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The class of thermodynamic processes with given rate and minimal entropy production is considered. The
general conditions they obey are derived. It is shown how the application of those conditions to a number of
particular systems produces a number of known bounds on entropy prod(fctidmeat and mass transfer
processes and chemical conversias well as previously unknown boun@sr throttling, crystallization, and
mechanical friction [S1063-651X98)04307-4

PACS numbd(s): 05.70—a, 44.90+c, 82.60—s

I. INTRODUCTION and previously unknown resultfor throttling and crystalli-
zation processes
The world we live in is the world of irreversible pro- As a rule the bounds are obtained here not as closed for-
cesses. The more intensive the utilization of natural remulas but in algorithmic form as sets of nonlinear algebraic
sourcegthat is, more powerful machines, high gas and liquidequations that can be solved easily via routine numerical
flow rates, heat and mass transfer rates) efice higher the ~methods. _ -
driving forces of the processes and their irreversibilites. These bounds and corresponding pathway conditions can
Also, the maximal possibilities of the majority of thermody- P& used to design the thermodynamically most efficient pro-
namic systemsthat is, heat engine efficiency, work due to €®SS€S; to estimate how close is a current regime to the ther-
alignment of the parameters of the subsystems, energy loss dynamic limit, to cqnstruct areas in a process state space
in gas and liquid separation processes,) ¢f;2] are limited that are thermodynamically feasible, etc.
by the irreversibilities of the processes in them. These pos-
sibilities reach optima in reversible regimes when durations
of the processes are as long as possible and their intensities
are as low as possible. Finite-time thermodynamics have We consider the processes of minimal dissipation with
been developed to provide in-principle limits of performancegiven average intensitfor given average values of driving
for processes operating within finite intervals or at a nonzerdorceg. Thus we try to find such a distribution of driving
rate. It is reviewed, e.g., if8]. Within this approach endo- forces in time or space in which the irreversibility of the
reversible processes are generally considered where the sygfocess is minimal and the averaged values of the driving
tem consists of a number of subsystems that are intemangprces over this distribution are fixed. The irreversibility of
reversible and the production of entropy is caused by théhe process is estimated via the entropy productibssipa-
exchange between subsystems. Since in the majority of casi§n in the system.
the performance limits correspond to the processes with
minimal dissipation, a number of minimal entropy produc-
tion problems in a variety of systems have been analyzed and
a number of bounds on the entropy production have been The thermodynamic process is characterized by two types
obtained(in some cases the corresponding pathways weref variables. The first one is the intensive variable. These are
also obtainefl[3—8]. As a rule, each such result was a solu-temperature, pressure, concentration, etc. The second type is
tion of a completely new variational problem requiring sig- the extensive variable. These are volume, internal energy,
nificant effort to obtain. In this paper we derive general con-mole number of a substance in the system, entropy, etc.
ditions of minimal dissipation that can be applied to a wideWhen a homogeneous system is divided into two sub-
range of thermodynamic systems in a uniform way in ordersystems, their intensive variables stay the same as they were
to obtain conditions of minimal dissipation and correspond-in undivided system. As for extensive variables, they de-
ing bound for a particular system. We demonstrate how thigrease in proportion to the ratio of the subsystem volume to
can be done by deriving both already known res(ftis heat  the initial total volume. Let vectou; denote the intensive
transfer, mass transfer, and chemical conversion progessesriables and lex; denote the extensive variables for fttle
subsystem. When two subsystems contact with each other,
the difference between, andu, causes the flow(u,,u,).
*Electronic address: tsirlin@sarc.botik.ru The functionJ for scalar variablesi; andu, has the follow-
TElectronic address: kaz.@arch.usyd.edu.au ing features:

II. THE CONDITIONS OF MINIMAL DISSIPATION

A. Formulation of the problem
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7 >0 2 <0
du;” 7 dup, D
J(uq,up)=0, Uu,=uy.

The argument can describe “time” or “contact sur-

face.” In a more general cask=(Jy, ... Jj, ... Jm) isa
vector of flows,u,=(u,;, ... U,j, ... ,U,m) is a vector of
the intensive variables of theth subsystem =1,2). The
difference between the vectans andus, yields vector of the
driving forcesX;. EachX; depends om,; andu,; only and

satisfies Eq(1). The entropy production, which characterizes
the irreversibility of the process, is equal to the average value
of the scalar product of the vectors of flows and driving

forces[9,10],

1t
:Efo 121 Jj(Uz,U2) X;(Ugj, Uzy)dll. )
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du,

dl=——.
@(ulIUZ)

®

After this substitution the problertb)—(7) takes the form

— 1 (uMI(uq,um)X(Uyq,Uy) -
_ = u— min , (9
L uio (,D(U11U2) up,eV, ug(L)
subject to
1:[UﬂL)J(U1,U2) -
- — = “ du :J’ 10
L ujg (P(ulau2) ! ( )
j_J‘ul(L) du,
= -t =1, (11)
L Juy, o(Uq,Uyp)

where we assume thhtis fixed. The control variables in this
problem are the function,(u,) and the value ofi;(L). This

We use overbars throughout the paper to denote averagingfoblem is much simpler than the initial proble(®)—(7)

Since functions]; andX; obey conditiong1) the summand
of the integrand is positively defined.

sSince it does not contain differential constraifj. The so-
lution u? (u,) of this problem is not a function dfbut of u,,

Assume that we can change one of the intensive variableghich is more useful in many cases.

[u,(l) for definitenesk LetV be the set of all feasible values

The Lagrange function for the proble{®—(11) is written

of u,(l). Then the second variablg(l) is determined by the &S

equation

duy; ]
W:(Pj(ulilJZ)! ul(o):uloa J:l,...,m. (3)

R= {I(ug,upx)[X(ug,up)+ N q]+ N5}, (12

@(ug,Up)

where\; and \, are Lagrange multipliers. The optimality

For each particular system we will define a particular form ofconditions of the problen{9)—(11) are the conditions of

the functione;(uy,uy).

function R minimum onu, for each giveru,,

We also assume that the average values of all or of some

of the flow vector components are given,

1L — .
Efon(ul,uz)dl=Jj, i=1,... .k, ki=m. 4

We will try to find the minimal entropy productioE
subject to these conditions.

B. Scalar case

Let us consider the scalar case firsh1). Here the
problem of minimal entropy production can be written as

N
o=—j J(uq,us)X(uq,uy)dl— min, (5
L 0 u,eV
subject to
dug
WZQD(Ul-Uz)a u1(0) =uyy, (6)
1L —
EfOJ(Ul,Uz)dIZJ. (7)

u3(uq,N)=argminR(uy,us,\q,\>).
Uzev

(13

When the feasible sé¥ is unconstrained, the stationarity
condition of the functiorR with respect tau, has the form

4 do IxX de
o3|+
au,  au,

RR_
d_uz_( +N1)

Conditions(14), (10), (11) and the condition of minimum of
the Lagrange function’s integral with respectug(L),

uq(L)
f R(u]_IUZI)\l!)\Z)dul)

Uio

dul(L)<
=R(uy(L),ux(uy(L)), N1, 2)=0, (15

determineu’ (uy),us(L),N1,A5.
The problem becomes much simpler if the rate ugf
change is proportional to the flow,
¢(Ug,Uz)=C(ug)I(ug,Uy). (16)

In this case the first term in E@L4) is equal to zero and this

The valueL may be fixed or be a variable that has to be€duation has the following form:

chosen optimally.
Let us assume that in the optimal procegsi, ,u,) #0. It
allows to substitute the variablewith u,,

53(“1:”2)/ dX(uq,Uy)

au, U,

32(U11U2)27\2( ) 17
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The condition(10) in this case is During the second step, we find such values of vector
u, e V that the conditions

uL) du; —
fum Cup - (18 Xj(Ugj Uz =X*, j=1,...K, (24)
and Egs.(3) hold. We do that by assuming thaj are pa-
rameters and solving the set of EG®4) with respect tau,.
This yields the dependenas,(u,). After substituting this
function into Eqs(3) and solving those equations, we obtain
ui (1) andu3 (uy (1))=u3(1). If it turns out that these solu-

In a case of vector parameters the optimality conditiongions are feasiblgthat is,u (1) € V], then problemg22) and
for problem(2)—(4) in the form of the Pontryagin maximum (23) are equivalent to the initial problert2)—(4), and (21)
principle have the following formp11]: and we found the process with minimal dissipation. If
u3 (1) ¢V, then the solution of problem@2) and (23) pro-
vides the bound on the minimal entropy production.

The second case when the probléi-(4) becomes sig-
nificantly simpler is when the flows are independent from

It determinesuy(L) independently from the optimal solution
u3 (uy).

C. Vector case

K
H:jgl [$0Jd;(Ug,Un) X (Uqj,Uzj) + i (Ug,Up)

+A;j(ug,uz)], each other. Each flow depends on its own set of variables,
dy dH J.=J.(uqi,Up), j=1,... k.
d_lsz_ﬁ' j=1,.... kayy(L)=0, (19 = diUy Uzp), ]
4 The same is true for the force§ andu,(L), given by
uz(H=argmaxH(ui(l),(1).\), j=1,...k (20 duy
uzj eV T:<Pj(uljyu2j)1 U1j(0) =Uyjo,

where s, and\; are Lagrange multipliers angi(1) are ad- @9

joint variables. In the nonsingular cagg=—1 and\;=0 ui(L)=uy, j=1,... k.

for j>k;. The analytical solution of the set of Eq&l9), o S _
(20), (3), and (4) is possible in very few cases only. If we Here the problem of minimal d|§S|pat|on is decomposed into
assume that there are only small deviations from the thermd< scalar problems of the following form:

dynamic equilibrium, then the flowd depend on the forces

X via the Onsager equations —_1

L
Uj:Efo Jj(ulj,Uzj)Xj(Ulj,Uzj)dl—)min, (26)

J=AX". (21)
subject to differential constrairi25) and
Here A is a positively defined matrix of phenomenological

coefficients. Superscripf denotes transposition. The inte- 1t _ uy(L)—uy(0)

grand of Eq.(2) is a positively definite square form with [fo ¢j(Uaj Uzp)dl= L . (27)
respect to thermodynamic forces. In this case the problem

can be solved much easier. We do it in two steps. As it was done in the preceding section, one can write the

During the first step, we break conditiof® and find the  optimality condition of this problem,
minimum of average value of square form,

1
— 1L uz;=arg min(—(JijJr)\j) =arg minR;(uy;,uyj,\j),
= —f (XAXN)dI=(XAX")—min, (22) upeV; P UgjeV
LJo (28)

subject to which determines the optimail;(u; ,\;). In a weaker form

‘ of the stationarity oR; on uy; it is

2}1 a,X,=J;, i=1,... Kk (ki=k). (23) o 0% e |, X 9

( i ]) i (9U2]' (?Uzj i i jO”Uzj e
Here again the overbar denotes averaging avérhe vector N
of the driving forcesX is the control variable in this problem. ~ The values of\; are to be found from the conditions
Since the problem(22) and (23) is a convex problem its
solution is a constanX [12]. Hence the finding of optimal uyj duy; .
X* is reduced to the solution of a simple quadratic program- x =L j=L... k(30
v pleq prog uzj(0) @ (Uy; U3 (N JUgj))

ming problem,

‘ If only some of theuy;(L) are fixed[uy;(L)=uy;, ]
_ * .

X* ACX*)T— min, a,X*=J. j=1....Kk. =1,... ky, ky<kK], then\; anduj; for j=k;+1,... k are
(X' = 2:1 Wy =i ! to be found jointly from the conditions
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The flowJ is the heat flowg(T,T,). In many cases we can
_ =0 assume thatp= — [1/c(T1)]q(T1,T,) and that the condition
Ugj=Ugj gy =Uz j(Aj Ug)) (6), which determines the dependenceTaf on I, has the
following form:
These conditions follow from the Pontryagin maximum prin-
ciple. dT; 1

@ e

1
“(J;Xi+\
((Pj( 178 J)

(T1,T2), T1(0)=Ty, (33

D. The choi fL . .
€ choice 0 wherec,(T,) is the heat capacity of the heat source.

Introduction of the multiplier 1/ into criterion (2) and From the general conditiond?7), (18), and(11) of the
conditions(4) at fixedL does not change the optimal solu- minimal dissipation for the given average rate of the heat

tion if L is finite, but it makes the problem meaningfullif  fo\y q for the heat transfer process, it follows that
tends to infinity. Besides, the valleitself can be a control

variable, which should be chosen optimally. In this case the 5 aq

Lagrange functional for the corresponding extremal problem q(Ty,To)= >\2(9-|- T3, (34)
must be stationary with respect tto For example, ifL is an

additional control variable in the problet8)—(11), then its

T _
Lagrange functional has the form J ° c(TydTy=qL, (35
T1(L)
R 1Jul(L)R( \)d
=T Ug,Uz,A)dUy, Tio Co(T)dT
L)y, N : f w0 Co(Ty)dTy _ 36
7,0 A(T1,T2)

where the functiorR is determined by Eq12). The station-

: " — . The fi f th iti ieldEs (T h
arity condition ofR with respect td_ leads to the equation  first of these conditions yield&; (T1,A,), the second

condition determined;(L), and the third condition deter-
_ mines the constant,.

dR 1 (uy(L) i
d—L=0=>R(u1(L),u2(L),7\)= [J 1 R(uy, Uy \)du; . For the linear law of heat exchange
u
B 4=a(Ty~T) (37

In the general problert?)—(4), whereL is an additional it the constant heat capacity the condition(34) yields

control variable, the condition
2 2 2 Ty ?
k a’(T1—Tp)*=—N(—a)T=a T__l =\z. (39
2, 3i(ua(L)up(LNDX (Us(L),uz(L)F A ’

Thus for anyl the ratioT,/T, is constant and equal to

1L
=— J:(uq,un)[Xi(uqg,up)+ N ]dl 31 T A
Ljojzl j(U1,U2)[X(Ug,Uz) +2g]d - (3D) T, M a9
T2 o
is added to the set of Eq&l9) and(20). Condition(31) is the 4
consequence of the stationarity with respedt tof the inte- Because off (L) =Ty~ qL/c from Eq. (36) we have
grated functionH where the first and the third terms under _ e
the sum are multiplied by 1L/ \/}\\2: (c/al)In(1 q_L/CTm) . (40)
@ 1+ (c/al)In(1—qL/cTyp)

IIl. MINIMAL DISSIPATION CONDITIONS

The substitution of Eq9.39) and (40) into the expression
FOR SOME THERMODYNAMIC PROCESSES

Let us show how these conditions of minimal dissipation o= EJT“) ( 1 1 )d T
are applied to particular processes. LI\ To(T) T4

yields the bound on the entropy production in a heat transfer
process,

Consider a thermodynamic system that consists of two .
subsystems with the temperatuiieg!) andT,(1) and where c? In?(1— qL/cTyp)
heat is transferred between these subsystems. For example, = L In(1l—aL/cT."
this could be the counter-flux heat exchanger. The thermo- al+cin(1=qL/cTy)
dynamic forceX in the problem of heat transfer with mini-
mal dissipation in this system is

A. Heat transfer

For the following general law of heat exchange,

A(T1, To)=a(T1—T3), (42)

1 1
X(Ty,Ty)={=——=]. 32
(T1.T2) (Tz Tl) 32 whenn is an integer, the conditio(84) takes the form
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a(T]=T5)2=x,nTH*1, and
or 4G, _ G,
dc, 1-c;°
q(T1,T2) T _ap AN
oTI 12 = TQ“’Z_TS = 7=c0nst. (42)  Hence
At n>—1 then, the higher the temperatufe is, the G,(Cy)= G,(0)(1-Cy) G ,
higher is the heat flow, and ii<—1, the higher the tem- 1-C 1-C,

peratureT, is, the lower is heat flow. Ih=—1, then the
heat flow that corresponds to the minimal d|SS|pat|on is conwhereG is the amount of inert component in the first sub-

stant and equal tg, and the minimal entropy production is system. Substitution dB4(C,) into Eq. (48) yields

2 dcC, 1
U*:%_ 3 < =~ Z(1-C)’(C1.Co). CuO)=Cro (49

Since the problent46), (45), and(49) has the canonical
B. Isothermal mass transfer form (5)—(7), its optimality conditions can be obtained by
Assume that the system consists of two subsystems witRubstituting Eqs(17) and(18),
the same temperaturg(l) for all | e[O,L] and concentra-

tions of the key component in the first subsyst€g(l) and a (‘9'“1 Ip2 “1_M2) 92
in the second on€,(l). This key component is being trans- dC, T T aC,
ferred from the first subsystem into the seco@d, i=1,2,
are intensive variables of the problem. Both mass fipand _ 99 T
=Ny| =—=—|—=——, Vleg[0L), (50
chemical potentialgs;, i=1,2, depend on these concentra- dC3) g%(C4,Cy)
tions and
N CloGlo_aL
‘J(ulru2) g(cl!CZ)v (44) Cl(L):—— (51)
1 Go—9L
X(Ug,Uz) = F[pa(C1,T) = pa(C2 T |- For chemical potentials

It is assumed that the diffusion process does not change the mi=po(P,T)+RTINC;, i=1.2, (52)

pressure in the system. The initial concentration of the key 16C. = RT/ d diti h h
component in the first subsystem is given. The average ma%?mget dual9C; = RTIC,, and conditions(50) have the

transfer rateg is also given,

1L — _5_)\ a_g_ (53
t| scicodi-g @5) S, Mac, g

The entropy production due to diffusion is to be minimized: The constank, is to be found from the condition

— 1(Lg(C4,Cy) , cy G
= [T (e - watCo T min | eyt e
1 1,2 w1
(46

. . after substitution ofC3 (C,\,) in it. Backward substitution
In order to apply the genergl cond|t|qn of mmlmal entropy ¢ the optimal\} into C%(Cy,\,) and into Eq.(49) gives
production, one has to derive the differential equati6h optimal C7 (I) andCj5 (1). Their substitution into the expres-

and functiong(us,Uz) = ¢(C4,C,). Since the flow of only - o0 e - gives the bound on the entropy productieh in
the key component occurs, its concentration in the first sub;

) ; the isothermal mass transfer process. If such a path can be
;ystem and tota! quantity of substancessinchange accord- found that the condition§50) and (51) hold on it, then this
ing to the equation

bound will be realized.
d(G,C,) dG If the diffusion flow is proportional to the chemical po-
%— dll 9(C;,Co). (47)  tential difference

g=a[u11(Cy)— u2(Cy)]
and the temperatur€ is constant, then the solution is espe-
dc, 1-C

1 C,,C,), C,(0)=C 48  cially simple.
dl G 6, 9(C1C2) Cu0=Cuo “9 In this case from Eq(50) it follows that

From condition(47) it follows that
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* =const=g, RT—
’ ° P1(L)=Pyo— oL (61)

dG 9(1 Cl)
== =Ci()=1-(1-Cy)
di Gio—g! GlO 9'

If it is assumed that the gas is ideal and

g(Py,Py)=a(P;—Py)*2
Let chemical potentials be in forif2). Then from the flow

constancy condition it follows that the ratio then the conditior(60) leads to the following expression:
c 7 (P1—P,)%P5=const= 7, VIe[0L]. (62
1
CZ - p(ZT) In order to find the optimal dependenceR¥ () and the
_ ) _ minimal entropy productionrs* one has to substitute the
is constant. The bound on entropy production here is condition (62) into Eqgs.(58) and (59). The optimal depen-
— = dence of pressure is defined after E¢89) and (62) are
o*=g°aT. solved up to the constant,
Other laws of mass transfer are considere@8ih 4 2 aRT
P3(l,7) \/—n2’3——n1’ —~ = (P2, )
3 3 Y
C. Throttling 5
2
Let us consider gas transfer through a throfle.and P, —— 771’3} , (63)
denote pressure before and after the throttidenotes time. 3

The flow rate of expansion is denoted$,,P,). Suppose where
that the process is isothermal, i.e., the temperature does not
change. The entropy production is

P,,T)— P,,T)
azg(Pl,Pz)'ul( 1 TMz( 2 . (55)

3
f(Poo.m) =5 7 P35+27"°P35. (64)

The valueP, is to be found from Eq(62) as the solution

) _ ) of the equation
For the ideal gas this expression takes the form

Paot 7P %= Pio. (65)
0'=g(P1,P2)|n Pllpz. (56)
The condition of the fixed duration of the process gives the
It is assumed that the duration of the procesand the equation that determines optimal
average amount of gas transferred through the throttle during

= 12
this timeg are fixed. It is also assumed that the volume from 28, (|_)2/3]+ [p1/3 po(L) 3= LRTan™
2 2 2 v
V from which gas is removed and the total amount of gas in
the system are fixed. It is required to minimize the dissipa- (66)
tion The minimal entropy production is given by the following
formula:
— 1t #1(P1,T) = uo(Py,T) .
=T g(Py,Py) T dl—min v
0 _
57 o* =gz {Pad(In P1g=1)=Py(L)[In Py(L)—1]
subject to —1(P2) —r(Pa(L))}.
1L _ Here the functiorr (P,) is defined as
Ef g(P1,Py)dl=g, (58 1323
° r(P2)=Py(In Po— 1)+ 7*3P3%(In P,—3/2).
dpP, RTgP,P5) The derived formulas give the bound on the minimal dis-
ar V; » P1(0)=Pyo. (59 sipation in the throttling process in algorithmic form. If the

condition (62) does not hold in a throttling process, then its
Equation(59) determines the rate of pressure change whe@ntropy production is higher than the entropy production of

gas passes through the throttle. the process determined by E¢63)—(66).
The problem(57)—(59) has a canonical fornb)—(7) and
(16). Equations(17) and (18) give the following optimality D. Crystallization

conditions for it: During crystallization process, the key component crystal-

P P lizes out of solution onto the surface of the crystals already
( 9 / /"“2> (60) present, where its concentration is higher than the equilib-

ng(Pl,Pz):_)\z . o . L ) 1
rium concentration in the solution. The initial dimensions

P,/ 9P,)
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(massepof the crystals are disperse. At any instant, the set _ —/CI(CY-C,)®
of crystals can be described by a distribution of their masses. Ci=- \/;*— C1(0)=Cyp. (73
We denote the concentration of the crystallizing substance in Ci+GC,

the liquid asC, and its equilibrium concentration under the ) )

given pressuré® and temperatur& asC,. The flux of mass | "€ constant; is to be found from Eq(71) andcy, is de-

is denoted agy(C;,C,) and| denotes time. The entropy termined by!\/lo [Eq.(72)]. Their backward substitution into
production in a crystallization process as in any mass transfdP€ €xpression foo gives the bound on the entropy produc-

process is expressed by the following formula: tion in crystallization process™.
If we do not assume that all crystals are the same, then the

m1(Cqp)— ua(Cyp) net surfaceFy in the expression of the entropy production
0=9(Ce.Co)——= (67 &5 should be the result of averaging Bf(M;) over allM; .
SinceF;(M;) is convex, theFy is less than the value of the

The chemical potentials are net surface calculated by assuming that the masses of all the
crystals are the same and equal the average crystal mass at

w1=u%T,P)+RTInC, t=0. Since entropy production depends monotonically on
the mass transfer coefficient, it increases if the surface of the
crystal increases. Therefore the use of the dependErce

w,=pT,P)+RTIn C,, =KM?3 an_d the corresponding bound determined b_y E_qs.
(71)—(73) give a lower bound on the entropy production in

so that crystallization process.

and

(o . -
o=9(C;,C,)R lnc_l' (69) E. Mechanical friction
2

Let us consider a system that consists of two subsystems

separated by a piston. The pressures in these subsystems are
denoted ad?, and P, correspondingly. The temperature of

the systemT is constant during the process. The pressure
difference causes the piston to move. The rate of the vol-
ume’s change for each of the subsystems due to this pressure

M _ difference is denoted afP,P,). Since in most cases this
ar ~@F(C1=Ca), M(0)=M,, M(L)=M. velocity depends only on the differen& — P, the rate of
the entropy production may be written as

First, we consider this process for a single crystal. Th
flow g depends on the net surface of the crystaivhich, in
turn, depends on the mass of the crydtal The net mass of
the crystal changes according to the equation

For the crystal with the maddl, the net surface is propor-

tional to the 2/3 power of its mass. Hence, o(AP)=0(P;—P,)= 1J(P+_|:)2)(pl_ P,)—min.
dM o3 (74)
WzKM (C1—C,). (69)

This value can be minimized if the average velocity value

The ratioK depends on the mass transfer ratio and the crystd® 9ven,
shape and can be determined experimentally. We assume
here that there is no nucleation and recrystallization. EJLU[P (—P (|)]d|:; (75)
The problem of minimal dissipation in crystallization pro- LJo ! 2 '
cess takes the form
WhenAP=P,—P, is written asAP(v), the problem of

— %fLKMZ’:‘(Cl—CZ)R |n%dl—>min 70 finding the regime of minimal dissipation takes the form
2

° ! 1— 11 fL _
= =—— AP(v)dl—min, v=1y,. 76
subject to constraint TU(U) TL)o" (vydl= vT o (78
L — This is a standard averaged problem of nonlinear program-
213 —
fo KMZX(Cy1=Co)dl=(M—Mo). (72) ming. From the general theory of this probldi?], it fol-

lows that if o(v) is concave, then the optimal velocity must

The optimality condition for this problem, be constant and equal ta Otherwise the solution of the
averaged problem of nonlinear programming E&f) corre-
sponds to the ordinate of the convex hull of the function
o(v) at the pointv=v. The velocity takes no more than two

i ) valuesv! andv?. These values are defined by the following
follows from the general condition€l7) and (18). Condi-  gnditions:

tions (72) and Eq.(69) give the differential equation that
determine<C* (t) up to the constang. In order to do that, RO ui)=maxmin[cr(v)+)\(u—?)]. (77)
we replaceM andM by C; andCy: v

MZ3(C—Cp)? X,
C—:ﬁzconst:n, VlE[O,L), (72)
1
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The functionR has the same value at points(i=1,2). The
fraction y of the intervalL during whichv* (1)=2' is to be
found from the condition

yr+ 21— ) =y, 1= v=0.

The bound is reached in every process wherev! during
v, fraction of the interval. andv=v? all the other time.

F. Chemical conversion

Consider an isothermal chemical reactor of ideal mixing
with periodic action. In this reactor the following reactions

takes place:

ky
CU]_B]_"’ a282 - ang,
ko

where B; are the initial and final components ang are
stoichiometric coefficients. We assume that<0, «,<0,
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klxl_ alxz_ " W,
A=RTIn—————=RTIn—.
k2X33 W2
Let the average velocity of reaction
1L —
—f w(X)dl=wW (80)
LJo

be given. The reaction velocitW(t) is a control. This ve-
locity determines how the conversion degree changes,

dé

=W (81)

and how the amount of moles changes,

dn,

W = aiW, i=1,2,3.

anda;>0. The reaction velocity is determined by the law of Thus. we have

active masses

W(X) = k1XI alX; “2_ kzngZWl_Wz . (78)
Here X;=N;(1)/Ns(I) is the mole concentration of thigh
componentN;(l) is the number of moles of thieh compo-
nent in the system, ands (1) =2;N;(1).

The entropy production

g= T y

(79

where A=—32 a;u; is the affinity of chemical reaction.

For the ideal solutions
wi=pd(T,P)+RTINX;.

Hence

3 3

A=—> auX(T,P)—-RTY, a; InX;.
i=1 i=1

According to[13] the first term in this expression is equal to

3
—21 aiul=RTIn ky(T,P).

The equilibrium constark, is the ratio of velocities of direct

and reverse reactions,

(T P) = ky(T,P)
TP TR
So we have
kq w
A=RT/In=—2 In X
ky 4
or

N3(1)=Ngo+ azé(l),

and the total number of moles can be calculated as

3
Nz(|)=Nzo+§(|);l a; .

The velocity of the reverse reaction has the form

N3(1) Nzt a3é(l)
W=k SN~ o Nsor EDS e

Finally, we reduce the problem of minimizing the dissi-
pation in the system to the following form:

o 1fLRW| WEWE) 1 mi (82)
=— N————dl—min,
L 0 W2(§) W
subject to the constraints
1L _
—f W(t)dl=W (83
LJo
and
dé
=W &0)=o, (84
where
N3p+
3ot azé (85)

O S

Since this problem has a canonical fot#—(7), its optimal-
ity condition is

W2 AL
—=const, Vle[0,L),

W+W,(§) R (86)
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and Egs.(81) and (83) allow us to find the optimal values derive the general conditions that hold for any minimal dis-
W* (1), €*(l), and the corresponding bound on the entropysipation process as well as the corresponding bounds. We
production. demonstrate how these results can be used for particular sys-
tems. The new optimality conditions and corresponding
IV. CONCLUSION bounds for throttling and crystallization processes have been

) o o obtained.
We examined the class of the minimal dissipation pro-
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