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Simulating temporal evolution of pressure in two-phase flow in porous media
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Alex Hansen
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We have simulated the temporal evolution of pressure due to capillary and viscous forces in two-phase
drainage in porous media. We analyze our result in light of macroscopic flow equations for two-phase flow. We
also investigate the effect of the trapped clusters on the pressure evolution and on the effective permeability of
the system. We find that the capillary forces play an important role during the displacements for both fast and
slow injection rates and both when the invading fluid is more or less viscous than the defending fluid. The
simulations are based on a network simulator modeling two-phase drainage displacements on a two-
dimensional lattice of tubes.@S1063-651X~98!08208-7#

PACS number~s!: 47.55.Mh, 07.05.Tp, 05.40.1j
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I. INTRODUCTION

Fluid flow in porous media such as sand, soil, and fr
tured rock is an important process in nature and has a h
number of practical applications in engineering. It is mo
often mentioned in oil recovery and hydrology. Fluid flow
porous media has also been of great interest in modern p
ics. In particular, the different structures of the interface
tween the fluids in two-phase displacements have been
tensively studied. Despite this attention there are still ma
open questions concerning fluid flow in porous media.

In this paper we report on simulations of the tempo
evolution of pressure during two-phase drainage in a mo
porous medium, consisting of a two-dimensional lattice
tubes. The network model has been developed to mea
the time dependence of different physical properties and
study the dynamics of the fluid movements. Especially,
focus on the dynamics of the temporal evolution of the pr
sure due to capillary and viscous forces and the time dep
dence of the front between the two liquids. The discussio
restricted to drainage displacement, i.e., the process whe
nonwetting fluid displaces a wetting fluid in a porous m
dium.

During the last two decades an interplay between exp
mental results and numerical simulations has improved
understanding of the displacement process. It has b
shown that the different structures observed when chan
the physical parameters of the fluids like viscosity contra
wettability, interfacial tension, and displacement rate@1–6#
divide into three flow regimes. These three major regim
are referred to as viscous fingering@1,2#, stable displacemen
@3#, and capillary fingering@7#. There exist statistical model
such as diffusion-limited aggregation~DLA ! @8#, anti-DLA
@9#, and invasion percolation@10# that reproduce the basi
domains in viscous fingering, stable displacement, and c
illary fingering, respectively. However, these models do

*Also at Norwegian University of Science and Technology,
7034 Trondheim, Norway.
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contain any physical time for the front evolution and th
cannot describe the crossover between the different flow
gimes.

Much effort has gone into making better models who
properties are closer to those of real porous media. This
resulted in several network simulators, modeling fluid flo
on a lattice of pores and throats@2,3,11–20#. Most of the
network models have been used to obtain new informa
on the different flow regimes and to study the statisti
properties of the displacement structures. Others have b
used to calculate macroscopic properties like fluid satu
tions and relative permeabilities and compare them with c
responding experimental data. In Ref.@20# a network model
simulating the pressure buildup during drainage is presen
That work shows that many questions remain to be answe
about how pressure buildup is linked to the displacem
structure. Here we present a systematic discussion of
interplay between capillary and viscous forces at various
jection rates. The results are based on a network simul
that properly simulates the dynamics of capillary press
variations as well as the viscous pressure buildup.

We have simulated the temporal evolution of the press
in all three regimes of interest: viscous fingering, stable d
placement, and capillary fingering. The injection rate in t
displacements has been systematically varied and we h
analyzed the behavior of the pressure in the crossover
tween the three regimes. Moreover, we discuss what ef
trapped clusters have on the evolution of the pressure in
system and we relate the data to macroscopic flow equati
We find the surprising result that capillary forces play
important role in two-phase flow at both high and low inje
tion rates.

The paper is organized as follows. In Sec. II we pres
the network model, in Sec. III we present and discuss
simulation results, and in Sec. IV we draw some conclusio

II. NETWORK MODEL

The network model has been presented in@21# and we
will restrict ourselves to a short sketch here.
2217 © 1998 The American Physical Society
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2218 PRE 58AKER, MÅLO”Y, AND HANSEN
A. Geometry and boundary conditions

The porous medium is represented by a square lattic
tubes oriented at 45°. At each node four tubes meet and t
is no volume assigned to the nodes: the tubes represen
volume of both pores and throats. The tubes are cylindr
with length d. Each tube is assigned an average radiur
which is chosen at random in the interval@l1d,l2d#, where
0<l1,l2<1. The randomness of the radii represents
disorder in the model.

The liquids flow from the bottom to the top of the lattic
and we implement periodic boundary conditions in the ho
zontal direction. The pressure difference between the bot
row and the top row defines the pressure across the lat
Gravity effects are neglected, and consequently we cons
horizontal flow in a two-dimensional network of tubes.

B. Fluid flow through the network

Initially, the system is filled with a defending fluid with
viscositym1. The invading fluid with viscositym2 is injected
along the bottom row with a constant injection rate. W
model drainage, i.e., the invading fluid is nonwetting and
defending fluid is wetting. Furthermore, we assume that
fluids are incompressible and immiscible. Consequently,
volume flux is conserved everywhere in the lattice and
well-defined interface develops between the two phases

The capillary pressurepc due to the interface between th
nonwetting and wetting fluid inside a tube~a meniscus! is
given by the Young-Laplace law

pc5
2g

r
cosu. ~1!

Here r is the radius of the tube,g is the interfacial tension
andu denotes the wetting angle between the nonwetting
wetting phases.u is in the interval (0,p/2) for drainage dis-
placements.

With respect to the capillary pressure we assume that
tubes are hourglass shaped with effective radii following
smooth function. Thus the capillary pressure become
function of the position of the meniscus in the tube and
assume that the Young-Laplace law~1! takes the form

pc5
2g

r
@12cos~2p x̂!#. ~2!

Herex̂ is the dimensionless value of the meniscus’s posit
in the tube (0< x̂<1), andu50 ~perfect wetting!. From Eq.
~2! pc50 at the ends of the tube whilepc approaches its
maximum of 4g/r in the middle of the tube.

FIG. 1. Flow in a tube containing a meniscus.
of
re

the
al

e

-
m
e.
er

e
e
e
a

d

e
a
a

e

n

The volume fluxqi j through a tube from thei th to thej th
node in the lattice~Fig. 1! is found from the Washburn equa
tion for capillary flow@22#. As an approximation we treat th
tubes as if they were cylindrical and obtain

qi j 52
pr i j

2 ki j

meff

1

d
~Dpi j 2 p̃c!. ~3!

Here ki j is the permeability of the tube given byki j 5r i j
2 /8

wherer i j is the average radius of the tube.Dpi j 5pj2pi is
the pressure difference between thei th and j th node. A tube
partially filled with both liquids is allowed to contain eithe
one or two menisci. If the tube contains one meniscus,
meniscus can point to the right as in Fig. 1 or to the left.
tube containing two menisci can have a trapped wett
~nonwetting! blob between sections of nonwetting~wetting!
fluid. The effective viscosity of the tubes, denoted asmeff in
Eq. ~3!, becomes a sum of the amount of each fluid mu
plied by their respective viscosities. The total capillary pre
sure,p̃c in Eq. ~3!, is the sum of the capillary pressures of th
menisci that are inside the tube. The absolute value of
capillary pressure of each meniscus is given by Eq.~2!, while
its sign depends on whether the meniscus points to the r
or to the left. Practically, the wetting angle of a meniscus a
thereby its capillary pressure may generally be different
pending on whether the meniscus retires from or invades
tube. However, this effect is neglected in the present mo

In the simple case where the tube only contains one
niscus~Fig. 1! meff5m2x̂i j 1m1(12 x̂i j ) and p̃c5pc . For a
tube without meniscip̃c50, and Eq.~3! reduces to that de
scribing Hagen-Poiseuille flow withmeff5m1 or m2.

C. Determining the flow field

There is no volume assigned to the nodes giving con
vation of volume flux at each node

(
j

qi j 50. ~4!

The summation onj runs over the nearest neighbor nodes
the i th node whilei runs over all nodes that do not belong
the top or bottom rows, that is, the internal nodes.

Equations~3! and ~4! constitute a set of linear equation
which are to be solved for the nodal pressurespj with the
constraint that the pressures at the nodes belonging to
upper and lower rows are kept fixed. The set of equation
solved by using the conjugate gradient method@23#.

We want to study the dynamics of the pressure fluct
tions at constant displacement rate. Therefore we nee
find the pressure across the lattice for a desired injection
and then use that pressure to solve fluid flow through
network. For two-phase displacement the pressure acros
latticeDP is related to the injection rateQ through the equa-
tion

Q5ADP1B. ~5!

HereA andB are parameters depending on the geometry
the medium and the current configuration of the liquids. T
first part of Eq.~5! is simply Darcy’s law for one-phase flow
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PRE 58 2219SIMULATING TEMPORAL EVOLUTION OF PRESSURE . . .
while the last partB results from the capillary pressure b
tween the two phases. As long as the menisci do not movB
is constant.

The pressureDpi j across each tube can be related to
pressure across the latticeDP. All the equations calculating
the fluid flow in the system, have the functional formf (x)
5ax1b. As a consequenceDpi j becomes a function ofDP,

Dpi j 5G i j DP1P i j . ~6!

G i j is a dimensionless quantity depending on the mobilit
(k/meff) of the tubes andP i j is a function of the capillary
pressures of the menisci inside the tubes. If no menisci in
network are presentP i j is zero. Equation~6! can easily be
deduced for two cylindrical tubes with different radii co
nected in series.

By inserting Eq.~6! into Eq. ~3! we obtain after some
algebra a relation between the local flow rateqi j and the
pressureDP across the network,

qi j 5ãi j DP1b̃i j . ~7!

The parameterãi j is proportional toG i j and the mobility
(ki j /meff) of tube i j . b̃i j contains the capillary pressures
the menisci.

The solution due to a constant injection rate can now
summarized into the following steps.

~1! We first find the nodal pressures for two differe
pressuresDP8 andDP9 applied across the lattice.

~2! From the two solutions of the nodal pressures the c
responding injection ratesQ8 andQ9 and the local flow rate
qi j8 andqi j9 are calculated.

~3! A and B is calculated by solving the two equation
obtained when insertingDP8, Q8, DP9, andQ9 into Eq.~5!.

~4! The pressureDP across the lattice for the desiredQ is
then calculated by using Eq.~5!.

~5! This DP is inserted in Eq.~7! to get the local flowqi j .
Note that parametersãi j andb̃i j are already known from ste
2 by solving the two equations obtained by insertingqi j8 ,
DP8, qi j9 , andDP9 into Eq. ~7!.

D. Moving the menisci

A time step Dt is chosen such that every meniscus
allowed to travel at most a maximum step lengthDxmax dur-
ing that time step. Numerical simulations show that in ord
to calculate the effect of capillary pressure changes whe
meniscus travels through a tube,Dxmax should be of order
0.1d (d is the tube length!. Thus to let a meniscus pass on
tube at least ten iterations should be made. Every simula
presented in this paper was performed with constantDxmax
<0.1d.

In each time step we check whether or not a menis
crosses a node. If this happens, the time step is redefi
such that this meniscus stops at the end of the tube. A
niscus reaching the end of a tube is moved into the neigh
tubes according to well-defined rules@20#. These rules take
care of the different fluid arrangements that can app
around the node. Basically, the nonwetting fluid can eit
invade into or retreat from the neighbor tubes as shown
Figs. 2~a! and 2~b!, respectively. In Fig. 2~a! the nonwetting
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fluid approaches the node from below~drainage!. When the
meniscus has reached the end of the tube~position 1!, it is
removed and three new menisci are created at positiond in
the neighbor tubes~position 2!. The distanced is about
1–5 % of the tube lengthd. The small distanced avoids that
the menisci created at positions 2 immediately disappear
move back to the initial position 1 in tubes where the flo
direction is opposite to the direction of the invading flui
The total time lapse is adjusted to compensate the insta
neous change in local volume of the fluids when the men
move a distanced and such that the total volume of the fluid
always is conserved.

Figure 2~b! shows the opposite case when the nonwett
fluid retreats into a single tube~imbibition!. As Fig. 2~b!
shows, the properties of imbibition should not be neglec
as long as the menisci can travel in both directions. O
approximation in Fig. 2~b! cannot handle important prope
ties found in imbibition such as film flow and snap off@5,24#.
However, in drainage which is what we are focusing o
arrangement~b! will appear rarely compared to~a!. For that
reason, any further description of imbibition than the o
presented in Fig. 2~b! does not seem necessary—at least
this stage.

Summarized, the procedure for each time stepDt follows.
~1! The nodal pressurespj are determined.
~2! The pj ’s are related to the desired injection rateQ

from Eqs.~5! and ~7!.
~3! The local flow rate in each tube is computed by usi

Eq. ~3!.
~4! The local flow rates are used to calculate the time s

Dt such that only one meniscus reaches the end of a tub
travels at most the step lengthDxmax during that time step.

~5! The menisci are updated according toDt. The total
time lapse is recorded before the whole procedure is repe
for the new fluid configuration.

III. SIMULATIONS

In two-phase fluid displacement there are mainly th
types of forces: viscous forces in the invading fluid, visco
forces in the defending fluid, and capillary forces due to
interface between them. This leads to two dimensionl

FIG. 2. Motion of the menisci at the nodes.~a! The nonwetting
fluid ~shaded! reaches the end of the tube~position 1! and is moved
a distanced into the neighbor tubes~position 2!. ~b! The wetting
fluid ~white! reaches the end of the tubes~position 1! and the non-
wetting fluid ~shaded! retreats to position 2. To conserve the vo
ume of the fluids an appropriate time lapse is taken into account
to the small movementd in ~a! and ~b!.
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2220 PRE 58AKER, MÅLO”Y, AND HANSEN
numbers that characterize the flow: the capillary numberCa
and the viscosity ratioM .

The capillary number describes the competition betw
capillary and viscous forces. It is defined as

Ca5
Qm

Sg
, ~8!

whereQ (cm2/s) denotes the injection rate,m ~Poise! is the
maximum viscosity of the two fluids,S (cm2) is the cross
section of the inlet, andg ~dyn/cm! is the interfacial tension
between the two phases.S is calculated by taking the prod
uct of the length of the inlet and the mean thickness of
lattice due to the average radius of the tubes.

M defines the ratio of the viscosities of the two fluids a
is given by the invading viscositym2 divided by the defend-
ing viscositym1:

M5
m2

m1
. ~9!

In the simulations the pressure across the latticeDP is
given by Eq.~5! as

DP5
Q

A
2

B

A
5

Q

A
1Pcg . ~10!

SinceB is due to the capillary pressure of the menisci,
define2B/A as the global capillary pressure of the syste
Pcg . Pcg includes the menisci surrounding the trapped cl
ters of defending fluid~cluster menisci! as well as the me-
nisci belonging to the front between the invading and
fending fluid ~front menisci!.

In addition toPcg we calculatePc f , the capillary pressure
averaged along the front.Pc f consists only of the capillary
pressures due to the front menisci and we define it as

Pc f5
1

N (
a51

N

upc
au. ~11!

Here the indexa addresses the tubes in the lattice and in
summationa runs over all tubes containing a meniscus th
belong to the front.N is the number of such tubes.pc

a is the
capillary pressure of the front meniscus in tubea. The tubes
containing a front meniscus or belonging to trapped clus
of defending fluid are identified by running a Hoshe
Kopelman algorithm@25# on the lattice.

For every simulation we have calculatedDP and Pcg as
functions of time. For some of the simulations we have a
computed the average capillary pressurePc f along the front
and analyzed the behavior ofA in Eq. ~5!. As will be dis-
cussed below,DP, Pcg , andPc f are strongly correlated an
A seems to obey surprisingly simple relations.

We have performed drainage simulations in each of
regimes of interest: viscous fingering, stable displacem
and capillary fingering withM51.031023, 1.0, and 1.0
3102, respectively. The injection rate was systematica
varied for each of the viscosity ratios. Figure 3 shows
visualization of three simulations one in each of the regim
viscous fingering, stable displacement, and capillary fing
ing.
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At high injection rate withM,1 we approach the regim
of viscous fingering. In viscous fingering the principal for
is due to the viscous forces in the defending fluid and
pattern formation in Fig. 3 forCa54.631023, M510
31023, shows that the invading fluid creates typical finge
into the defending fluid.

Stable displacements are obtained at high injection
with M.1. Then the fluid movements are dominated by t
viscous forces in the invading liquid and the pressure gra
ent in the invading phase is found to stabilize the front.
typical compact pattern with an almost flat front between
nonwetting and wetting fluid is generated as shown in Fig
for Ca54.631023, M5103102. The stabilized front intro-
duces a length scale in the system for large times. T
length scale is identified as the saturation widthws of the
front @26#. The width of the frontw is defined as the standar
deviation of the distances between all the front tubes and
average position of the front.

At sufficient low injection rate we approach the regime
capillary fingering independent of the viscosity ratio. In ca
illary fingering the displacement is so slow that the visco
forces are negligible, with the consequence that the m
force is the capillary one between the two fluids. Only t
strength of the threshold pressure in a given tube dec
whether the invading fluid moves across that tube or not. T
invading fluid creates a rough front with trapped clusters t
appear at all scales between the tube length and the m
mum width of the front~Fig. 3 for Ca54.631025, M51).

The simulations were performed with parameters as cl
as possible to experiments performed in@25#. The lengthd of
all tubes in the lattices was set equal to 1 mm and the radr
of the tubes were chosen randomly in the interval 0.05d<r
<d. The interfacial tension was set tog530 dyn/cm and the
viscosities of the defending and the invading fluids were v
ied between 0.01 P (. water! and 10 P (. glycerol!.

A. Viscosity ratio, M<1

We have performed a series of simulations with const
viscosity ratioM51.031023, going from high to low injec-

FIG. 3. Displacement structure of three simulations, one in e
of the regimes viscous fingering~top left!, capillary fingering~top
right!, and stable displacement~bottom left!. The patterns show the
characteristic features of the three regimes. The invading, non
ting fluid ~black! displaces the defending, wetting fluid~gray! from
below. The size of the lattice was 60380 nodes for viscous finger
ing, 40360 nodes for capillary finger, and 60360 nodes for stable
displacement.
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PRE 58 2221SIMULATING TEMPORAL EVOLUTION OF PRESSURE . . .
tion rate. The injection rates and the capillary numbers u
are listed in Table I. At high capillary number we are in t
regime of viscous fingering, however, when the capilla
number is reduced we approach the regime of capillary
gering. To save computation time, most of the simulatio
were performed on a lattice of 25335 nodes. One was per
formed on a lattice of 60380 nodes whose resulting stru
ture is shown in Fig. 3.

Figure 4 shows the pressure evolutions of the simula
at Ca54.631023 in the regime of viscous fingering. Th
pressure across the lattice,DP ~a!, decreases as the less vi
cous fluid invades the system. The slope of the average
creasing pressure function is nontrivial and results from
fractal development of the fingers. The global capillary pr
sure Pcg ~b! fluctuates around a mean value of about
3103 dyn/cm2. The fluctuation is strongly correlated in bo
time and amplitude to the noise inDP. This is clarified by
plotting the differenceDP2Pcg ~c! which becomes a
smooth curve. As will be discussed below, the fluctuatio
correspond to variations in capillary pressure as menisc
vade into or retreat from tubes.

We have calculatedPc f for every simulation performed
on the lattices of 25335 nodes. The result for four of th
simulations is shown in Fig. 5 together with the global ca
illary pressurePcg . The pressures in Fig. 5 are normaliz
by dividing them with the average threshold pressure of
tubes. The average threshold pressure is defined as 2g/^r &
where^r & is the mean radius of the tubes. The mean thre
old pressure is about 1.13103 dyn/cm2 in all simulations,
since the radii of the tubes always are chosen randoml

FIG. 4. DP ~a!, Pcg ~b!, andDP2Pcg ~c! plotted as a function
of time. Ca54.631023 andM51.031023.

TABLE I. Lattice size and the values for the injection rate a
the capillary number whenM51.031023.

Size Injection rat
~nodes! (cm3/min) Ca

60380 1.5 4.631023

25335 1.4 1.131022

25335 0.98 7.131023

25335 0.62 4.731023

25335 0.50 3.631023

25335 0.099 7.231024

25335 0.049 3.531024
d
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n
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e
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-

e
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in

the interval@0.05,1.0# mm. Note that in Fig. 5,Pcg has been
subtracted by 1000 dyn/cm2 before it was normalized. This
avoids the plotted pressure functions to overlap at low c
illary numbers.

Figure 5 shows that the fluctuations ofPc f ~a! are corre-
lated in time to the fluctuations ofPcg ~b!. For the simula-
tions atCa.3.531024 the amplitude of the fluctuations in
Pc f decreases with injection time. For high injection rat
the normalizedPc f is found to approach 1, which is th
mean threshold pressure. Due to the less viscous defen
fluid the pressure gradient at high injection rates is larges
the fingertips closest to the upper boundary of the lattice. T
menisci in the uppermost fingertips will therefore mo
likely continue to invade the next tubes compared to
menisci lying behind it, as the latter are shielded by the m
ing fingertips causing their capillary pressures to be less t
the threshold pressures needed to invade the tubes. The
nisci of the moving fingertips give a time dependent con
bution to Pc f as they travel through the tubes they invad
This is in contrast to the menisci lying behind, that get stu
due to the low pressure gradient, and only contribute a c
stant value toPc f . Thus for sufficient large systems the flu
tuations inPc f will eventually die off when the number o
stuck front menisci becomes much larger than the menisc
the moving fingertips.

At lowestCa53.531024 we approach the regime of cap
illary fingering. In slow capillary fingering, the viscous pre
sure gradient vanishes causing the capillary pressures o
menisci to be equal to the pressure between the fluids as
as all menisci are stable. Thus the calculated pressure
duces to that describing the capillary fluctuations along
front andPcg.Pc f as observed.

We note, however, that the fluctuations inPcg survive at
large times even at high injection rates. In Fig. 6 we ha
plottedPcg ~a! for Ca51.131022 together with the capillary
pressure of the meniscus which is located in the tube
always has the largest flow velocity~b!. According to the
higher pressure gradient at the fingertips we expect that
meniscus with highest flow velocity usually belongs to o
of the moving fingertips. From Fig. 6 we conclude that t
capillary variations inPcg correspond to the moving menisc
Unfortunately, the present data and statistics are too poo
make it possible to draw any further quantitative conc
sions.

B. Viscosity ratio, M>1

We have run seven simulations withM51.03102 spread
between high and low capillary number, see Table II. T
series of simulations were performed on lattices of size
tween 25335 and 60360 nodes. The simulations at hig
capillary numbers are in the regime of stable displacem
while those at low capillary numbers approach the regime
capillary fingering. To save computation time the simu
tions performed on the lattices of 40340 and 60360 nodes
were stopped at some time after the width of the front h
stabilized. The other simulations were run until the invadi
fluid reached the outlet.

The pressure across the latticeDP, the global capillary
pressurePcg , and 1/A were calculated for all simulations
The results for low, intermediate, and high capillary numb
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FIG. 5. Pc f ~a! andPcg ~b! at four different capillary numbers for the simulations withM51.031023 at lattice size 25335 nodes. The
pressures are normalized using the average threshold pressure of the tubes. Note thatPcg has been subtracted by 1000 dyn/cm2 before it was
normalized to avoid overlap between the two curves at low capillary numbers.
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are shown in Fig. 7. In the figure we have plotted the dim
sionless quantityA0 /A instead of 1/A whereA0 is equal to
the proportionality factor betweenQ andDP when only the
defending fluid flows through the lattice, i.e.,A05SK/m1L.
K denotes the absolute permeability of the lattice andL is
the length of the system.

We note that the pressures in Fig. 7 evolve quite diff
ently compared to the pressures in Figs. 4 and 5.DP ~a! and

FIG. 6. Pcg ~a! and the capillary pressure of the meniscus tra
eling with the highest velocity~b! at Ca51.131022 and M51.0
31023 in the time interval between 7.0 and 12.0 s.
-

-

Pcg ~b! are both found to increase as the more viscous fl
is injected into the system and the average slope depe
very much on the injection rate. To explain this behavior
have to discuss the effect of the trapped cluster of the
fending fluid left behind the front. In stable displacement t
driving pressure gradient lies between the inlet and the fr
causing a pressure drop between the top and the bottom
the trapped clusters~viscous drag!. At moderate injection
rates where the clusters stay in place and keep their sha
the forces due to the viscous pressure drop must be bala
by capillary forces acting on the cluster menisci. The sum

-

TABLE II. Lattice size and the values for the injection rate a
the capillary number whenM51.03102.

Size Injection rate
~nodes! (cm3/min) Ca

60360 1.5 4.631023

40340 1.0 4.631023

25335 2.5 1.831022

25335 1.3 9.531023

25335 0.57 4.231023

25335 0.29 2.231023

25335 0.10 7.531024
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FIG. 7. DP ~a!, Pcg ~b!, andA0 /A ~c! as functions of time for simulations withM51.03102 at low, intermediate, and highCa . The
lattice size is given in the plot. Note that forCa54.231023and 7.531024 Pcg has been subtracted by 1000 dyn/cm2 to avoid overlap of the
curves. The vertical dashed lines indicate the saturation time where the front stabilizes.
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those capillary forces contributes to the observed increas
Pcg . In the limit of high injection rate withM,1 ~viscous
fingering! few clusters develop and the extra contribution
Pcg from the cluster menisci becomes negligible. This
consistent with the reported observation in the preceding s
tion, that at high injection rate whenM,1, Pcg was found to
fluctuate around the average threshold value for the tube

From Fig. 7 we also observe that at high injection ra
and at large timesDP, Pcg , and the differenceDP2Pcg
increase linearly in time. The linearity ofPcg is explained by
again looking at the generation of the clusters in the syst
All the displacements except that atCa57.531024 reached
the saturation timets where the front stabilizes. In Fig. 7 thi
is indicated by a vertical dashed line. Furthermore, on av
age every cluster contributes toPcg with a certain amount
makingPcg proportional to the number of clusters behind t
front. For large times (t.ts) when the front has saturate
with fully developed clusters behind, the number of clust
increases linearly with the average front positionh. When t
.ts , h itself becomes proportional to the time since t
injection rate is kept constant through the displacement
summary, we obtain

Pcg}h}t, t.ts . ~12!

It has to be emphasized that there might be large deviat
in

c-

.
s

.

r-

s

In

ns

from the observed linearities when clusters of size com
rable to the system develop. The argument does not a
when t,ts either. Then the average shape ofDP and Pcg
depends on the fractal development of the displacem
structure.

At Ca57.531024 in Fig. 7 we observe that the averag
increase inDP and Pcg becomes small. The low injection
rate in this limit reduces the viscous drag on the clust
giving only small extra contributions toPcg . Thus we ap-
proach the regime of capillary fingering where the injecti
rate is so low that the viscous drag becomes negligible
Pcg reduces to that describing the capillary fluctuations alo
the front.

The quantityA0 /A plotted as graph~c! in Fig. 7 is pro-
portional to the pressure differenceDP2Pcg . Using Eq.
~10!, we obtain

A0

A
5A0

DP2Pcg

Q
, ~13!

after multiplication withA0 on both sides of the equation
From Fig. 7 we see thatA0 /A and thereforeDP2Pcg is
proportional to the injection time at high capillary numbe
when t.ts .
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The quantityA in Eq. ~13! has a simple interpretation an
the observed linearity of 1/A has one important consequenc
We may compare the tubes in the network to resistors wi
conductivity~mobility! given byki j /meff . A would then cor-
respond to the total conductance of the lattice. We denote
total conductivity of the latticesT in the following. Equation
~5! may then be written

U5sT~DP2Pcg!
1

L
. ~14!

Here U5Q/S is the flow velocity andsT[AL/S. 1/A is
therefore the total resistance of the system. Since a high
cosity fluid displaces a less viscosity fluid the total resista
increases with the amount of invading fluid in the syste
The total resistance also depends on the resulting displ
ment structure because resistors connected in series or p
lel give different resistance. However, at high injection ra
whent.ts the local displacement structure becomes stat
cally invariant with respect to injection time. That means th
the structure is fully developed with a given front width a
cluster size distribution. The linearity of 1/A in this limit
implies that this particular structure can be assigned a c
stant resistance per unit length. Consequently, the total re
tance increases linearly with the average front position of
displacement structure. At low injection rates the front wid
never saturates and 1/A depends on the fractal developme
of the displacement structure.

We now want to study in more detail the pressure evo
tions and relate them to the conventional effective perm
ability of the invading phase. If we again look at the glob
capillary pressurePcg , it can be interpreted as a sum of th
capillary pressures along the front menisci,Pm f and the cap-
illary pressure of the cluster menisci,Pmc . Furthermore, for
large times (t.ts) we can writePmc5Dmch giving

Pcg5Dmch1Pm f . ~15!

HereDmc denotes the proportionality factor betweenPcg and
h wherehs,h,L is the average front position.hs denotes
the average position of the front when it saturates, that is
t5ts .

It is clear thatPm f is related to the simulatedPc f , the
average capillary pressure of the front. However, due to l
ited statistics and system sizes we cannot quantify their r
tions. However, in the limit of very low injection rate th
viscous drag on the clusters will vanish, givingDmc→0.
Therefore in this limit we expectPm f.Pcg.Pc f .

We can use the relation forPcg in Eq. ~15! to deduce a
formula for the effective mobilityGeff of the system. We
think of Geff as the response of the system when we pu
invading fluid into it at moderate injection rates where clu
ters of defending fluid are assumed immobile. This me
that the invading fluid has to flow around the clusters. W
we are seeking is an equation for the flow rateU, in the form
of the Darcy law

U5Geff~DP2Pm f!
1

L
. ~16!
.
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Here the pressure gradient (DP2Pm f)/L includes the con-
tribution to the pressure from the cluster menisci (Pmc).

We start by inserting Eq.~15! into Eq. ~14! to get

U5sT~DP2Dmch2Pm f!
1

L
. ~17!

Equation ~17! can be written in Darcy form,

U5
1

1/sT1Dmch/UL
~DP2Pm f!

1

L
, ~18!

where we define the effective mobility of the system as

Geff[
1

1/sT1Dmch/UL
. ~19!

From the definition in Eq.~19! we see thatGeff is a function
of the conductivity of the lattice plus an additional ter
Dmch/UL which is due to the viscous drag on the cluste
Note that theU dependency inGeff only indicates changes in
Dmc between displacements executed at different inject
rates. The behavior when the flow rate changes durin
given displacement is not discussed here.

In the special case when the average front position
reached the outlet, i.e.,h5L, only the invading phase flows
through the system. ThenGeff5Ke /m2 whereKe is the often
measured effective permeability of the invading phase. Fr
Eq. ~19! we get whenh5L

Ke5
m2

1/sT1Dmc /U
. ~20!

We note that this corresponds to the stationary case w
the defending fluid is trapped and only the invading fluid
viscositym2 flows through the lattice. From Eq.~20! follows
directly the relation for the relative permeabilitykri of the
invading phase,kri 5Ke /K. Here K is the absolute perme
ability of the network.

To check the consistency of Eq.~19! we observe that a
moderate injection rates where the clusters stay in place
keep their shapes,Geff can be simulated directly by assignin
zero permeability to tubes belonging to the trapped clust
Thus the clusters will be frozen in their initial positions an
in the calculations they are treated as additional bound
conditions where fluid cannot flow. Simulations show th
when the clusters are frozen, the simulated conductivitysT
in Eq. ~14! adjusts itself such that it becomes similar toGeff
obtained from Eq.~19!. Geff in Eq. ~19! was calculated from
the simulated pressuresPcg andDP in Fig. 7.

C. Viscosity match,M 51

We have run 17 simulations with viscosity matched flui
(M51.0) spread over six different capillary numbers. T
different capillary numbers and the corresponding inject
rates are listed in Table III. The lattice size was 40360
nodes for all simulations. Due to long computation time w
only did two simulations at the lowest capillary number. F
all the other capillary numbers, we ran three simulations

For all simulationsDP andPcg were calculated. Figure 8
showsPcg for one of the simulations at highest, intermed
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ate, and lowest capillary numbers. The front was found
stabilize at high injection rates@25#, and whent.ts bothPcg

and DP were found to increase linearly with time. This
consistent with the result from stable displacement. At lo
estCa we approach the capillary regime and again the pr
sure fluctuations are dominated by capillary fluctuatio
along the front. We note also that the sudden jumps in
pressure function atCa54.631025 identify the bursts where
the invading fluid proceeds abruptly. This corresponds
Haines jumps@27,28#.

In the special case ofM51 the quantityA0 /A was found
to be constant for all displacements independent of injec
rate and displacement structure. This should be compare
the linear behavior at high injection rates reported whenM
.1 ~Fig. 7!. A0 /A is calculated by observing thatA0 /A
5DP2Pcg /^DP2Pcg&. Here ^DP2Pcg& is the arithmetic
mean ofDP2Pcg . Figure 9 shows the calculatedA0 /A for
one of the simulations atCa52.331024. In the plotA0 /A is
subtracted by 1 such that the resulting data fall close to z
Similar results were found for the other capillary numbe
and for all simulations we calculatedA0 /A51.061.0
31028. The noise is numerical. ThusA5A05SK/m1L is
constant through all simulations. In the electrical analog t
means that the total conductanceA of the lattice is constant

The strong evidence thatA5A0 is constant can be de
duced from simple considerations of the energy dissipa
in the system. In analogy with electrical circuits, we defi
the total energy dissipationW in the system as

W5QDP. ~21!

FIG. 8. Pcg for three simulations withM51.0 at high, interme-
diate, and low capillary number. The injection time has been n
malized to fit the data in one plot.

TABLE III. Values for the injection rate and the capillary num
ber whenM51.0. The lattice is 40360 nodes.

Runs Injection rate Ca

(cm3/min)

3 10 2.331023

3 4.0 9.231024

3 2.0 4.631024

3 1.0 2.331024

3 0.40 9.231025

2 0.20 4.631025
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The total dissipation must equal the sum of the dissipat
in every tubea in the lattice. Thus

QDP5(
a

qaDpa , ~22!

where the summation indexa runs over all tubes in the
lattice.qa is given by Eq.~3! which we rewrite as (i j→a)

qa5aaDpa1ba . ~23!

Here we note thataa is proportional toka /meff , the mobility
of the tubea. By inserting Eqs.~5! and~23! into Eq.~22! we
get after some reorganization

ADP1B5(
a

aaDPS Dpa

DP D 2

1ba

Dpa

DP
. ~24!

By replacing the local pressureDpa in Eq. ~24! with DP,
using Eq.~6! we obtain after some algebra

Q5F(
a

aaGa
2GDP1F(

a
Ga~2aaPa1ba!

1
Pa

DP
~aaPa1ba!G . ~25!

If we compare the above equation with Eq.~5! we recognize
the first summation asA and the second asB. ThusA de-
pends entirely onaa andGa . As stated earlier, bothaa and
Ga are proportional to the mobility of the tubes. The mobili
of each tube depends on its geometryki j and the local fluid
configuration, through the effective viscositymeff @see Eq.
~3!#. However, when the fluids have equal viscosities we
meff5m15m2. As a consequenceaa and Ga become con-
stants, which is consistent with the simulation result.

The property thatA5A0 is constant when the liquids hav
equal viscosities simplifies the computation of the no
pressures in the lattice. By substitutingA with A0 in Eq. ~5!
we find that the injection rate is given by

Q5A0DP1B. ~26!

This equation has only one unknown, the termB, opposed to
the original Eq.~5! having two unknowns, bothA andB. To
verify the result whenA is replaced byA0 we have compared
the solution found from Eq.~26!, necessitating one solutio

r-

FIG. 9. A0 /A subtracted by 1 atCa52.331023 and M51.0.
Similar results were obtained for the other capillary numbers.
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2226 PRE 58AKER, MÅLO”Y, AND HANSEN
of the flow equations, with the one given when Eq.~5! is
solved twice. Not surprisingly, there is excellent agreem
between these two results.

IV. DISCUSSION

We have simulated drainage displacements at diffe
injection rates for three different viscosity ratiosM51.0
31023, 1.0 and 1.03102. The main focus of the work is the
study of the temporal evolution of the pressure when a n
wetting fluid displaces a wetting fluid in porous med
Moreover, the effect of the trapped clusters on the displa
ment process has been discussed. From the results we c
see that the capillary forces play an important role at b
high and low injection rates.

At high injection rates withM>1.0 the global capillary
pressurePcg was found to increase as a function of the nu
ber of trapped clusters behind the front. For large times w
the front has saturated,Pcg even became proportional to th
average front positionh. Using this, we derived a theor
describing quantitatively the evolution of the effective m
bility when the nonwetting fluid was injected into the sy
tem. Moreover, we showed that this effective mobility can
used to estimate the relative permeability of the invad
phase when the average front position has reached the o

At moderate injection rates the effective mobility calc
lated by using the behavior ofPcg was shown to be equiva
lent to assigning zero permeability to tubes belonging to
trapped clusters. WhenM!1.0 or at low injection rates the
effect of the clusters became negligible, reducingPcg to de-
scribe the local capillary fluctuations of the invading meni
ch

tt.
t

nt

n-
.
e-
arly
h

-
n

e
g
let.

e
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along the front. With displacements performed with equ
viscosities,M51.0, we found that the differenceDP2Pcg
was constant. This was shown to be consistent with the
ergy dissipation in the system.

It must be emphasized that the properties we have
ported are only valid for drainage. So far the model is n
capable of simulating imbibition. The simulations were al
performed on a two-dimensional porous system where c
ters develop more easily, compared to fluid flow in thre
dimensional porous media@29#. Moreover, the lattice sizes
were limited by the computation time and more sophistica
and efficient algorithms have to be developed in order
increase the system sizes and thereby improve the abov
sults. Another, and not less important exercise is to comp
our simulation results with experimental measurements.

The reported correlations between the simulated pres
functions and the evolution of their fluctuation amplitud
deserve more quantitative discussions in future work.
feel that there still are many open questions to be answe
and hope to supply some answers by quantitative analys
the continuation of this project.
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