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Dynamics of foam drainage
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The drainage of liquid foams involves the interplay of gravity, surface tension, and viscous forces. Three
experimentally accessible configurations are modeled analytically using a one-dimensional nonlinear partial
differential equation called the foam drainage equation: free drainage where liquid drains from an initially
uniform foam of fixed length, wetting of a dry foam, and pulsed drainage where a finite blob of liquid spreads
in an otherwise dry foam. Similarity solutions are described in each case and compared with numerical
solutions and available experimental data. The model is generalized to higher dimensions and used to discuss
further examples of pulsed drainage.@S1063-651X~98!12607-7#

PACS number~s!: 47.55.Mh, 02.30.Jr, 83.70.Hq, 82.70.Rr
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I. INTRODUCTION

Everyday experiences put us in direct contact with foam
Shampooing hair, washing dishes, eating chocolate
~e.g., Three Musketeers! and chocolate mousse desserts, a
pouring beer are only a few examples. There are also m
industrial applications where foams are utilized in a proce
ing stage or are part of the final product. Given the range
applications, it is not surprising that the study of foams ha
long history spanning engineering, chemistry, physics,
food science~see, e.g.,@1#!.

It is impossible to attempt a survey of the vast literatu
devoted to the study of the mechanical and dynamical pr
erties of foams. For our purposes it suffices to note that
majority of investigations have focused on aqueous foa
@2#, although there are now many applications of polyme
foams@3# and more recently metallic foams, which are foam
made out of metals such as aluminum~see, e.g.,@4#!. Some
commonly mentioned applications include the use of foa
for reducing the impact of explosions and for cleaning up
spills. In addition, industrial applications of polymeric foam
and porous metals include their use for structural purpo
~e.g., lightweight sandwich structures! and as heat exchang
media analogous to common ‘‘finned’’ structures. Unifo
mity of the foam is important for the designer interested
these applications and since gravitational drainage of the
uid is one mechanism leading to nonuniformity, it is impo
tant to characterize the dynamics of drainage. An exampl
a metallic foam, with vertical nonuniformity produced b
gravitational drainage, is shown in Fig. 1, which is a CA
scan image; there are substantial variations in the liquid f
tion, with the majority of the liquid residing at the bottom.
fact, we were motivated to reexamine the issue of liq
drainage in foams owing to recent interest in the manuf
turing of porous metals. The reader can observe a sim
drainage phenomenon in aqueous foams formed while w
ing dishes.

In spite of the many applications and numerous scien
investigations of the properties and mechanics of foams,
dynamicsof foam drainage have only recently been exa
ined in detail. In this paper we report analytical descriptio
PRE 581063-651X/98/58~2!/2097~10!/$15.00
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for a variety of possible drainage conditions. The major ide
and solutions presented below build upon a recently in
duced one-dimensional description of an evolving foam a
are described briefly next.

The subject of foam drainage was given significant imp
tus during the past ten years by contributions from th
research groups@6–8#. In particular, a time-dependent drain
age model was introduced, based upon the typical struc
of aqueous foams as connected Plateau borders, which
the liquid-filled channels between three adjacent bubbles~for
example, see Fig. 3!. Drainage of a horizontally uniform
foam was considered, so that the analytical model was
one spatial dimension. The primary dependent variable is
average~or typical! cross-sectional areaA of a Plateau bor-
der, which may vary with vertical positionz and timet, i.e.,
A(z,t). The physical ingredients in the model are a cons
vation statement for liquid in the Plateau borders, with a flu

FIG. 1. CAT scan of an ALCAN aluminum foam. Dark region
indicate aluminum and light regions indicate air@5#. Drainage is
evidenced by increased aluminum content at the bottom of the
ure. The length of each side is 110 mm.
2097 © 1998 The American Physical Society
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2098 PRE 58KOEHLER, STONE, BRENNER, AND EGGERS
flux established by a competition between gravity, surfa
tension, and viscous forces. Physical and dimensional a
ments then lead to a second-order nonlinear partial diffe
tial equation forA(z,t) and several model problems hav

FIG. 2. Four dynamical processes in foam drainage: profile
the Plateau border area plotted versus height. Times indicated
from the numerical solution of the dimensionless foam drain
equation as described in Sec. III.~i! Free drainage of an initially
uniform foam that evolves towards the steady-state profile.~ii ! Wet-
ting of an initially dry foam from the bottom; the distributio
evolves towards the steady state indicated by the solid curve.~iii ! A
forced drainage profile due to continual addition of liquid at the
of the foam~see, e.g.,@7#!; for this case the front moves at consta
velocity. ~iv! Pulsed drainage that shows the evolution of a fin
amount of liquid in an otherwise dry foam. In cases~i! and ~ii !,
a51 corresponds to the location where the foam is in direct con
with the liquid.
e
u-
n-

been solved either analytically or numerically. In a fe
cases, experiments have been performed and compared,
good results, with predictions from the one-dimension
model. We further develop these analytical ideas below.
long enough times in most foams, films that separate bub
rupture and Ostwald ripening, due to gas diffusing throu
the faces between two bubbles, occurs~see, e.g.,@9#!. Both
of these coarsening processes are neglected in the dyna
models discussed here; however, recent research has b
to address the former@10#.

In many simple laboratory experiments the foam is fix
and gravitational drainage occurs relative to the fix
bubbles. Four prototypical situations may be envisioned
schematically indicated in Fig. 2:~i! free drainage of an ini-
tially uniform foam that evolves towards a steady-state p
file; ~ii ! wetting of a foam, for example, by placing a ve
dry foam in contact with a liquid bath after which a sprea
ing front forms in the foam and again evolves toward
steady-state profile;~iii ! forced drainage where a consta
liquid supply is added to the top of the foam and a stead
propagating front moves towards the bottom of the foam@7#;
and ~iv! pulsed drainage, where an initially nearly homog
neous dry foam~liquid fraction e'0! is disturbed by the
addition of a finite amount of liquid, which is then redistrib
uted through a combination of gravitational and surfa
tension-driven flows. Experimental results pertaining
cases~i!, ~iii !, and ~iv! may be found in the literature. A
generalization of case~iv! is the response of a three
dimensional foam to an isolated pulse, for example, in
form of an initially cylindrical or spherical pulse.

We review the foam drainage equation in Sec. II by d
veloping it for three-dimensional drainage problems. In S
III analytical descriptions are presented for one-dimensio
drainage problems. We first briefly review the steady-st
solution of the foam drainage equation@12#. Then, for cases
~i!, ~ii !, and~iv! we obtain similarity solutions that describ
the dynamics for long times. Moreover, the analysis dem
strates that pulsed drainage~iv! combines aspects of fre
drainage~i!, wetting~ii !, and forced drainage~iii !. A descrip-
tion of forced drainage has been described previously@11#.
The spherical spreading of an isolated pulse in a dry foam
treated in Sec. IV.

II. FOAM DRAINAGE EQUATION

In several recent publications one-dimensional models
foam dynamics have been reviewed@10,12#. In the simplest
version of the model, fluid is assumed to reside solely in
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FIG. 3. ~a! Network of Plateau borders of an open-ce
aluminum foam@13#. The typical cell diameter is 6 mm.~b!
Schematic of the cross section of a Plateau border cha
through which liquid flows and whose cross-sectional a
A is the basis of the foam drainage model.
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PRE 58 2099DYNAMICS OF FOAM DRAINAGE
Plateau borders, which are the regions where cell faces m
Figure 3~a! shows an example of an open-cell aluminu
foam composed entirely of a network of Plateau borders

We begin by generalizing the modeling ideas to three
mensions. Because the foam is a disordered material, an
erage equation is derived for the typical cross-sectional a
A(x,t) of a Plateau border channel in a volume element c
taining many bubbles~x denotes the position vector!; the use
of such average quantities necessarily assumes an av
over all possible orientations of the channels making up
small section of the foam. Of course, the usual ‘‘continuum
approximations are required so that the bubble size mus
small relative to the typical variations ofA(x,t) in the foam
for this coarse-grained description to be reasonable.

Let u denote the average velocity in a Plateau bor
channel. Then conservation of mass relatesA andu:

]A

]t
1“•~uA!50. ~1!

The fluid velocityu in these narrow channels results from
combination of three physical influences:~i! gravitationally
driven drainage;~ii ! capillary pressure-driven drainage du
to the liquid pressure in the Plateau borders beinglower than
the pressure in the gas bubbles by an amountg/r c , whereg
is the interfacial tension coefficient andr c is the local radius
of curvature; and~iii ! viscous resistance to flow with an e
fective viscosityh. The average fluid velocity is determine
by analogy with familiar pressure-driven viscous flows
rigid channels~e.g., Poiseuille flow!. In this simplified rep-
resentation, the effective viscosity accounts for the flui
viscosity, possible interfacial rheological effects, the comp
cated shape of the channel cross section, and the degr
which the no-slip condition is satisfied at the fluid-ga
surfactant interface.

In particular, the local fluid motion in any given chann
corresponds to a Stokes flow, which for motions of a hom
geneous fluid, satisfies the equation052“p1rg1m¹2u.
Further progress is then made by utilizing dimensional ar
ments. First, capillary effects produce a pressure grad
2“(g/r c). For a foam consisting of a monodisperse colle
tion of bubbles, on dimensional grounds,A5dr c

2; consider-
ing the Plateau border cross section as the curved triang
area between three touching circles@shown in Fig. 3~b!#, the
constant is determined asd5)2p/2. Thus the pressure
gradient is (g/2)d1/2A23/2

“A. It is important to note that the
pressure gradient tends to drive fluid from regions of highA
to low A, analogously to common diffusive and conducti
fluxes. Second, the body force per unit volume is simplyrg,
as for a homogeneous fluid. Third, on dimensional grou
the viscous force per unit volume acting on the fluid is a
proximated as2hu/A, where the effective viscosityh hides
much ignorance of the actual detailed flow. In effect, t
phenomenological approach treats flow in the foam with
permeability equal to the Plateau border areaA.

The form of the velocity then follows on dimension
grounds from Stokes equations

u5
rgA

h
2

gd1/2A21/2

2h
“A, ~2!
et.
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which the reader may recognize as a form of the Darcy eq
tion for the pressure gradient described above. Thus, c
bining Eqs.~1! and ~2!, we arrive at an evolution equatio
for A(x,t),

]A

]t
1

rg

h

]A2

]z
2

gd1/2

2h
“•~A1/2

“A!50, ~3!

where z is taken as positive downward. This nonline
second-order partial differential equation is useful for t
quantitative description of foam drainage, as will be demo
strated below for one-dimensional flows and in the future
some three-dimensional foam drainage problems.

In one dimension,A(z,t) only, we have

]A

]t
1

rg

h

]A2

]z
2

gd1/2

2h

]

]z S A1/2
]A

]z D50, ~4!

derived by Gold’farb, Kann, and Shreiber@6#. This equation
has been further studied by Goldshtein, Goldfarb, a
Schreiber@14# and Verbist, Weaire, and Kraynik@7,11# and
has been compared to experiment in some circumsta
@12,15#. Similar modeling ideas are discussed by Bhakta a
Ruckenstein@8,10#, who also have introduced a more d
tailed description of the foam at the bubble scale and inc
porated surfactant effects, the role of disjoining pressure
stabilizing ~or destabilizing! thin films, and bubble rupture.

As a final remark we note that with a microstructur
model of the bubbles that constitute the foam the Plat
border area may be related, at least approximately, to
local volume fraction of liquid in the foame(x,t). If R is the
‘‘effective’’ bubble radius, then A5cNR2e/(12e) @8#,
where cN is determined by the geometry and accounts
such features as the number of Plateau borders per bubb
the limit of dry foams,e!1, the foam drainage equation~3!
is an evolution equation for the liquid volume fractio
e(x,t),

]e

]t
1

cNR2rg

h

]e2

]z
2

~cNd!1/2Rg

2h
“•~e1/2

“e!50, ~5!

which explicitly introduces the bubble size as an additio
parameter.

III. DYNAMICAL FEATURES OF DRAINAGE
IN ONE DIMENSION

A. Steady state

Before discussing the dynamics of drainage, we revi
the steady-state profile, predicted by Eq.~4!. Both the free
drainage and wetting processes, described in Secs. III B
III C below, evolve towards this steady state. In the stea
state, surface tension balances gravitational forcing and
fluid velocity everywhere is zero. Settingu50 in Eq. ~2! and
usingA(z5L)5A0 , one finds

A~z!5A0F11
rgA0

1/2

gd1/2 ~L2z!G22

. ~6!



o

o

i-
es
c

hi

ay
e
iti

a

a

n

e
m
r-

y
e

nd-

he

i-

y

f

f

of
ty
les
llent
, to

e
t

mu-
,

s
ity
on of
e

tes

2100 PRE 58KOEHLER, STONE, BRENNER, AND EGGERS
B. Free drainage

We begin this discussion by considering the evolution
an initially uniform foam of lengthL; see Fig. 2~i!. Over
time drainage occurs and we wish to predictA(z,t). At the
top of the foamz50 we assume that there is zero net flux
liquid @7#, which corresponds to the boundary condition

rgA22
gd1/2A1/2

2

]A

]z
50 at z50. ~7!

Also, we are interested in those situations where the foam
characterized near the bottomz5L by closely spaced spher
cal bubbles of radiusR; for monodisperse foams the bubbl
form a close-packed array in which the liquid volume fra
tion is expected to be approximately 26%@8# though the
volume fraction can be lower for polydisperse foams. T
boundary condition is closely approximated byA(z5L,t)
5dR2, which is another way that the bubble radius m
enter as a parameter in a description of the drainage proc
We further make the reasonable assumption that the in
state is uniform with Plateau border areaA(z,0)5A05dR2

@this condition must be relaxed nearz50 in order to satisfy
the zero-flux boundary condition~7!#.

Using the effective bubble radiusR to scale the Plateau
border area, it is then natural to define dimensionless v
ables according to

A~z,t !5dR2a~z,t!, z5
g

2rgR
z, t5

hg

2dR3~rg!2 t

~8!

and so Eq.~4! may be reexpressed as the dimensionless fo
drainage equation

]a

]t
1

]a2

]z
2

]

]z S a1/2
]a

]z D50, ~9!

wherez andt are, respectively, the dimensionless length a
time scales. Equation~9! is to be solved subject to two
boundary conditions and an initial condition

a~z.0,0!51, a3/2~0,t!2
]

]z
a~0,t!50,

aSL5
2rgRL

g
,t D51. ~10!

Verbist, Weaire, and Kraynik@7# emphasized the importanc
of the free drainage limit and presented one numerical si
lation of this nonlinear equation. A typical solution, gene
ated with MATHEMATICA , is shown in Fig. 2~i! with L
52rgL/g5100 and illustrates the evolution of an initiall
uniform foam @16#. For long times the foam attains th
steady-state profile given by the rescaled form of Eq.~6!:

a~z!5S 11
L2z

2 D 22

. ~11!

Top region of free drainage.In fact, there is a similarity
solution to Eq.~9!. A priori the similarity solution should be
expected to describe the long-time~t@1! features of drain-
f

f

is

-

s

ss.
al

ri-

m

d

u-

age as long as externally imposed, time-independent bou
ary conditions are not important. In particular, Eq.~9! has the
solutions

a~z,t!5t22/3f~s! with s5~z2z0!t21/3, ~12!

where, consistently with the translational invariance of t
problem, it is necessary to allow for an arbitrary offsetz0 .
This ‘‘stagnation point’’ remains at rest in similarity var
ables. For the no-flux boundary condition~10! to be consis-
tent with Eq.~12!, z0 is at the top of the foam~i.e., z050!.
The similarity functionf(s) satisfies the nonlinear ordinar
differential equation

2 1
3 ~2f1sf8!1~f2!82~f1/2f8!850, ~13!

where8 indicates differentiation.
To numerically solve Eq.~13! we note that a balance o

the dominant terms shows thatf;s/2 ass→`. It is then
sufficient to choosef(0)5f0 , determinef8(0) using the
no-flux condition at the top of the foam~10!, and integrate
Eq. ~13! numerically away from the origin. The choice o
f~0! is adjusted until the expected far-field asymptotef
;s/2 is reached. Using this procedure we findf(0)
50.5885. A comparison between the numerical solution
the original partial differential equation and the similari
solution is presented in Fig. 4 using the similarity variab
to collapse the results. We note that the collapse is exce
near the top, which corresponds, as we next discuss
z,2t. Furthermore, Weaireet al. „see@12#, Fig. 22~b! and
Eq. ~10.7!… show experimentally that the slope of the fre
drainage profile]a/]z varies as 1/time, which is consisten
with the above scalings~12! for s@1.

FIG. 4. Free drainage: collapse of the rescaled numerical si
lation ~solid curves! of Eq. ~9! at timest56, 20, 40, 60, 100, 200
and 500;L5100. The numerical solution of Eq.~13! for the self-
similar functionf(s) is shown by the open circles. The inset show
the original numerical simulation. Note that the region of similar
space where there is good agreement corresponds to the regi
physical space between the topz50 and the transition region wher
a→1. In addition, the steady-state solution~11!, plotted in similar-
ity variables att5500, is shown by the dashed curve. ODE deno
the solution to the ordinary differential equation~13!.



ut

e
it

p-
-

im

v
s

o-
by

ica

a

o
it
n

th
-

the
up.

is
’’
he
dy-

-
em
al-
a
il-
to

eri-

I B

e
he
n-

an-

e-

tion

con-
the
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The similarity solution~12! with numerically determined
f~0! describes the drainage profile near the top surface, b
clearly must break down as the uniform statea51 is ap-
proached. Since fors@1, t2/3a5f; 1

2 s5 1
2 zt21/3, the

drainage profile contacts the uniform state at a distancz
'2t and so this approximate intersection point moves w
speed 2.

Middle region of free drainage.Now we consider the
manner in which the similarity solution asymptotically a
proaches to the uniform statea51 and so examine the re
gion in the neighborhood ofz'2t, for time short enough
that the moving front has not reached the bottom, i.e.,z,L.
Near the moving front we expect surface tension to be
portant. We thus seeka(z,t)511 f (z22t,t), where f
!1, and, after substituting into Eq.~9! and neglecting terms
that are smaller byO(t21/2), find

] f

]t
1

] f 2

]z1
2

]2f

]z1
2 50 with z15z22t, ~14!

wherez1 is the distance from the mean location of the mo
ing front. This equation is the Burgers equation and ha
similarity solution

f ~z1 ,t!5t21/2c~h1! where h15z1t21/2, ~15!

which balances all three terms in Eq.~14! and yields

2 1
2 ~h1c!81~c2!82c950. ~16!

Integrating once and demanding thatc,c8→0 as h1→`
~i.e., the part of the profile withz→` asa→1! yields

c852 1
2 h1c1c2, ~17!

which is Bernoulli’s ordinary differential equation. The s
lution that matches with the similarity solution described
Eq. ~12! corresponds toc85 1

2 as h1→2` ~i.e., where
f→s/2! and is@17#

c~h1!52
e2h1

2/4

E
2`

h1
e2l2/4dl

. ~18!

A comparison of this approximate solution and the numer
solution of the original partial differential equation~PDE! is
shown in Fig. 5. The agreement is good and improves
time increases.

We have now completed the asymptotic description
free drainage for times before the moving front interacts w
the lower boundary 2t,L. The free drainage profile has a
analytical structure given by Eqs.~12! and ~13! for z,2t,
while for the neighborhoodz'2t the solution is

a~z,t!512

t21/2 expF2~z22t!2

4t G
E

2`

~z22t!t21/2

e2l2/4dl

. ~19!

Finally, once the downward propagating front reaches
bottom of the foamz5L, the profile begins to evolve to
it

h

-

-
a

l

s

f
h

e

wards the steady-state solution~11!. In Fig. 4 the steady state
is indicated by the long dashed curve. We observe that
system evolves toward the steady state from the bottom

C. Wetting of a dry foam

We next describe thewettingof a foam, illustrated in Fig.
2~ii !, as occurs, for example, when an initially dry foam
put into contact with a wetting liquid that is then ‘‘sucked
into the foam owing to surface-tension-driven flows. T
wetting problem is analogous in some ways to the stea
state forced-drainage problem considered by Hutzleret al.
@15# and Weaireet al. @12#, though we shall see that its math
ematical description is similar to the free-drainage probl
considered in Sec. III B. The wetting process can be visu
ized in the laboratory by injecting liquid into the middle of
dry foam and observing the liquid rising to the top by cap
larity. This one-dimensional problem may be generalized
higher dimensions by considering the evolution of a sph
cal initial pulse of liquid in an otherwise dry foam~Sec. IV!.
An experimental study of this latter problem is ongoing.

The nondimensionalization is the same as in Sec. II
and we consider solving the foam drainage equation~9! for a
semi-infinite dry foam in contact with a liquid at its base. W
take z50 to be the bottom, so that wetting occurs in t
directionz,0. The corresponding initial and boundary co
ditions are@18#

a~z,0,t50!50, a~0,t.0!51, a~z→2`,t!→0.
~20!

In order to determine the long-time behavior we use the
satz for the similarity solution of free drainagea(z,t)
5t22/3f(zt21/3), which then leads to Eq.~13! for f(s).
The wetting occurs out to a distancez r(t),0, where
a(z r ,t)50. This moving boundary corresponds to the r

FIG. 5. Free drainage: collapse of rescaled numerical simula
~curves! for z'2t anda'1. The analytical result~18! is shown by
the open circles. For computational ease, the no-flux boundary
dition at z50 was relaxed when examining the solution near
moving frontz'2t. Here ‘‘ode’’ solution refers to Eq.~18!.
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2102 PRE 58KOEHLER, STONE, BRENNER, AND EGGERS
gion that is still dry, i.e.,a50 for z,z r(t). We thus look
for solutions with f(sr)50, where sr5z rt

21/3. A local
analysis of Eq.~13! near such ansr reveals thatf must have
the power series form

f5b1~s2sr !
21b2~s2sr !

31¯ . ~21!

The coefficientsb1 andb2 are found to be

b1
1/252

sr

6
, b25

sr

27
. ~22!

In particular, this result means thatsr must be negative, a
expected, so that in physical space the point of touchdow

z r5srt
1/3. ~23!

For long timest@1, we observe thatf(s) satisfies the two
boundary conditionsf(0)→` and f(sr)50; sr is found
numerically to besr523.620.

Figure 6 displays the numerical simulation of the part
differential equation for wetting of a dry foam. The ax
were rescaled to the self-similar ansatz~12! to show the col-
lapse of the numerical data at long times. The profile evol
towards the steady-state solution~symbols!, which has been
plotted for the timet51010 and we observe that deviation
from the steady state occur forz,22t1/3. The steady state
is in fact contained as a special case since the simila
solution converges to it at fixedz ast→`.

D. Pulsed drainage

Verbist, Weaire, and Kraynik@7# perform a second form
of drainage experiment: pulsed drainage in an otherw
nearly dry foam. During a short-time interval, a fixed amou
of liquid is injected into a vertical foam. The~horizontally
uniform! pulse then travels down the foam and spreads v

FIG. 6. Wetting of a dry foam. Numerical simulations~solid
curves! of Eq. ~9! and boundary condition~20! are plotted using
self-similar variables for timest5102, 103, 104, 105, and 106. For
comparison the steady-state solution~11!, shown by open dia-
monds, was plotted att51010. Here ‘‘ode’’ solution refers to Eq.
~13!.
is

l

s

ty

e
t

r-

tically; see Fig. 2~iv!. In this section we predict analytically
the spreading rate and profile of the pulse using simila
solutions that are expected to capture the long-time beha
starting with arbitrary initial conditions. The detailed stru
ture of the spreading pulse has a main body that transl
primarily owing to the gravitational body force, while at th
front and rear of the pulse surface tension effects are sig
cant.

We begin with the dimensional form of the foam draina
equation ~4!. If we assume that the background foam
nearly dry, then Eq.~4! is to be solved subject to the globa
mass balance

E
zr ~ t !

zf ~ t !
A~z,t !dz5Vliq , ~24!

whereVliq5Vtot/nRS. HereVtot is the injected liquid volume
of the pulse,n is the number of Plateau borders per u
volume of the foam,R is a typical bubble radius~i.e., the
height of a Plateau border!, andS is the cross-sectional are
of the one-dimensional flow experiment. Also,zr(t) and
zf(t) denote, respectively, the back and front locations of
spreading pulse. In fact, Eq.~4! has the same mathematic
structure as the equation that describes the shape of a
spreading on an inclined plane, except that the detailed f
of the surface tension term is modified. The gravitational a
surface-tension-driven evolution of such a drop was
scribed by Huppert@19# and Troianet al. @20#, who demon-
strated that the large-scale features of the drop sprea
could be characterized by similarity solutions~see also@21#
and @22#!. Not surprisingly, we also find similarity solution
for the foam drainage problem, though there are additio
structural differences in the solutions as contrasted w
those in the previous studies of drop spreading.

It is convenient to first nondimensionalize by scaling ar
vertical height, and time according to

A~z,t !5
4Vliq

2

d S rg

g D 2

a~z,t!, z5
d

4Vliq
S g

rgD 2

z,

t5
hd2

16rgVliq
3 S g

rgD 4

t, ~25!

so that the dimensionless form of the problem is

]a

]t
1

]a2

]z
2

]

]z S a1/2
]a

]z D50, E
zr ~t!

z f ~r !

a~z,t!dz51.

~26!

A typical numerical solution of Eq.~26! is shown in Fig.
2~iv!. The initial condition was a localized Gaussian sha
with unit volume. The asymmetric spreading of the pulse
apparent.

Main body of the pulse.We now seek to describe analyt
cally the time-dependent evolution of the pulse and are
marily interested in the behavior at long timest@1 when the
details of the initial distribution are lost. In particular, fo
lowing the spirit of Huppert’s analysis and motivated by t
numerical solutions shown in Fig. 2~iv!, we observe that
throughout most of the pulse the gravitational body force
more important than the surface tension driving force:
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]a

]t
1

]a2

]z
50. ~27!

This equation may be solved using the method of charac
istics and for long times the solution has the form

a~z,t!5
~z2z0!

2t
, ~28!

where z0 sets the location of the rear of the pulse. Usi
global mass conservation and assuming thatuz f u@uz r u shows
that the foam pulse has a finite length that increases
O(t1/2) and the Plateau border area in the immediate ne
borhood of the front (a f) decreases asO(t21/2); in detail

z f~t!52t1/2, a f~t!5a„z f~t!,t…5t21/2. ~29!

Throughout this central/forward region of nonzeroa the sur-
face tension term in Eq.~4! is smaller byO(t21/4) for t
@1. A comparison between this similarity solution and t
full numerical solution is shown in Fig. 7 and collapse of t
data for long times is observed. The two power laws~29!
have been observed in recent experimental measurem
~see @12#, Figs. 23b and 23c; see also Eqs. 8.6 and
therein!. Furthermore, applying the same treatment as u
to collapse the numerical simulations shown in Fig. 7
cording to Eq.~29!, we found good qualitative collapse o
the Weaireet al. @12# pulsed drainage measurements sho
in their Fig. 23~a!.

Front of the pulse.The above results describe the ma
features of the middle of the spreading pulse. Surface ten
acts to smooth and further spread both the front and the
of the pulse. In order to examine the front in more detail
return to Eq.~26! and transform to a coordinate system mo
ing with the location of the frontz'z f(t) and a'a f(t)
@see Eq.~29!#:

a~z,t!5a f~t!a~j! where j5
z f~t!2z

c~t!
. ~30!

FIG. 7. Pulsed drainage profiles rescaled using similarity v
ables appropriate to the middle of the pulse, where surface ten
is not significant.
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We thus seek the similarity functiona(j). For long times we
obtain a self-consistent asymptotic balance if we identify

c~t!5t1/4, ~31!

after which the foam drainage equation simplifies to the
dinary differential equation

a82~a2!82~a1/2a8!850, ~32!

where the neglected terms are smaller byO(t21/4) as
t→`. Equation~32! can be integrated once and, sincea
→1 anda8→0 asj→`, then the integration constant is s
to zero. Thus

a85~12a!a1/2, ~33!

which may be integrated witha(0)50 to arrive at

a~j!5tanh2~j/2!,

which implies

a~z,t!5t21/2 tanh2S 2t1/22z

t1/4 D , ~34!

or in dimensional form

A~z,t !5S hVliq

rg D 1/2

t21/2 tanh2S 2@~rg!2hVliq#1/4@zf~ t !2z#

gd1/4t1/4 D .

~35!

The width of the front thus increases in time proportiona
to t1/4. We also note that this tanh2 solution has the same
form as the forced drainage result discussed by Hutzleret al.
@15#, which also compared favorably with their forced
drainage experiments. The physics underlying this simila
between pulsed and forced drainage is that the nose
traveling pulse is locally determined and thus has essent
the same shape as the forced drainage front profile. In Fi

i-
on

FIG. 8. Rescaling of the pulsed drainage PDE simulatio
~curves! focusing on the profile near the front; collapse of the n
merical results onto the analytical result~34!, here denoted by the
dots.
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we rescale the results from the numerical simulations
show that the front of the pulse evolves towards the pre
tion of Eq. ~34!.

Rear of the pulse.After finding these solutions that de
scribe the evolution of the middle and front of the pulse,
now turn to the rear of the pulse. In this region, both surfa
tension and gravity are important and, in fact, this problem
very similar to the wetting process described in Sec. III
We therefore look for a similarity solution of the form give
in Eq. ~12!, which was encountered in the discussion of fr
drainage and so now seekf(s). One of the boundary con
ditions for this problem will be supplied by matching th
gravity-driven solution~28! valid as one moves toward th
front of the pulse.

Following the analysis outlined in the description of we
ting, we look for solutions withf(sr)50 at some finitesr .
A local analysis of Eq.~13! has the same form as for wetting
i.e., f5b1(s2sr)

21b2(s2sr)
31¯ . Now, however, the

rear touchdown pointz r(t) corresponds toz r5z01srt
1/3,

wheresr is determined numerically and, owing to differe
boundary conditions, has a different value from before.

Equations~21! and~22! provide us with a family of solu-
tions, parametrized only bysr . This remaining parameter i
fixed by matching onto the known solution~28!, which in
similarity space has the form

f~s!'s/2 as s→`. ~36!

Direct substitution of Eq.~36! into the similarity differential
equation confirms that surface tension is asymptotically n
ligible away from the rear, which is the region where t
gravitational body force dominates@middle section; see Fig
2~iv!#, as discussed earlier in this section. Nowsr can be
adjusted such that the corresponding solution of Eq.~13!,
numerically integrated towards positivez ~or j!, conforms
with Eq. ~36!. Since the asymptotic behavior of Eq.~13! is
unstable, the numerical solutions with an incorrectsr veer
off to plus or minus infinity. Via an iterative procedure, w
numerically findsr'22.898.

We verified the validity of this solution by comparin
with a numerical solution of Eq.~9!. As initial conditions we
chose a narrow Gaussian pulse, which is allowed to evo
@18#. To obtain a proper fit, the pointz0 in Eq. ~12! still
needs to be determined and should not be confused with
initial position of the pulse. From Eq.~12! the equation for
z0 is

a~z0 ,t!5t2/3f~0!. ~37!

This condition uniquely defines a pointz0 in space, which
for large t turns out to be stationary as it must for se
consistency of the similarity approach. In contrast to fr
drainagef(s50)50.820 and the fluxthrough the pointz0
decays asO(t24/3). With these ideas we can plot the sim
lation results in similarity variabless5(z2z0)/t1/3, as
shown in Fig. 9, which illustrates that rescaling about t
fixed point collapses the rear and middle of the pulse.

Finally, in Fig. 10 we summarize results for the time d
pendence of the moving boundaries in the pulse evolut
Included in the plot are the motionz f of the pulse front with
time, the locationz r of the rear of the profile that wets th
dry foam in the direction of negativez, and the locationzmax
o
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e
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-
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of the maximum ofa. All the scaling estimates, deduce
from long-time similarity solutions, are in excellent agre
ment with the numerical results.

IV. GENERALIZATION OF THE PULSED SOLUTIONS
TO HIGHER DIMENSIONS: THE GRAVITY-FREE

CASE

In the absence of significant gravitational influence
which is expected to be closely approximated in the mic
gravity environment characteristic of handling materials
space, the motion of the liquid in the foam is governed

FIG. 9. Pulsed drainage near the rear: collapse of rescaled
merical simulations~curves! onto the exact ODE solution~12!
~open circles! at timest5102, 103, 104, and 105.

FIG. 10. ‘‘Moving boundaries’’ in pulsed drainage. Numeric
results are shown by symbols and asymptotic approximations
shown as curves. The time dependences correspond to motio
the pulse frontz f'2t1/2, the rearz r'j rt

1/3, and the position of the
maximum of the pulsezmax52t1/21j rt

1/31O(t1/4). The solid
circles show anO(t1/4) deviation from the simple estimatez f

'2t1/2. The inset shows that the pulse height obeysa f(t)
5t21/2@11O(t21/4)#.
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surface tension. The evolution of such an isolated pulse
one dimension was described by Gold’farb, Kann, a
Shreiber@6#. The generalization to two and three dimensio
is straightforward and corresponds, respectively, to oth
wise dry foams with a localized wet domain in the shape
a cylindrical or spherical blob.

For this aspect of our work it is convenient to utilize th
liquid volume fractione(x,t) as described in Sec. II. Then
in the absence of gravitational effects ofg and seeking sym-
metric solutionse(r ,t), we write Eq.~5! as

]e

]t
5

~cNd!1/2Rg

2hr d21

]

]r S e1/2r d21
]e

]r D , ~38!

whered51,2,3 in one, two, and three dimensions, resp
tively. This is a nonlinear diffusion equation with ‘‘diffusiv
ity’’ D5(cNd)1/2Rg/2h. The evolution of an isolated puls
on an otherwise dry foam must also conserve volume, wh
requires ind dimensions

E
0

l ~ t !
e~r ,t !r d21dr5q/cd , ~39!

wherecd52,2p,4p for d51,2,3, respectively, andq is the
appropriate dimensional ‘‘volume’’ consistent with the pro
lem statement. There is a standard solution approach for
class of nonlinear diffusion problems.

The pulse evolves in time and solutions to this nonlin
partial differential equation are found withf[0 for
r . l (t). This problem has similarity solutions of the form

e~r ,t !5F 4q4/d

~d14!2D2cd
4/dGd/~d14!

t22d/~d14!f~s!,

~40a!

where

s5
r

c1t 2/~d14!
, c15F ~d14!2qD2

4cd
G1/~d14!

. ~40b!

Substitution into Eq.~38! shows thatf(s) satisfies

2~sdf!85~f1/2sd21f8!8. ~41!

Integrating twice and using the boundary conditions t
f~0! is bounded andf(sl)50, wherel (t)5sl t

2/(d14) defines
the finite wetted region, yields the solution
ts

r,
e-
.

.

in
d
s
r-
f

-

h

is

r

t

f~s!5 1
16 ~sl

22s2!2. ~42!

Substitution into the volume conservation statement~39!
yields

sl5F 1

16 E0

1

~12s2!sddsG21/~d14!

5@2d~d12!~d14!#1/~d14!. ~43!

Therefore, we see that the pulse spreads at a ratet2/(d14) and
decreases at a ratet22d/(d14). We are currently trying to
study similar problems experimentally.

V. CONCLUDING REMARKS

We have presented similarity solutions to the foam dra
age equation for several experimentally accessible confi
rations. The analytical results are in excellent agreement w
numerical simulations of the governing partial different
equation, and quantitatively agree with experimental da
The case of wetting a dry foam and extensions of the fo
drainage equation to higher dimensions were discussed

In particular, we treated free drainage, wetting, and pul
drainage processes. One common feature is that the pu
drainage profile consists of three distinct regions: an adva
ing nose, which is similar to forced drainage, that spread
time asO(t1/4) and an advancing rear, which is similar
wetting, that spreads in time asO(t1/3); these two regions
share a middle region, containing the maximum of the pu
which decreases with time asO(t21/2) and spreads as
O(t1/2).
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@4# J. Banhart,Metallschäume~MIT-Verlag, Bremen, 1997!.
@5# D. J. Sypeck, H. N. G. Wadley, H. Bart-Smith, S. A. Koehle

and A. G. Evans,Review of Progress in Quantitative Nond
structive Evaluation, edited by D. O. Thompson and D. E
Chimenti ~Plenum, New York, 1998!, Vol. 17.

@6# I. I. Gol’dfarb, K. B. Kann, and I. R. Shreiber, Izv. Akad
Nauk SSSR2, 103 ~1988!.
@7# G. Verbist, D. Weaire, and A. M. Kraynik, J. Phys.: Conden
Matter 8, 3715~1996!.

@8# A. Bhakta and E. Ruckenstein, Langmuir11, 1486~1995!.
@9# D. J. Durian, D. A. Weitz, and D. J. Pine, Science252, 686

~1991!.
@10# A. Bhakta and E. Ruckenstein, Adv. Colloid Interface Sci.70,

1 ~1997!.
@11# G. Verbist and D. Weaire, Europhys. Lett.26, 631 ~1994!.
@12# D. Weaire, S. Hutzler, G. Verbist, and E. Peters, Adv. Che

Phys.102, 315 ~1997!.
@13# Energy Research and Generation, Inc., Oakland, CA 9460
@14# V. Goldshtein, I. Goldfarb, and I. Schreiber, Int. J. Multipha

Flow 22, 991 ~1996!.



en

le

e

rs
em

9

all

tent.

ny,

2106 PRE 58KOEHLER, STONE, BRENNER, AND EGGERS
@15# S. Hutzler, G. Verbist, D. Weaire, and J. A. van der Ste
Europhys. Lett.31, 497 ~1995!.

@16# Note that in order to begin the simulation, the initial profi
was selected to obey the no-flux boundary condition~7! at z
50 and quickly transition toa51. We chose

a~z,t50!5H11bFtanhSz~12b!2

2b D21GJ2

,

whereb determines the width of the transition. Typically w
choseb50.1.
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