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Simulating temporal evolution of pressure in two-phase flow in porous media
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We have simulated the temporal evolution of pressure due to capillary and viscous forces in two-phase
drainage in porous media. We analyze our result in light of macroscopic flow equations for two-phase flow. We
also investigate the effect of the trapped clusters on the pressure evolution and on the effective permeability of
the system. We find that the capillary forces play an important role during the displacements for both fast and
slow injection rates and both when the invading fluid is more or less viscous than the defending fluid. The
simulations are based on a network simulator modeling two-phase drainage displacements on a two-
dimensional lattice of tube$S1063-651X98)08208-1

PACS numbegps): 47.55.Mh, 07.05.Tp, 05.48

I. INTRODUCTION contain any physical time for the front evolution and they
cannot describe the crossover between the different flow re-

Fluid flow in porous media such as sand, soil, and fracgimes.
tured rock is an important process in nature and has a huge Much effort has gone into making better models whose
number of practical applications in engineering. It is mostProperties are closer to those of real porous media. This has
often mentioned in oil recovery and hydrology. Fluid flow in resulted in several network simulators, modeling fluid flow
porous media has also been of great interest in modern phy8h @ lattice of pores and throag,3,11-20. Most of the
ics. In particular, the different structures of the interface benetwork models have been used to obtain new information
tween the fluids in two-phase displacements have been en the different flow regimes and to study the statistical
tensively studied. Despite this attention there are still manyproperties of the displacement structures. Others have been
open questions concerning fluid flow in porous media. used to calculate macroscopic properties like fluid satura-

In this paper we report on simulations of the temporaltions and relative permeabilities and compare them with cor-
evolution of pressure during two-phase drainage in a modeesponding experimental data. In REZ0] a network model
porous medium, consisting of a two-dimensional lattice ofSimulating the pressure buildup during drainage is presented.
tubes. The network model has been developed to measufdat work shows that many questions remain to be answered
the time dependence of different physical properties and t@bout how pressure buildup is linked to the displacement
Study the dynamics of the fluid movements. Especia”y’ Wegtructure. Here we present a systematic discussion of the
focus on the dynamics of the temporal evolution of the presinterplay between capillary and viscous forces at various in-
sure due to capillary and viscous forces and the time depe,jection rates. The results are based on a network simulator
dence of the front between the two liquids. The discussion i§hat properly simulates the dynamics of capillary pressure
restricted to drainage displacement, i.e., the process whereVariations as well as the viscous pressure buildup.
nonwetting fluid displaces a wetting fluid in a porous me- We have simulated the temporal evolution of the pressure
dium. in all three regimes of interest: viscous fingering, stable dis-

During the last two decades an interplay between experiPlacement, and capillary fingering. The injection rate in the
mental results and numerical simulations has improved théisplacements has been systematically varied and we have
understanding of the displacement process. It has beetalyzed the behavior of the pressure in the crossover be-
shown that the different structures observed when changingjveen the three regimes. Moreover, we discuss what effect
the physical parameters of the fluids like viscosity contrastirapped clusters have on the evolution of the pressure in the
wettability, interfacial tension, and displacement rfteg] ~ System and we relate the data to macroscopic flow equations.
divide into three flow regimes. These three major regimedVe find the surprising result that capillary forces play an
are referred to as viscous fingerifig2], stable displacement important role in two-phase flow at both high and low injec-
[3], and capillary fingering7]. There exist statistical models tion rates.
such as diffusion-limited aggregatig®LA) [8], anti-DLA The paper is organized as follows. In Sec. Il we present
[9], and invasion perco|ati0m0] that reproduce the basic the network model, in Sec. Il we present and discuss the
domains in viscous fingering, stable displacement, and Caﬁajmulation results, and in Sec. IV we draw some conclusions.
illary fingering, respectively. However, these models do not

Il. NETWORK MODEL

*Also at Norwegian University of Science and Technology, N-  The network model has been presented 2] and we
7034 Trondheim, Norway. will restrict ourselves to a short sketch here.
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2r,j The volume fluxg;; through a tube from thith to thejth
{ node in the latticéFig. 1) is found from the Washburn equa-
tion for capillary flow[22]. As an approximation we treat the
P M, p; tubes as if they were cylindrical and obtain
6 2
-— X, qij:_—a(Apij_pc)- ©)
d Meff

Herek;; is the permeability of the tube given by; =ri2]-/8
wherer; is the average radius of the tulp;;=p;—p; is
the pressure difference between thie andjth node. A tube

T _ partially filled with both liquids is allowed to contain either
The porous medium is represented by a square lattice Qfne or two menisci. If the tube contains one meniscus, the

tubes oriented at 45°. At each node four tubes meet and thefgeniscus can point to the right as in Fig. 1 or to the left. A
is no volume assigned to the nodes: the tubes represent thghe containing two menisci can have a trapped wetting
volume of both pores and throats. The tubes are Cy”ndricadnonwetting blob between sections of nonwettiigetting
with length d. Each tube is assigned an average radius fiyid. The effective viscosity of the tubes, denotediag in
which is chosen at random in the interyal;d,\,d], where  Eq_(3), becomes a sum of the amount of each fluid multi-
0=<A;<Ap=<1. The randomness of the radii represents theyjied by their respective viscosities. The total capillary pres-

disorder in the model. ~ 7. . .
I . sure,p. in Eq.(3), is the sum of the capillary pressures of the
The liquids flow from the bottom to the top of the Iatt|ce_ menisci that are inside the tube. The absolute value of the

and we implement periodic boundary conditions in the ho”'capillary pressure of each meniscus is given by (@ while

d the t defi h the latti Ms sign depends on whether the meniscus points to the right
row and tne top row defines the pressure across the 1atlicq, . e |eft. Practically, the wetting angle of a meniscus and

Sre}wty tel;f(;cts are Teglzqted, a_nd clonstequintlfytw; Cons'd('i’lrlereby its capillary pressure may generally be different de-
orizontal flow In a two-dimensional network of tubes. pending on whether the meniscus retires from or invades the

tube. However, this effect is neglected in the present model.
In the simple case where the tube only contains one me-
Initially, the system is filled with a defending fluid with niscus(Fig. 1) peq= o+ p1(1—X;;) andp.=p.. For a
viscosity u;. The invading fluid with viscosity., is injected  ype without meniscp.=0, and Eq.(3) reduces to that de-
along the bottom row with a constant injection rate. Wegcribing Hagen-Poiseuille flow Withe= 1 OF .
model drainage, i.e., the invading fluid is nonwetting and the
defending fluid is wetting. Furthermore, we assume that the
fluids are incompressible and immiscible. Consequently, the
volume flux is conserved everywhere in the lattice and a There is no volume assigned to the nodes giving conser-

FIG. 1. Flow in a tube containing a meniscus.

A. Geometry and boundary conditions

B. Fluid flow through the network

C. Determining the flow field

well-defined interface develops between the two phases.

vation of volume flux at each node

The capillary pressurp. due to the interface between the

nonwetting and wetting fluid inside a tulfe meniscusis
given by the Young-Laplace law

; Qij=0. 4

2

_<Y c0s 0 The summation ofji runs over the nearest neighbor nodes to
Pe=7 :

theith node whilel runs over all nodes that do not belong to
the top or bottom rows, that is, the internal nodes.
Herer is the radius of the tubey is the interfacial tension, Equations(3) and(4) constitute a set of linear equations
and 0 denotes the wetting angle between the nonwetting an#hich are to be solved for the nodal pressupgswith the
wetting phasesd is in the interval (Ox/2) for drainage dis- constraint that the pressures at the nodes belonging to the
placements. upper and lower rows are kept fixed. The set of equations is
With respect to the capillary pressure we assume that theolved by using the conjugate gradient meth2d].
tubes are hourglass shaped with effective radii following a We want to study the dynamics of the pressure fluctua-
smooth function. Thus the capillary pressure becomes Hons at constant displacement rate. Therefore we need to
function of the position of the meniscus in the tube and wefind the pressure across the lattice for a desired injection rate
assume that the Young-Laplace 14®) takes the form and then use that pressure to solve fluid flow through the
network. For two-phase displacement the pressure across the
lattice AP is related to the injection ra® through the equa-
tion

D

2y -
Pe=—"[1—cod2mx)]. 2

- Q=AAP+B. (5)
Herex is the dimensionless value of the meniscus’s position
in the tube (6sx<1), andé=0 (perfect wetting. From Eq. HereA andB are parameters depending on the geometry of
(2) p.=0 at the ends of the tube whilg. approaches its the medium and the current configuration of the liquids. The
maximum of 4y/r in the middle of the tube. first part of Eq.(5) is simply Darcy’s law for one-phase flow,
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while the last parB results from the capillary pressure be-
tween the two phases. As long as the menisci do not rBove
is constant.

The pressuré p;; across each tube can be related to the

pressure across the lattieeP. All the equations calculating
the fluid flow in the system, have the functional foififx)
=ax+b. As a consequenckp;; becomes a function af P,

Ap,JZF”AP-I—H,J (6)
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I'j; is a dimensionless quantity depending on the mobilities

(K/merr) Of the tubes andl;; is a function of the capillary
pressures of the menisci inside the tubes. If no menisci in th
network are preseritl;; is zero. Equatior(6) can easily be
deduced for two cylindrical tubes with different radii con-
nected in series.

By inserting Eq.(6) into Eq. (3) we obtain after some
algebra a relation between the local flow rate and the
pressureA P across the network,

quzaleP+E|J (7)

The parameteﬁij is proportional tol';; and the mobility

(Kij / pefr) Of tubeij. Bij contains the capillary pressures of
the menisci.

FIG. 2. Motion of the menisci at the nod€s) The nonwetting
@uid (shadegireaches the end of the tulygosition 1 and is moved
a distances into the neighbor tubeosition 2. (b) The wetting
fluid (white) reaches the end of the tubgmosition 1 and the non-
wetting fluid (shadedl retreats to position 2. To conserve the vol-
ume of the fluids an appropriate time lapse is taken into account due
to the small movemené# in (a) and(b).

fluid approaches the node from belddrainage. When the
meniscus has reached the end of the t(imsition 1, it is
removed and three new menisci are created at posdtion
the neighbor tubegposition 2. The distances is about
1-5 % of the tube lengtd. The small distancé avoids that
the menisci created at positions 2 immediately disappear and

The solution due to a constant injection rate can now bengye back to the initial position 1 in tubes where the flow

summarized into the following steps.

(1) We first find the nodal pressures for two different
pressuredAP’ and AP" applied across the lattice.

(2) From the two solutions of the nodal pressures the cor
responding injection rate®’ andQ” and the local flow rate
qi; andqj; are calculated.

(3) A andB is calculated by solving the two equations
obtained when insertingP’, Q', AP”, andQ” into Eq.(5).

(4) The pressurd P across the lattice for the desir€lis
then calculated by using E).

(5) ThisAP is inserted in Eq(7) to get the local flovg;; .
Note that parametes i andb; j are already known from step
2 by solving the two equations obtained by insertuyg,
AP’, q{] , andAP” into Eq. (7).

D. Moving the menisci

A time step At is chosen such that every meniscus is
allowed to travel at most a maximum step lengtk,,, dur-

direction is opposite to the direction of the invading fluid.
The total time lapse is adjusted to compensate the instanta-
neous change in local volume of the fluids when the menisci
move a distancé and such that the total volume of the fluids
always is conserved.

Figure 2b) shows the opposite case when the nonwetting
fluid retreats into a single tubémbibition). As Fig. 2b)
shows, the properties of imbibition should not be neglected
as long as the menisci can travel in both directions. Our
approximation in Fig. &) cannot handle important proper-
ties found in imbibition such as film flow and snap B{24].
However, in drainage which is what we are focusing on,
arrangementb) will appear rarely compared t@). For that
reason, any further description of imbibition than the one
presented in Fig. ®) does not seem necessary—at least at
this stage.

Summarized, the procedure for each time te¢follows.

(1) The nodal pressurgs; are determined.

(2) The p;’'s are related to the desired injection rage

ing that time step. Numerical simulations show that in ordefrom Egs.(5) and (7).

to calculate the effect of capillary pressure changes when
meniscus travels through a tub#x,,., should be of order
0.1d (d is the tube length Thus to let a meniscus pass one

& (3) The local flow rate in each tube is computed by using
Eqg. (3).
(4) The local flow rates are used to calculate the time step

presented in this paper was performed with constexy,.,
=<0.1d.

travels at most the step lengtx,,,, during that time step.
(5) The menisci are updated according &¢. The total

In each time step we check whether or not a meniscugime lapse is recorded before the whole procedure is repeated
crosses a node. If this happens, the time step is redefinggy the new fluid configuration.

such that this meniscus stops at the end of the tube. A me-

niscus reaching the end of a tube is moved into the neighbor

tubes according to well-defined rulg20]. These rules take

Ill. SIMULATIONS

care of the different fluid arrangements that can appear In two-phase fluid displacement there are mainly three
around the node. Basically, the nonwetting fluid can eithetypes of forces: viscous forces in the invading fluid, viscous
invade into or retreat from the neighbor tubes as shown irforces in the defending fluid, and capillary forces due to the

Figs. 2a) and 2b), respectively. In Fig. @) the nonwetting

interface between them. This leads to two dimensionless
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numbers that characterize the flow: the capillary nuner
and the viscosity ratid/.

The capillary number describes the competition between
capillary and viscous forces. It is defined as *

_Qu
Ca_z_y! 8

whereQ (cn?/s) denotes the injection ratg, (Pois8 is the
maximum viscosity of the two fluidsS (cn?) is the cross
section of the inlet, ang (dyn/cm) is the interfacial tension
between the two phases. is calculated by taking the prod-
uct of the length of the inlet and the mean thickness of the?
lattice due to the average radius of the tubes. Bve
M defines the ratio of the viscosities of the two fluids and
is given by the invading viscosity, divided by the defend- FIG. 3. Displacement structure of three simulations, one in each
ing viscosity w4: of the regimes viscous fingeringop left), capillary fingering(top
right), and stable displacemettiottom lef). The patterns show the
characteristic features of the three regimes. The invading, nonwet-
ting fluid (black) displaces the defending, wetting fluigray) from
below. The size of the lattice was BB0 nodes for viscous finger-
In the simulations the pressure across the latfiée is  ing, 40x 60 nodes for capillary finger, and BG0 nodes for stable

b

R
5%
4.6X1073, M = 10x 102

_ M2

M .
M1

9

given by Eq.(5) as displacement.
Q B Q At high injection rate withM <1 we approach the regime
AP= A AT A +Peg- (10 of viscous fingering. In viscous fingering the principal force

is due to the viscous forces in the defending fluid and the
. . . . pattern formation in Fig. 3 forC,=4.6x10"3, M=10
Sm_CEB is due to the caplllary_pressure of the menisci, W€\ 1073, shows that the invading fluid creates typical fingers
define—B/A as the global capillary pressure of the system, .+ ihe defending fluid.
Pcg- Peg includes the menisci surrounding the trapped clus-  giaple displacements are obtained at high injection rate
te_rs_of defer_1dmg fluidcluster menisgias well as the me-  \ith M>1. Then the fluid movements are dominated by the
nisci belonging to the front between the invading and deviscous forces in the invading liquid and the pressure gradi-
fending fluid (front menisc]. ent in the invading phase is found to stabilize the front. A
In addition toP 4 we calculateP, the capillary pressure typical compact pattern with an almost flat front between the
averaged along the fronR ¢ consists only of the capillary nonwetting and wetting fluid is generated as shown in Fig. 3
pressures due to the front menisci and we define it as for C,=4.6x10 3, M=10x 10°. The stabilized front intro-
\ duces a length scale in the system for large times. This
1 N length scale is identified as the saturation widgth of the
Pcfzﬁzl Ipcl- (1D front[26]. The width of the frontv is defined as the standard
“ deviation of the distances between all the front tubes and the

Here the indexx addresses the tubes in the lattice and in thé"veArt""geﬁ?oiSmolnvefirtlhe tfironntr. te W roach the regime of
summationa runs over all tubes containing a meniscus that sutficient low injection rate we approach the regime o

belong to the frontN is the number of such tubes? is the capillary fingering independent of the viscosity ratio. In cap-

: , ) illary fingering the displacement is so slow that the viscous
capillary pressure of the front meniscus in tubeThe tubes  qrces are negligible, with the consequence that the main

containing a front meniscus or belonging to trapped clustergyrce is the capillary one between the two fluids. Only the
of defending fluid are identified by running a Hoshen-syrength of the threshold pressure in a given tube decides
Kopelman algorithn{25] on the lattice. whether the invading fluid moves across that tube or not. The
For every simulation we have calculatd®® andP.q as  invading fluid creates a rough front with trapped clusters that
functions of time. For some of the simulations we have alsappear at all scales between the tube length and the maxi-
computed the average capillary pressBrg along the front mum width of the front(Fig. 3 for C,=4.6x10"°, M=1).

and analyzed the behavior &f in Eqg. (5). As will be dis- The simulations were performed with parameters as close
cussed belowAP, P.y, andP.; are strongly correlated and as possible to experiments performedas]. The lengthd of
A seems to obey surprisingly simple relations. all tubes in the lattices was set equal to 1 mm and the radii

We have performed drainage simulations in each of th@f the tubes were chosen randomly in the interval 085
regimes of interest: viscous fingering, stable displacementsd. The interfacial tension was set j6=30 dyn/cm and the
and capillary fingering withM =1.0x1073, 1.0, and 1.0 Viscosities of the defending and the invading fluids were var-
X 10%, respectively. The injection rate was systematicallyled between 0.01 P wate) and 10 P ¢ glycero).
varied for each of the viscosity ratios. Figure 3 shows a
visualization of three simulations one in each of the regimes
viscous fingering, stable displacement, and capillary finger- We have performed a series of simulations with constant
ing. viscosity ratioM = 1.0x 10~ 3, going from high to low injec-

A. Viscosity ratio, M<1
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TABLE I. Lattice size and the values for the injection rate and the interval[ 0.05,1.0 mm. Note that in Fig 5ch has been
. a ue 1. . .
the capillary number whem =1.0x10"". subtracted by 1000 dyn/énbefore it was normalized. This
avoids the plotted pressure functions to overlap at low cap-

Size Injectior_l rat illary numbers.
(nodes (cn/min) Ca Figure 5 shows that the fluctuations Bf; (a) are corre-
60x 80 1.5 4.6¢10°3 lated in time to the fluctuations d? (b). For the simula-
25X 35 1.4 1.x 102 tions atC,>3.5x 10 * the amplitude of the fluctuations in
25X 35 0.98 7.%x1078 P.; decreases with injection time. For high injection rates
25% 35 0.62 4.%10°3 the normalizedP.; is found to approach 1, which is the
25% 35 0.50 3.6¢10°8 mean threshold pressure. Due to the less viscous defending
25X 35 0.099 7.x10°* fluid the pressure gradient at high injection rates is largest at
25X 35 0.049 3.%x10°4 the fingertips closest to the upper boundary of the lattice. The

menisci in the uppermost fingertips will therefore more
likely continue to invade the next tubes compared to the

tion rate. The injection rates and the capillary numbers usefenisci lying behind it, as the latter are shielded by the mov-
are listed in Table I. At high capillary number we are in the ing fingertips causing their capillary pressures to be less than
regime of viscous fingering, however, when the capillarythe threshold pressures needed to invade the tubes. The me-
number is reduced we approach the regime of capillary finhisci of the moving fingertips give a time dependent contri-
gering. To save computation time, most of the simulationution toP¢; as they travel through the tubes they invade.
were performed on a lattice of 2535 nodes. One was per- This is in contrast to the meni-SCi Iylng behind, that get stuck
formed on a lattice of 6880 nodes whose resulting struc- due to the low pressure gradient, and only contribute a con-
ture is shown in Fig. 3. stant value tdP.;. Thus for sufficient large systems the fluc-

Figure 4 shows the pressure evolutions of the simulatioiuations inP¢¢ will eventually die off when the number of
at C,=4.6x 1072 in the regime of viscous fingering. The stuck front menisci becomes much larger than the menisci of
pressure across the lattickP (a), decreases as the less vis- the moving fingertips.
cous fluid invades the system. The slope of the average de- At lowestC,=3.5x10"* we approach the regime of cap-
creasing pressure function is nontrivial and results from thdllary fingering. In slow capillary fingering, the viscous pres-
fractal development of the fingers. The global capillary pressure gradient vanishes causing the capillary pressures of all
sure Py (b) fluctuates around a mean value of about 1menisci to be equal to the pressure between the fluids as long
X 10° dyn/cnf. The fluctuation is strongly correlated in both @s all menisci are stable. Thus the calculated pressure re-
time and amplitude to the noise P. This is clarified by duces to that describing the capillary fluctuations along the
plotting the differenceAP—P, (c) which becomes a front andPc4=P; as observed. _ _
smooth curve. As will be discussed below, the fluctuations We note, however, that the fluctuationsfy, survive at
correspond to variations in capillary pressure as menisci inlarge times even at high injection rates. In Fig. 6 we have
vade into or retreat from tubes. plottedPq (a) for C;=1.1X 10" 2 together with the capillary

We have calculate®,; for every simulation performed Pressure of the meniscus which is located in the tube that
on the lattices of 2535 nodes. The result for four of the aways has the largest flow velocity). According to the
simulations is shown in Fig. 5 together with the global cap-higher pressure gradient at the fingertips we expect that the
illary pressureP.q. The pressures in Fig. 5 are normalized MeNISCUS with highest flow velocity usually belongs to one
by dividing them with the average threshold pressure of th@f the moving fingertips. From Fig. 6 we conclude that the
tubes. The average threshold pressure is definedy4s 2 capillary variations irP.4 correspond to the moving menisci.
where(r) is the mean radius of the tubes. The mean threShUnfortl_mater,_ the present data and statistics are too poor to
old pressure is about 2<d10° dyn/cn? in all simulations, make it possible to draw any further quantitative conclu-

since the radii of the tubes always are chosen randomly ig'ons-

8.0 B. Viscosity ratio, M>1

We have run seven simulations with=1.0x 107 spread
between high and low capillary number, see Table Il. The
series of simulations were performed on lattices of size be-
tween 25<35 and 60<60 nodes. The simulations at high
capillary numbers are in the regime of stable displacement
while those at low capillary numbers approach the regime of
capillary fingering. To save computation time the simula-
tions performed on the lattices of #4010 and 6< 60 nodes
were stopped at some time after the width of the front had

0'00.0 20.0 200 0.0 stabilized. The other simulations were run until the invading
Time (5) fluid reached the outlet. ' .
The pressure across the lattidd®, the global capillary

FIG. 4. AP (a), P (b), andAP— P, (c) plotted as a function ~pressureP.,, and 1A were calculated for all simulations.
of time. C,=4.6X10"° andM =1.0x 103, The results for low, intermediate, and high capillary numbers

SN
=

Pressure (103 dyn/cmz)
IS o+
=3 =
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FIG. 5. P¢ (a) andP, (b) at four different capillary numbers for the simulations with=1.0x 102 at lattice size 2% 35 nodes. The
pressures are normalized using the average threshold pressure of the tubes. NRygtthatbeen subtracted by 1000 dynfdpefore it was
normalized to avoid overlap between the two curves at low capillary numbers.

are shown in Fig. 7. In the figure we have plotted the dimenP., (b) are both found to increase as the more viscous fluid

sionless quantityA,/A instead of 1A whereA; is equal to
the proportionality factor betwee@ and AP when only the
defending fluid flows through the lattice, i.&y=2K/u,L.
K denotes the absolute permeability of the lattice ani$
the length of the system.

ently compared to the pressures in Figs. 4 andB.(a) and

4.0

0.0

Pressure (10° dyn/em”)

=20

7.0

FIG. 6. P4 (&) and the capillary pressure of the meniscus trav-

20 ¢

A AN A |
b A A

(a)

(b)

8.0

9.0
Time (s)

100 110 120

eling with the highest velocityb) at C,=1.1X10 2 andM=1.0
%1072 in the time interval between 7.0 and 12.0 s.

is injected into the system and the average slope depends
very much on the injection rate. To explain this behavior we
have to discuss the effect of the trapped cluster of the de-
fending fluid left behind the front. In stable displacement the
driving pressure gradient lies between the inlet and the front
We note that the pressures in Fig. 7 evolve quite differ-causing a pressure drop between the top and the bottom of
the trapped clustergviscous drag At moderate injection
rates where the clusters stay in place and keep their shapes,
the forces due to the viscous pressure drop must be balanced
by capillary forces acting on the cluster menisci. The sum of

TABLE II. Lattice size and the values for the injection rate and
the capillary number wheM =1.0X 107,

Size Injection rate

(node$ (cm®/min) C,
60X 60 1.5 4.6<10°2
40X 40 1.0 4.6<10°8
25x 35 2.5 1.8 1072
25% 35 1.3 9.5¢ 1073
25% 35 0.57 4.%x10°3
25% 35 0.29 2.Xx10°8
25% 35 0.10 7.5%10°4
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FIG. 7. AP (a), P.4 (b), andAq/A (c) as functions of time for simulations withl = 1.0 10? at low, intermediate, and hig8,. The
lattice size is given in the plot. Note that f6,=4.2x 10" %and 7.5< 104 P4 has been subtracted by 1000 dynfamavoid overlap of the
curves. The vertical dashed lines indicate the saturation time where the front stabilizes.

those capillary forces contributes to the observed increase ifnom the observed linearities when clusters of size compa-

Pcg- In the limit of high injection rate wittV <1 (viscous rable to the system develop. The argument does not apply

fingering few clusters develop and the extra contribution towhent<tg either. Then the average shapeoP and P

P.g from the cluster menisci becomes negligible. This isdepends on the fractal development of the displacement

consistent with the reported observation in the preceding sestructure.

tion, that at high injection rate whevi <1, P, was found to At C,=7.5x10 % in Fig. 7 we observe that the average

fluctuate around the average threshold value for the tubes.increase inAP and P, becomes small. The low injection
From Fig. 7 we also observe that at high injection rategate in this limit reduces the viscous drag on the clusters

and at large time\P, P.q, and the differencAP—P.,  giving only small extra contributions t&.4. Thus we ap-

increase linearly in time. The linearity &4 is explained by  proach the regime of capillary fingering where the injection

again looking at the generation of the clusters in the systenrate is so low that the viscous drag becomes negligible and

All the displacements except that@t=7.5xX 10" * reached P4 reduces to that describing the capillary fluctuations along

the saturation timé; where the front stabilizes. In Fig. 7 this the front.

is indicated by a vertical dashed line. Furthermore, on aver- The quantityAy/A plotted as grapiic) in Fig. 7 is pro-

age every cluster contributes B, with a certain amount portional to the pressure differenceP—P.4. Using Eq.

makingP 4 proportional to the number of clusters behind the (10), we obtain

front. For large timest¢>t;) when the front has saturated

with fully developed clusters behind, the number of clusters

increases linearly with the average front positlenwhent —=A,

>ts, h itself becomes proportional to the time since the A

injection rate is kept constant through the displacement. In

summary, we obtain

(13

after multiplication withAy on both sides of the equation.
Pegxhoct,  t>t. (12)  From Fig. 7 we see thah,/A and thereforeAP—Pq is
proportional to the injection time at high capillary numbers
It has to be emphasized that there might be large deviationshent>t,.
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The quantityA in Eq. (13) has a simple interpretation and Here the pressure gradierhAP—P,¢)/L includes the con-
the observed linearity of & has one important consequence. tribution to the pressure from the cluster menidej,().
We may compare the tubes in the network to resistors with a We start by inserting Eq15) into Eq. (14) to get
conductivity (mobility) given byk;; / s . A would then cor- L
respond to the total conductance of the lattice. We denote the _ _ _ =
total conductivity of the latticer in the following. Equation U=or(AP=Amd me)L ' (17

(5) may then be written
Equation (17) can be written in Darcy form,

1
_ 1
U—O’T(AP—PCQ)E. (14) U (AP—me)

T (18

" Lo+ Anh/UL

Here U=Q/3 is the flow velocity ando;=AL/S. 1/A is  Where we define the effective mobility of the system as
therefore the total resistance of the system. Since a high vis-
cosity fluid displaces a less viscosity fluid the total resistance Gov= ;
increases with the amount of invading fluid in the system. T Yo+ Aph/UL
The total resistance also depends on the resulting displace- o ) ]
ment structure because resistors connected in series or parffom the definition in Eq(19) we see thaG is a function

lel give different resistance. However, at high injection rates2f the conductivity of the lattice plus an additional term
whent>t; the local displacement structure becomes statistiAmcd/UL which is due to the viscous drag on the clusters.
cally invariant with respect to injection time. That means thatNote that thdJ dependency it only indicates changes in
the structure is fully developed with a given front width and Amc between displacements executed at different injection
cluster size distribution. The linearity of A/in this limit ~ rates. The behavior when the flow rate changes during a
implies that this particular structure can be assigned a cor@iven displacement is not discussed here. -

stant resistance per unit length. Consequently, the total resis- N the special case when the average front position has
tance increases linearly with the average front position of thééached the outlet, i.eh=L, only the invading phase flows
displacement structure. At low injection rates the front widththrough the system. TheB= K/, whereK, is the often
never saturates andAlidepends on the fractal development measured effective permeability of the invading phase. From

(19

of the displacement structure. Eq. (19 we get wherh=L

We now want to study in more detail the pressure evolu-
tions and relate them to the conventional effective perme- K. .= K2 _ (20)
ability of the invading phase. If we again look at the global ¢ Uor+Apc/U

capillary pressuré®.g, it can be interpreted as a sum of the
capillary pressures along the front menidgej,; and the cap-
illary pressure of the cluster menisél,,.. Furthermore, for
large times (>t;) we can writeP,,.= A, giving

We note that this corresponds to the stationary case where
the defending fluid is trapped and only the invading fluid of
viscosity u, flows through the lattice. From E0) follows
directly the relation for the relative permeabiliky; of the
invading phasek;;=K./K. HereK is the absolute perme-
Peg=Amd+ Pnp- (15 ability of the network.
To check the consistency of E(L9) we observe that at

HereA . denotes the proportionality factor betweleg, and ~ moderate injection rates where the clusters stay in place and
h wherehg<h<L is the average front positioi, denotes keep their shape§.4 can be simulated directly by assigning
the average position of the front when it saturates, that is, aero permeability to tubes belonging to the trapped clusters.
t=ts. Thus the clusters will be frozen in their initial positions and

It is clear thatP,,; is related to the simulate.;, the in the calculations they are treated as additional boundary
average capillary pressure of the front. However, due to limconditions where fluid cannot flow. Simulations show that
ited statistics and system sizes we cannot quantify their relavhen the clusters are frozen, the simulated conductivity
tions. However, in the limit of very low injection rate the in Eg. (14) adjusts itself such that it becomes similarGegy
viscous drag on the clusters will vanish, gividg,.—0. obtained from Eq(19). G in Eq. (19) was calculated from

Therefore in this limit we exped® =P ;=P;. the simulated pressuré,, andAP in Fig. 7.
We can use the relation fd?.4 in Eq. (15 to deduce a
formula for the effective mobilityG.4 of the system. We C. Viscosity match,M =1

think of G as the response of the system when we pump . . . . .
invading fluid into it at moderate injection rates where clus- We have run 17 simulations with viscosity matched fluids

ters of defending fluid are assumed immobile. This meané'vI =1.0) spread over six different capillary numbers. The

. : : ifferent capillary numbers and the corresponding injection
that the invading fluid has to flow around the clusters. Whafrjates are listed in Table lll. The lattice size WasxD

we are seeking is an equation for the flow rdtgin the form . . e
g d nodes for all simulations. Due to long computation time we

of the Darcy law : : : .
y only did two simulations at the lowest capillary number. For
all the other capillary numbers, we ran three simulations.
For all simulationsAP andP_4 were calculated. Figure 8

1
U=Ger(AP— me)f' (16) showsP, for one of the simulations at highest, intermedi-
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TABLE lIl. Values for the injection rate and the capillary num- 1.0x10™®
ber whenM =1.0. The lattice is 48 60 nodes.
5.0x10”
Runs Injection rate Ca T
(cne/min) } 0.0 pmsmsbiroet ity ot b

3 10 2.3x107° T soxi0”
3 4.0 9.2<10* .
3 2.0 4.6¢ 10_1 S0 02 04 06 08 10
3 1.0 2.3%10 Normalized fime
3 0.40 9.%410°°
> 0.20 4.6¢10°5 FIG. 9. Ag/A subtracted by 1 a€,=2.3x10 % andM=1.0.

Similar results were obtained for the other capillary numbers.

The total dissipation must equal the sum of the dissipation

ate, and lowest capillary numbers. The front was found tq, every tubea in the lattice. Thus

stabilize at high injection rat¢25], and whert>t¢ both P
and AP were found to increase linearly with time. This is
consistent with the result from stable displacement. At low- QAP=2 q,Ap,, (22
estC, we approach the capillary regime and again the pres- “
sure fluctuations are dominated by capillary fluctuations Lo .
. . where the summation index runs over all tubes in the
along the front. We note also that the sudden jumps in th? ti is given by Eq.(3) which we rewrit i
pressure function a,=4.6x 10 ° identify the bursts where attice.q, Is given by 4. ch we rewrite asif — a)
the invading fluid proceeds abruptly. This corresponds to
Haines jumpg27,28.
In the special case & =1 the quantityA,/A was found
to be constant for all displacements independent of injectio
rate and displacement structure. This should be compared
the linear behavior at high injection rates reported wiven
>1 (Fig. 7). Ag/A is calculated by observing tha,/A
=AP—P 4 /(AP—P.g). Here(AP—P,,) is the arithmetic AAP+B=, a,A P(
mean ofAP—P.. Figure 9 shows the calculatég, /A for @
one of the simulations &,=2.3x 10 “. In the plotA,/A is i . .
subtracted by 1 such that the resulting data fall close to zerdY. replacing the local pressutep,, in Eq. (24) with AP,
Similar resuits were found for the other capillary numbers,USing Eq.(6) we obtain after some algebra
and for all simulations we -calculated\g/A=1.0+1.0
x 10" 8. The noise is numerical. Thus=A,=3K/u L is Q:[E aTl 2
constant through all simulations. In the electrical analog this x 7
means that the total conductanteof the lattice is constant.
The strong evidence that=A, is constant can be de-
duced from simple considerations of the energy dissipation
in the system. In analogy with electrical circuits, we define
the total energy dissipatiow in the system as If we compare the above equation with Ef) we recognize
the first summation a#é and the second aB. ThusA de-
W=QAP. (21) pends entirely ora, andI’,,. As stated earlier, bota, and
I" , are proportional to the mobility of the tubes. The mobility

0,=a,Ap,tb,. (23

Here we note tha,, is proportional tdk, / ue, the mobility
"4t the tubea. By inserting Eqs(5) and(23) into Eq.(22) we
5’et after some reorganization

2

A
+b Pa

AP

Ap,
AP

(24)

AP+

> T',(2a,11,+b,)

I,
+E(aaﬂa+ba) . (25)

5.0 of each tube depends on its geomekryand the local fluid
C=23x10" configuration, through the effective viscosity.; [see Eg.

40 (3)]. However, when the fluids have equal viscosities we get
§ Meff= M1= Mo. AS a consequence, andI', become con-
230 stants, which is consistent with the simulation result.
k= C =2.3x10™ The property thal = A is constant when the liquids have
‘gzo - ) equal viscosities simplifies the computation of the nodal
2 C =4.6x10° pressures in the lattice. By substitutiAgwith A, in Eq. (5)
£ 10 ) we find that the injection rate is given by

%%0 02 04 06 08 10 Q=AoAP+B. 26)

Normalized time

This equation has only one unknown, the teBpopposed to
FIG. 8. P for three simulations wittM = 1.0 at high, interme- the_original Eq.5) haViDQ two unknowns, botA andB. To
diate, and low capillary number. The injection time has been norverify the result whem is replaced by, we have compared
malized to fit the data in one plot. the solution found from Eq(26), necessitating one solution
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of the flow equations, with the one given when Ef) is  along the front. With displacements performed with equal
solved twice. Not surprisingly, there is excellent agreementiscosities,M =1.0, we found that the differenc&P— P4

between these two results. was constant. This was shown to be consistent with the en-
ergy dissipation in the system.
IV. DISCUSSION It must be emphasized that the properties we have re-

] . ) . ported are only valid for drainage. So far the model is not

We have simulated drainage displacements at differergapaple of simulating imbibition. The simulations were also
injection rates for three differeqt viscosity ratidm=_1.0 performed on a two-dimensional porous system where clus-
X10°%, 1.0 and 1.0<10%. The main focus of the work is the ters develop more easily, compared to fluid flow in three-
study of the temporal evolution of the pressure when a nongimensional porous medi@9]. Moreover, the lattice sizes
wetting fluid displaces a wetting fluid in porous media. yere limited by the computation time and more sophisticated
Moreover, the effect of th.e trapped clusters on the displacesnd efficient algorithms have to be developed in order to
ment process has been discussed. From the results we cleaitrease the system sizes and thereby improve the above re-
see that the capillary forces play an important role at bothyits. Another, and not less important exercise is to compare
high and low injection rates. _ our simulation results with experimental measurements.

At high injection rates withtM=1.0 the global capillary  The reported correlations between the simulated pressure
pressureP.q was found to increase as a function of the num-fynctions and the evolution of their fluctuation amplitudes
ber of trapped clusters behind the front. For large times whe@eserve more quantitative discussions in future work. We
the front has saturate®4 even became proportional to the fee| that there still are many open questions to be answered

average front positiorh. Using this, we derived a theory and hope to supply some answers by quantitative analysis in
describing quantitatively the evolution of the effective mo- the continuation of this project.

bility when the nonwetting fluid was injected into the sys-
tem. Moreover, we showed that this effective mobility can be
used to estimate the relative permeability of the invading
phase when the average front position has reached the outlet. The authors thank S. Basak, G. G. Batrouni, E. G.

At moderate injection rates the effective mobility calcu- Flekkby, and J. Schmittbuhl for valuable comments. The
lated by using the behavior &f.4 was shown to be equiva- work is supported by the Norwegian Research Council
lent to assigning zero permeability to tubes belonging to théNFR) through a “SUP” program. We acknowledge them
trapped clusters. Whell <1.0 or at low injection rates the for a grant of computer time, and also acknowledge grants of
effect of the clusters became negligible, redudihg to de-  computer time from the Idris in Paris and from HLRZ, For-
scribe the local capillary fluctuations of the invading meniscischungszentrum, loh GmbH.
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