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A full nonlocal model potential is employed to calculate the screened electron charge eé&figify and to
construct the interatomic pair potential, which is then used in the modified hypernetted-chain integral equation
to determine the ion-ion static structure facg)(q). These two basic quantities are subsequently used as input
data for the calculation of the electron-ion correlation. For the simple liquid metals Na, Mg, and Al, our
calculated electron-ion structure factdg(q) agree very well with the positions of extrema of the experi-
mental or computer-simulate®l;(q). Quantitative analysis of the two main contribution§*(q) andS;;(q),
shows thatS,;(q) obtained in a full nonlocal pseudopotential theory is in general different from that in the
local pseudopotential theory. Such disparities in the two theoretical frameworks arise from the nonlocality of
electron-ion pseudopotential, which, for a quantitative study, should be incorporated in the theory especially
when one is treating the correlations of electrons and ions on an equal footing. At the level of achievement
attained in this work, there is now a greater hope of understanding the electron-ion correlations if experimental
errors forS;i(q) are considerably reduce51063-651X98)09208-3

PACS numbes): 61.25.Mv, 61.20.Gy

I. INTRODUCTION tween valence electrons and ions in the liquid metal. These
computer-simulated experiments supplement the existing
Coulomb interaction between charged bodies is one of théaboratory experiments and have elucidated many structural
basic forces in nature. Liquid metal represents one simpléeatures pertinent to electrons and ions. It is therefore appro-
example whose constituents, ions and electrons, display clapriate and of great theoretical interest at this time to revisit
sical as well as quantum mechanical behaviors. Over the laghis interesting problem of the partial liquid structure factors
twenty years tremendous efforts have been devoted to studgf liquid metals that consist of electron-electron, electron-
ing various physical properties of this system. In many ofion, and ion-ion correlations.
these applications one notices a common practice in that the The interest in the two-component nature of liquid metals
role of valence electrons, which is one of the two compo-originates from the pioneering work of Cowan and Kirk-
nents in a liquid metal, has not been put on an equal footingvood[7]. These authors described the liquid metal as being
as ions. Instead one takes advantage of the electronic massmposed of two types of charged interacting particles and
and its degenerate physical property to eliminate this degreiney presented results for the partial structure factors of the
of freedom in mathematical formulation. Thus the two- electrons and ions that are valid in a somewhat restrictive
component nature of a liquid metal is commonly seen to beegime. Their work has subsequently been further elaborated
reduced to an effectively one-component system. Such a piby Tosi and March8] who discussed the issue from a many-
ture for the liquid metal as a collection of weakly interacting body point of view focusing more on electrons. In fact ex-
pseudoatoms has been widely accepted by the liquid-stafdicit expressions for the partial structure factors and their
community and was applied in a different context over theinter-relations in some limiting cases were derived concur-
last two decades. Recently there has been a revived interesntly by Watabe and Hasegay@ using the Green function
both theoretically and experimentally in understanding themethod and by Chiharfd 0] employing the integral equation
inherent two-component nature of a liquid metal. Experi-approach. A similar effort has been reported by Trigde
mentally there are now high resolution liquid structure datausing an approach in close analogy with that of Watabe and
for liguid metals by neutron scatterifd] and these data Hasegawd9]. Despite these fundamental studies progress in
when combined with those of x rays and with theoreticalunderstanding the intrinsic two-component nature of the lig-
results for the electron-electron correlations allow an extracuid metal seems to be slow. Beginning in the early 1990s
tion of the electron-ion structure fact&;;(q) to a reason- systematic neutron scattering experiments have been carried
able precision. In this connection one should draw attentiomut by Takedaet al. [1] who combined their neutron data
to some recent developments in the homogeneous electravith those of x rays and of theoretical many-body results of
gas theories. These more refined theofies4], which gen-  the interacting electron gas to deduce specifically the
erally recourse to the tool of quantal simulation, handle moreelectron-ion partial structure factors and the valence electron
accurately the classic problem of the electron-electrorcharge distribution for a number afptype liquid metals.
exchange-correlatiofEC) effects. Progressing almost in par- Such experimental endeavors are extremely difficult and
allel is the extensive use of computer simulations such as theelicate since both x-ray and neutron scattering dataiori
Car-Parrinello molecular dynamics technigi®6], which  have to be taken with high accuracy for the extracted
was applied quite successfully to study the correlations beelectron-ion structure fact@,;(q) to be reliable. In connec-
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tion with the assessment of the experime8a(q), it may  fied hypernetted-chain theory to the study of the ion-ion
be worthwhile to remark that there already appear in thestatic structure factor. Numerical results for the screened
literature critical comments on getting high quality resultscharge densityS;(gq) andS,;(q) are the content of Sec. Ill.
[12]. Concurrently, there are extensive works on computeHere discussion of their characteristic features will be given.
simulations whose studies provide direct information on theFinally in Sec. IV we summarize our main results.
electron-ion correlations in liquid metals. The comparison of

the latter with laboratory data have given us a much better

picture on the electron-ion interactions. It is the purpose of

this paper to attempt to interpret some of these measured Il. THEORY

data theoretically.

In this work the electron-ion structure factor is calculated
following the same means as used by Tosi and M&&ih
Trigger[11], and other$13,14]. The method is essentially a
perturbative approach assuming a weak interaction betweg

electrons and ions. Since the electron-ion pseudopotential fQr, ., 1ation 0fS,i(q). Finally we summarize the essential

the sptype liquid metals con3|dered here can be qons!dere quations appearing in the integral equation approach to the
to be weak, the use of the linear response approximation fq n-ion static structure factor

studyingS;i(q) should be reasonably justifiéd5] provided

guantities involved can be accurately and reliably obtained.

We show in this work that our nonlocal model pseudopoten-

tial [16,17], combined with recent theoretical results in the A. Electron-ion structure factor

homogeneous interacting electron gas, describes quite well

the microscopic correlations between conduction electrons Following the work of Cusaclet al. [19], let us begin
and ions. Differing from previous works8,13,14, we shall  with the density-density time correlation function for the
discuss in some detail the screened valence electron chargtectronn(rt) and ionp;(rt), which is defined as

density within the nonlocal pseudopotential. We reexamine

the approximations applied to the electron charge density

that have not been discussed much in the literature for lack (n(raty) pi(rata))c=(N(rity) pi(rata))

of a detailed knowledge of the electron distribution in the ion

cores. The paper is o?ganized as follows. In Sec. Il we give a ~(n(rsty)){pilrata)), @
brief documentation of the expressions 8y5;(q) derived
within the functional derivative method. Next, we describewhere the subscrigt means the cumulant average. The func-
with a fair amount of detail the generalized energy indepentional derivative method is essentially a perturbative ap-
dent nonlocal model pseudopoten{iBINMP) theory for the  proach aimed at generating a series of perturbation expan-
calculation of the screened electron charge density. Here, waon for (7[n(rt;)p;(rot2)1)e, 7 being the time-ordered
draw attention to some approximations in the nonlocaloperator. If one assumes the electron-ion interact(x
pseudopotential that we have made and applied successfullyy) as an external potential, the functional derivative
in previous application§l8]. Then, we introduce the modi- method gives for the first and second order terms

In this section we first present the equation f8y(q)
within the functional derivative method. Then we review the
eneralized EINMP theory16] deriving an expression for
e screened electron charge density that is needed in the

SUTIN(raty)pi(rata)])e= —(i/ﬁ)f (TIn(r10)n(xt) N( T pi(r20) pi(Y) 1) Wei(x—y)dx dy dt

=p? f X55(r1,%) S (Y—F2)Wei(x—y)dx dy )
and

1 i)?
SH(TIN(rity)pi(rata) )e=> ( —,'i—) f (TIn(r 0NN ) D TLpi(r20)pi(yt) pily't) e

X Wei(X—y)dx dyWei(x'—y")dx" dy’

3
Q.
=5 f Xee (1. %X")Sii(12,Y,Y") Wei(X—Y) Wei(x' —y")dx dy dx’ dy’, )
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whereg; is the mean ionic number density.Y) andx(2 are

the linear and quadratic density response functions for jel- ; P(r_RA):; ; {k (r—ROW(r—Ry)
lium, andS;; andS;;; are the two and three particle correla-
tion functions, respectively. For numerical computation it is —xk (r=R)xk(r—Ry)}, 9)
more convenient to Fourier transform E¢®). and(3). Doing
this we obtain wherep(r —R,) vanishes fotr —R,|>R., whereR, is the
ion core radius. We should emphasize that there is an arbi-
Seil @) = Wei(9) xe (@) S (@)/VZ trariness in the choice oR. within which the depletion
1 charge density distributes. We shall return to this parameter
- (2) 'yt (a’ in the following discussion. To continue our calculation of
"2 fxee(q)S,..(q,q 49" Weila’) n(r), we can either expang,(r) as many othersfor in-

, , stance, by Waset al.[14]) by a low order perturbation, or as
X Wei(—q")dq'/(2m)°. ) Li, Li, angWang[le][by])a %rmal treatmeFr)n of the choice of
SinceS;; is generally less understood and its numerical acth® Perturbation potentidsee[16] and alsd 15] for further
curacy is more uncertain theoretically, we shall thus confindlu@ntitative detailsby a higher order perturbation. Normal-
our discussion to the first order term assuming therefore #iNg the true charge densityy|y)=1 as usual[17],
weakW,; [15]. It is interesting to note that the factor multi- (k+q[n(r)[k) can be shown to read

plying S;(q)/\Z is essentially the screened electron charge

QensitynEC_(q) [8], which _vviII be derived bglow. Thus,_ to (k+q[n(r)|ky=p(q)
first order in the electron-ion pseudopotential, we obtain

& el
2m k<kg Ef( )—Euq

+ , 10
S (q): nEC(q)Si(q) SO(Q)Pq ( )
e Jz oo whereE(? is the unperturbed energy afil,|? is a renor-
o _ _ _ malization constant such thaty|y)=1. Here wy(k)=
Wh|Ch is the eXpreSS|0n to be used in the fO"OW|ng Calcula'<k+q|w(r)|k> is the Screened e|ectr0n_ion non|oca| pseudo_
tion. potential and

B. Model pseudopotential: Screened electron charge densit _ ;
P P 9 y pngolj e 9 p(r)d%r (11)
1. Nonlocal model pseudopotential Q¢

We begin with the Poisson’s equation for the total valencqn which Q is the atomic volume an@ =47RY3 is the
electron densityi(r) =no+ on(r) wheresn(r) is the change  jon-core volume over which the depletion charge density is
in electron density from the mean valug due to the per- g pe integrated. At this point it is appropriate to remark that,
turbation of ions. The corresponding total electronic poteny|though the calculation b, in principle, can be effected
tial Vg(r) will accordingly be written asVe(r)=Veo by analytical continuation of the wave functions irfig us-
+6Ve(r) whereV,, is an average potential for all of the ing the known magnitude and derivatives of these functions
valence electrons. Substitutingn(r) and 6Ve(r) into the  on the ), surface, it is, however, practically intractable by
Poisson’s equation the presence of the exponential term. In view of this, we

have followed Shaw and Harrisq20] by making two suc-
2 -
VEV(r)=—4mon(r) ©) cessive approximations. The first approximation is to ignore

and applying the Fourier transformation #V.(r) and the g dependence of the integral of EQ.1) leading to

én(r), it can be shown in the nonlocal pseudopotential ke
theory pd=(90/w2)f dk KINJ?(IN72-1). (12
0

4
(k+alVe(n[k)=p(qve(q)=— (k+aln(r)[k), g#0,  The associate potential is thusrdy/(,q?). This approxi-
a @ mation is equivalent to assuming that the depletion charge
density is a point charge at the ion position. Onggis
wherep(q)=N"13,e '9Rx N being the total number of evaluated numerically the second approximation is to regard
ions in the system. To proceed, we write the total valencéhe depletion hole charge to have some form of distribution
electron densityi(r) as[17] within (). stressing its deviation from pointlike. Now, ac-
cording to Shaw and Harrisof20], one accounts for such
deviation by introducing a modulation functidn(q). In this
n(r)=; X’Q(r)Xk(f)ﬁL; [k (N (1) = xic (N xi(1)], way, we xlvrite the gdepletion hole poterftcilgll asyq
(8) =4mpgM(q)/(Qoq?), although the exact form d¥1(q) is
in principle not known. Since in the present work our interest
where x(r) and ¢, (r) are respectively the pseudo and trueis on the correlations between valence electrons and ions, an
wave functions. In Eq(8) the second term accounts for the appropriate study of the choice & (q) is certainly crucial
difference between the true and pseudo charge densities aadd important for understanding the electronic charge den-
is more conveniently expressed as sity around ions. It should be noted here that the significance
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of M(q) in accounting for the metallic properties has been . F(q)
previously discussed by several authf2$—23. Given Eq. Wq (k) =wq(k)— Q) ve(Q) (19
(10) for (k+q|n(r)|k), the corresponding¢(q) in Eq. (7)
can be written as 5
in which e(q)=1+[e(q)—21][1—-F(q)]. After simplifica-

INy|2wg(K) tion, we arrive at
V()= f 3 K o) L
© 7202 k=<kg E(k(’)—E(kOQq da
1 INPwg(k)  g?
—0(Q)+ Vg (13 EC :~__J 3y MKW A7
ST 0dq @ eq) [27° Jkske  EP-EQ, 47 Vda|

where we have denoted the screened potential per ion by (20)

vs(d). Our next task is to finavy(k). This can be done by

noting that the total screened electron-ion form fatr)  \hich is the screened electron charge density defined by

=bEAW(r—R}B) and the total bare electron-ion form factor (k+q|nFYr)|k)=p(q)nFX(q) and used in the following

WA =Z,wA(r—R,) are related by (k+q[W(r)[k)="" calculation. It is interesting to note that when the pseudopo-

(k+alW(r)|k) +(k+g|Ve(r)|k) and, in consultation of (ential is taken to be local; 4q vanisheswg(k) becomesk

Egs.(7) and(13), can be written a17] independenisuch as the bare-ion form factor of the Ashcroft
_ B b empty core potential25], w3= —47Z cosf)/(QPD), e

<k+Q|W(r)|k>_p(q>wq(k)_p(q>[wq(k)+US(Q)+qu]' being an adjustable parameter representing an effective core

(14 radiug, and the result leads exactly to the expression in the

For our generalized EINMPv,vg(k)=vq+f(k+ g,k) where local pseudopotential approximatigh3].
vq=—4wZ/(Qoq2), Z being the nominal valence, is the

state-independent part of the ionic model pseudopotential C. lon-ion static structure factor
andf(k+q,k) is the state-dependent part. Notice thg(k)
appears also ing(q) [see Eq.(13)] and hence has to be
solved self-consistently with Eq14). The result is

We are now left with the determination of the ion-ion
static structure factor. This quantity, which describes ion-ion
correlations in the presence of other ions and also of the
Wq(k)zwb(k) in_teracting valence electron gas can be calculated in many

q different methods. Here we have chosen the modified

1 2 . INi 2W3(k) hypernetted-chain(MHNC) integral equation approach,
+ ?q) Udg+t+ ?2?‘ —k EO_gO | since this approach has been previously examined by us to
~F k k+q be quite reliable. In this section we only summarize those
(150  essential equations that are needed in the following discus-
sion; for complete documentation the reader is referred to

where original works for detail§18,2§.
2 . .
(q)=1- 222 f £k (0|)Nk| - 16 | -1. Inte-rator-mc potential | |
T°q" Jk=ke Ex'—Eiq An important ingredient in the MHNC theory is the in-

terionic potentialé(r). As pointed out above, we shall use

which, in the local pseudopotential theory, reduces to thehe generalized EINMP theoryl6] to constructe(r). Ac-
well-known Lindhard dielectric function. Note that the above cording to Wang and Ldil7], ¢(r) can be written as

derivation for the screened electron density is within the ran-
dom phase approximation. The inclusion of EC corrections

runs almost in parallel. For example, one writes the valence b(r)= Z_gff [1_ 3 f*qu @ sin Qr} 21
electron density with EC effects includédenoted by a su- r 7T Jo N '
perscript EQ as
1 |Nk|2W5C(k) where Gy(q) is the normalized energy-wave-number char-
(k+q|nES(r)|k)y=p(q) 53 f 3 EO g0 acteristics in which is included the EC factor ady
& F k k+g =Z7?—p3. It is worthwhile to emphasize that in applying Eq.

+p(q)pq (17)  (21) we have followed Lietal. [16] by incorporating _
through the one-electron energy and pseudo wave function

and using the relation as suggested by Sk24}, we intro-  (via @ model potential parametgy the higher(than second

duce the local field EC factdf(q) into Eq.(7) as order corrections into the bare-ion pseudopotential. The rig-
orousness and reliability of such a procedure have been criti-
(k+q|VES(N|k)y=p(q)vE%q) cally assessed in a series of successful applications to various

metallic propertie§18,26]. For all liquid metals considered
here we have attempted three EC corrections, namely, those
of Singwi et al.[27], Ichimaru and Utsumi28], and Moroni

et al.[2]. These three local field factors are representative of
The screened form factor with the EC corrections then readtheories developed in the period 1970-1990.

41
d (k+q|nE(r)[k)[1—F(a)]. (18)
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2. Modified hypernetted-chain theory g(r)y=exgd y(r)— ¢(r)/(kgT)—B(r)], (23
Having introducedg(r), we turn to discuss the pair cor-
relation functiong(r) in the integral equation approach. The
study ofg(r) at given temperatur& and number densitp; where the bridge functioB(r) (equal to zero for the usual
can be obtained from the Ornstein-Zernike relation definedypernetted-chain approximationis the sum of the
by “bridge” diagrams [29]. Given ¢(r) the pair correlation
function can be determined by iteratively solving E¢&2)
y(r)=h(r)—c(r)= Qif h(r')c([r=r"Ddr"  (22)  and(23) for a prescription of the functioB(r). In this work
we have employed a highly accurate hard-sphBig)
in which h(r)=g(r)—1 andc(r) is the total and direct cor- proposed previously by Malijevskgnd co-workerg30]. In
relation functions, respectively. To solve E@2) one must their original works these authors assumed an empirical ana-
supplement it with a closure betweélfr) andc(r). A for- lytic expression forB(r), which is given asB(r)=b?(r),
mally exact closure relation is where

[lagtay(rlo—D)][rlo—1—as][rlo—1-a,]/(aza,), r<ayo

b= A, ex] —as(r/o—1—a,)JsifAyrlo—1-a)llr, r=ase 24

whereo is the hard-sphere diameter, aAdanda; are con- A. Numerical results of n=“(q)
stants determined, respectively, by continuity conditions and
by fitting to computer simulation data of all known structural
and thermodynamic properties of hard spheres over the en- ' : ) i
tire fluid range up to the density of freezing. ThuBr) I&enerallzed EINMP theorj16] and for convenience in com

given by Eq.(24) ensures agreement with simulation data Ofpa(rjlsg? W|t_h[2eS}<p[er;]m(re]n_ts,t;]N|th tlhel ECI f?cltgrf Oft Ich|ma(;u
hard spheres and is therefore an accurate empirical har§" sumi which 15 the only focal Tield factor use

sphere bridge function that has in fact been shown by us ifXPerimentally to extracg,;(q) [1]] included in the model
one recent worf26]. pseudopotential. These materials are representative of
monovalent, divalent, and trivalent metals and, respectively,

they are in the order of increasing electronic density. Two
Ill. NUMERICAL RESULTS AND DISCUSSION distinct features are observed.

We turn now to a discussion of our numerical results. As (@ For the nearly-free-electron-like liquid metals to
; r -« Which Al, Mg, Na, and Rb belong, thet%(q) of trivalent,

shown in Eq.(5) the electron-ion structure factor to the first " g g .
order in electron-ion interaction is the product of the dlvalent_, and monovalent metals each dgcreases from their
screened electron charge density and ion-ion static structuféSpective valence and crosses zero quite generally in the
factor. It would therefore be more instructive if we first ex- order of Al-Mg—(Na, Rb with Al and Mg showing clear
amine the change in each quantity and see how it contributd§st minima, but those of Na and Rb are weakly visible. In
10 Sei(Q). contrast, nonsimple liquid metals such as Zn, which exhibits
an asymmetry in the principal peak 8f(q) [18] and Ga,
which contains a shoulderlike structure on the falling edge of
S (q) [31], separately displays a totally different behavior.
Although the trend in crossing zero is similar, first trivalent
metal Ga and then divalent metal Zn, the points of crossing
zeros are located at a larggr

(b) For the four polyvalent liquid metals, th&(q) of
nearly-free-electron meta{g\l, Mg) decay more rapidly than
the nonsimple liquid metaléGa, Zn, which each shows an
initial stretchech®(q) accompanied by a weakly oscillatory
damped tail.

As will be seen below, featuré) is crucial for under-
standing the structure &,(q). The node oht<(q) for each
liquid metal is intimately related to the node of its pseudo-
potential if the latter is assumed to be local. This can be seen

FIG. 1. Screened electron charge densft§i(q) for liquid met- quite easily if one goes back Fo E@O) a.nd' note_ that in the
als Na (thin full curve), Rb (dot-dashed curye Mg (thick full  local pseudopotential approximatiany, is identically zero
curve, Zn (long-dashed curye Al (dotted curvgy and Ga(short- andn®%(q) is directly proportional t‘Wg- On the other hand,
dashed curve calculated using the generalized EINMP and for a nonlocal pseudopotentialy,# 0 (sinceM(q) #0 for a
exchange-correlation factor of Ichimaru and Utsyas). nonlocal pseudopotentjalhe location of the node will thus

Figure 1 reports ount<(q) for the six liquid metals,
namely, Na, Rb, Mg, Zn, Al, and Ga, calculated using the
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n"(q)

Form factor

a/ke a/ke

.FIG. 2. Pseudopotential form factor for ;ix liguid metals Na  F|G. 4. Screened electron charge densft§(q) for liquid metal
(thin full curve), Rb (dot-dashed curye Mg (thick full curve), Zn G4 calculated with the EC factors of Singet al. [27] (dashed
(long-dashed curye Al (dotted curvg, and Ga (short-dashed cyrvg and Moroniet al. [2] (full curve) compared with that of

curve. Ichimaru and Utsumj28] (dot-dashed curye

have a delicate effect on®“(q). We show in Fig. 2 the are in fact indicative of the combined effects of electron-

variation of our pseudopotential form factor for the six liquid electron interactions, which are shown above to be insensi-
metals of interest here. The correlation between the nodes [li\/e to nEC(q) and of non'oca”ty of electronic pseudopoten_

nE%(q) andwg“(k) are less regular. In regard to featdt®  tial, which we believe is an important piece of information

the general structures displayed in Fig. 1 physically suggesbr understanding the electron-ion correlation. We shall dis-
that the distributions of valence electrons in Al and Mg arecuss this more in the next section.

somewhat diffused compared with those of Ga and Zn whose

spatial distributions are relatively more compact. It is per- B. Numerical results of S;;(q)

haps noteworthy to remark that, although the use of different N . . o
EC factors to account quantitatively for the electron-electron 10 facilitate a direct comparison among the six liquid
interactions do have significant effects on metallic propertiegn€tals, we plot in Fig. 5 th&; (q) versusq all scaled to their
such as the phonon spectra, electrical resistivity, interioni€€SPective Fermi wave vector. It is interesting to notice im-
interactions[and hence theS;(q) [18]] etc., its role on Mediately  that in  going along the trend,
nEC(q) appears to be inconsequential. To see this, we depi(gponovalem—>’d|valent—>tr|valent, the f|rs.t peak posmqqm

in Fig. 3 the pair potentials for Ga calculated using the locaPf Si(d), with respect tog=2kg, shifts systematically
field factors of Singwet al.[27], Moroni et al.[2], and Ichi-  Inward—the monvalent metaidNa, RD have theirq= 2k
maru and Utsumj28]. Similar comparison for the EC cor- Ying half-way at the rising edge beforg,, the divalent
rections in liquid metal Zn df = 723 K was given previously Metals(Mg, Zn) lying just afterqy,, while those of trivalent

in Fig. 4 of [18]. These figures clearly manifest the sensitiv- Metals(Al, Ga) lying beyondqy, . Thatq= 2k is judiciously
ity of ¢(r) on the local field factor. In contrast, there seemschosen for comparison is because in the vicinity of this point
to be virtually no change imES(q) with different EC cor-  different local field factors deviate most am&<(q) drops
rections(see Fig. 4 Nevertheless one should notice further N€arly to zero.

that, among different liquid metals, the results in featime

3
5t
s@ 2|
3 F ii(q)
o(r)
1
1t
0
- . 0
4 6 8 10

r(a.u.)
FIG. 5. Static structure factd®(q) for liquid metals Na(thin

FIG. 3. Interionic pair potentiap(r) (in units ofkgT) for liquid full curve), Rb (dot-dashed curye Mg (thick full curve), Zn (long-
metals Ga calculated with the EC factor of Singtial. [27] (dot- dashed curve Al (dotted curve, and Ga(short-dashed curyesal-
ted curve, Moroni et al. [2] (full curve) compared with that of culated using the MHNC wittB(r) of Malijevsky et al. [30] and
Ichimaru and Utsumj28] (dashed curve ¢(r), which includes the EC factor of Ichimaru and Utsur28].
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Sq()

FIG. 6. Electron-ion structure fact&;;(q) for liquid metals Na
(thin full curve), Rb (dot-dashed curye Mg (thick full curve), Zn
(long-dashed curyeAl (dotted curvg and Gashort-dashed curye
calculated using Eq5) for the EC factor of Ichimaru and Utsumi 4t

28].
28] S;(a)

C. Numerical results of S.;(q)

We are now in a position to discuss the structur&5€q)

for the six liquid metals that are all delineated in Fig. 6.

There are two general points that merit emphasis. . .
(@ For all of the liquid metalsS,;(q) changes quite gen- 0 4 8

erally, first increasing at smadj, going through a maximum, q(A™

and then descenting through the zero to a minimum, and ) o

finally continuing by a weakly damped oscillation. FIG. 8. (a) Static struct_ure factos; (q) for liquid metals N_a,
(b) There is no systematic trend for tracing the positionsz" @nd Ga calculated using the MHNGee text compared with

of first maximum and first minimum d8.;(q) purely from a the experimental results of Takefid]. The theoretical results are
knowledge of the electron density in Iie(iuid metals given by full curves and experimental neutron scattering data are

It is not difficult to understand poirt®) if one recalls the Na (circles, Zn (triangles, and Ga(squarex (b) Static structure

" . . factor S;(q) for liquid metals Rb, Mg, and Al calculated using the
m m m . EC, i
positions of the main maxima &;(q) and the way™*(q) MHNC (see textcompared with the experimental results of Takeda

goes to zero. For th? divalent and .trivalent liquid metals,[l] and Wased@34]. The theoretical results are given by full curves
because of the behavior #(q) noted in Sec. Il B, the first 5,4 eyperimental neutron scattering data are(Mgngles and Al

maximum ofS,;(q) comes mainly from the contribution of (squares Note that the x-ray data for Rizircles are taken from
the principal peak ofS;(q), which is either enhanced or [34] measured at 313 K.

diminished byn&%(q) depending on how slow or how fast it _ N .
decays. Quite generally, the positions of the first peaks of

Sei(q) for these elements lie slightly to the left gf,. On

the other hand, for the monovalent liquid alkali metals, the
locations of theimE®(q)’s minima are neaq,,, which thus
leads to clear first minima d&.;(q). An important aspect to
emphasize is the node &;(q), which is exactly the same
as that o&%(q) sinceS;(q) is positive definite. From Eq.
(20), one would therefore expect in general a full nonlocal
pseudopotential theory to predicSg,(q) different from that

in the local pseudopotential theory. This is illustrated in Fig.
7 for then®<(q) of three of the liquid metals considered here
[32]. Lastly, for the damped oscillatory behavior it can be
attributed to the matching &;(q) andnt¢(q) and its mag-
nitude depends on whether they are in phase or out of phase.
It is interesting to note that the first minimum of(q)

FIG. 7. Screened electron charge denafi§(q) for liquid met- ~ Corresponds closely to the principal minimum $fi(q), a
als Ga(full curve), Zn (dashed curve and Na(dot-dashed curye ~ f€ature that is found to be generally trte10%) for all of
calculated with the generalized EINMP theory with the EC factor ofthe six liquid metals. Coming to poirtb), this simply re-
Ichimaru and Utsumji28] compared with those calculated with the flects the delicate manner in computirgy;(q); a slight
empty core local pseudopotential given by dotted curves. The Ashchange in curvature ofif%(q) can lead to subtle different
croft empty core radii are taken frof85] for Zn and Na, and from  structure ofS.;(q) [see Fig. 7 for a comparison of thé%(q)
[36] for Ga. of local [32] and nonlocal pseudopotential theolies

a/k.
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— 2 NI works in the literature that study the detailed nature of this
01 | A ol A e ] quantity. The main difficulty lies in the fundamental aspect
o o X\W‘ _,y\%q,_\ of this function, which requires a knowledge of the real wave
L gl rd ] functions within ). But the latter are just precisely the
037 ] - target that the model pseudopotential theory is trying to
-0.5 ——— -2 s avoid. Accordingly we may have to examiid(q) by a

qualitative but nonetheless reasonable means. Three related
calculations are relevant; these are the studies of bulk moduli

00 D R S Mg of simple metals by Pynf21], of electronic and dynamic
5@ o -‘\Fd \ properties of the simple metal aluminum by Ha@], and of
' Vi 01} 1 thermodynamic properties of liquid metals by Kumaravadi-

02 vel [23]. Now the conclusions reached by these authors may
03 ey T e serve as a useful guide for us to evaluate the importance of
ok, a/ke M(q). First, the form forM(q) is nonunique but must be

chosen such that the total depletion charge should be located

FIG. 9. Electron-ion structure fact&;(q) for liquid metals Al, within Q. in which the pseudo and true wave functions dif-

Ga, Mg, and Na calculated using E¢p) with the EC factor of . .
Ichimaru and Utsumj28]. The theoretical results are given by full fer. Several forms oM(q) that satisfy this property are@)

curves compared with those of experimefit$ or simulation data zero depletion hole chgrgM (a)=0, which Co_rresppn(_js to
[5] by solid circles. the local pseudopotential theor§n) delta function distribu-
tion, M(q)=1, (c) Shaw's form [24], M(q)=1[1

At this point, it is perhaps appropriate to ask the follow- +(a/kg)?], whereke is the Fermi wave vectord) Pynn’s
ing: (1) How do our calculated results compare with experi-form [21], M(q) =exd —(qR.)?/4¢] in which 1<{=<4, and
ments?A2) How important is the nonlocality of valence elec- (d)  uniform  depletion charge distribution, M(q)
trons onnES(q) having checked above that the EC factor is = 3[sinqR./(qR.) —cosqRcl/(qR.)? [37], which is the
insignificant? For questiofil), there are two sets of data to one widely used and employed in all the above calculations.
be compared. In Fig. 8, we display our calculat®dq) Second, the inclusion of the nonpoint depletion charge has a
compared with those of neutron scatteririg or x-ray dif-  considerable effect on the energy wave-number characteristic
fraction experiment$33] and in Fig. 9 we show our results and hence the interatomic potential. This propertyViq)
of Sci(q) along with the experimental data extracted bywas shown explicitly in the works of Pynn for th@5<(q)
Takeda and co-workefd]. For theS;(q), the overall agree- (see Fig. 1 of21]) and binding energyfor Al about 20%
ment is excellent for IIQUId alkali metals, and the Compatibil-difference, and of Kumaravadive[23] for the excess en-
ity is favorably good also for liquid polyvalent metals, apart tropy, long wavelength limit of the structure factor, afr)
fr(_)m the magrjitudes of first p_eaks and_ a shift in the first(see Fig. 4 and Table 14 §23]). Third, the effect of using
minimum position for Zn. The discrepancies for 8e(q) of  gitterent nonpointM(q)’s is still found to be discernible,
liquid polyvalent metals, in particular Zn, are hard to asses though less significant. The specific physical properties

since experimental errors for these elements are general}gat have been examined include the electré2® and ther-
larger and more susceptible to uncertainties. We thereforFnool namic[21,23 quantities such as the interionic poten-
feel that the structures d;(q) predicted in our work are y e3 9 P

. : - o
casonatly n order. A regads (), our eoretcal 19 ISR eseess han 0% excess envenioss
findings interpret very well the various positions of extrema ’ P ’

of Sei(q). It thus appears that the generalized EINMP useo(bOth less than 59 Fourth, when d.ifferent forms ¥t ()
self-consistently in this work for the calculation ofS(q) are compared the calculated physical quantity straddles the

ands; (q) is basically correct. Specifically it is encouraging €XPerimental valuegsee[22,23 for specific examplés
to mention our results for Ga and Mg. For the former, its. _V\/_lthln_the context of the nonlocal pseudopotential theory,
Sei(q) shows the same anomalous sharp positive maximurff iS implied from these remarks that the effect of any non-
as Boulahbalet al. [14] who applied the Shaw’s nonlocal Point M(q) is inconsequential in the general structure of
optimized model potential theorj24] and for the latter it  Sei(d); one would not expect too big a difference in the
compares very well with the first-principles molecular dy- electron-ion correlation if different forms d¥1(q) are at-
namics simulation of de Wijst al. [5]. tempted. We have in fact checked on this aspect by repeating
Turning now to questiorf2), this feature may be worth the above calculation fonf%(q) using Pynn's form of
examining since we are looking at the correlation betweerM (q). By choosingl=2, which is a value that best agrees
electrons and ions. We have in fact addressed this problem iwith measurements generally, we virtually find no difference
Sec. I B by drawing attention to the state dependence oin the nf<(q) for liquid metals Mg and Zn compared with
valence electrons and accounting for the oscillatory part othe uniform depletion charge distribution. On physical
the true wave functions localized in the ion core regi®dp  grounds, the choice of differe (g)’s on Sg;(q) for liquid
by the depletion charge density. With further consideratioralkali metals is going to be even smaller. Thus, one is com-
of a tractable means in obtaining the depletion charge densitfprtably safe for theS,;(q) results againsM(q) if one is
function, we are led to introduce the modulation functionapplying a nonlocal pseudopotential theory. This conclusion
M(q), which essentially dictates the depletion hole chargdurther explains why our results for the alkalis and Ga are the
distribution within Q.. Unfortunately there are not many of the same quality as those of Boulahtetikal. [14].
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IV. CONCLUSION negligible effect om&¢(q) andS;(q), and hence 08,;(q).

K Given a nonlocal pseudopotential our calculation indicates
et al. [19] we first obtain an equation for the electron-ion that different EC factors oM(q)’s have a less significant

correlation expressed in terms of a product of the screenefffiuence on n"%(q) and S;(q) and the corresponding
electron charge density and ion-ion static structure factor. A%i()’s are thus quite similar.

full nonlocal model pseudopotential with three different EC
factors is then employed to construct the former and the in-
tegral equation approach based on the modified hypernetted-
chain approximation is applied self-consistently to determine We gratefully acknowledge the financial support from the
the latter. TheS;(q) for six liquid metals near their respec- Hiroshima City University grant under which the present
tive freezing temperatures are calculated and they are seen pooject was initiated, and from the National Science Council
interpret favorably the measured data of TakEtlaln ana-  of Taiwan, ROC(Grant No. NSC87-2112-M-008-0Ddinder
lyzing various contributions t&.;(q), we find that the cal- which the project has continued. S.K.L. would like to thank
culatedS;;(q) for the liquid alkalis compare very well with Hiroshima City University, Professor M. lwamatsu, in par-
experiments whereas for those of the polyvalent liquid metticular, for his kind hospitality, and the Australian Academy
als the agreement with observed data is in good reasonabt# Science with the National Science Council of Taiwan,
order. While for then®%(q), we point out that the electron- ROC, for an opportunity to participate in an Academies’ ex-
ion structure factor calculated using the local pseudopotentiathange program under which part of this work was written.
theory is formally different from that within the context of We also thank the National Center for High-Performance
nonlocal pseudopotential theory. One main difference lies irComputing of Taiwan, ROC, for their continual support of
the depletion hole charge distribution, which has a noncomputing resources.

Following the functional derivative method of Cusac
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