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The drainage of liquid foams involves the interplay of gravity, surface tension, and viscous forces. Three
experimentally accessible configurations are modeled analytically using a one-dimensional nonlinear partial
differential equation called the foam drainage equation: free drainage where liquid drains from an initially
uniform foam of fixed length, wetting of a dry foam, and pulsed drainage where a finite blob of liquid spreads
in an otherwise dry foam. Similarity solutions are described in each case and compared with numerical
solutions and available experimental data. The model is generalized to higher dimensions and used to discuss
further examples of pulsed drainag&1063-651X%98)12607-1

PACS numbes): 47.55.Mh, 02.30.Jr, 83.70.Hq, 82.70.Rr

[. INTRODUCTION for a variety of possible drainage conditions. The major ideas
and solutions presented below build upon a recently intro-
Everyday experiences put us in direct contact with foamsgduced one-dimensional description of an evolving foam and
Shampooing hair, washing dishes, eating chocolate barm@re described briefly next.
(e.g., Three Musketeerand chocolate mousse desserts, and The subject of foam drainage was given significant impe-
pouring beer are only a few examples. There are also manis during the past ten years by contributions from three
industrial applications where foams are utilized in a processtesearch group$—8]. In particular, a time-dependent drain-
ing stage or are part of the final product. Given the range ofge model was introduced, based upon the typical structure
applications, it is not surprising that the study of foams has & aqueous foams as connected Plateau borders, which are

long history spanning engineering, chemistry, physics, anéhe liquid-filed channels between three adjacent bubtites
food sciencesee, e.g.[1]). example, see Fig.)3 Drainage of a horizontally uniform

It is impossible to attempt a survey of the vast literaturefoam was considered, so that the analytical model was for

devoted to the study of the mechanical and dynamical propon€ spatial dimension. The primary dependent variable is the
erties of foams. For our purposes it suffices to note that th@verage(or typical cross-sectional ared of a Plateau bor-
majority of investigations have focused on aqueous foamé&er, which may vary with vertical positionand timet, i.e.,

[2], although there are now many applications of polymericA(z,t). The physical ingredients in the model are a conser-
foams[3] and more recenﬂy metallic foams, which are foamsvation statement for |IQU|d in the Plateau borders, with a fluid

made out of metals such as alumingsee, e.g.[4]). Some )
commonly mentioned applications include the use of foams L ﬁ;ymg W%"&:‘m
for reducing the impact of explosions and for cleaning up oil W" P e 97:: ; MRS
spills. In addition, industrial applications of polymeric foams . 1 CLx PR ',‘!h

and porous metals include their use for structural purposes '
(e.g., lightweight sandwich structujeand as heat exchange
media analogous to common “finned” structures. Unifor-
mity of the foam is important for the designer interested in
these applications and since gravitational drainage of the lig-
uid is one mechanism leading to nonuniformity, it is impor-
tant to characterize the dynamics of drainage. An example of
a metallic foam, with vertical nonuniformity produced by
gravitational drainage, is shown in Fig. 1, which is a CAT-
scan image; there are substantial variations in the liquid frac-
tion, with the majority of the liquid residing at the bottom. In
fact, we were motivated to reexamine the issue of liquid
drainage in foams owing to recent interest in the manufac-
turing of porous metals. The reader can observe a similar
drainage phenomenon in aqueous foams formed while wash-
ing dishes.

In spite of the many applications and numerous scientific F|G. 1. CAT scan of an ALCAN aluminum foam. Dark regions
investigations of the properties and mechanics of foams, thedicate aluminum and light regions indicate &i. Drainage is
dynamicsof foam drainage have only recently been exam-evidenced by increased aluminum content at the bottom of the fig-
ined in detail. In this paper we report analytical descriptionsure. The length of each side is 110 mm.
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0 o1 o0 been solved either analytically or numerically. In a few

05 cases, experiments have been performed and compared, with
steady state

good results, with predictions from the one-dimensional
model. We further develop these analytical ideas below. At
long enough times in most foams, films that separate bubbles
rupture and Ostwald ripening, due to gas diffusing through
the faces between two bubbles, occ(sse, e.g.[9]). Both

of these coarsening processes are neglected in the dynamical
models discussed here; however, recent research has begun
to address the formgd.Q].

In many simple laboratory experiments the foam is fixed
and gravitational drainage occurs relative to the fixed
bubbles. Four prototypical situations may be envisioned as
schematically indicated in Fig. 2i) free drainage of an ini-
tially uniform foam that evolves towards a steady-state pro-
file; (ii) wetting of a foam, for example, by placing a very
dry foam in contact with a liquid bath after which a spread-
ing front forms in the foam and again evolves toward a
steady-state profile(iii) forced drainage where a constant
128 liquid supply is added to the top of the foam and a steadily

propagating front moves towards the bottom of the f&in
and (iv) pulsed drainage, where an initially nearly homoge-
neous dry foam(liquid fraction e~0) is disturbed by the
addition of a finite amount of liquid, which is then redistrib-
uted through a combination of gravitational and surface-
tension-driven flows. Experimental results pertaining to
, , ‘ , ' 200 , , , , , cases(i), (iii), and (iv) may be found in the literature. A
Plateau border area O Plateauborderarea O generalization of casdiv) is the response of a three-
(iii) forced drainage (iv) pulsed drainage dimensional foam to an isolated pulse, for example, in the
) ) ) i form of an initially cylindrical or spherical pulse.

FIG. 2. Four dynamical processes in foam drainage: profiles of \y/a review the foam drainage equation in Sec. Il by de-
the Plateau border area plotted versus height. Times indicated afg,|ing it for three-dimensional drainage problems. In Sec.
from the numerical solution of the dimensionless foam drainagqy, o4 tical descriptions are presented for one-dimensional
equation as described in Sec. I{l) Free drainage of an initially drainage problems. We first briefly review the steady-state

uniform foam that evolves towards the steady-state prdfilewet- - . .
ting of an initially dry foam from the bottom; the distribution solution of the foam drainage equatipte]. Then, for cases

evolves towards the steady state indicated by the solid cGiijes () (i), @nd(iv) we obtain similarity solutions that describe
forced drainage profile due to continual addition of liquid at the toptN€ dynamics for long times. Moreover, the analysis demon-
of the foam(see, e.g.[7)); for this case the front moves at constant Strates that pulsed drainagey) combines aspects of free
velocity. (iv) Pulsed drainage that shows the evolution of a finitedrainagel(i), wetting(ii), and forced drainageii ). A descrip-
amount of liquid in an otherwise dry foam. In cas@sand (i),  tion of forced drainage has been described previolsly.

a=1 corresponds to the location where the foam is in direct contact N€ spherical spreading of an isolated pulse in a dry foam is
with the liquid. treated in Sec. IV.
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. . . Il. FOAM DRAINAGE EQUATION
flux established by a competition between gravity, surface © GE EQUATIO

tension, and viscous forces. Physical and dimensional argu- In several recent publications one-dimensional models for
ments then lead to a second-order nonlinear partial differerffoam dynamics have been reviewgiD,12. In the simplest
tial equation forA(z,t) and several model problems have version of the model, fluid is assumed to reside solely in the

FIG. 3. (a) Network of Plateau borders of an open-cell
aluminum foan{13]. The typical cell diameter is 6 mnfb)
Schematic of the cross section of a Plateau border channel

\ through which liquid flows and whose cross-sectional area
% A is the basis of the foam drainage model.

®)



PRE 58 DYNAMICS OF FOAM DRAINAGE 2099

Plateau borders, which are the regions where cell faces meethich the reader may recognize as a form of the Darcy equa-
Figure 3a) shows an example of an open-cell aluminumtion for the pressure gradient described above. Thus, com-
foam composed entirely of a network of Plateau borders. bining Egs.(1) and (2), we arrive at an evolution equation
We begin by generalizing the modeling ideas to three difor A(x,t),
mensions. Because the foam is a disordered material, an av-
erage equation is derived for the ty_pical cross-sectional area IA  pg A2 Y52
A(x,t) of a Plateau border channel in a volume element con- —+————V.(AY%vyA)=0, 3)
taining many bubbleéx denotes the position vecipthe use atmooz 27y
of such average quantities necessarily assumes an average
over all possible orientations of the channels making up anyvhere z is taken as positive downward. This nonlinear
small section of the foam. Of course, the usual “continuum’ second-order partial differential equation is useful for the
approximations are required so that the bubble size must bguantitative description of foam drainage, as will be demon-
small relative to the typical variations @f(x,t) in the foam strated below for one-dimensional flows and in the future for
for this coarse-grained description to be reasonable. some three-dimensional foam drainage problems.
Let u denote the average velocity in a Plateau border In one dimensionA(z,t) only, we have
channel. Then conservation of mass relateand u:
2 1/2
O L A UL R

at 7&2_277 Jz dz

A
pr +V-(uA)=0. (1)
derived by Gold'farb, Kann, and Shreibld]. This equation
The fluid velocityu in these narrow channels results from ahas been further studied by Goldshtein, Goldfarb, and
combination of three physical influence$} gravitationally  Schreibel{14] and Verbist, Weaire, and Krayn{k,11] and
driven drainagef{ii) capillary pressure-driven drainage due has been compared to experiment in some circumstances
to the liquid pressure in the Plateau borders béimgerthan  [12,15. Similar modeling ideas are discussed by Bhakta and
the pressure in the gas bubbles by an amaunt, wherey  Ruckenstein8,10], who also have introduced a more de-
is the interfacial tension coefficient and is the local radius tailed description of the foam at the bubble scale and incor-
of curvature; andiii) viscous resistance to flow with an ef- porated surfactant effects, the role of disjoining pressure in
fective viscosityn. The average fluid velocity is determined stabilizing (or destabilizing thin films, and bubble rupture.
by analogy with familiar pressure-driven viscous flows in As a final remark we note that with a microstructural
rigid channels(e.g., Poiseuille flow In this simplified rep- model of the bubbles that constitute the foam the Plateau
resentation, the effective viscosity accounts for the fluid’sborder area may be related, at least approximately, to the
viscosity, possible interfacial rheological effects, the compli-local volume fraction of liquid in the foara(x,t). If R is the
cated shape of the channel cross section, and the degree‘wffective” bubble radius, thenA=cyR%e/(1—¢€) [8],
which the no-slip condition is satisfied at the fluid-gas-wherecy is determined by the geometry and accounts for
surfactant interface. such features as the number of Plateau borders per bubble. In
In particular, the local fluid motion in any given channel the limit of dry foams,e<1, the foam drainage equati@®)

corresponds to a Stokes flow, which for motions of a homois an evolution equation for the liquid volume fraction
geneous fluid, satisfies the equatids — Vp-+ pg+ uVZu. e(x,t),
Further progress is then made by utilizing dimensional argu-
mevnts. First, capillary effec_ts_ produce a pressure gradient cuR%pg 9€2  (cyd)YRy
=V (y/r.). For a foam consisting of a monodisperse collec- —+ -
tion of bubbles, on dimensional grounds= 6r2; consider- o
ing the Plateau border cross section as the curved triangular
area between three touching circlskown in Fig. 8b)], the which explicitly introduces the bubble size as an additional
constant is determined a8=v3—w/2. Thus the pressure parameter.
gradient is ¢/2) 8¥°A~32V A. It is important to note that the
pressure gradient tends to drive fluid from regions of lgh
to low A, analogously to common diffusive and conductive
fluxes. Second, the body force per unit volume is simgy
as for a homogeneous fluid. Third, on dimensional grounds A. Steady state

the viscous force per unit volume acting on the fluid is ap-  gefore discussing the dynamics of drainage, we review
proxim.ated as- nu/A, where the effe_ctive viscosity hides _the steady-state profile, predicted by E4). Both the free

much ignorance of the actual detailed flow. In effect, thisyainage and wetting processes, described in Secs. 11l B and
phenomenological approach treats flow in the foam with §; ¢ pelow, evolve towards this steady state. In the steady
permeability equal to the Plateau border afea state, surface tension balances gravitational forcing and the

The form of the velocity then follows on dimensional fluid velocity everywhere is zero. Setting=0in Eq. (2) and
grounds from Stokes equations usingA(z=L)=A,, one finds

PAG”
1+ Wz— (L-2)

- A2
. P 27 V- (e’ Ve)=0, (5

Ill. DYNAMICAL FEATURES OF DRAINAGE
IN ONE DIMENSION

A 51/2A_1/2 -2
u= %— YT VA, @) A(2)=Aq ®)
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B. Free drainage 50

We begin this discussion by considering the evolution of
an initially uniform foam of lengthL; see Fig. #). Over
time drainage occurs and we wish to preditz,t). At the
top of the foamz=0 we assume that there is zero net flux of

liquid [7], which corresponds to the boundary condition %

213

) ’}/51/2Al/2 JA
pgA*—T—— =0 atz=0. @)

aT

20

O ODE solution
— — — steady state 1=500

Also, we are interested in those situations where the foam is
characterized near the bottams L by closely spaced spheri-

cal bubbles of radiuR; for monodisperse foams the bubbles 10
form a close-packed array in which the liquid volume frac-

tion is expected to be approximately 260@] though the

volume fraction can be lower for polydisperse foams. This o
boundary condition is closely approximated Byz=L,t) gr™

= §R?, which is another way that the bubble radius may , . ,
enter as a parameter in a description of the drainage process._FlG' 4._ Free drainage: coIIap_se of the rescaled numerical simu-
We further make the reasonable assumption that the initigfio" (Solid curves of Eq. (9) at times=6, 20, 40, 60, 100, 200,
state is uniform with Plateau border ar&éz,0)=A,= 6R? a.nd. 500;£=100. Th.e numerical solution Of. EqL3) for .the self-
[this condition must be relaxed nea+0 in order to satisfy S|m|lar f.unctlond)(s') 'S S.hown .by the open circles. T.he Inset S.hO\.NS
the zero-flux boundary conditiof?)]. the original numerical simulation. Note that the region of similarity

- . : space where there is good agreement corresponds to the region of
Using the effective bubble radilg to scale the Plateau physical space between the top 0 and the transition region where

border area, it is then natural to define dimensionless vari; "1 | addition, the steady-state solutii), plotted in similar-
ables according to ity variables atr=500, is shown by the dashed curve. ODE denotes

the solution to the ordinary differential equati¢iB).

20

(BN L Y N B N O B B B A A B B B B B

ny

A(z,t)=6R? 7))y, Z=7——={(, tl=g=m—— . . .
(z1) a({.7) 2pgR ¢ 26R%(pg)? " age as long as externally imposed, time-independent bound-
(8) ary conditions are not important. In particular, £9). has the
solutions
and so Eq(4) may be reexpressed as the dimensionless foam
drainage equation a(t,m)=1Bp(s) with s=({—¢o)m Y3 (12
2
‘9_“ ai_ i 1/2‘9_“ _ where, consistently with the translational invariance of the
0, 9 L )
ar I I 174 problem, it is necessary to allow for an arbitrary offggt

This “stagnation point” remains at rest in similarity vari-
where{ and T are, respectively, the dimensionless length anchples. For the no-flux boundary conditi¢h0) to be consis-
time scales. Equatiort9) is to be solved subject to two tent with Eq.(12), ¢, is at the top of the foanti.e., {;=0).
boundary conditions and an initial condition The similarity functiong(s) satisfies the nonlinear ordinary

differential equation

a(£>0,0=1, «*%0,7)— ia(O,T)ZO,

¢ —3(2¢+sg")+(¢?)' —(¢"%¢")' =0, (13
2pgRL where’ indicates differentiation.
al A= T4 (10) To numerically solve Eq(13) we note that a balance of

the dominant terms shows thét~s/2 ass—o. It is then

Verbist, Weaire, and Kraynik7] emphasized the importance sufficient to chooses(0)= ¢,, determine¢’(0) using the
of the free drainage limit and presented one numerical simuro-flux condition at the top of the foaiti0), and integrate
lation of this nonlinear equation. A typical solution, gener- Eq. (13) numerically away from the origin. The choice of
ated with MATHEMATICA, is shown in Fig. %) with £ #(0) is adjusted until the expected far-field asymptaie
=2pgL/y=100 and illustrates the evolution of an initially ~s/2 is reached. Using this procedure we finf(0)
uniform foam [16]. For long times the foam attains the =0.5885. A comparison between the numerical solution of
steady-state profile given by the rescaled form of &g the original partial differential equation and the similarity
solution is presented in Fig. 4 using the similarity variables
to collapse the results. We note that the collapse is excellent
near the top, which corresponds, as we next discuss, to
{<2rt. Furthermore, Weairet al. (see[12], Fig. 22b) and

Top region of free drainagdn fact, there is a similarity Eq. (10.7)) show experimentally that the slope of the free
solution to Eq.(9). A priori the similarity solution should be drainage profilea/dz varies as 1/time, which is consistent
expected to describe the long-tinge>1) features of drain- with the above scaling€l2) for s>1.

L— -2
1+ ¢

5 11

a(f)=
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The similarity solution(12) with numerically determined 0 =
¢(0) describes the drainage profile near the top surface, but i =
clearly must break down as the uniform staie1 is ap-
proached. Since fors>1, Pa=¢~is=3;7"13 the 02
drainage profile contacts the uniform state at a distahce
~27 and so this approximate intersection point moves with
speed 2. M

Middle region of free drainageNow we consider the .04
manner in which the similarity solution asymptotically ap- —
proaches to the uniform state=1 and so examine the re- é

gion in the neighborhood of~27, for time short enough -0
that the moving front has not reached the bottom, {€.L.

LI L L N N OO S U L L A A MY N A M

——— 1=50
Near the moving front we expect surface tension to be im- ——— :=1o§
portant. We thus seeke({,7)=1+f({—27,7), where f 08k /7 oo oEl
<1, and, after substituting into E¢9) and neglecting terms - /7 o ode solution
that are smaller by (7~ ?), find ;/////
(91; .\ (91;2 (72f _O th - ) ” -1 (; L L L . ;Hzl ) L i A )
FrAE T with {3={—27, (14) (¢-21)7

FIG. 5. Free drainage: collapse of rescaled numerical simulation
<,%ﬁurves for {~2randa~1. The analytical resultl8) is shown by
e open circles. For computational ease, the no-flux boundary con-
dition atz=0 was relaxed when examining the solution near the
(L, m)=7Y2( ) where gy =, 12 (15) moving front{~27. Here “ode” solution refers to Eq(18).

where(; is the distance from the mean location of the mov-
ing front. This equation is the Burgers equation and has
similarity solution

which balances all three terms in Ed4) and yields wards the steady-state soluti@it). In Fig. 4 the steady state
is indicated by the long dashed curve. We observe that the
—L(p) + (2 —y"=0. (16 system evolves toward the steady state from the bottom up.

Integrating once and demanding thaty' —0 as n;— .
(i.e., the part of the profile witlf—o« asa—1) yields C. Wetting of a dry foam
We next describe thevettingof a foam, illustrated in Fig.
¢ ==ty (17)  2(ii), as occurs, for example, when an initially dry foam is
o ) _ ) ) _ put into contact with a wetting liquid that is then “sucked”
which is Bernoulli's ordinary differential equation. The so- jnio the foam owing to surface-tension-driven flows. The
lution that matches with the similarity solution described bywetting problem is analogous in some ways to the steady-
Eq. (12) corresponds toy'=; as m——= (i.e., where gpate forced-drainage problem considered by Huteleal.
¢—sl2) and is[17] [15] and Weaireet al.[12], though we shall see that its math-
ematical description is similar to the free-drainage problem
(18) considered in Sec. Il B. The wetting process can be visual-
12 ized in the laboratory by injecting liquid into the middle of a
f e dx dry foam and observing the liquid rising to the top by capil-
o larity. This one-dimensional problem may be generalized to
A comparison of this approximate solution and the numericaligher dimensions by considering the evolution of a spheri-

solution of the original partial differential equatiéRDE) is  C@l initial pulse of liquid in an otherwise dry foatSec. IV).

shown in Fig. 5. The agreement is good and improves a&n experimental study of this latter problem is ongoing.
time increases. The nondimensionalization is the same as in Sec. Il B

We have now completed the asymptotic description of2nd We consider solving the foam drainage equai®rior a
free drainage for times before the moving front interacts with>€Mi-infinite dry foam in contact with a liquid at its base. We

the lower boundary 2< . The free drainage profile has an t@ke ¢=0 to be the bottom, so that wetting occurs in the
analytical structure given by Eq&l?) and (13) for ¢<27, direction {<0. The corresponding initial and boundary con-

while for the neighborhood~ 2 the solution is ditions are{18]

e 77%/4

W(n)=—

a({<0,7=0)=0, a(0,/>0)=1, a({— —,7)—0.

_(r_ 2
1 ex% (54 27) (20
T
a(f,7)=1- =7 : (19 : . ,
({277 TN In order to determine the long-time behavior we use the an-
o satz for the similarity solution of free drainage({,7)

=72Bp(¢r=13), which then leads to Eq13) for ¢(s).
Finally, once the downward propagating front reaches thdhe wetting occurs out to a distancg(7)<0, where
bottom of the foam¢{=L, the profile begins to evolve to- «({,,7)=0. This moving boundary corresponds to the re-
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FIG. 6. Wetting of a dry foam. Numerical simulatiorisolid
curves of Eq. (9) and boundary conditioif20) are plotted using
self-similar variables for times= 10, 10°, 1¢%, 1, and 16. For
comparison the steady-state soluti¢hl), shown by open dia-
monds, was plotted at=10'°. Here “ode” solution refers to Eq.
(23.

gion that is still dry, i.e..«=0 for {<{,(7). We thus look
for solutions with ¢(s,)=0, wheres,=7,7 3 A local
analysis of Eq(13) near such as, reveals thath must have
the power series form

¢p=ba(s—5)?+by(s=5)%++ - . (21)
The coefficientd,; andb, are found to be
S S
12_ _ 2 _>r
by = X b, 27 (22

In particular, this result means thgt must be negative, as
expected, so that in physical space the point of touchdown is

L=s15 (23

For long timesr>1, we observe tha#(s) satisfies the two
boundary conditions(0)—«~ and ¢(s,)=0; s, is found
numerically to bes, = —3.620.
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tically; see Fig. Ziv). In this section we predict analytically
the spreading rate and profile of the pulse using similarity
solutions that are expected to capture the long-time behavior
starting with arbitrary initial conditions. The detailed struc-
ture of the spreading pulse has a main body that translates
primarily owing to the gravitational body force, while at the
front and rear of the pulse surface tension effects are signifi-
cant.

We begin with the dimensional form of the foam drainage
equation (4). If we assume that the background foam is
nearly dry, then Eq(4) is to be solved subject to the global
mass balance

z¢(t)
f A(Z,t)dZ:V”q s
z,(t)

(24)

whereV;=V/NRS HereV, is the injected liquid volume
of the pulse,n is the number of Plateau borders per unit
volume of the foamR is a typical bubble radiusi.e., the
height of a Plateau borderandS is the cross-sectional area
of the one-dimensional flow experiment. Alsp,(t) and
z;(t) denote, respectively, the back and front locations of the
spreading pulse. In fact, E¢4) has the same mathematical
structure as the equation that describes the shape of a drop
spreading on an inclined plane, except that the detailed form
of the surface tension term is modified. The gravitational and
surface-tension-driven evolution of such a drop was de-
scribed by Hupperf19] and Troianet al.[20], who demon-
strated that the large-scale features of the drop spreading
could be characterized by similarity solutio(eee alsd21]
and[22]). Not surprisingly, we also find similarity solutions
for the foam drainage problem, though there are additional
structural differences in the solutions as contrasted with
those in the previous studies of drop spreading.

It is convenient to first nondimensionalize by scaling area,
vertical height, and time according to

4Vig (pg)? s [7)?
A(Z,t):%(7> a({,7), ZZW(p_g) g
iq
7]52 ( ,y)4
t=rr—m | —| 7, 25
16pgVig \ P9 T @9

so that the dimensionless form of the problem is

Figure 6 displays the numerical simulation of the partial
differential equation for wetting of a dry foam. The axes
were rescaled to the self-similar ansét2) to show the col-
lapse of the numerical data at long times. The profile evolves
towards the steady-state soluti®ymbolg, which has been
plotted for the timer=10'° and we observe that deviations
from the steady state occur fg — 273, The steady state
is in fact contained as a special case since the similarit
solution converges to it at fixed as r—.

da  da® 9
—+
ar = L Il

1Qﬁa): JQU) _,
(64 (?g 01 gr(T) a(gvT)dg .
(26)

A typical numerical solution of Eq(26) is shown in Fig.
2(iv). The initial condition was a localized Gaussian shape
with unit volume. The asymmetric spreading of the pulse is
%\pparent.

Main body of the pulseVe now seek to describe analyti-
cally the time-dependent evolution of the pulse and are pri-
marily interested in the behavior at long times 1 when the

Verbist, Weaire, and Kraynik7] perform a second form details of the initial distribution are lost. In particular, fol-
of drainage experiment: pulsed drainage in an otherwiséowing the spirit of Huppert's analysis and motivated by the
nearly dry foam. During a short-time interval, a fixed amountnumerical solutions shown in Fig.(i2), we observe that
of liquid is injected into a vertical foam. Théhorizontally ~ throughout most of the pulse the gravitational body force is
uniform) pulse then travels down the foam and spreads vermore important than the surface tension driving force:

D. Pulsed drainage
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FIG. 7. Pulsed drainage profiles rescaled using similarity vari- FIG. 8. Rescaling of the pulsed drainage PDE simulations
ables appropriate to the middle of the pulse, where surface tensiofurves focusing on the profile near the front; collapse of the nu-

'
-
'
-
o

is not significant. merical results onto the analytical res(84), here denoted by the
dots.
aa aaz . . . . .
97 + Fra =0. (27)  We thus seek the similarity functica(&). For long times we

obtain a self-consistent asymptotic balance if we identify
This equation may be solved using the method of character-

_ 14
istics and for long times the solution has the form (=77 (31)
after which the foam drainage equation simplifies to the or-
a(¢, )= ({=4o) (29 dinary differential equation

27
a/_(aZ)/_(al/Za/)/ZO’ (32)
where {, sets the location of the rear of the pulse. Using
global mass conservation and assuming tat>|,| shows ~Where the neglected terms are smaller Bf7 ') as
that the foam pulse has a finite length that increases as—. Equation(32) can be integrated once and, singe
O(7Y?) and the Plateau border area in the immediate neigh——1 anda’—0 as¢—, then the integration constant is set
borhood of the front &) decreases a®(7 *?); in detail to zero. Thus

((n=27" a(n=al(nn=r"" (29 a'=(1-2)a™ 33

Throughout this central/forward region of nonzerthe sur-  Which may be integrated wita(0)=0 to arrive at
face tension term in EqA4) is smaller byO(r %) for B

>1. A comparison between this similarity solution and the a(é)=tant(¢/2),
full numerical solution is shown in Fig. 7 and collapse of the

hich impli
data for long times is observed. The two power la{&9) which Impiies

have been observed in recent experimental measurements 272 ¢

(see[12], Figs. 23b and 23c; see also Egs. 8.6 and 8.7 a(f,7)=1 Y tani? —1/4—>, (34

therein. Furthermore, applying the same treatment as used T

to collapse the numerical simulations shown in Fig. 7 ac-y; in dimensional form

cording to Eq.(29), we found good qualitative collapse of

the Weaireet al. [12] pulsed drainage measurements shown v\ 12 2 2oV 1Yo z.(1) — 2

in their Fig. 23a). A(z,t)=<u) =2 tanr?( L(pg)™ (;z,lt;E @ ]).
Front of the pulseThe above results describe the major Y (35)

features of the middle of the spreading pulse. Surface tension
acts to smooth and further spread both the front and the regme width of the front thus increases in time proportionally
of the pulse. In order to examine the front in more detail wetg 74 \We also note that this taftsolution has the same
return to Eq(26) and transform to a coordinate system mov-form as the forced drainage result discussed by Huetle.

ing with the location of the fron{~(i(7) and @~a¢(7)  [15], which also compared favorably with their forced-

[see Eq(29)]: drainage experiments. The physics underlying this similarity
()=t between pulsed and forced drainage is that the nose of a

_ _ e\ traveling pulse is locally determined and thus has essentially
a(gN=ai(r)als) where s c(r) (30 the same shape as the forced drainage front profile. In Fig. 8
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we rescale the results from the numerical simulations to 6
show that the front of the pulse evolves towards the predic-
tion of Eq. (34).

Rear of the pulseAfter finding these solutions that de-
scribe the evolution of the middle and front of the pulse, we
now turn to the rear of the pulse. In this region, both surface 4
tension and gravity are important and, in fact, this problem is
very similar to the wetting process described in Sec. Il C. R
We therefore look for a similarity solution of the form given =
in Eq. (12), which was encountered in the discussion of free
drainage and so now seeks). One of the boundary con-
ditions for this problem will be supplied by matching the
gravity-driven solution(28) valid as one moves toward the
front of the pulse.

Following the analysis outlined in the description of wet-
ting, we look for solutions withp(s,) =0 at some finites, . ] L L
A local analysis of Eq(13) has the same form as for wetting, ¢
i.e., p=by(s—s,)?+by(s—s,)3+--- . Now, however, the
rear touchdown point,(7) corresponds ta/, =+ 3r7-1/3, FIG. 9. Pulsed drainage near the rear: collapse of rescaled nu-
wheres, is determined numerically and, owing to different merical simulations(curves onto the exact ODE solutiorf12)
boundary conditions, has a different value from before.  (open circlesat timesr=1(?, 10%, 10%, and 16.

Equations(21) and(22) provide us with a family of solu-
tions, parametrized only by, . This remaining parameter is of the maximum ofa. All the scaling estimates, deduced
fixed by matching onto the known solutiq@8), which in ~ from long-time similarity solutions, are in excellent agree-

o

n
[ e Y L L L LN L LI BRI [NLER L

similarity space has the form ment with the numerical results.
S)~s/2 as s—ox. 36
¢(8) - (36) IV. GENERALIZATION OF THE PULSED SOLUTIONS
Direct substitution of Eq(36) into the similarity differential TO HIGHER DIMENSIONS: THE GRAVITY-FREE
equation confirms that surface tension is asymptotically neg- CASE

ligible away from the rear, which is the region where the
gravitational body force dominat¢middle section; see Fig. wh
2(iv)], as discussed earlier in this section. Newcan be
adjusted such that the corresponding solution of @&),
numerically integrated towards positive(or &), conforms
with Eq. (36). Since the asymptotic behavior of E{.3) is
unstable, the numerical solutions with an incorrgctveer
off to plus or minus infinity. Via an iterative procedure, we 10
numerically finds,~ —2.898.

We verified the validity of this solution by comparing
with a numerical solution of E(9). As initial conditions we
chose a narrow Gaussian pulse, which is allowed to evolve
[18]. To obtain a proper fit, the poinfy in Eq. (12) still
needs to be determined and should not be confused with the,
initial position of the pulse. From Eq12) the equation for 107

{ois

In the absence of significant gravitational influences,
ich is expected to be closely approximated in the micro-
gravity environment characteristic of handling materials in
space, the motion of the liquid in the foam is governed by

T
oo
A

LEEEALL |

5 .
10 107 10° 10° 135 10° 107 10°

(Lo, m)=7""$(0). (37

This condition uniquely defines a poig in space, which
for large 7 turns out to be stationary as it must for self-
consistency of the similarity approach. In contrast to free / .

drainage$(s=0)=0.820 and the fluxhrough the point, L T T AT e o T o T
decays a®©(7 #'%). With these ideas we can plot the simu- T

lation results in similarity variables=({— o)/ % as

shown in Fig. 9, which illustrates that rescaling about this..q its are shown by symbols and asymptotic approximations are

fixed point collapses the rear and middle of the pulse. shown as curves. The time dependences correspond to motion of
Finally, in Fig. 10 we summarize results for the time de-he puise frong,~2+12 the rear, ~ &, 3 and the position of the

pendence of the moving boundaries in the pulse evolutionmaximum of the pulselym=27"2+ ¢ 73+ 0(r¥4). The solid
Included in the plot are the motiaf} of the pulse front with  circles show anO(7% deviation from the simple estimatg;
time, the locations, of the rear of the profile that wets the ~27Y2 The inset shows that the pulse height obeyg7)
dry foam in the direction of negative and the locatiod ,.x =7 Y{1+0(+ ¥4].

10'

R |

FIG. 10. “Moving boundaries” in pulsed drainage. Numerical
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surface tension. The evolution of such an isolated pulse in ¢(s)=%(s|2—sz)2. (42
one dimension was described by Gold'farb, Kann, and

Shreiber6]. The generalization to two and three dimensions

is straightforward and corresponds, respectively, to otherSubstitution into the volume conservation statemésf)
wise dry foams with a localized wet domain in the shape otyields

a cylindrical or spherical blob.

For this aspect of our work it is convenient to utilize the 1 1 —1/(d+4)

liquid volume fractione(x,t) as described in Sec. Il. Then, 5= — 1-s?)s%s

: A _ | ( )

in the absence of gravitational effectsgénd seeking sym- 16 Jo

metric solutionse(r,t), we write Eq.(5) as —[2d(d+ 2)(d+4)] M+ 43)
de (cyO)YRy o ( Yo d1 ﬁe) @9
—=——g7 = | €T =],
at 2t ar ar Therefore, we see that the pulse spreads at a ¥4t&*) and

decreases at a rate 29(@*4)_Wwe are currently trying to

whered=1,2,3 in one, two, and three dimensions, respec;study similar problems experimentally.

tively. This is a nonlinear diffusion equation with “diffusiv-
ity” D=(cnd)Y?Ry/27. The evolution of an isolated pulse
on an otherwise dry foam must also conserve volume, which V. CONCLUDING REMARKS

requires ind dimensions
We have presented similarity solutions to the foam drain-

age equation for several experimentally accessible configu-
rations. The analytical results are in excellent agreement with
numerical simulations of the governing partial differential
wherecy=2,2m 47 for d=1,2,3, respectively, and is the equation, and quantitatively agree with experimental data.
appropriate dimensional “volume” consistent with the prob- The case of wetting a dry foam and extensions of the foam
lem statement. There is a standard solution approach for thidrainage equation to higher dimensions were discussed also.
class of nonlinear diffusion problems. In particular, we treated free drainage, wetting, and pulsed
The pulse evolves in time and solutions to this nonlineardrainage processes. One common feature is that the pulsed
partial differential equation are found withp=0 for  drainage profile consists of three distinct regions: an advanc-
r>I1(t). This problem has similarity solutions of the form ing nose, which is similar to forced drainage, that spreads in
time asO(7*% and an advancing rear, which is similar to

I(t)
j e(r,rf"dr=ql/cy, (39
0

. 4q*d d’(d*‘”erl(dM) - wetting, that spreads in time &(7%); these two regions
e(r.t)= (c|+4)2[32cg77j b(s), share a middle region, containing the maximum of the pulse,
(409  which decreases with time a®(7 Y% and spreads as
o(7?).
where
L . (d+4)%qD?] M4 ob ACKNOWLEDGMENTS
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Substitution into Eq(38) shows thatp(s) satisfies
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