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Crossover from Ising to mean-field critical behavior in an aqueous electrolyte solution
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The near-critical behavior of the susceptibility deduced from light-scattering measurements in a ternary
liquid mixture of 3-methylpyridine, water, and sodium bromide has been determined. The measurements have
been performed in the one-phase region near the lower consolute points of samples with different concentra-
tions of sodium bromide. A crossover from Ising asymptotic behavior to mean-field behavior has been ob-
served. As the concentration of sodium bromide increases, the crossover becomes more pronounced, and the
crossover temperature shifts closer to the critical temperature. The data are well described by a model that
contains two independent crossover parameters. The crossover of the susceptibility critical exponentg from its
Ising valueg51.24 to the mean-field valueg51 is sharp and nonmonotonic. We conclude that there exists an
additional length scale in the system due to the presence of the electrolyte which competes with the correlation
length of the concentration fluctuations. An analogy with crossover phenomena in polymer solutions and a
possible connection with multicritical phenomena is discussed.@S1063-651X~98!06108-X#

PACS number~s!: 05.70.Jk, 64.60.Fr, 64.60.Kw
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I. INTRODUCTION

A challenging problem of critical phenomena in compl
fluids, such as polymer and micellar solutions, microem
sions, and solutions of electrolytes, is to account for an
terplay between universality caused by long-range fluct
tions of the order parameter and a specific supramolec
structure. The approach to universal critical behavior in s
systems should be affected by a competition between
correlation length of the critical fluctuations and an ad
tional length associated with the supramolecular structure
and with long-range interparticle interactions. Hence, e
within the asymptotic Ising-like universality class, compl
fluids may exhibit different crossover behavior upon a
proaching the critical point. Experimental studies of ne
critical micellar and ionic solutions have yielded contrad
tory results@1–10#. Degiorgio and co-workers@1,2# reported
nonuniversal ~system-dependent! near-critical behavior in
micellar solutions. Light-scattering studies of Dietler a
Cannell@3# and Hamanoet al. @4# showed that micellar so
lutions do exhibit asymptotic Ising-like universal behavio
However, the character of the approach to the unive
asymptotic regime remains unknown, and the physical r
sons for the observed discrepancies between results rep
in Refs. @1,2# and @3,4# are still unexplained. Experimenta
results for ionic fluids, which suggest either mean-field~clas-
sical! behavior@5,9# or Ising-like nonclassical behavior@6–
8,10#, have been reported.

The discussion of the nature of criticality in ionic system
~see Refs.@11–15#! has recently received a new impetus a
ter experimental data obtained by Narayanan and Pitzer
several low-dielectric-constant ionic solutions showed
usual sharp crossover from Ising asymptotic behavior
mean-field behavior@16–18#. It has been observed tha
mean-field behavior is more pronounced in systems w
PRE 581063-651X/98/58~2!/2188~13!/$15.00
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low-dielectric-constant solvents. Narayanan and Pitzer
plained this phenomenon by the presence of unscree
long-range Coulombic interactions in such systems. Is
critical behavior has been observed in certain appare
ionic systems where the phase separation is believed t
driven by short-range hydrogen-bonded interactions@6–8#.
Moreover, sometimes, just as earlier for micellar solutio
@2,3#, different studies indicate either mean-field@9# or Ising
behavior@10# even for the same ionic system, if the samp
have a different origin.

Anisimov et al. @19# showed that the sharp crossover b
havior in ionic solutions can be quantitatively described b
crossover model that contains two independent crossove
rameters associated with two different characteristic spa
scales. In low-dielectric-constant ionic systems, for examp
these scales may reflect two different ranges of interpart
interactions: short-range solvophobic and long-range C
lombic. Elucidation of the critical behavior in other comple
fluids may need a similar approach. A qualitatively sha
crossover to mean-field behavior and mesoscopic-ra
structure has been reported earlier for metal-ammonia s
tions @20#. Crossover between Ising-like asymptotic behav
and mean-field classical behavior has also been reported
polymer blends@21–23# and for a microemulsion system
@24#. Attempts@21,23,24# have been made to describe the
data in terms of a version of the crossover theory that c
tains a single crossover scale@25,26#. On the other hand
solutions of polymers in low-molecular-weight solvents e
hibit sharp nonmonotonic crossover behavior when the c
relation length of the critical fluctuations and the polym
molecular size, as specified by the radius of gyration, are
the same order@27#. The description of this crossover phe
nomenon requires two independent parameters associ
respectively, with intramolecular and intermolecular corre
tions. Moreover, the crossover behavior in polymer solutio
2188 © 1998 The American Physical Society
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is affected by the presence of a tricriticalu point @28#. Since
tricritical behavior is mean-field-like in three dimensions, t
observed phenomenon is, in fact, a crossover from
asymptotic Ising regime to the mean-field tricritical regim
The question arises: do critical crossover phenomena ha
universal character for complex fluids? Will the addition
length scale always be associated with an additional o
parameter and, hence, with multicritical phenomena like
polymer solutions? Further progress in understanding the
ture of critical phenomena in complex fluids depends
more comprehensive and more accurate experimental s
ies. It must be noted that nonaqueous ionic fluids and sur
tant solutions are very sensitive to impurities and may
chemically unstable, so that results of measurements may
be reproducible@1–3,9,10#. In this work we report a study o
the near-critical behavior of the susceptibility deduced fr
light-scattering measurements in a ternary liquid mixtu
which is free from the disadvantages mentioned before.

Multicomponent liquid mixtures have been a subject
study during the past few years@29–32#. In some cases ter
nary liquid mixtures with an electrolyte as a component w
treated as quasibinary systems, since the amount of ele
lyte added was quite small and the overall concentration
the electrolyte could be treated as a hidden field varia
@30#. Although it has been well established that these s
tems belong to the Ising universality class@30–32#, a trend
toward mean-field behavior has also been observed@31,32#.
An electrolyte-induced structuring was tentatively propos
@31,32# as a possible reason for this trend. As the amoun
electrolyte is increased, there could be a competition
tween a length scale due to this structuring and the corr
tion length of the concentration fluctuations. Such a com
tition could lead to mean-field critical behavior in a regio
away from the relevant consolute critical point, where t
additional length scale overrides the correlation length.

To clarify these issues we have examined the crosso
behavior of the susceptibility of the system 3-methylpyridi
~MP!1water (H2O)1sodium bromide~NaBr!. NaBr was se-
lected as the electrolyte after exhaustive trials with sev
other salts. The system MP1H2O is completely miscible a
all temperatures at atmospheric pressure. An immiscib
gap with loop sizeDT5(TU2TL), TU being the upper criti-
cal solution temperature andTL the lower critical solution
temperature, appears in this system starting from
‘‘‘double’’ critical point ~whereTU5TL) with the addition
of an electrolyte like NaCl (;0.1 wt %) or NaBr
(;0.4 wt %) @30#. If an experimental path is tangential t
the critical line at the double critical point, a doubling of th
critical exponents is observed@30,33#. With the addition of
such electrolytes, the polar hydroxyl groups in MP and H2O
become increasingly shielded from one another, reducing
strength of the hydrogen-bond and dipolar forces and t
loweringTL . Since the radius of the chlorine ion~1.81 Å! is
smaller than that of the bromide ion~1.96 Å!, NaCl causes a
more drastic shift inTL than the same amount of NaBr doe
With further increase in the electrolyte concentration,DT
increases, i.e.,TL decreases andTU increases as shown i
Fig. 1, where we have plotted the critical solution tempe
ture as a function of the mass fraction of NaBr.

We have observed a crossover of the susceptibility fr
asymptotic Ising-like behavior to mean-field behavior. T
e
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crossover becomes more and more pronounced as the
centration of NaBr increases. The data are well described
a crossover model developed by Chen and co-work
@34,35#, and applied previously to elucidate the crossov
behavior of the susceptibility of some ionic and polym
solutions@19,27#, which contains two independent crossov
parameters. The crossover of the susceptibility critical ex
nentg from its Ising valueg51.24 to the mean-field value
g51 is sharp and nonmonotonic. We conclude that th
exists an additional length scale in the system due to
presence of the electrolyte which competes with the corr
tion length of the concentration fluctuations. A striking an
ogy with the crossover behavior observed for semidil
polymer solutions and the possibility of multicritical phe
nomena at higher concentrations of sodium bromide are
cussed.

II. EXPERIMENT

We prepared the samples using MP~from Aldrich with a
stated purity of 99%!, water ~triple distilled in an all-quartz
distiller! and freshly dried analytical grade NaBr. Th
samples~about 5 cm3) were initially prepared in cylindrical
pyrex glass cells. The lower critical temperatures were m
sured in a well stirred liquid paraffin thermostat with a tem
perature stability better than61 mK. A visual observation
of the onset of opalescence and of the eventual formatio
a meniscus after a typical temperature quench of 3 mK
been used to determineTL . The critical concentration of
MP, xMP5(xMP)c , (xMP being the mass fraction of MP in
the ternary mixture! for each value ofX ~overall mass frac-
tion of NaBr! was accurately determined by preparing six
seven samples close to (xMP)c for eachX and then measuring
their phase-separation temperatures. For the critical sam
the meniscus forms exactly at the center of the cell. It sho
be noted that the critical concentration (xMP)c of MP may
not coincide with the concentration (xMP)e corresponding to
the extremum of the phase-separation boundary becaus

FIG. 1. Upper and lower critical solution temperatures~the up-
per branch isTc5TU and the lower branch isTc5TL) as a function
of the mass fraction of NaBr for the 3-methylpyridine1water
1sodium bromide system.
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TABLE I. Properties of the 3-methylpyridine~MP!1water(H2O)1sodium bromide~NaBr! samples. Note

thatX andX̃ denote the mass and the mole fraction of NaBr in the mixture, respectively; (xMP)c is the critical
mass fraction of MP in the mixture;r is the density at 25oC.

Sample X (xMP)c X̃ TL(5Tc) ~K! r(g cm23)

1

Tc

dTc

dX̃

1 0.0800 0.2791 0.019 75 315.1156 0.005 1.0570 21.68
2 0.1190 0.2616 0.030 16 310.2376 0.002 1.0905 21.30
3 0.1396 0.2523 0.035 88 308.1406 0.004 1.1083 21.08
4 0.1500 0.2467 0.038 77 307.3266 0.004 1.1177 20.962
5 0.1600 0.2403 0.041 55 306.4356 0.004 1.1270 20.852
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the obliqueness of the coexistence surface for a ternary liq
mixture @30#. For example, atX50.1500, (xMP)c50.2467
60.0001 and (xMP)e50.425060.0001; at X50.0800,
(xMP)c50.279160.0001 and (xMP)e50.423260.0001.
Table I shows that there is a gradual variation of (xMP)c asX
varies from 0.08 to 0.16. For the samples used in the lig
scattering runs the upper critical temperatures were not
termined, since they were invariably above 150oC.

The samples used for the light-scattering measurem
were first prepared in pyrex glass cells and then transfe
to the light-scattering cells~volume'0.3 cm3) by means of
air-tight ~Hamilton! syringes fitted with millipore filters
~pore size 0.2mm). These cells were flame sealed after t
samples had been frozen in liquid nitrogen. The samp
were well stirred for about 15–20 min in an ultrasonic a
tator after preparation, and also before starting each lig
scattering run. We checkedTL and the criticality of the
samples both before and after measuring the scattered-
intensity as a function of temperature for each sample
monitoring the vanishing of the transmitted laser beam
the appearance of a meniscus at the center of the cell. We
not detect any drift in the value ofTL over the duration of the
measurements for a given sample.

The sample cell was placed in a brass-block thermo
that has a temperature stability better than61 mK in the
temperature range 25–90oC @36#. The temperatureT of the
sample was measured with a ruggedized thermistor@37#
placed very close to the sample cell. The thermistor w
calibrated in terms of IPTS-68. The laser beam~632.8 nm!
from a He-Ne laser~5 mW! was focused at the center of th
sample cell. To reduce the contribution from multiple sc
tering, we designed the cell so that the optical path len
was less than 8 mm. The height of the sample was less
7 mm. The transmitted and incident beam intensities w
measured with photodiodes. The scattered-light intensity~at
90°) was detected with a photomultiplier tube whose out
was fed to a photon counter through a fast preamplifier~EG
& G ORTEC!. The light-scattering apparatus was the sa
one as used earlier for experiments near double@30# and
quadruple@31# critical points, but with some refinements
terms of its optics, collection geometry, and electronics.

A typical run lasted about 25–30 h and covered the te
perature range 0.15 K<(TL2T)<7 K except for the
sample with X50.16, where the range was 0.1 K<(TL
2T)<5 K. The typical equilibration time was;20–25 min
for a temperature step of 0.1 K, and this time was roug
the same for all the samples. Thermal equilibrium was in
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cated by the invariance of the scattered and transmitted
tensities with time. Data very close toTL (TL2T,0.1 K)
were not taken into consideration so as to avoid compl
tions due to multiple scattering and gravity effects. We p
formed both heating and cooling runs, and found that
results were completely reproducible. The light-scatter
data were collected as the lower critical temperatureTL of
the sample was approached by heating from the one-p
region. The measured scattered-intensity data have been
rected for extinction due to increased turbidity near the c
cal point as discussed by Bray and Chang@38#. Fluctuations
in the incident light intensity were accounted for by norm
izing the data with respect to the corresponding incident li
intensity. The normalized intensity dataI s , corrected for ex-
tinction, are presented in Table II together with the asso
ated uncertaintydI s . Here dI s is an absolute cumulative
uncertainty calculated by propagation of errors due to
uncertainties in the counting statistics, the reference in
sity, and the temperature. We did not observe any ba
ground intensity above the random error, and no detect
light scattering exceeding the noise was present at temp
tures 10% away from the critical temperature.

III. THEORY

In fluids with short-range intermolecular interactions t
critical fluctuations affect the behavior of physical propert
in a wide region around the critical point; in fact, wherev
the correlation length exceeds the molecular size@39#. A
property of one-component fluids such as the isother
compressibility exhibits a tendency to cross over from u
versal asymptotic Ising-like behavior toward mean-field~van
der Waals-like! behavior when the distance from the critic
point increases and the correlation length decreases@25,39#.
This crossover behavior is characterized by a single cr
over scale, the Ginzburg numberNG , that is to be compared
with the distance to the critical pointt5uT2Tcu/T. In our
case the critical temperatureTc is to be identified withTL .
For simple fluids the Ginzburg number is of the order.0.01,
so that the critical fluctuations can be neglected att@1022

@25#. This is why, in practice, the crossover in simple flui
is never completed within the critical domain. In ordina
binary liquid mixtures the Ginzburg number is often ev
larger and the crossover is hardly observable@19#.

The intensity of light scattered by the critical fluctuatio
is proportional to the susceptibilityx, which in turn is pro-
portional to the isothermal compressibility in one-compon
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TABLE II. The corrected light-scattering intensity data in arbitrary units as a function ofTL2T.

TL2T Is dI s TL2T Is dI s
~K! ~arb. units! ~arb. units! ~K! ~arb. units! ~arb. units!

X50.0800

7.466 72.27 2.74 1.990 401.27 4.88
6.668 87.41 2.81 1.794 447.05 5.17
6.051 96.58 3.00 1.596 530.98 5.46
5.547 108.29 3.03 1.447 594.37 5.74
5.033 125.30 3.16 1.245 729.06 6.28
4.552 136.62 3.26 1.094 855.49 6.78
4.106 156.75 3.45 0.941 1049.56 7.41
3.697 188.84 3.61 0.839 1200.31 7.95
3.376 206.65 3.80 0.737 1431.55 8.68
3.144 227.58 3.90 0.582 1900.35 9.97
2.909 245.02 4.00 0.426 2837.93 12.34
2.672 279.86 4.22 0.270 4934.44 17.00
2.427 309.97 4.41 0.164 8760.92 24.63
2.234 342.54 4.60

X50.1190

7.153 61.95 2.39 2.396 240.64 3.72
6.662 68.85 2.46 1.999 298.90 4.01
6.261 70.71 2.52 1.594 400.10 4.54
5.854 76.04 2.56 1.183 584.76 5.35
5.507 80.14 2.56 1.101 655.53 5.60
5.158 87.86 2.65 1.044 700.98 5.72
4.838 101.06 2.72 0.916 819.18 6.19
4.514 107.92 2.78 0.790 999.92 6.78
4.187 119.82 2.91 0.663 1232.89 7.52
3.855 126.84 2.94 0.533 1660.92 8.67
3.516 147.72 3.13 0.406 2315.97 10.32
3.174 167.29 3.22 0.276 3739.23 13.42
2.787 193.29 3.38 0.125 9416.40 22.95

X50.1396

6.875 57.27 2.08 1.893 258.63 3.43
6.262 61.43 2.11 1.594 322.80 3.74
5.793 69.87 2.18 1.390 388.38 4.23
5.476 70.49 2.24 1.063 541.20 4.67
5.089 79.07 2.27 0.793 767.46 5.44
4.729 82.44 2.31 0.558 1203.04 6.80
4.363 87.85 2.37 0.480 1469.23 7.51
3.993 100.34 2.46 0.401 1822.53 8.40
3.649 117.78 2.59 0.362 2122.54 9.08
3.302 130.78 2.68 0.256 3231.58 11.36
2.949 144.94 2.78 0.215 3919.01 12.69
2.592 173.62 2.99 0.135 6479.48 17.19
2.226 216.65 3.21

X50.1500

6.206 41.49 2.44 1.592 201.66 4.31
5.750 43.12 2.47 1.226 278.55 4.99
5.288 48.11 2.57 0.967 374.12 5.70
4.816 48.98 2.60 0.780 497.91 6.50
4.335 61.08 2.76 0.629 645.49 7.30
3.845 66.58 2.85 0.516 836.20 8.31
3.444 75.45 2.98 0.439 1006.54 9.15
3.003 94.31 3.23 0.363 1288.64 10.34
2.657 107.15 3.38 0.286 1686.75 11.91
2.307 125.97 3.60 0.209 2403.23 14.53
1.952 157.75 3.94 0.133 3883.21 19.38

X50.1600

5.171 37.39 1.99 0.995 152.54 2.99
4.557 41.03 2.02 0.815 192.33 3.21
3.931 43.32 2.03 0.670 238.65 3.55
3.288 46.96 2.06 0.525 318.67 3.95
2.627 57.27 2.22 0.415 427.51 4.47
2.221 63.49 2.28 0.341 530.31 4.96
1.876 74.71 2.38 0.267 693.41 5.60
1.601 89.16 2.47 0.192 966.99 6.61
1.351 107.33 2.65 0.119 1598.20 8.70
1.174 129.58 2.81 0.063 2668.69 12.01
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fluids and with the osmotic susceptibility in ‘‘incompres
ible’’ binary liquid mixtures or with a combination of os
motic susceptibilities in multicomponent liquid mixture
@40,41#. In zero ordering field~along the critical isochore in
one-component fluids or along the critical concentration
binary mixtures, respectively! in the one-phase region as
ymptotically close to the critical point the susceptibility b
haves as

x5G0t2g~11G1tDs1G2t2Ds1a1t1••• !, ~1!

whereg51.23960.002@42,43# andDs50.5460.03@44# are
universal critical exponents~actually we adoptedDs50.51),
and whereG0, G1, G2, anda1 are system-dependent amp
tudes. Expansion~1! is called the Wegner series@45#. Since
real fluids do not obey the symmetry of the lattice gas,
susceptibility x also contains terms proportional tot2a

@33,46# and t2g1Da @47–49# which are, however, weake
than the second Wegner correction term;t2g12Ds, as a
.0.11 andDa.1.32.

In a wider region around the critical point, the suscep
bility of fluids may exhibit a trend from universal Ising-lik
behavior to mean-field~van der Waals-like! behavior
@25,26,50–55#. If one defines an effective susceptibility e
ponent asgeff52td ln x/dt @50–52#, a positive value ofG1
means thatgeff approaches the asymptotic valueg.1.24
from below, providing a smooth crossover from the mea
field value g51 far away from the critical point. Such
smooth crossover to the mean-field regime, although ne
completed in the critical domain, is exhibited by simple fl
ids @19#. In this case the crossover is basically controlled
the Ginzburg number, a single crossover parameter, th
responsible both for the convergence of the Wegner se
~1! and for the range of validity of the mean-field approx
mation @25#. Recently, universal single-parameter crosso
has been demonstrated by computer simulations of the
dimensional Ising model@56#. However, there are severa
indications that such a simple monotonic crossover w
positiveG1 in the one-phase region is not universal. Liu a
Fisher @57# concluded that for the nearest neighbor sim
cubic, bcc, and fcc three-dimensional Ising lattices, the fi
correction amplitudes for the susceptibility, correlati
length, specific heat capacity, and order parameter are n
tive, so thatgeff asymptotically approachesg.1.24 from
above. The possibility of negative Wegner corrections fo
lows from field-theoretical renormalization-group a
proaches@58,59#. Moreover, negative correction amplitude
have been reported for some aqueous solutions near the
solute critical point@60,61#, whereas for other fluid system
@62,63# the correction amplitudes are positive. Narayan
and Pitzer have performed an extensive study of the n
critical turbidity of several nonaqueous ionic solutions@16–
18#. They fitted the susceptibility and the correlation leng
extracted from the turbidity data, to the Wegner expans
~1!, and found that the character of the nonasymptotic beh
ior is strongly affected by the dielectric constant of the s
vent. In particular, in their latest paper@18# they indicated a
possible negativeG1 for at least two of the systems invest
gated. Most recently, a crossover of the susceptibility w
negativeG1 has been observed near the consolute poin
polystyrene in deuterocyclohexane by small-angle neu
n
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scattering@27#. With negativeG1 the crossover ofgeff from
g.1.24 to g51 will be nonmonotonic and sharper tha
usual.

It has been shown that the crossover behavior of the
ceptibility observed in nonaqueous ionic solutions@19# and
in polymer solutions in a low-molecular-weight solvent@27#
can be adequately described by a crossover model w
includes two independent crossover parameters. This m
is based on renormalization-group~RG! matching@34,64,65#
for the free-energy density. The critical part of the dime
sionless free-energy densityDÃ is a function of a rescaled
temperature distancet5ctt to the critical point and of a
rescaled order parameterM5crw, where ct and cr are
system-dependent amplitudes related to the range of inter
lecular interaction, and wherew is the order parameter. A
the vapor-liquid critical point of a one-component fluid th
order parameter is associated with density, and at the liq
liquid critical point of a mixture with concentration. As
result of the long-range fluctuations of the order parame
the critical partDÃ of the dimensionless free-energy dens
Ã is renormalized upon approaching the critical point in su
a way that@34#

DÃ5
1

2
tM2Y~g21!/Ds1

1

4!
u* ūLM4Y~2g23n!/Ds

2
1

2
t2

n

aūL
~Y2a/Ds21!, ~2!

where n5(22a)/350.63060.001 is the critical exponen
of the asymptotic power law for the correlation leng
@42,43#. The crossover functionY is to be determined from
@35#

12@12ū#Y5ūF11S L

k D 2G1/2

Yn/Ds. ~3!

The last term in Eq.~2! is a so-called kernel term responsib
for the weak singularity of the weak susceptibility~isochoric
heat capacity in one-component fluids!. The parameterk is
inversely proportional to the correlation lengthj. In zero
field in the one-phase region the expression fork2 reads@34#

k25cttY~2n21!/Ds. ~4!

In Eqs. ~2! and ~4! the normalized coupling constantū and
the ‘‘cutoff’’ L (L215jDv0

21/3, with jD a characteristic
length reflecting the discrete structure of the fluid andv0 the
average molecular volume! are crossover parameters, whi
u* is a universal RG fixed-point coupling constant. F
three-dimensional Ising-like systems,u* 50.472 @66#. Far
away from the critical point in the mean-field region, Eq.~2!
transforms into the critical part of the mean-field~‘‘classi-
cal’’ ! free-energy density:

DÃ5
1

2
tM21

1

4!
u* ūLM4. ~5!
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TABLE III. The limiting behavior of the crossover functionY, the susceptibilityx, the correlation length
j in zero field in the one-phase region, and the order parameterw along the phase boundary of the two-pha
region.

Mean-field limit (L/k!1) Critical point limit (L/k@1)

crossover functionY

Y512
ūL2/2

ctt@11ū~n/Ds21!#
Y5S Act

ūL
D 2Ds

tDsF122Ds~12ū!S Act

ūL
D 2Ds

tDsG
susceptibilityx

x5a0
21(t2ts)

21 x5G0t2g(11G1tDs1•••)
a05ctcr

2

G05S ūL

Act
D 2~g21!

~11u* n/2!21

a0

ts.
ūL2~g212u* n/2!

2ctDs@11ū~n/Ds21!#
G152S g211

u* nDs

21u* n
D ~12ū!S Act

ūL
D 2Ds

correlation lengthj

j5 j̄0(t2ts)
21/2 j5j0t2n(11j1tDs)

j̄05Sc0

a0
D1/2

5v0
1/3ct

21/2
j05 j̄0S ūL

Act
D 2n21

j15~2n21!~12ū!S Act

ūL
D 2Ds

order parameterw

w56B̄0ut2tsu1/2 w56B0utub(11B1utuDs1•••)

B̄05S6 a0

u0
D 1/2

5cr
21S 6 ct

u* ūL
D 1/2

B05b0S ct
1/2

ūL
D 2b

~ ūL!1/2

cr

ts.
ūL2~122b!

2ctDs@11ū~n/Ds21!#
B15b1S ct

1/2

ūL
D 2Ds

~12ū!

(b0.2.98,b1.0.531)
n

,

rs

ion

is
om
n-
r-

ac-
r
the
the

p-
al
he
The crossover parametersū andL and the amplitudesct and
cr are related to the coefficients of the local~coordinate de-
pendent! density of the classical Landau-Ginzburg free e
ergy A @67#:

v0

kBT

d~DA!

dV
5

1

2
a0tw21

1

4!
u0w41

1

2
c0~¹w!2

5
1

2
tM21

1

4!
u* ūLM41

1

2
~¹̃M !2, ~6!

with a05cr
2ct , u05u* ūLcr

4 , c05cr
2v0

2/3, and ¹̃5v0
1/3¹.

The prefactorv0 /kBT, where kB is Boltzmann’s constant
makes the free-energy density dimensionless.

The crossover equations for the dimensionless inve
susceptibilityx21 and correlation lengthj in zero field in the
one-phase region (M50), implied by Eqs.~2! and ~3!, are
@19#

x215cr
2cttY~g21!/Ds~11y!, ~7!

j5v0
1/3k215v0

1/3@cttY~2n21!/Ds#21/2, ~8!

with
-

e

y5
u* n

2Ds
H 2S k

L D 2F11S L

k D 2GF n

Ds
1

~12ū!Y

12~12ū!Y
G

2
2n21

Ds
J 21

. ~9!

The expressions for the properties in the two-phase reg
are found from the equilibrium condition@68#

~]DÃ/]M ! t50. ~10!

Upon increasing the distance from the critical point, th
crossover model provides a continuous transformation fr
Ising-like, asymptotically close to the critical point, to mea
field behavior far away from the critical point. The transfo
mation is controlled by the ratioL/k or, equivalently, by the
ratio of the correlation length over the microscopic char
teristic lengthj/jD . As shown in Table III, the equations fo
the crossover susceptibility and the correlation length in
one-phase region, and also for the order parameter in
two-phase region, exhibit Ising-like critical behavior asym
totically close to the critical point, whereas the classic
~mean-field! expressions are recovered far away from t
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critical point. Due to the critical fluctuations, the position
the actual critical temperatureTc is shifted with respect to
the mean-field critical temperatureT̄c . The critical tempera-
ture shift ts5(T̄c2Tc)/Tc can be evaluated from differen
properties such as the inverse susceptibility or the order
rameter. These different evaluations ofts are proportional to
a unique combination of the two crossover parame
(ūL2ct), whereas the critical amplitudes are functions of t
productūL ~Table III!.

For very large values ofL, i.e., when cutoff effects are
negligibly small, Eq.~3! for the crossover functionY can be
approximated by

12@12ū#Y5S ūL

k
DYn/Ds. ~11!

In this approximation the two crossover parametersū andL

in the crossover equations collapse into a single one,ūL,
which is related to the Ginzburg numberNG @25#

NG5g0

~ ūL!2

ct
5g0

u0
2v0

2

a0
4j̄0

6
, ~12!

with g0.0.031, and wherej̄0 is the mean-field value of the
correlation-length amplitude~Table III!. The range of valid-
ity of the mean-field theory is determined by the conditi
t@NG . It has been shown by Anisimovet al. @25# that the
single-parameter crossover model, based on renormaliza
group matching, gives a crossover behavior of the free
ergy similar to those based on thee expansion@26# and on
the field theory@55# when cutoff effects are neglected. In th
single-parameter model, if the rescaled coupling cons
u0 /Lcr

4 , is less thanu* ~the universal renormalization
group-theory fixed-point value of the coupling constant!, i.e.,
ū5u0 /Lcr

4u* ,1, the mean-field behavior is recovered

the limit ūL/k!1 and controlled by the Gaussian fixe
point at whichūL50. In simple fluids the cutoff paramete
L is of order unity~the characteristic microscopic scalejD is
of the order of a molecular sizev0

1/3). This is why in systems
with short-range interactions the crossover to the class
regime is not completed within the critical domain wherej is
always large. Ifū>1, the crossover scale is not defined
the single-parameter crossover model. Forū51 all
correction-to-scaling terms in the Wegner expansion dis
pear, and the effective critical exponents within the en
critical domain are equal to their asymptotic~Ising! values.
For ū.1 the effective critical exponent of the susceptibili
for the single-parameter model monotonically increases w
increase oft ~negative Wegner corrections!, and the cross-
over to the mean-field critical regime never occurs either

A rigorous analysis of the spherical model led Nicoll a
Bhattacharjee@64# to replace the productūL/k in Eq. ~11!

for the crossover functionY by ū(11L2/k2)1/2, leading to
Eq. ~3!. In this improved crossover model the two crossov
parametersū andL are separated, i.e., they control the cro
over behavior independently, and the mean-field regim
recovered in the limitL/k!1. Physically this means thatk
a-

rs
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n-
n-

nt
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p-
e
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r
-
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is not proportional to the actual correlation lengthj, but only
to that part of the correlation length associated with the cr
cal fluctuations, which should vanish far away from the cr
cal point.

For the caseū,1, which is realized in simple fluids@25#,
the modification of the crossover function does not ha
much significance: the crossover is still monotonic and is
practice, not completed within the critical domain, sincej is
large andL is of order unity. In complex fluids, however, th
crossover parameterL is not necessarily associated with th
actual microscopic cutoff, but may be related to anoth
characteristic spacing on a scale larger than a molecular
If L is small enough~i.e., the characteristic spacingjD is
large!, the nonasymptotic behavior of the crossover mode
specified by Eqs.~3!, ~7!, and~9! implies that the crossove
to the mean field is quite possible within the critical doma
even forū>1 @19#. In this case the crossover is not mon
tonic, since it is controlled by two independent crossov
parameters:ū.1 is responsible for a negative first Wegn
correction amplitude and drives the effective susceptibi
exponent upward with increase oft, and smallL provides a
decrease of the exponent downward to the mean-field v
g51 with further increase oft.

To elucidate the effect of an additional scale on the phy
cal properties of fluids in the critical region, we need mo
systematic information on the crossover behavior of the s
ceptibility in different classes of fluids and fluid mixtures,
well as new experiments especially designed to investig
details of the crossover behavior. We realize that our cro
over model when extended to complex fluids is essenti
phenomenological. The apparently small ‘‘cutoff’’L in
complex fluids may also be associated with another or
parameter, even belonging to a different universality cl
@27#. In that case a coupling between two order parame
leading to possible multicritical phenomena should be c
sidered.

IV. ANALYSIS OF EXPERIMENTAL DATA

One should note that extraction of the actual crosso
behavior from experimental data is a very delicate task. S
cifically, the susceptibility of fluids is never measured d
rectly. It can be extracted most accurately from ligh
scattering or turbidity experiments. The interpretation
such data requires reliable information on the correlat
function which itself exhibits crossover behavior. Hence,
fit is essentially nonlinear. Moreover, the crossover behav
may be masked by multiple scattering, gravity effects, a
impurities close to the critical point, and by noncritic
~background! contributions away from the critical point@69#.
That is why, in spite of a large number of experimental stu
ies, there are only a few with an accuracy sufficient to
cover the actual nonasymptotic critical behavior. We a
note that as the convergence of the Wegner series is in do
a fit to expansion~1! is dangerous, and an explicit crossov
equation for the susceptibility is needed to determine
values of the correction amplitudes.

The intensity of the light scattered from the critical flu
tuations in fluid systems as a function of the wave numbeq
is related to the appropriate isomorphic susceptibilityx by
@70,71#
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I s5C
x

11q2j2
, ~13!

whereC is an adjustable coefficient~in arbitrary units!. The
wave numberq is related to the scattering angleu (90° in
our experiments! as q54pn/l0sin(u/2), where l0
5632.8 nm, the vacuum wavelength of the incident lig
and n the refractive index. We calculated the values of t
refractive index with the aid of the Lorentz-Lorenz relatio
taking into account the methylpyridine and water comp
nents only~at 20 °C n.1.27 for all samples!. The wave-
number dependence of the scattered light intensity is
equately represented by the Ornstein-Zernike correction
1q2j2)21 for the actual qj values in the experiments
Hence, to fit experimental data to Eq.~13! with x and j
expressed through Eqs.~7! and~8!, one needs four adjustabl
parameters:L, ū, ct ~or cr), andC. A background term was
found insignificant for all the fits except for the sample w
X50.16. Variation of the critical-temperature values with
the accuracy of their determination did not change the fitt
parameters significantly. As the prefactorC depends on the
absolute intensity of the scattered light, we could not in
pendently extract the value of the critical amplitudeG0, and,
hence, the value of the coefficienta05ctcr

2 . For simplicity
we fixeda051 in all fits.

In ternary mixtures one has to deal with an addition
effect which complicates the interpretation of experimen
data. In ‘‘incompressible’’ binary liquid mixtures the path o
a zero ordering field corresponds to the path at fixed crit
composition. However, in ternary mixtures the path of t
zero field corresponds to a path at constant chemical po
tial m5mc of the third component. Hence, in Eqs.~7! and~8!
the variablet means the ‘‘theoretical’’ path at a consta
chemical potential. However, the light-scattering measu
ments are performed at constant concentration. As a co
quence, a so-called Fisher renormalization of the critical
ponents@72# occurs along the experimental path (X5Xc).
Specifically, the asymptotic value of the susceptibility exp
nent g51.24 changes tog/(12a)51.39. Therefore, one
needs to express the theoretical variablet in Eqs.~7! and~8!
through the experimentally measured distance to the crit
temperature. The relation between the experimental temp
ture scalet(X)5uT2Tc(X)u/T and the theoretical tempera
ture scalet(m)5uT2Tc(m)u/T is not analytic@73,74#:

t~X!

t2
.S t~m!

t2
D 12aF11S t~m!

t2
D aG , ~14!

where the characteristic temperaturet2 is defined by

t25FA0X̃~12X̃!S 1

Tc

dTc

dX̃
D 2G 1/a

, ~15!

and whereX̃ indicates the overall mole fraction of NaBr. A
@t(m)/t2#a@1, t(m).t(X) and the renormalization of th
,
e

-

d-
1

g

-

l
l

l

n-

-
e-
-

-

al
ra-

critical exponents is absent. At@t(m)/t2#a!1, t(m)
.@t(X)/t2

a#1/(12a), and the exponents are renormalized. T
asymptotic critical amplitudeA0 of the weak susceptibility
@33# can be expressed through the asymptotic amplitude
the correlation lengthj0 by the two-scale-factor-universalit
relation A0.0.18v0 /j0

3 @69#. The values ofdTc /dX̃, de-
duced from the experimental data, are presented in Tab
The values ofv0 were estimated from the molar densi
(v0

1/3.3.5 Å for all the samples!. Strictly speaking, the effec
of the Fisher renormalization itself should be accounted
the crossover to the mean-field regime. This can be done
using an effective value ofa, which crosses over froma
50.11 toa50, in Eq. ~14!. However, this effect is not im-
portant for the present analysis, since, in the samples w
the crossover is most pronounced, the effect of the Fis
renormalization becomes negligibly small.

In Fig. 2 we plot the scattered-light intensity for the fiv
samples of 3-methylpyridine1water1sodium bromide speci-
fied in Table I as a function of the reduced temperaturet
5uT2Tcu/T at constant composition. The curves repres
values calculated with our crossover model. The values
tained for the adjustable parametersL, ū, ct , and C are
presented in Table IV together with the standard deviati
of the fits. In Table IV, we also give the resulting values f
some relevant physical quantities, namely the amplitudej0
of the asymptotic power lawj0t2n for the correlation
length, the mean-field amplitudej̄0 of the correlation length
far away from the critical point, the characteristic lengthjD
associated with the cutoffL, the coefficientG1 of the first
correction-to-scaling term in Eq.~1!, and the characteristic
temperaturet2 associated with the critical-exponent reno
malization@see Eq.~15!#. We note that the amplitudeG1 is
negative for all samples, indicating that the crossover fr
Ising-like to mean-field behavior is nonmonotonic@19#. This
nonmonotonic behavior is shown in Fig. 3, where we plot
effective susceptibility exponentgeff52td ln x/dt, with x

FIG. 2. Scattered intensityI s in arbitrary units of 3-
methylpyridine1water1sodium bromide solutions as a function o
the reduced temperaturet5uT2Tcu/T. The symbols indicate the
experimental data for the five samples specified in Table I. T
curves represent the values calculated with our crossover mod
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TABLE IV. Parameters of the crossover model.

Adjustable parameters
Standard

deviation~%!

Calculated parameters

Sample X L ū ct C j0 ~Å! j̄0 ~Å! jD ~Å! G1 t2
a

1 0.0800 0.374 1.57 3.07 1.22 1.6 1.48 1.97 9.2121.1 0.13
2 0.1190 0.236 2.29 2.66 1.09 1.8 1.59 2.12 14.722.4 0.091
3 0.1396 0.187 2.02 2.07 1.02 2.4 1.70 2.41 18.622.4 0.061
4 0.1500 0.111 2.68 1.05 0.719 2.4 2.46 3.38 31.023.6 0.017
5 0.1600 0.0460 2.07 0.567 0.427 2.4 2.69 4.60 75.325.4 0.011
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represented by the fit of Eq.~7! to the experimental data, a
a function of the reduced temperaturet.

In Figs. 4 and 5, we show the deviations of the susce
bility values, extracted from the light-scattering data throu
Eq. ~13!, from Ising asymptotic behavior. The solid curves
these figures represent the actual crossover behavior im
by our model, and the dotted curves represent asymp
mean-field behavior. It should be noted that in the mean-fi
theory the susceptibility diverges at a temperature below
actual critical temperature. From Figs. 3–5 it is evident t
the crossover from Ising-like to mean-field behavior b
comes more pronounced with an increase of the NaBr c
centration, and for the fifth sample withX50.16 the cross-
over is practically completed within the critical domain. A
can be seen from Figs. 4 and 5, our crossover model
scribes all the experimental data well. Neither simple Is
behavior nor simple mean-field behavior describes the
perimental data. Instead a crossover between the Ising
gime and the mean-field regime dominates in the temp
ture range 1024,t,1022. The tendency to approach mea
field behavior away from the critical temperature becom
more and more pronounced with an increase of the salt c
centration, and forX50.16 mean-field behavior prevail
within 1023,t,1022 ~Fig. 5!. The experimental suscept

FIG. 3. Effective susceptibility exponentgeff52td ln x/dt for
the five samples of the 3-methylpyridine1water1sodium bromide
system calculated from our crossover model as a function oft. The
brackets† ‡ mark the temperature intervals of the actual fit to e
perimental data for each sample.
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bility data at the largest concentrationX50.16 in the tem-
perature ranget.1022 systematically deviate from the ca
culated values. We speculate that this effect may arise f
an anomaly in the light scattering related to another poss
phase transition at low temperatures and higher salt con
trations. Therefore, we fitted the model to the experimen
data for this sample only within the ranget,1022. As men-
tioned earlier, for all the samples the crossover is charac
ized by a negative value of the first Wegner correction a
plitude G1. Hence the crossover is sharp and is n
monotonic:geff as a function oft goes through a maximum
Another specific feature of the crossover behavior ofgeff is
related to the fact that the investigated solution is a tern
system. As a consequence, the susceptibility expon
changes its asymptotic value fromg to g/(12a) due to
Fisher renormalization. The effect of the renormalization d
pends on the parametert2 ~listed in Table IV!, and the effect
is less noticeable for larger concentrations of NaBr. Figur

-

FIG. 4. Deviations of the observed susceptibility of
methylpyridine1water1sodium bromide solutions from Ising
asymptotic behavior~dashed line! for four samples~1! X5 0.08,~2!
X.0.12,~3! X.0.14, and~4! X50.15. The dotted curves represe
mean-field asymptotic behavior, and the solid curves the ac
crossover behavior. Note that the mean-field susceptibility diver
at a temperature below the actual critical temperature.
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demonstrates the Fisher renormalization for the samplX
50.08 in which the effect is most pronounced. While t
solid curve represents the effective susceptibility expone
along the experimental path X5const @geff5
2td ln x/dt(X)#, the dashed curve represents the valu
along the theoretical pathm5const @geff52td ln x/dt(m)#
in accordance with Eq.~14!. The renormalization become
less important with increase of salt concentration asdTc /dX
andA0 decrease in spite of increasingX. For the sampleX
50.16, the effect of the renormalization is negligible.

FIG. 5. Deviations of the observed susceptibility from the Isi
asymptotic behavior~dashed line! for the sample withX50.16. The
dotted curve represents the mean-field asymptotic behavior, an
solid curve the actual crossover behavior.

FIG. 6. Effective susceptibility exponentgeff for the sample
with X50.08 as a function oft. The solid curve representsgeff

along the experimental pathX5const and the dotted curve repr
sentsgeff along the theoretical pathm5const. Along the theoretica
path,geff asymptotically approaches the Ising valueg51.24. Along
the experimental path,geff asymptotically approaches the renorma
ized valueg/(12a)51.39. The brackets† ‡ mark the temperature
range of the actual fit to experimental data for this sample.
ts

s

V. DISCUSSION

The crossover behavior of the susceptibility of MP1water
1sodium bromide solutions shows a striking similarity wi
the crossover behavior previously observed for the susce
bility in nonaqueous ionic solutions with low dielectric con
stant@19# and in polymer solutions@27# as illustrated in Figs.
7 and 8. In all these cases the crossover of the susceptib
is sharp and nonmonotonic and an additional character
length scale is revealed. The mean-field behavior beco

the

FIG. 7. Deviations of the susceptibility, extracted from expe
mental neutron-scattering data@27#, from Ising asymptotic behavior
~dashed line! for a polystyrene-deuterocyclohexane solution (Mw

528.000). The dotted curve represents the mean-field asymp
behavior, and the solid curve the actual crossover behavior.

FIG. 8. Effective susceptibility exponentgeff52td ln x/dt as a
function of t for a mixture of isobutyric acid and water~IBAW !, a
nonaqueous ionic solution of tetra-n-butyl ammonium picrate in
1,4-butanediol/1-dodecanol~TPDB!, a mixture of 3-methylpentane
and nitroethane~3MPNE! @19#, and for theX50.16 sample of the
ternary mixture 3-methylpyridine1water1sodium bromide~this
work!.
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more pronounced when this additional length increases
polymer solutions this additional length has a clear phys
meaning: it is of the order of the size of the polymer m
ecules: the cutoff parameterL}jD

21 is of the order of the
inverse radius of gyration which diverges when the mole
lar weightMw becomes infinite@27#. The limit Mw→` cor-
responds to the tricriticalu point @28# in which L}ct→0 as
Mw

21/2, while L/ct
1/2→0 asMw

21/4.
The origin of the additional characteristic length scale

the system MP1H2O1NaBr is not clearly understood. Th
additional length scale could stem from a possible asso
tion of 3-methylpyridine molecules. With an increasing co
centration of NaBr, the size of the clusters may incre
since the solubility of NaBr in water is much higher com
pared to its solubility in 3-methylpyridine. A recurring them
in the earlier light-scattering studies of closely related s
tems MP1water1sodium chloride@30#, MP1water1 heavy
water1potassium iodide @31#, and ethanol1water
1potassium carbonate@32# is a progressive trend to mean
field behavior with increase of the electrolyte concentrati
This trend has been attributed@31,32,75,76# to an electrolyte-
induced structuring in these systems. Small angle x-ray
neutron-scattering measurements in these systems are
able to verify the existence of this additional length scale
well as its dependence upon the electrolyte concentratio

An analogy between dilute polymer solutions and so
tions of electrolytes was discussed by Fisher@11#. It is also
interesting that the phase diagram of a hydrosoluble poly
@77# is similar to that presented in Fig. 1, with the number
monomer units playing the same role as the salt concen
tion. The possibility of a multicritical Lifshitz point in which
two fluid phases in an electrolyte solution coexist with
microheterogeneous charge-density wave phase was
gested in Ref.@78#. Hence, in ionic solutions the additiona
characteristic length may be associated with some kind
supramolecular structure, such as the one predicted in

FIG. 9. Inverse dimensionless~reduced by the intermolecula
distance! characteristic length scaleL and the ratioL/ct

1/2 as a
function of the salt concentration. The symbols indicate the val
deduced from the fits of the crossover model to experimental d
The solid curves are given as a guidance.
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@78#. Figure 9 shows the evolution of the cutoff parameterL

and the ratioL/ct
1/25 j̄0 /jD with an increase of the salt con

centration. While the parameterū does not significantly
change, bothL andct , as well as the ratioL/ct

1/2, decrease
with increase of the salt concentration. The solid curves
given as a guide to show the tendency of these paramete
decrease or even vanish at a certain concentration of N
X5X0.0.17. This conclusion is strongly supported by t
behavior of the crossover temperature scaletx}L2/ct de-
fined as the coordinate of the inflection point in the dep
dence ofgeff on t shown in Fig. 10 as a function of the sa
concentration. We note also thatX.0.17 corresponds to an
inflection point of the critical temperature line~Fig. 1!. If the
observed tendency of increasing characteristic lengthjD
}L21 results in a divergence ofjD at X5X0, this concen-
tration would, indeed, correspond to a multicritical point
some kind. Further studies need to be performed to ans
this intriguing possibility.
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FIG. 10. Crossover temperaturetx as a function of the salt con
centration.tx is defined as the value oft which corresponds to the
inflection point in the dependence ofgeff on t in Fig. 3.
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