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Crossover from Ising to mean-field critical behavior in an agueous electrolyte solution
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The near-critical behavior of the susceptibility deduced from light-scattering measurements in a ternary
liquid mixture of 3-methylpyridine, water, and sodium bromide has been determined. The measurements have
been performed in the one-phase region near the lower consolute points of samples with different concentra-
tions of sodium bromide. A crossover from Ising asymptotic behavior to mean-field behavior has been ob-
served. As the concentration of sodium bromide increases, the crossover becomes more pronounced, and the
crossover temperature shifts closer to the critical temperature. The data are well described by a model that
contains two independent crossover parameters. The crossover of the susceptibility critical exgdoorarits
Ising valuey=1.24 to the mean-field valug=1 is sharp and nonmonotonic. We conclude that there exists an
additional length scale in the system due to the presence of the electrolyte which competes with the correlation
length of the concentration fluctuations. An analogy with crossover phenomena in polymer solutions and a
possible connection with multicritical phenomena is discusg®t063-651X98)06108-X]

PACS numbg(s): 05.70.Jk, 64.60.Fr, 64.60.Kw

[. INTRODUCTION low-dielectric-constant solvents. Narayanan and Pitzer ex-
plained this phenomenon by the presence of unscreened
A challenging problem of critical phenomena in complexlong-range Coulombic interactions in such systems. Ising
fluids, such as polymer and micellar solutions, microemul-critical behavior has been observed in certain apparently
sions, and solutions of electrolytes, is to account for an inionic systems where the phase separation is believed to be
terplay between universality caused by long-range fluctuadriven by short-range hydrogen-bonded interactipfs8].
tions of the order parameter and a specific supramoleculdvioreover, sometimes, just as earlier for micellar solutions
structure. The approach to universal critical behavior in sucti2,3], different studies indicate either mean-fi¢d] or Ising
systems should be affected by a competition between thkehavior[10] even for the same ionic system, if the samples
correlation length of the critical fluctuations and an addi-have a different origin.
tional length associated with the supramolecular structure or/ Anisimov et al. [19] showed that the sharp crossover be-
and with long-range interparticle interactions. Hence, everhavior in ionic solutions can be quantitatively described by a
within the asymptotic Ising-like universality class, complex crossover model that contains two independent crossover pa-
fluids may exhibit different crossover behavior upon ap-rameters associated with two different characteristic spatial
proaching the critical point. Experimental studies of near-scales. In low-dielectric-constant ionic systems, for example,
critical micellar and ionic solutions have yielded contradic-these scales may reflect two different ranges of interparticle
tory result§ 1-10]. Degiorgio and co-workerl,2] reported  interactions: short-range solvophobic and long-range Cou-
nonuniversal (system-dependentnear-critical behavior in lombic. Elucidation of the critical behavior in other complex
micellar solutions. Light-scattering studies of Dietler andfluids may need a similar approach. A qualitatively sharp
Cannell[3] and Hamancet al. [4] showed that micellar so- crossover to mean-field behavior and mesoscopic-range
lutions do exhibit asymptotic Ising-like universal behavior. structure has been reported earlier for metal-ammonia solu-
However, the character of the approach to the universaions[20]. Crossover between Ising-like asymptotic behavior
asymptotic regime remains unknown, and the physical reaand mean-field classical behavior has also been reported for
sons for the observed discrepancies between results reportpdlymer blends[21-23 and for a microemulsion system
in Refs.[1,2] and[3,4] are still unexplained. Experimental [24]. Attempts[21,23,24 have been made to describe these
results for ionic fluids, which suggest either mean-figlds- data in terms of a version of the crossover theory that con-
sica) behavior[5,9] or Ising-like nonclassical behavig6—  tains a single crossover scdl@5,26. On the other hand,
8,10], have been reported. solutions of polymers in low-molecular-weight solvents ex-
The discussion of the nature of criticality in ionic systemshibit sharp nonmonotonic crossover behavior when the cor-
(see Refs[11-15) has recently received a new impetus af-relation length of the critical fluctuations and the polymer
ter experimental data obtained by Narayanan and Pitzer fanolecular size, as specified by the radius of gyration, are of
several low-dielectric-constant ionic solutions showed unthe same ordef27]. The description of this crossover phe-
usual sharp crossover from Ising asymptotic behavior tmomenon requires two independent parameters associated,
mean-field behavio[16—-1§. It has been observed that respectively, with intramolecular and intermolecular correla-
mean-field behavior is more pronounced in systems withltions. Moreover, the crossover behavior in polymer solutions
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is affected by the presence of a tricritigapoint [28]. Since 420
tricritical behavior is mean-field-like in three dimensions, the
observed phenomenon is, in fact, a crossover from the 390 4
asymptotic Ising regime to the mean-field tricritical regime.
The question arises: do critical crossover phenomena have a
universal character for complex fluids? Will the additional
length scale always be associated with an additional order
parameter and, hence, with multicritical phenomena like in
polymer solutions? Further progress in understanding the na- o6
ture of critical phenomena in complex fluids depends on © 000y
more comprehensive and more accurate experimental stud- o
ies. It must be noted that nonaqueous ionic fluids and surfac- T o
tant solutions are very sensitive to impurities and may be 270+
chemically unstable, so that results of measurements may not
be reproducibl¢1-3,9,10Q. In this work we report a study of
" . o 240 —_— ——r

the near-critical behavior of the susceptibility deduced from 0.0 0.1 0.2 0.3 0.4
Iight-sqattering measurements in a ternary liquid mixture X (mass fraction of NaBr)
which is free from the disadvantages mentioned before.

Multicomponent liquid mixtures have been a subject of FIG. 1. Upper and lower critical solution temperatutdse up-
study during the past few yeaf89—-32. In some cases ter- per branch isl;=Ty and the lower branch i,=T,) as a function
nary liquid mixtures with an electrolyte as a component weredf the mass fraction of NaBr for the 3-methylpyridineater
treated as quasibinary systems, since the amount of electrg-sodium bromide system.
lyte added was quite small and the overall concentration of
the electrolyte could be treated as a hidden field variable€rossover becomes more and more pronounced as the con-
[30]. Although it has been well established that these syseentration of NaBr increases. The data are well described by
tems belong to the Ising universality clg0-32, a trend a crossover model developed by Chen and co-workers
toward mean-field behavior has also been obsef8&¢32. [34,35, and applied previously to elucidate the crossover
An electrolyte-induced structuring was tentatively proposeddehavior of the susceptibility of some ionic and polymer
[31,37 as a possible reason for this trend. As the amount o$olutions[19,27], which contains two independent crossover
electrolyte is increased, there could be a competition beparameters. The crossover of the susceptibility critical expo-
tween a length scale due to this structuring and the correlaienty from its Ising valuey=1.24 to the mean-field value
tion length of the concentration fluctuations. Such a compey=1 is sharp and nonmonotonic. We conclude that there
tition could lead to mean-field critical behavior in a region exists an additional length scale in the system due to the
away from the relevant consolute critical point, where thispresence of the electrolyte which competes with the correla-
additional length scale overrides the correlation length. tion length of the concentration fluctuations. A striking anal-

To clarify these issues we have examined the crossoveagy with the crossover behavior observed for semidilute
behavior of the susceptibility of the system 3-methylpyridinepolymer solutions and the possibility of multicritical phe-
(MP)+water (H,0)-+sodium bromidgNaBr). NaBr was se- nomena at higher concentrations of sodium bromide are dis-
lected as the electrolyte after exhaustive trials with severatussed.
other salts. The system MFH,0 is completely miscible at
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all temperature.s at atmospheric pressure. An immisqipility Il EXPERIMENT
gap with loop sizeAT=(T,—T,), Ty being the upper criti-
cal solution temperature anfi the lower critical solution We prepared the samples using Nfeom Aldrich with a

temperature, appears in this system starting from atated purity of 99% water (triple distilled in an all-quartz
“‘double” critical point (where T, =T,) with the addition distiller) and freshly dried analytical grade NaBr. The
of an electrolyte like NaCl 0.1 wt %) or NaBr samplegabout 5 crm) were initially prepared in cylindrical
(~0.4 wt %)[30]. If an experimental path is tangential to pyrex glass cells. The lower critical temperatures were mea-
the critical line at the double critical point, a doubling of the sured in a well stirred liquid paraffin thermostat with a tem-
critical exponents is observd®0,33. With the addition of perature stability better thart 1 mK. A visual observation
such electrolytes, the polar hydroxyl groups in MP angDH of the onset of opalescence and of the eventual formation of
become increasingly shielded from one another, reducing the meniscus after a typical temperature quench of 3 mK has
strength of the hydrogen-bond and dipolar forces and thubeen used to determin€_ . The critical concentration of
lowering T, . Since the radius of the chlorine idh.81 A) is  MP, Xyp=(Xmp)c, (Xmp being the mass fraction of MP in
smaller than that of the bromide i¢h.96 A), NaCl causes a the ternary mixturgfor each value ofX (overall mass frac-
more drastic shift inT, than the same amount of NaBr does. tion of NaBr) was accurately determined by preparing six or
With further increase in the electrolyte concentratidll ~ seven samples close try{p) . for eachX and then measuring
increases, i.e.JT, decreases andl, increases as shown in their phase-separation temperatures. For the critical sample,
Fig. 1, where we have plotted the critical solution temperathe meniscus forms exactly at the center of the cell. It should
ture as a function of the mass fraction of NaBr. be noted that the critical concentratioryf). of MP may

We have observed a crossover of the susceptibility fronmot coincide with the concentratioxyp) . corresponding to
asymptotic Ising-like behavior to mean-field behavior. Thethe extremum of the phase-separation boundary because of
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TABLE |. Properties of the 3-methylpyriditelP) +water(HO)+sodium bromidéNaBr) samples. Note

thatX andX denote the mass and the mole fraction of NaBr in the mixture, respectivgly)(is the critical
mass fraction of MP in the mixture; is the density at 2%C.

1dT,

Sample X (Xup)e X TU(=T0o) K) p(g cm?) Te dX
1 0.0800 0.2791 0.01975 315.1#50.005 1.0570 —1.68

2 0.1190 0.2616 0.03016 310.237 0.002 1.0905 -1.30

3 0.1396 0.2523 0.03588 308.140 0.004 1.1083 —-1.08
4 0.1500 0.2467 0.03877 307.326 0.004 1.1177 —0.962
5 0.1600 0.2403 0.04155 306.4350.004 1.1270 —0.852

the obliqueness of the coexistence surface for a ternary liquidated by the invariance of the scattered and transmitted in-
mixture [30]. For example, aX=0.1500, &yp).=0.2467 tensities with time. Data very close § (T —T<0.1 K)
+0.0001 and Xyp)e=0.4250-0.0001; at X=0.0800, were not taken into consideration so as to avoid complica-
(Xmp)c=0.2791-0.0001 and Xup)e=0.4232:0.0001. tions due to multiple scattering and gravity effects. We per-
Table | shows that there is a gradual variationxfif). asX  formed both heating and cooling runs, and found that the
varies from 0.08 to 0.16. For the samples used in the lightresults were completely reproducible. The light-scattering
scattering runs the upper critical temperatures were not dedata were collected as the lower critical temperatlireof
termined, since they were invariably above 260 the sample was approached by heating from the one-phase

The samples used for the light-scattering measurementggion. The measured scattered-intensity data have been cor-
were first prepared in pyrex glass cells and then transferretected for extinction due to increased turbidity near the criti-
to the light-scattering cellésolume~0.3 cn?) by means of ~ cal point as discussed by Bray and Ch48§]. Fluctuations
air-tight (Hamilton) syringes fitted with millipore filters in the incident light intensity were accounted for by normal-
(pore size 0.2um). These cells were flame sealed after theizing the data with respect to the corresponding incident light
samples had been frozen in liquid nitrogen. The sampleitensity. The normalized intensity détg, corrected for ex-
were well stirred for about 15—20 min in an ultrasonic agi-tinction, are presented in Table Il together with the associ-
tator after preparation, and also before starting each lightated uncertaintydls. Here 6l is an absolute cumulative
scattering run. We checked, and the criticality of the uncertainty calculated by propagation of errors due to the
samples both before and after measuring the scattered-lighhcertainties in the counting statistics, the reference inten-
intensity as a function of temperature for each sample byity, and the temperature. We did not observe any back-
monitoring the vanishing of the transmitted laser beam ang@round intensity above the random error, and no detectable
the appearance of a meniscus at the center of the cell. We dligiht scattering exceeding the noise was present at tempera-
not detect any drift in the value df, over the duration of the tures 10% away from the critical temperature.
measurements for a given sample.

The sample cell was placed in a brass-block thermostat
that has a temperature stability better thad mK in the
temperature range 25—80 [36]. The temperaturd of the In fluids with short-range intermolecular interactions the
sample was measured with a ruggedized thermifBd]  critical fluctuations affect the behavior of physical properties
placed very close to the sample cell. The thermistor wasn a wide region around the critical point; in fact, wherever
calibrated in terms of IPTS-68. The laser beéB82.8 nm  the correlation length exceeds the molecular 4i28]. A
from a He-Ne lase(5 mW) was focused at the center of the property of one-component fluids such as the isothermal
sample cell. To reduce the contribution from multiple scat-compressibility exhibits a tendency to cross over from uni-
tering, we designed the cell so that the optical path lengtiversal asymptotic Ising-like behavior toward mean-figldn
was less than 8 mm. The height of the sample was less thater Waals-lik¢ behavior when the distance from the critical
7 mm. The transmitted and incident beam intensities wergoint increases and the correlation length decref2g89.
measured with photodiodes. The scattered-light inter{sity ~This crossover behavior is characterized by a single cross-
90°) was detected with a photomultiplier tube whose outpupver scale, the Ginzburg numbig;, that is to be compared
was fed to a photon counter through a fast preamplif®  with the distance to the critical point=|T—T.|/T. In our
& G ORTEQ). The light-scattering apparatus was the samecase the critical temperatuiig is to be identified withT_.
one as used earlier for experiments near doyB& and For simple fluids the Ginzburg number is of the ored.01,
quadruple[31] critical points, but with some refinements in so that the critical fluctuations can be neglectedsatl0~ 2
terms of its optics, collection geometry, and electronics.  [25]. This is why, in practice, the crossover in simple fluids

A typical run lasted about 25—-30 h and covered the temis never completed within the critical domain. In ordinary
perature range 0.15 K(T, —T)<7 K except for the binary liquid mixtures the Ginzburg number is often even
sample withX=0.16, where the range was 0.1sKT_ larger and the crossover is hardly observdhe].

—T)<5 K. The typical equilibration time was 20—25 min The intensity of light scattered by the critical fluctuations
for a temperature step of 0.1 K, and this time was roughlyis proportional to the susceptibility, which in turn is pro-
the same for all the samples. Thermal equilibrium was indiportional to the isothermal compressibility in one-component

Ill. THEORY
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TABLE Il. The corrected light-scattering intensity data in arbitrary units as a function efT.

T -T e Sl T -T e Sl
(K) (arb. units (arb. unitg (K) (arb. unitg (arb. unitg

X=0.0800
7.466 72.27 2.74 1.990 401.27 4.88
6.668 87.41 2.81 1.794 447.05 5.17
6.051 96.58 3.00 1.596 530.98 5.46
5.547 108.29 3.03 1.447 594.37 5.74
5.033 125.30 3.16 1.245 729.06 6.28
4,552 136.62 3.26 1.094 855.49 6.78
4.106 156.75 3.45 0.941 1049.56 7.41
3.697 188.84 3.61 0.839 1200.31 7.95
3.376 206.65 3.80 0.737 1431.55 8.68
3.144 227.58 3.90 0.582 1900.35 9.97
2.909 245.02 4.00 0.426 2837.93 12.34
2.672 279.86 4.22 0.270 4934.44 17.00
2.427 309.97 4.41 0.164 8760.92 24.63
2.234 342.54 4.60

X=0.1190
7.153 61.95 2.39 2.396 240.64 3.72
6.662 68.85 2.46 1.999 298.90 4.01
6.261 70.71 2.52 1.594 400.10 454
5.854 76.04 2.56 1.183 584.76 5.35
5.507 80.14 2.56 1.101 655.53 5.60
5.158 87.86 2.65 1.044 700.98 5.72
4.838 101.06 2.72 0.916 819.18 6.19
4514 107.92 2.78 0.790 999.92 6.78
4,187 119.82 2.91 0.663 1232.89 7.52
3.855 126.84 2.94 0.533 1660.92 8.67
3.516 147.72 3.13 0.406 2315.97 10.32
3.174 167.29 3.22 0.276 3739.23 13.42
2.787 193.29 3.38 0.125 9416.40 22.95

X=0.1396
6.875 57.27 2.08 1.893 258.63 3.43
6.262 61.43 211 1.594 322.80 3.74
5.793 69.87 2.18 1.390 388.38 4.23
5.476 70.49 2.24 1.063 541.20 4.67
5.089 79.07 2.27 0.793 767.46 5.44
4,729 82.44 231 0.558 1203.04 6.80
4.363 87.85 2.37 0.480 1469.23 7.51
3.993 100.34 2.46 0.401 1822.53 8.40
3.649 117.78 2.59 0.362 2122.54 9.08
3.302 130.78 2.68 0.256 3231.58 11.36
2.949 144.94 2.78 0.215 3919.01 12.69
2.592 173.62 2.99 0.135 6479.48 17.19
2.226 216.65 3.21

X=0.1500
6.206 41.49 2.44 1.592 201.66 4.31
5.750 43.12 2.47 1.226 278.55 4.99
5.288 48.11 2.57 0.967 374.12 5.70
4.816 48.98 2.60 0.780 497.91 6.50
4.335 61.08 2.76 0.629 645.49 7.30
3.845 66.58 2.85 0.516 836.20 8.31
3.444 75.45 2.98 0.439 1006.54 9.15
3.003 94.31 3.23 0.363 1288.64 10.34
2.657 107.15 3.38 0.286 1686.75 11.91
2.307 125.97 3.60 0.209 2403.23 14.53
1.952 157.75 3.94 0.133 3883.21 19.38

X=0.1600
5.171 37.39 1.99 0.995 152.54 2.99
4.557 41.03 2.02 0.815 192.33 3.21
3.931 43.32 2.03 0.670 238.65 3.55
3.288 46.96 2.06 0.525 318.67 3.95
2.627 57.27 2.22 0.415 427.51 4.47
2.221 63.49 2.28 0.341 530.31 4.96
1.876 74.71 2.38 0.267 693.41 5.60
1.601 89.16 2.47 0.192 966.99 6.61
1.351 107.33 2.65 0.119 1598.20 8.70
1.174 129.58 2.81 0.063 2668.69 12.01
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fluids and with the osmotic susceptibility in “incompress- scattering[27]. With negativel’; the crossover ofy.4 from

ible” binary liquid mixtures or with a combination of os- y=1.24 to y=1 will be nonmonotonic and sharper than
motic susceptibilities in multicomponent liquid mixtures ;g3

[40,41. In zero ordering fieldalong the critical isochore in |t has been shown that the crossover behavior of the sus-
one-component fluids or_alor_1g the critical concent_ration i”ceptibility observed in nonaqueous ionic solutida§] and
binary mixtures, respectivelyin the one-phase region as- iy polymer solutions in a low-molecular-weight solvéat]
ymptotically close to the critical point the susceptibility be- -5 pe adequately described by a crossover model which

haves as includes two independent crossover parameters. This model
~ aa is based on renormalization-gro(tRG) matching[34,64,69
x=Lom (14T 74+ T8t a r+ ), (1) for the free-energy density. The critical part of the dimen-

sionless free-energy densityA is a function of a rescaled
wherey=1.239-0.002[42,43 andA,=0.54+0.03[44] are  temperature distance=c,r to the critical point and of a
universal critical exponent&ctually we adopted =0.51), _ rescaled order parametévl=c,p, where c, and c, are
and wherel'o, I'y, I';, anda, are system-dependent ampli- system-dependent amplitudes related to the range of intermo-
tudes. Expansiofil) is called the Wegner seri¢d5]. Since |ecylar interaction, and where is the order parameter. At
real fluids do not obey the symmetry of the lattice gas, thghe vapor-liquid critical point of a one-component fluid the
susceptibility xy also contains terms proportional 0  order parameter is associated with density, and at the liquid-
[33,46 and 7~ 7*%a [47-49 which are, however, weaker |iquid critical point of a mixture with concentration. As a
than the second Wegner correction termr™7"?%s, asa  result of the long-range fluctuations of the order parameter,

=0.11 andA,~1.32. o . . the critical partAA of the dimensionless free-energy density
In a wider region around the critical point, the suscepti-~

bility of fluids may exhibit a trend from universal Ising-like A is renormalized upon approaching the critical point in such

behavior to mean-fieldvan der Waals-like behavior & Way thaf34]

[25,26,50-54% If one defines an effective susceptibility ex-

ponent asy.s= — 7d In x/d7 [50-52, a positive value of ';

means thaty.s approaches the asymptotic valye=1.24

from below, providing a smooth crossover from the mean-

field value y=1 far away from the critical point. Such a 1, v —alA

smooth crossover to the mean-field regime, although never B Et auTA(Y 1), @

completed in the critical domain, is exhibited by simple flu-

ids [19]. In this case the crossover is basically controlled by i .

the Ginzburg number, a single crossover parameter, that {¥here »=(2—a)/3=0.630-0.001 is the critical exponent

responsible both for the convergence of the Wegner seried the asymptotic power law for the correlation length

(1) and for the range of validity of the mean-field approxi- [42,43. The crossover functiolY is to be determined from

mation[25]. Recently, universal single-parameter crossovet3°]

has been demonstrated by computer simulations of the two-

dimensional Ising mode]56]. However, there are several — a{ (Aﬂl’z N
1-[1-u]Y=ul1+|— YV'8s,

tM2Y(r~ Didsy %u*UAM“Y@v—SMs

N| -

AA=

()

indications that such a simple monotonic crossover with
positivel"; in the one-phase region is not universal. Liu and

Fisher[57] concluded that for the nearest neighbor SlmpleThe last term in Eq(2) is a so-called kernel term responsible

cubic, bcc, and fcc three-dimensional Ising lattices, the fws%or the weak singularity of the weak susceptibiliigochoric

correction amplitudes for the susceptibility, correlation o ; .
i . heat capacity in one-component fluid$he parametek is
length, specific heat capacity, and order parameter are nega-

tive, so thaty.s asymptotically approacheg=1.24 from mver;ely proportional to .the correlation_ length In zero
above The possibility of negative Wegner corrections fol- field in the one-phase region the expressiondoreads34]

lows from field-theoretical renormalization-group ap- ) oy 1A

proacheg58,59. Moreover, negative correction amplitudes K?=c Y2 A, (4)

have been reported for some aqueous solutions near the con-

solute critical poin{60,61], whereas for other fluid systems |, Egs. (2) and (4) the normalized coupling constantand

[62,63 the correction amplitudes are positive. Narayananna «cuioff” A (Aflngvng, with o a characteristic

and Pitzer have performed an extensive study of the neaféngth reflecting the discrete structure of the fluid agdhe

(1:gt|01a}:]tur?lt(3|tg tc;f several rt'!g_r;_ff[lquec()ju?hlonlc S(I)Il:_t'cmlﬁ_ h average molecular volumere crossover parameters, while
|. They fitted the susceptibility and the correlation leng 'u* is a universal RG fixed-point coupling constant. For

extracted from the turbidity data, to the Wegner expansio e : L *_

(1), and found that the character of the nonasymptotic beha\r/{;\,:/zs ?rlgnrﬁ ?ﬁ;o(r;gtli CI;; npgoillllfceinst)r/\ztmsén-fi%lfrig[;?g{ E%r
ior is strongly affected by the dielectric constant of the SOl'transforms into the critical part of the mean—fie(ld:lélssi—
vent. In particular, in their latest papgt8] they indicated a cal”) free-energy density:

possible negativé’; for at least two of the systems investi- '

gated. Most recently, a crossover of the susceptibility with

negativel’; has been observed near the consolute point of AR= lthJr iu*UAM“ (5)
polystyrene in deuterocyclohexane by small-angle neutron 2 4! '
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TABLE IIl. The limiting behavior of the crossover function, the susceptibilityy, the correlation length
& in zero field in the one-phase region, and the order parangetdong the phase boundary of the two-phase
region.
Mean-field limit (A/xk<<1) Critical point limit (A/«>1)
crossover functioryY
UuAZ2 c| 2o e\ P
Y=1- — Y= i——t) 2| 1-2A((1—u) i——t ™
¢ l+u(v/Ag—1)] UA s uA s
susceptibility y
)(=a61(7'—rs)7l X=I‘0777(1+I‘17A5+---)
ap=CC> (uA 27D (1 urpi2) L
= — D —
0 \/C_t ag
UAZ(y—1—u*p/2 u* vA [\
g A (7 17002 F1=2(y—1+ Y S)(l—u)(i——t)
2cAJ1+u(v/Ag—1)] 2+u*y uA
correlation length¢
g=Eo(r— 1) 12 E=éor (1487
1/2 UA 2v—1
§0:(—) —vé/e'c 12 e
t fO §0 \/C—t
2A
_ [ s
§1=(2v—1)(1—u)(£)
uA
order parametep
<p:i_0|7'—7'5|1/2 ¢=*Bo|7/(1+By|7[*s+ ")
o 6 a, 12 6 c 12 C%/z 2B (UA)J'/Z
o=|—| =c,’| /= Bo=Do| =-
Uo u*uA uA Cp
UA%(1-2B) A\ B
Ts= — Bl:bl _ (l—U)
2cAJ1+u(v/Ag—1)] uA
(bp=2.98,b;=0.531)
The crossover parametaTandA and the amplitudes; and u*p K\ 2 AV v (1—U)Y
HP H - = —_— +| — - I ——
c, are related'to the coefﬁuents of the Iocﬁa_bordlnate de y 24, 2 A 1 p A, 1—(1—u)Y
pendenk density of the classical Landau-Ginzburg free en-
ergy A [67]: 2p—1) 1 o
vo dAA) 1, 1 1o As |
keT v 2207¢ * gto# 300V e)

=£tM2+ iu*UA|\/|4+ 1(?M)2 (6)
2 41 2 ’

with ag=c2c;, Up=U*UACE, Co=c20g®, and V=o{'
The prefactorvy/kgT, wherekg is Boltzmann’'s constant,
makes the free-energy density dimensionless.

The expressions for the properties in the two-phase region
are found from the equilibrium conditigi68]
(JAAIIM),=0. (10)

Upon increasing the distance from the critical point, this
crossover model provides a continuous transformation from

The crossover equations for the dimensionless inversksing-like, asymptotically close to the critical point, to mean-

susceptibilityy " and correlation lengtl in zero field in the
one-phase regionM =0), implied by Eqgs.(2) and(3), are
[19]

(7

8

Xﬁl: CﬁCtTY(Vf l)/AS(1+ Y),
£= v(l)/sK— 1_ v(1)/3[CtTY(2”_1)/AS] -2

with

field behavior far away from the critical point. The transfor-
mation is controlled by the ratid/« or, equivalently, by the
ratio of the correlation length over the microscopic charac-
teristic lengthé/ &5 . As shown in Table 111, the equations for
the crossover susceptibility and the correlation length in the
one-phase region, and also for the order parameter in the
two-phase region, exhibit Ising-like critical behavior asymp-
totically close to the critical point, whereas the classical
(mean-field expressions are recovered far away from the
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critical point. Due to the critical fluctuations, the position of is not proportional to the actual correlation lengttbut only
the actual critical temperaturg. is shifted with respect to to that part of the correlation length associated with the criti-

the mean-field critical temperatuﬂ'Q . The critical tempera- cal ﬂUCtuationS, which should vanish far away from the criti-

ture shift 7e=(T.—T.)/T, can be evaluated from different cal point. — o o .
properties such as the inverse susceptibility or the order pa- For the casei<1, which is realized in simple fluid5],
rameter. These different evaluationssgfare proportional to  the mOQ'f'F?t'On of the crossover fu_nctlon doe_s; not Ija\{e
a unique combination of the two crossover parametergnuch significance: the crossover is still monotonic and is, in

(uAZc,), whereas the critical amplitudes are functions of thePractice, not completed yvithin the critical QOmain, Sitces
productUA (Table 11l large andA is of order unity. In complex fluids, however, the

. crossover parametey is not necessarily associated with the
Fpr_ very large values oA, i.e., when cutoff effects are actual microscopic cutoff, but may be related to another
negligibly small, Eq(3) for the crossover functiolf can be o5 4 teristic spacing on a scale larger than a molecular size.
approximated by If A is small enough(i.e., the characteristic spacirgy, is

— [uA
1-[1-u]Y=|— YV/As, (11
In this approximation the two crossover parameEEmdA

in the crossover equations collapse into a single ane,
which is related to the Ginzburg numbig; [25]

(UA)? Ugv g
_ - , 12
c= % C 9o aggg ( )

with go=0.031, and wher, is the mean-field value of the

correlation-length amplitudéTable Ill). The range of valid-

ity of the mean-field theory is determined by the condition

7>Ng. It has been shown by Anisimoet al. [25] that the

single-parameter crossover model, based on renormalizatio
group matching, gives a crossover behavior of the free e

ergy similar to those based on tleexpansion26] and on

the field theonf55] when cutoff effects are neglected. In the
single-parameter model, if the rescaled coupling consta
uolAc:)‘, is less thanu* (the universal renormalization-

group-theory fixed-point value of the coupling cons}ane.,

u=u0/Ac3u*<1, the mean-field behavior is recovered in
the limit uA/k<1 and controlled by the Gaussian fixed
point at whichuA =0. In simple fluids the cutoff parameter

A is of order unity(the characteristic microscopic scdlg is

of the order of a molecular siz€}®). This is why in systems

large), the nonasymptotic behavior of the crossover model as
specified by Eqgs(3), (7), and(9) implies that the crossover
to the mean field is quite possible within the critical domain,
even foru=1 [19]. In this case the crossover is not mono-
tonic, since it is controlled by two independent crossover

parametersu>1 is responsible for a negative first Wegner
correction amplitude and drives the effective susceptibility
exponent upward with increase of and smallA provides a
decrease of the exponent downward to the mean-field value
vy=1 with further increase of.

To elucidate the effect of an additional scale on the physi-
cal properties of fluids in the critical region, we need more
systematic information on the crossover behavior of the sus-
ceptibility in different classes of fluids and fluid mixtures, as
well as new experiments especially designed to investigate
details of the crossover behavior. We realize that our cross-
Bver model when extended to complex fluids is essentially

n[:')henomenological. The apparently small “cutoffA in

complex fluids may also be associated with another order
arameter, even belonging to a different universality class
7]. In that case a coupling between two order parameters
leading to possible multicritical phenomena should be con-
sidered.

IV. ANALYSIS OF EXPERIMENTAL DATA

One should note that extraction of the actual crossover
behavior from experimental data is a very delicate task. Spe-
cifically, the susceptibility of fluids is never measured di-

with short-range interactions the crossover to the classicghcily.” |t can be extracted most accurately from light-

regime is not completed within the critical domain whérie

scattering or turbidity experiments. The interpretation of

always large. Ifu=1, the crossover scale is not defined bysuch data requires reliable information on the correlation

the single-parameter crossover model. For1 all

function which itself exhibits crossover behavior. Hence, the

correction-to-scaling terms in the Wegner expansion disapfit is essentially nonlinear. Moreover, the crossover behavior
pear, and the effective critical exponents within the entiremay be masked by multiple scattering, gravity effects, and

critical domain are equal to their asymptotising) values.

impurities close to the critical point, and by noncritical

Foru>1 the effective critical exponent of the susceptibility (Packgroundicontributions away from the critical poip89).

for the single-parameter model monotonically increases witd "2t IS why,
increase ofr (negative Wegner correctionsand the cross-
over to the mean-field critical regime never occurs either.

A rigorous analysis of the spherical model led Nicoll an

Bhattacharje¢64] to replace the produaiA/« in Eq. (11)
for the crossover functioty by u(1+ A?/x?)*?, leading to

in spite of a large number of experimental stud-
ies, there are only a few with an accuracy sufficient to re-
cover the actual nonasymptotic critical behavior. We also

gnote that as the convergence of the Wegner series is in doubt,

a fit to expansior{l) is dangerous, and an explicit crossover
equation for the susceptibility is needed to determine the
values of the correction amplitudes.

Eqg. (3). In this improved crossover model the two crossover  The intensity of the light scattered from the critical fluc-
parametersi andA are separated, i.e., they control the cross-tuations in fluid systems as a function of the wave nuntper
over behavior independently, and the mean-field regime i related to the appropriate isomorphic susceptibilitypy

recovered in the limitA/x<<1. Physically this means that

[70,71
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X
|;=C———, 13
~C o (13

A B WN =

whereC is an adjustable coefficieltin arbitrary unitg. The
wave number is related to the scattering ang#e(90° in

our experimenis as qg=4wn/\ysin(0/2), where \g
=632.8 nm, the vacuum wavelength of the incident light,
andn the refractive index. We calculated the values of the
refractive index with the aid of the Lorentz-Lorenz relation
taking into account the methylpyridine and water compo-
nents only(at 20 °Cn=1.27 for all samples The wave-
number dependence of the scattered light intensity is ad-
equately represented by the Ornstein-Zernike correction (1
+02¢%) "1 for the actualqé values in the experiments.
Hence, to fit experimental data to EfL3) with y and ¢ 4 B Y
expressed through Eq¥) and(8), one needs four adjustable 10 10 10

parametersA, u, ¢, (or c,), andC. A background term was

found insignificant for all the fits except for the sample with  FIG. 2. Scattered intensityls in arbitrary units of 3-
X=0.16. Variation of the critical-temperature values within methylpyridinetwater+sodium bromide solutions as a function of
the accuracy of their determination did not change the fittinghe reduced temperature=|T—T|/T. The symbols indicate the
parameters significantly. As the prefactordepends on the experimental data for the five samples specified in Table |. The
absolute intensity of the scattered light, we could not indeUrves represent the values calculated with our crossover model.
pendently extract the value of the critical amplitudg and,

hence, the value of the coefficiea§=ctc§. For simplicity  critical exponents is absent. Afr(u)/7]%<1, 7(u)

we fixedap=1 in all fits. _  =[7(X)/75]¥*~9) and the exponents are renormalized. The
In ternary mixtures one has to deal with an additionalasymptotic critical amplitudé\, of the weak susceptibility

effect which complicates the interpretation of experimental33) can be expressed through the asymptotic amplitude of

data. In “incompressible” binary liquid mixtures the path of ihe correlation lengtig, by the two-scale-factor-universality

a zero o_r_derlng field cor_responds to j[he path at fixed C”tlca}elation A0=0.18)0/§S [69]. The values ofdT,/dX, de-

composition. However, in ternary mixtures the path of the uced from the experimental data, are presented in Table |

zero field corresponds to a path at constant chemical pote ‘he values ofo. were estimated ,from the molar densit :

tial = g of the third component. Hence, in Eqg) and(8) B8~ 35 A for gll the samplés Strictly speaking, the effecty

the variabler means the “theoretical” path at a constant (vg ) T
chemical potential. However, the light-scattering measurepf the Fisher renormalization itself should be accounted for
’ the crossover to the mean-field regime. This can be done by

quence, a so-called Fisher renormalization of the critical exYSINg an effective value of, which crosses over from

ponents[72] occurs along the experimental pathK=X,). =0.1110a=0, in Eq.(14). HO_WeV.e“ th'.s’ effect is not im-
Specifically, the asymptotic value of the susceptibility expo-POrtant for the present analysis, since, in the samples where
nent y=1.24 changes toy/(1—a)=1.39. Therefore, one the crossover is most pronounced, the effect of the Fisher
needs to express the theoretical variabla Egs.(7) and(8) renormallzatlon becomes negl|g|bly sm.all. . ,
through the experimentally measured distance to the critical In Fig. 2 we plot the.spattered-llght'mtensny for the f|.ve
temperature. The relation between the experimental temper amples of 3-methylpyridinewatert+ sodium bromide speci-

ture scaler(X)=|T—T(X)|/T and the theoretical tempera- leﬁr inTTﬁpl'leatl 2§n2t;l:1?céic)0r2p%fsittri]§nre‘?#gecdu:\?gpgs:ggeent
ture scaler(uw)=|T—T /T is not analytic[73,74]: —1 e . :

() =| (w)] yid 4 values calculated with our crossover model. The values ob-
tained for the adjustable parameteks u, c,, andC are
7(X) (r(,u))l‘“[ (T(M))a} presented in Table IV together with the standard deviations

I (arb. units)

103

(14)  of the fits. In Table IV, we also give the resulting values for
some relevant physical quantities, namely the amplitggle
of the asymptotic power lawg,r " for the correlation

where the characteristic temperatuteis defined by length, the mean-field amplitud® of the correlation length
far away from the critical point, the characteristic length

associated with the cutofk, the coefficientl’; of the first
Ve correction-to-scaling term in Eq1), and the characteristic
, (150  temperaturer, associated with the critical-exponent renor-
malization[see Eq.(15)]. We note that the amplitudEg; is
negative for all samples, indicating that the crossover from
5 Ising-like to mean-field behavior is nonmonotohi®]. This
and whereX indicates the overall mole fraction of NaBr. At nonmonotonic behavior is shown in Fig. 3, where we plot the
[T(u)/7]%>1, 7(u)=7(X) and the renormalization of the effective susceptibility exponeng.z=— 7d In x/d7, with x

T2 T2 T2

d1.\?

1
Te d

AoX(1—X)

Ty=

>
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TABLE IV. Parameters of the crossover model.

Adjustable parameters Calculated parameters

Standard
Sample X A u G C  deviaion®) & A) & R) & @A) Iy 1
1 00800 0.374 157 3.07 1.22 1.6 148 1.97 92+1.1 0.13
2 01190 0.236 229 2.66 1.09 1.8 159 212 14724 0.091
3 01396 0.187 2.02 207 1.02 2.4 1.70 241  18.6-2.4 0.061
4 01500 0.111 2.68 1.05 0.719 2.4 2.46 3.38 31.6-3.6 0.017
5 01600 0.0460 2.07 0.567 0.427 2.4 269 460 75354 0011

represented by the fit of Eq7) to the experimental data, as bility data at the largest concentratiof=0.16 in the tem-

a function of the reduced temperature

perature range>10 2 systematically deviate from the cal-

In Figs. 4 and 5, we show the deviations of the suscepticulated values. We speculate that this effect may arise from
bility values, extracted from the light-scattering data throughan anomaly in the light scattering related to another possible
Eq. (13), from Ising asymptotic behavior. The solid curves in phase transition at low temperatures and higher salt concen-
these figures represent the actual crossover behavior impligtations. Therefore, we fitted the model to the experimental
by our model, and the dotted curves represent asymptotidata for this sample only within the range: 10~ 2. As men-
mean-field behavior. It should be noted that in the mean-fieldioned earlier, for all the samples the crossover is character-
theory the susceptibility diverges at a temperature below th&zed by a negative value of the first Wegner correction am-
actual critical temperature. From Figs. 3-5 it is evident thaplitude I';. Hence the crossover is sharp and is not
the crossover from Ising-like to mean-field behavior be-monotonic:y.4 as a function ofr goes through a maximum.
comes more pronounced with an increase of the NaBr conAnother specific feature of the crossover behaviotygf is
centration, and for the fifth sample witk=0.16 the cross- related to the fact that the investigated solution is a ternary
over is practically completed within the critical domain. As system. As a consequence, the susceptibility exponent
can be seen from Figs. 4 and 5, our crossover model dechanges its asymptotic value from to y/(1—a) due to
scribes all the experimental data well. Neither simple IsingrFisher renormalization. The effect of the renormalization de-
behavior nor simple mean-field behavior describes the expends on the parametes (listed in Table IV}, and the effect
perimental data. Instead a crossover between the Ising rés less noticeable for larger concentrations of NaBr. Figure 6
gime and the mean-field regime dominates in the tempera-

ture range 10%< 7<10 2. The tendency to approach mean- 201 p— 207 "
field behavior away from the critical temperature becomes | wossover | T crossover
more and more pronounced with an increase of the salt con- 101
centration, and forX=0.16 mean-field behavior prevails S
within 10 < 7<10 2 (Fig. 5. The experimental suscepti- 2z 9
<
‘3 <
%
A -104
1.3
-20 T
10°
20 20
~~~~~~~~~ Ising seeesees |SING
t2q4 N NN Y | mentad i [ 0= mean-feld
5 @
L £
1.1 %
o
1.0 ——r e
_. - - T T
10 10° 10
T FIG. 4. Deviations of the observed susceptibility of 3-

methylpyridine-water+sodium bromide solutions from Ising

FIG. 3. Effective susceptibility exponents= — 7d In x/dr for

the five samples of the 3-methylpyridirevater+sodium bromide

system calculated from our crossover model as a function dhe

asymptotic behaviofdashed lingfor four sampleg1) X= 0.08,(2)
X=0.12,(3) X=0.14, and4) X=0.15. The dotted curves represent
mean-field asymptotic behavior, and the solid curves the actual
brackets[ ] mark the temperature intervals of the actual fit to ex- crossover behavior. Note that the mean-field susceptibility diverges
perimental data for each sample.

at a temperature below the actual critical temperature.
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20 20
---------- Ising ceseenes Ising
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104
= e
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10° 10? 10° 107 10"
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FIG. 5. Deviations of the observed susceptibility from the Ising  FIG. 7. Deviations of the susceptibility, extracted from experi-
asymptotic behaviofdashed lingfor the sample wittK=0.16. The  mental neutron-scattering dg], from Ising asymptotic behavior
dotted curve represents the mean-field asymptotic behavior, and tiidashed ling for a polystyrene-deuterocyclohexane solutidvi,(
solid curve the actual crossover behavior. =28.000). The dotted curve represents the mean-field asymptotic

behavior, and the solid curve the actual crossover behavior.

demonstrates the Fisher renormalization for the sample
=0.08 in which the effect is most pronounced. While the V. DISCUSSION
solid curve represents the effective susceptibility exponents
along the experimental path X=const [vys=
—7d Iny/d7(X)], the dashed curve represents the value
along the theoretical path=const[ ye= — 7d In x/dm()]

in accordance with Eq(14). The renormalization becomes
less important with increase of salt concentrationl @s/d X
and A, decrease in spite of increasiixg For the sampleX
=0.16, the effect of the renormalization is negligible.

The crossover behavior of the susceptibility of Mmater
+sodium bromide solutions shows a striking similarity with
Yhe crossover behavior previously observed for the suscepti-
bility in nonaqueous ionic solutions with low dielectric con-
stant[19] and in polymer solutionf27] as illustrated in Figs.

7 and 8. In all these cases the crossover of the susceptibility
is sharp and nonmonotonic and an additional characteristic
length scale is revealed. The mean-field behavior becomes

1.3

1.3 1

1.2
1.2 1

yeff
yei‘f

1.1 1.1

1-0 MR MR | Ty

10° 10 107 10 10" 1.0+— A B A
10° 10" 10° 107

T

T
FIG. 6. Effective susceptibility exponent for the sample

with X=0.08 as a function ofr. The solid curve representg.; FIG. 8. Effective susceptibility exponentz= — 7d In y/dr as a
along the experimental pati=const and the dotted curve repre- function of 7 for a mixture of isobutyric acid and watéBAW), a
sentsy. along the theoretical path = const. Along the theoretical nonaqueous ionic solution of tetrebutyl ammonium picrate in
path, y. asymptotically approaches the Ising valye 1.24. Along  1,4-butanediol/1-dodecanéTPDB), a mixture of 3-methylpentane
the experimental pathy.+ asymptotically approaches the renormal- and nitroethanéd3MPNE) [19], and for theX=0.16 sample of the
ized valuey/(1— a)=1.39. The bracketp ] mark the temperature ternary mixture 3-methylpyridinewater+sodium bromide (this
range of the actual fit to experimental data for this sample. work).
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0.03

X

0.02

0.01

Inverse length scale
crossover temperature t

0.00

0.0

t 1 1 Il Il n i n I3 1 1 1 I 1 I
0.08 0.10 0.12 0.14 0.16 006 008 010 012 014 0.16 0.18
X (mass fraction of NaBr) X (mass fraction of NaBr)

_ FIG. 9. Inverse dimensionlesseduced by the interr;;zt)lecular FIG. 10. Crossover temperaturg as a function of the salt con-
distance characteristic length scalé and the ratioA/c;i” as a  centration.r, is defined as the value afwhich corresponds to the

function of the salt concentration. The symbols indicate the valuesnflection point in the dependence gfs on 7 in Fig. 3.
deduced from the fits of the crossover model to experimental data.
The solid curves are given as a guidance.

[78]. Figure 9 shows the evolution of the cutoff parameter
more pronounced when this additional length increases. land the ratiQA/CgJZZEO/gD with an increase of the salt con-
polymer solutions this additional length has a clear physical.oiration. Wwhile the parametar does not significantly
meaning: it is of the order of the size of the polymer mol- change, botth andc,, as well as the ratiah/ctm, decrease

. -1 -
gcules. the. cutoff pare.xmete'(.och 1S of the order of the with increase of the salt concentration. The solid curves are
Inverse radius of gyrathn .W.h'Ch dlverggs yvhen the mOIecu'given as a guide to show the tendency of these parameters to
lar weightM,, beCF’”?‘?S |nf|n|.te§27]. The I|m|t Mw—2 COr-  ecrease or even vanish at a certain concentration of NaBr
responds to the tricriticab point[28] in which A=c,—0 as  x_x 017, This conclusion is strongly supported by the
My, . while A/c;*—0 asM,, ™. o _ behavior of the crossover temperature scale A2/c, de-

The origin of the additional characteristic length scale infineq as the coordinate of the inflection point in the depen-
the system MR H,O+ NaBr is not clearly understood. The gence ofy. on = shown in Fig. 10 as a function of the salt
additional length scale could stem from a possible associgsgncentration. We note also th¥t=0.17 corresponds to an
tion of 3-methylpyridine molecules. With an increasing con-jnfiection point of the critical temperature li{Big. 1). If the
centration of NaBr, the size of the clusters may increas@pseryed tendency of increasing characteristic lenggh
since the solubility of NaBr in water is much higher com- . A -1 rasyits in a divergence afy at X=Xy, this concen-
pared to its solubility in 3-methylpyridine. A recurring theme 4iion would, indeed, correspond to a multicritical point of

in the earlier light-scattering studies of closely related sys<,me kind. Eurther studies need to be performed to answer
tems MP+watertsodium chloridg30], MP+watert heavy g intriguing possibility.

watertpotassium iodide [31], and ethanotwater

+potassium carbonatd2] is a progressive trend to mean-

field behavior with increase of the electrolyte concentration.
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