will be seen below, feature~a! is crucial for under-
standing the structure ofSei(q). The node ofnEC(q) for each
liquid metal is intimately related to the node of its pseud
potential if the latter is assumed to be local. This can be s
quite easily if one goes back to Eq.~20! and note that in the
local pseudopotential approximationvdq is identically zero
andnEC(q) is directly proportional towq

b . On the other hand
for a nonlocal pseudopotential,vdqÞ0 ~sinceM (q)Þ0 for a
nonlocal pseudopotential! the location of the node will thus
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have a delicate effect onnEC(q). We show in Fig. 2 the
variation of our pseudopotential form factor for the six liqu
metals of interest here. The correlation between the node
nEC(q) andwq

EC(k) are less regular. In regard to feature~b!
the general structures displayed in Fig. 1 physically sugg
that the distributions of valence electrons in Al and Mg a
somewhat diffused compared with those of Ga and Zn wh
spatial distributions are relatively more compact. It is p
haps noteworthy to remark that, although the use of differ
EC factors to account quantitatively for the electron-elect
interactions do have significant effects on metallic proper
such as the phonon spectra, electrical resistivity, interio
interactions @and hence theSii (q) @18## etc., its role on
nEC(q) appears to be inconsequential. To see this, we de
in Fig. 3 the pair potentials for Ga calculated using the lo
field factors of Singwiet al. @27#, Moroni et al. @2#, and Ichi-
maru and Utsumi@28#. Similar comparison for the EC cor
rections in liquid metal Zn atT5723 K was given previously
in Fig. 4 of @18#. These figures clearly manifest the sensit
ity of f(r ) on the local field factor. In contrast, there see
to be virtually no change innEC(q) with different EC cor-
rections~see Fig. 4!. Nevertheless one should notice furth
that, among different liquid metals, the results in feature~b!

FIG. 2. Pseudopotential form factor for six liquid metals N
~thin full curve!, Rb ~dot-dashed curve!, Mg ~thick full curve!, Zn
~long-dashed curve!, Al ~dotted curve!, and Ga ~short-dashed
curve!.

FIG. 3. Interionic pair potentialf(r ) ~in units ofkBT! for liquid
metals Ga calculated with the EC factor of Singwiet al. @27# ~dot-
ted curve!, Moroni et al. @2# ~full curve! compared with that of
Ichimaru and Utsumi@28# ~dashed curve!.
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are in fact indicative of the combined effects of electro
electron interactions, which are shown above to be inse
tive to nEC(q) and of nonlocality of electronic pseudopote
tial, which we believe is an important piece of informatio
for understanding the electron-ion correlation. We shall d
cuss this more in the next section.

B. Numerical results of Sii „q…

To facilitate a direct comparison among the six liqu
metals, we plot in Fig. 5 theSii (q) versusq all scaled to their
respective Fermi wave vector. It is interesting to notice i
mediately that in going along the trend
monovalent→divalent→trivalent, the first peak positionqm
of Sii (q), with respect toq52kF , shifts systematically
inward—the monvalent metals~Na, Rb! have theirq52kF
lying half-way at the rising edge beforeqm , the divalent
metals~Mg, Zn! lying just afterqm , while those of trivalent
metals~Al, Ga! lying beyondqm . Thatq52kF is judiciously
chosen for comparison is because in the vicinity of this po
different local field factors deviate most andnEC(q) drops
nearly to zero.

FIG. 4. Screened electron charge densitynEC(q) for liquid metal
Ga calculated with the EC factors of Singwiet al. @27# ~dashed
curve! and Moroni et al. @2# ~full curve! compared with that of
Ichimaru and Utsumi@28# ~dot-dashed curve!.

FIG. 5. Static structure factorS(q) for liquid metals Na~thin
full curve!, Rb ~dot-dashed curve!, Mg ~thick full curve!, Zn ~long-
dashed curve!, Al ~dotted curve!, and Ga~short-dashed curve! cal-
culated using the MHNC withB(r ) of Malijevský et al. @30# and
f(r ), which includes the EC factor of Ichimaru and Utsumi@28#.
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C. Numerical results of Sei„q…

We are now in a position to discuss the structure ofSei(q)
for the six liquid metals that are all delineated in Fig.
There are two general points that merit emphasis.

~a! For all of the liquid metals,Sei(q) changes quite gen
erally, first increasing at smallq, going through a maximum
and then descenting through the zero to a minimum,
finally continuing by a weakly damped oscillation.

~b! There is no systematic trend for tracing the positio
of first maximum and first minimum ofSei(q) purely from a
knowledge of the electron density in liquid metals.

It is not difficult to understand point~a! if one recalls the
positions of the main maxima ofSii (q) and the waynEC(q)
goes to zero. For the divalent and trivalent liquid meta
because of the behavior inSii (q) noted in Sec. III B, the first
maximum ofSei(q) comes mainly from the contribution o
the principal peak ofSii (q), which is either enhanced o
diminished bynEC(q) depending on how slow or how fast

FIG. 7. Screened electron charge densitynEC(q) for liquid met-
als Ga~full curve!, Zn ~dashed curve!, and Na~dot-dashed curve!
calculated with the generalized EINMP theory with the EC factor
Ichimaru and Utsumi@28# compared with those calculated with th
empty core local pseudopotential given by dotted curves. The A
croft empty core radii are taken from@35# for Zn and Na, and from
@36# for Ga.

FIG. 6. Electron-ion structure factorSei(q) for liquid metals Na
~thin full curve!, Rb ~dot-dashed curve!, Mg ~thick full curve!, Zn
~long-dashed curve!, Al ~dotted curve!, and Ga~short-dashed curve!
calculated using Eq.~5! for the EC factor of Ichimaru and Utsum
@28#.
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decays. Quite generally, the positions of the first peaks
Sei(q) for these elements lie slightly to the left ofqm . On
the other hand, for the monovalent liquid alkali metals, t
locations of theirnEC(q)’s minima are nearqm , which thus
leads to clear first minima ofSei(q). An important aspect to
emphasize is the node ofSei(q), which is exactly the same
as that ofnEC(q) sinceSii (q) is positive definite. From Eq
~20!, one would therefore expect in general a full nonloc
pseudopotential theory to predict aSei(q) different from that
in the local pseudopotential theory. This is illustrated in F
7 for thenEC(q) of three of the liquid metals considered he
@32#. Lastly, for the damped oscillatory behavior it can
attributed to the matching ofSii (q) andnEC(q) and its mag-
nitude depends on whether they are in phase or out of ph
It is interesting to note that the first minimum ofnEC(q)
corresponds closely to the principal minimum ofSei(q), a
feature that is found to be generally true~&10%! for all of
the six liquid metals. Coming to point~b!, this simply re-
flects the delicate manner in computingSei(q); a slight
change in curvature ofnEC(q) can lead to subtle differen
structure ofSei(q) @see Fig. 7 for a comparison of thenEC(q)
of local @32# and nonlocal pseudopotential theories#.

f

h-

FIG. 8. ~a! Static structure factorSii (q) for liquid metals Na,
Zn, and Ga calculated using the MHNC~see text! compared with
the experimental results of Takeda@1#. The theoretical results are
given by full curves and experimental neutron scattering data
Na ~circles!, Zn ~triangles!, and Ga~squares!. ~b! Static structure
factor Sii (q) for liquid metals Rb, Mg, and Al calculated using th
MHNC ~see text! compared with the experimental results of Take
@1# and Waseda@34#. The theoretical results are given by full curve
and experimental neutron scattering data are Mg~triangles! and Al
~squares!. Note that the x-ray data for Rb~circles! are taken from
@34# measured at 313 K.
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At this point, it is perhaps appropriate to ask the follo
ing: ~1! How do our calculated results compare with expe
ments?~2! How important is the nonlocality of valence ele
trons onnEC(q) having checked above that the EC factor
insignificant? For question~1!, there are two sets of data t
be compared. In Fig. 8, we display our calculatedSii (q)
compared with those of neutron scattering@1# or x-ray dif-
fraction experiments@33# and in Fig. 9 we show our result
of Sei(q) along with the experimental data extracted
Takeda and co-workers@1#. For theSii (q), the overall agree-
ment is excellent for liquid alkali metals, and the compatib
ity is favorably good also for liquid polyvalent metals, apa
from the magnitudes of first peaks and a shift in the fi
minimum position for Zn. The discrepancies for theSii (q) of
liquid polyvalent metals, in particular Zn, are hard to ass
since experimental errors for these elements are gene
larger and more susceptible to uncertainties. We there
feel that the structures ofSii (q) predicted in our work are
reasonably in order. As regards theSei(q), our theoretical
findings interpret very well the various positions of extrem
of Sei(q). It thus appears that the generalized EINMP us
self-consistently in this work for the calculation ofnEC(q)
andSii (q) is basically correct. Specifically it is encouragin
to mention our results for Ga and Mg. For the former,
Sei(q) shows the same anomalous sharp positive maxim
as Boulahbaket al. @14# who applied the Shaw’s nonloca
optimized model potential theory@24# and for the latter it
compares very well with the first-principles molecular d
namics simulation of de Wijset al. @5#.

Turning now to question~2!, this feature may be worth
examining since we are looking at the correlation betwe
electrons and ions. We have in fact addressed this proble
Sec. II B by drawing attention to the state dependence
valence electrons and accounting for the oscillatory par
the true wave functions localized in the ion core regionVc
by the depletion charge density. With further considerat
of a tractable means in obtaining the depletion charge den
function, we are led to introduce the modulation functi
M (q), which essentially dictates the depletion hole cha
distribution within Vc . Unfortunately there are not man

FIG. 9. Electron-ion structure factorSei(q) for liquid metals Al,
Ga, Mg, and Na calculated using Eq.~5! with the EC factor of
Ichimaru and Utsumi@28#. The theoretical results are given by fu
curves compared with those of experiments@1# or simulation data
@5# by solid circles.
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works in the literature that study the detailed nature of t
quantity. The main difficulty lies in the fundamental aspe
of this function, which requires a knowledge of the real wa
functions within Vc . But the latter are just precisely th
target that the model pseudopotential theory is trying
avoid. Accordingly we may have to examineM (q) by a
qualitative but nonetheless reasonable means. Three re
calculations are relevant; these are the studies of bulk mo
of simple metals by Pynn@21#, of electronic and dynamic
properties of the simple metal aluminum by Rao@22#, and of
thermodynamic properties of liquid metals by Kumarava
vel @23#. Now the conclusions reached by these authors m
serve as a useful guide for us to evaluate the importanc
M (q). First, the form forM (q) is nonunique but must be
chosen such that the total depletion charge should be loc
within Vc in which the pseudo and true wave functions d
fer. Several forms ofM (q) that satisfy this property are~a!
zero depletion hole charge,M (q)50, which corresponds to
the local pseudopotential theory,~b! delta function distribu-
tion, M (q)51, ~c! Shaw’s form @24#, M (q)51/@1
1(q/kF)2#, wherekF is the Fermi wave vector,~d! Pynn’s
form @21#, M (q)5exp@2(qRc)

2/4z# in which 1<z<4, and
~d! uniform depletion charge distribution, M (q)
53@sinqRc /(qRc)2cosqRc#/(qRc)

2 @37#, which is the
one widely used and employed in all the above calculatio
Second, the inclusion of the nonpoint depletion charge ha
considerable effect on the energy wave-number character
and hence the interatomic potential. This property ofM (q)
was shown explicitly in the works of Pynn for theGEC(q)
~see Fig. 1 of@21#! and binding energy~for Al about 20%
difference!, and of Kumaravadivel@23# for the excess en-
tropy, long wavelength limit of the structure factor, andf(r )
~see Fig. 4 and Table 14 of@23#!. Third, the effect of using
different nonpointM (q)’s is still found to be discernible,
although less significant. The specific physical propert
that have been examined include the electronic@22# and ther-
modynamic@21,23# quantities such as the interionic pote
tial, electrical resistivity~less than 5%!, excess entropy~less
than 10%!, constant volume specific heat, and bulk modu
~both less than 5%!. Fourth, when different forms ofM (q)
are compared the calculated physical quantity straddles
experimental values~see@22,23# for specific examples!.

Within the context of the nonlocal pseudopotential theo
it is implied from these remarks that the effect of any no
point M (q) is inconsequential in the general structure
Sei(q); one would not expect too big a difference in th
electron-ion correlation if different forms ofM (q) are at-
tempted. We have in fact checked on this aspect by repea
the above calculation fornEC(q) using Pynn’s form of
M (q). By choosingz52, which is a value that best agree
with measurements generally, we virtually find no differen
in the nEC(q) for liquid metals Mg and Zn compared wit
the uniform depletion charge distribution. On physic
grounds, the choice of differentM (q)’s on Sei(q) for liquid
alkali metals is going to be even smaller. Thus, one is co
fortably safe for theSei(q) results againstM (q) if one is
applying a nonlocal pseudopotential theory. This conclus
further explains why our results for the alkalis and Ga are
of the same quality as those of Boulahbaket al. @14#.
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IV. CONCLUSION

Following the functional derivative method of Cusa
et al. @19# we first obtain an equation for the electron-io
correlation expressed in terms of a product of the scree
electron charge density and ion-ion static structure facto
full nonlocal model pseudopotential with three different E
factors is then employed to construct the former and the
tegral equation approach based on the modified hyperne
chain approximation is applied self-consistently to determ
the latter. TheSei(q) for six liquid metals near their respec
tive freezing temperatures are calculated and they are se
interpret favorably the measured data of Takeda@1#. In ana-
lyzing various contributions toSei(q), we find that the cal-
culatedSii (q) for the liquid alkalis compare very well with
experiments whereas for those of the polyvalent liquid m
als the agreement with observed data is in good reason
order. While for thenEC(q), we point out that the electron
ion structure factor calculated using the local pseudopoten
theory is formally different from that within the context o
nonlocal pseudopotential theory. One main difference lie
the depletion hole charge distribution, which has a n
gt,
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negligible effect onnEC(q) andSii (q), and hence onSei(q).
Given a nonlocal pseudopotential our calculation indica
that different EC factors orM (q)’s have a less significan
influence on nEC(q) and Sii (q) and the corresponding
Sei(q)’s are thus quite similar.
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