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Exact calculation of force networks in granular piles

G. Oron* and H. J. Herrmann
Laboratoire de Physique et Me´canique des Milieux He´térogènes, URA CNRS 7636, Ecole de Physique et de Chimie Industrielles

10 rue Vauquelin, 75231 Paris Cedex 05, France
~Received 9 June 1997; revised manuscript received 10 March 1998!

We present calculations of forces for two-dimensional static sand pile models. Using a symbolic calculation
software we obtain exact results for several different orientations of the lattice and for different types of
supporting surfaces. The model is simple, supposing spherical, identical, rigid particles on a regular triangular
lattice, without friction and with unilateral springlike contacts. Special attention is given to the stress tensor and
pressure on the base of the pile. We show that orientation of the lattice and the characteristics of the supporting
surface have a strong influence on the physical properties of the pile. Our results agree well with numerical
simulations done on similar systems and show, in some specific cases, a dip, i.e., a depression under the apex
of the pile. We also estimate that the algorithm we have developed can be easily adapted to other configura-
tions and models of granulates and can be used in other physical cases where piecewise linear systems are
encountered.@S1063-651X~98!09607-X#

PACS number~s!: 83.70.Fn, 46.10.1z, 46.30.Cn, 07.05.Tp
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I. INTRODUCTION

Extensive interest has been devoted to the study of gra
lar matter in the last few years@1#. It exhibits many surpris-
ing phenomena and even though classical mechanics
mature domain, granulates in general, and static gran
systems in particular still pose many open questions. In
case of a static heap of grains it was observed that the p
sure on the supporting surface presents a local minimum~a
dip! under the apex of the pile rather than the intuitive
expected maximum@2,3#. This observation is qualitatively
explained by an arching effect, transporting the charge of
grains’ weight to the sides of the pile@4#. This idea was later
incorporated in a new continuum approach@5–8# under the
so-called ‘‘fixed principal axis’’~FPA! hypothesis model, in
which the constitutive equation needed to close the system
equations states that the stress tensor has its principal
always pointing in the same direction. It is claimed that t
characteristic is ‘‘remembered’’ by the grains from the m
ment they were buried at the surface of the pile when the
has grown. This model gives results in very good agreem
with the experimental data of three-dimensional~3D! piles.
The validity of this approach is not generally accepted, a
some authors@9,10# reject the basic assumption of the FP
model, pointing out that experiments on wedge form piles
not show any dip as predicted by the FPA model and that
FPA model cannot account for the observed sensitivity of
force networks in the heap to the base boundary condit
~see Refs.@9,10#, and references herein!. It is claimed that
the well known elastoplastic continuum model of soils is s
valid in the pile’s case. The dip, in this model, is accoun
for by the existence of regions with different constituti
behaviors, plastic in the outer region and elastic in the in
region @11,12#.

Even though continuum models are very useful they
not give many clues about the micromechanical origin of
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granular behavior, since these models are homogenized m
els taking a mean over a large number of grains. Some
cromechanical models were proposed in order to link
grain-size physics to the pile-size phenomena@13–21#. One
simple model is an array of rigid spheres arranged on a
mond lattice@15#. Under this kind of pile the normal force
was shown to be constant even when periodic vacancies
introduced throughout the pile@17#. Varying the sizes of the
grains or introducing attractive forces might change
forces under the pile, but still does not reproduce the exp
mental force profile@18#.

Many of the discrete models used for granular matter
a large variety of numerical simulation techniques such
molecular dynamics@21,14#, contact dynamics@22#, cellular
automata@19,20#, and others. Although these algorithms a
useful in reproducing many of the characteristics of granu
matter, none of these methods is completely satisfact
Convergence is very slow due to the highly nonlinear ch
acter of the contact forces. The amplitude of forces in gra
lar matter spawns several orders of magnitude@23,1# produc-
ing badly conditioned numerical systems, and granu
media are extremely sensitive to fluctuations@16,24#. As a
result, much care should be taken when numerically simu
ing granulates since cumulative roundoff errors might g
rise to errors of considerable amplitude. Moreover, besi
some very simple models@15,17,25#, analytical results are
uncommon for these discrete models so that numerical
sults are seldom verified.

A symbolic calculation software allows us, in some cas
to perform numerical-like calculations while avoiding an
numerical errors. When using such software one can perf
automated analytical calculations as if they were done
hand but on systems of a size too large to be calculated
human.

In this paper we present an implementation of such a
culation, in the case of a pyramidal piling of 2D disks, und
the effect of gravity, and in the absence of friction. We u
‘‘springlike’’ contacts under compression between disks a
suppose them having infinite rigidity, solving the equilibriu
2079 © 1998 The American Physical Society
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2080 PRE 58G. ORON AND H. J. HERRMANN
equations in a straightforward way. We do not need a
damping at the contacts, as it is often the case in nume
methods, since no dynamics is used in order to find the
lution. Results obtained with this scheme are free of a
numerical error.

We study a wide variety of geometrical configuration
with different supporting surfaces, lattice orientations, a
external constraints. In particular, some of the configurati
proposed in Ref.@21#, and studied using molecular dynam
ics, will be treated so as to provide a cross check of num
cal results.

The generality of this method makes it versatile and ea
adaptable to other static cases like silo geometries, 3D
ings of spheres, or the study of the force network un
external mechanical constraints or any other case wh
piecewise linear equation systems are to be resolved.

The outline of the paper is the following. The model
exposed in Sec. II and the different configurations are lis
in Sec. III. The algorithm is detailed in Sec. IV. Section
presents the results for the different realizations that are
cussed in Sec. VI.

II. THE MODEL

Since we aim at getting exact results we must consid
simple model. First, we will consider only two-dimension
piles formed of identical, frictionless, spherical grai
~disks!, of same radiusR and weightw. Those grains will
always be arranged on a horizontal surface to form a pile
a triangular lattice, which is the natural lattice in this case
this case the coordination numbernc ~the number of neigh-
bors or the number of possible contacts! is greater than twice
the space dimension so that if one only considers infinit
stiff disks, the system is hyperstatic, i.e., the number of
grees of freedom in the system is bigger than the numbe
equations imposed by the mechanical equilibrium and
stability of the system ((FW 50W ) is not sufficient to determine
all forces. In such a case, one must introduce new relation
order to solve the problem.

The easiest way to introduce the necessary relations
consider elastic, springlike contacts between the disks,
placing the pile by an array of pointlike masses linked
springs, so that the force applied by diskd1 on diskd2 is

FW d1→d2
52

1

t
~2R2urWd1

2rWd2
u!

3
rWd1

2rWd2

urWd1
2rWd2

u
u~2R2urWd1

2rWd2
u!, ~1!

wheret is the inverse of the elastic modulus~or the softness!
of each disk-disk contact, andrWdn

the position of the diskdn .

u represents the Heaviside step function. Theu functions are
introduced in order to take into account the unilateral ch
acter of the contact forces in dry granular matter, i.e., that
disks can push~when 2R2urWd1

2rWd2
u.0) but not pull each

other. The system is therefore nonlinear and clearly imp
sible to solve analytically, with or without the use of a sym
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bolic calculation software, so some kind of simplifying a
sumption must be introduced. In particular, we consider
case of hard disks;

t!R/w. ~2!

Since forces are finite, this condition implies that the d
placements of the disks from the lattice points must tend t
with t, hence, when calculating to first order int, these
displacements are proportional tot. We can develop the
equations to first order in all the displacements, lineariz
the (2R2urWd1

2rWd2
u)(rWd1

2rWd2
)/urWd1

2rWd2
u terms. The re-

maining nonlinear parts involved are theu functions that
cannot be linearized around 0.

Dealing with the nonlinearity arising from theu function
is the hardest part of the solution. One may consider ca
lating all possible combinations of absent or present conta
solve the linear system obtained for each one of them,
keep only solutions consistent with the conditions of t
originally supposed contact network. Unfortunately, th
method is extremely time consuming, since one must so
for 2c different realizations, withc the number of contacts in
the system. We will deal with this difficulty by an iterativ
method described in Sec. IV.

Although we can use this algorithm for any value oft so
that t!R/w ~slightly deformable grains!, in the following
we will limit ourselves to the case of rigid disks, takin
~analytically! the limit t→0, in order to get results indepen
dent oft.

A question we did not address in this work is the ex
tence and uniqueness of the solution. Since the system
equations is nonlinear both questions are open and des
further investigation. We always found a solution for wha
ever pile size we studied, so that the existence is assure
least for the pile sizes we have investigated.

III. THE GEOMETRICAL CONFIGURATIONS

We have studied the following geometrical configur
tions.

~1! A ‘‘tilted’’ ~in the following we will use ‘‘tilted’’ to
designate a lattice of the type shown in Figs. 1 and 2;
term ‘‘untilted’’ will refer to a lattice of the type shown in
Figs. 3 and 4! triangular lattice pile with 30° slope and th
following surface conditions.

~a! ‘‘Bumpy’’ surface, as shown in Fig. 1. The pile pose
on top of two layers of fixed disks; the centers of those di
are maintained on the triangular lattice points in order
simulate an infinitely rough surface. We will refer to th
case as the TBS case~TBS denotes tilted bumpy surface!.

~b! ‘‘Smooth’’ flat surface with only the outermost bas
disks fixed, as shown in Fig. 2. In the following we will refe
to these disks as thecorner stones. This case will be referred
to as the TSS case.~TSS denotes tilted smooth surface.!

~2! A 60° slope, ‘‘untilted’’ pile on a smooth surface, se
Fig. 3. The NT60 case.~NT60 stands for not tilted 60°
slope.!

~3! A 30° slope, ‘‘untilted’’ pile on a smooth surface, se
Fig. 4, the NT30 case. In this case we have studied the
fluence of applying a force on the lower row of disks b
slightly displacing the corner stones. This configurati



un
e
or
at

d
ig

ha
c

e
sk

e

e

ich
the

l
ed

f
the
ly
s

ers

he
he

e,

e

PRE 58 2081EXACT CALCULATION OF FORCE NETWORKS IN . . .
~among others! was studied in Ref.@21# using ‘‘spring-
dashpot’’ contacts and solved with molecular dynamics.

IV. THE ALGORITHM USED

The algorithm was implemented on a Sun computer r
ning MAPLE-V symbolic calculation software. Basically, th
algorithm is looking for a configuration of the contacts f
which the solution for the positions of the disks is comp
ible with all of Heaviside’su functions.

A simplified flow chart of this algorithm is shown in
Fig. 5.

A. Notations

Here and below, we will use the following notations.
~1! The disks are indexed by the couple (i , j ) where i is

the row number, counting from the top to the bottom, anj
is the disk’s position counting from the left to right. See F
1, for example.

~2! The forces that might act on the disk (i , j ) are named
ai , j , bi , j , ci , j , di , j , ei , j , f i , j , andpi , j . Note that the no-
tations are different for the two lattice orientations and t
pi , j is only present in the untilted case with smooth surfa
~see Fig. 6!.

~3! We denote witha( i 1 , j 1 ,i 2 , j 2) the angle between th
horizontal and the line connecting the centers of di
( i 1 , j 1) and (i 2 , j 2).

~4! We designate byxi , j andyi , j the x andy coordinates
of the center of the disk (i , j ).

~5! We call N the number of layers in the pile. In th
bumpy surface case we considerN as the number offree to
movelayers.

~6! We namet i the total number of disks on thei th layer,
hi the number of disks in onehalf of the i th layer, center disk
included, and finallyhi8 the same number but excluding th

FIG. 1. A ‘‘tilted’’ triangular lattice pile of five layers~TBS
case! with a slope of 30°, the two gray layers represent t
‘‘bumpy’’ floor. Those two layers have their centers fixed on t
lattice points. The indexing convention (i , j ) used is shown.

FIG. 2. A ‘‘tilted’’ triangular lattice pile of seven layers~TSS
case! with a slope of 30°, the two gray disks~corner stones! have
their centers fixed on the lattice points.
-

-

.

t
e

s

center disk. It is simple to see that~a! for the tilted piles
~Figs. 1 and 2! we have t i5 i , hi5 b( i 11)/2c, and hi8
5 b i /2c, ~b! for the 60° slope untilted lattice pile~Fig. 3!, t i

5 i , hi5 b( i 11)/2c, andhi85 b i /2c, and~c! for the 30° slope
untilted lattice pile~Fig. 4!, t i53i 22, hi5 b(3i 22)/2c, and
hi85 b(3i 21)/2c. bxc denotes the integer part ofx.

~7! The variableZ will contain, in our algorithm, the list
of the forces between the couples of neighboring disks wh
are not in contact. These forces will be removed from
system of equations.

B. Resolution steps

The general resolution steps are the following~see also
the flow chart shown in Fig. 5!.

~1! Initialize Z5B. One can also start with another initia
contact configuration closer to the solution in order to spe
up the calculation time.

~2! Write the system of equations(FW i50W for the entire
pile for thex andy projections. In order to limit the size o
the equation system we take immediately into account
x→2x symmetry of the pile. In other terms, we write on
the projections on thex axis of the equations for the disk
( i , j ) with i 51, . . . ,N and j 51, . . . ,hi8 and the projections
on they axis for j 51, . . . ,hi . At the end of this step the
system is written in terms of the forcesai , j ,bi , j ,ci , j ,di , j ,ei , j
~and eventuallypN, j ) and the angles between the disk cent
~see Fig. 6!.

FIG. 3. A triangular lattice pile of nine layers in the NT60 cas
the two gray disks~corner stones! are fixed on the lattice points.

FIG. 4. A triangular lattice pile of eight layers with 30° slop
~the NT30 case!, the two gray disks~corner stones! are fixed on the
lattice points.
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2082 PRE 58G. ORON AND H. J. HERRMANN
~3! We introduce the conditions at the border and at
bottom of the pile. In other terms, substitute 0 for forces l
~in the TSS case! bi ,1 ,ci ,1 ,eN21,j , etc. wherei 51, . . . ,
N21, j 51, . . . ,tN21.

~4! We remove forces between neighbors not in conta
In other words, we substitute 0 for all of the forces in t
variableZ.

~5! We apply Hook’s law@Eq. ~1!, replacing theu func-
tions by 1#, so that the forces are now expressed in terms
the positions of the centers of the disks.

~6! Replace the angles by their expressions in the p
tions. For example, in the TSS and TBS case, pose

FIG. 5. A simplified flow chart of the resolution algorithm use
~see Sec. IV for more details!.
e

t.

f

i-

cos@a~ i , j ,i 21,j !#5
xi 21,j2xi , j

A~xi , j2xi 21,j !
21~yi , j2yi 21,j !

2
.

~3!

~7! At this point the equations are written entirely in term
of xi , j andyi , j . The assumption of very high stiffness ente
here, we rewrite the positions in terms of the displaceme
from the lattice pointsdxi , j and dyi , j , i.e., we setxi , j

5xi , j
lattice1dxi , j andyi , j5yi , j

lattice1dyi , j .
~8! We develop the equations to first order in those di

placements.
~9! We resolve the linear equations to finddxi , j anddyi , j .

These displacements are proportional tot, the inverse elastic
modulus.

~10! In some cases~TSS, NT60, NT30! the system ob-
tained in step~8! does not have any solution because to
many forces were removed at once at the previous iterat
and stability can no longer be assured. If such a case appe
we remove fromZ the force having the minimal value for
z2R2urW i 1 , j 1

2rW i 2 , j 2
uz, in other terms we reintroduce a contac

between the closest couple of separated disks until equi
rium is regained.

~11! Once the displacements are known, we use Hoo
law again in order to calculate the contact forces.

~12! If some of those forces are found to be negative, i.
the corresponding contact is attractive, we add them toZ
@those forces will be eliminated in step~4!#. In a similar
manner, forces currently inZ which are no longer attractive
~since for the last solution found 2R2urW i 1 , j 1

2rW i 2 , j 2
u>0),

are removed fromZ.
~13! If the last step produced no change, we conclude th

our solution satisfies all of Heaviside’su functions and the
algorithm stops, returning the forces,Z, and the displace-
ments. As we mentioned before this proves the existence o
solution, but there might be others. Otherwise, the listZ is
updated and the algorithm returns to step~2!.

C. Computer resources used

The computer time needed in order to get the final for
configuration varied from some minutes~four layers! to sev-
e

FIG. 6. The notations used for the force names.~i! represents the case of a tilted lattice~TBS and TSS cases!, ~ii ! and~iii ! represent the

untilted one~NT60 and NT30!, where~ii ! is the case of a disk in one of the upperN21 layers and~iii ! is the case of disks that touch th
surface. The angles are those for the limitt→0.
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PRE 58 2083EXACT CALCULATION OF FORCE NETWORKS IN . . .
eral days~more than twenty layers! on a Sparc 20 station
The maximum size varied from one configuration to t
other, because some~like the TSS or NT30! needed more
iterations than other cases before arriving at the correct c
tact configuration. Another limitation is memory; large sy
tems create huge systems of equations that can occu
large amount of memory@we used up to 30 Mbytes of ran
dom access memory~RAM! in some cases#.

V. RESULTS

For each of the geometrical configurations we pres
several interesting characteristics derived from the soluti

The force and contact networks. When the algorithm
stops, we obtain a contact network and its superposed f
network. We will represent those networks in a single p
where a dashed line represents an absent contact, a ful
represents a contact and it is drawn with a width proportio
to the amplitude of the force. In some cases we observe
existence of a limit case where a contact exists but the fo
vanishes~osculatory disks!. This kind of contacts will be
represented by a dash-dotted line. These plots will give u
idea of the effective lattice in different zones of the pile a
the possible existence of an arching effect.

The stress tensor. The stress tensorsab , averaged over
one particle and in the case of pointlike contacts, is given

sab5~1/V!(
k

Fa
k r b

k , ~4!

where the sum runs over all external forces acting on
particle,Fa

k is theath component of thekth force,r b
k is the

bth component of its contact point position, andV5pR2 is
the volume of each particle. Since we neglect tangen
forces the particles are torque free and the stress tens
symmetric. In these plots, the stress tensor for each par
will be represented by two segments of length proportio
to the eigenvalues and pointing at the direction of the eig
vectors~principal and secondary axes!. The stress tensor wil
help us compare our results to results from various c
tinuum mechanics approaches, especially to the fixed pri
pal axis hypothesis.

Pressure profile on the base of the pile. The normal and
~when present! horizontal forces applied by the pile on th
supporting surface will be plotted as a function of the po
tion x. These plots will provide a comparison of our resu
to the experimental data, mainly in order to verify whethe
dip is present or not.

Size dependency of the forces. By solving for different
pile sizes we can trace the evolution of the forces acting o
given disk as a function of the size of the pile. In order to g
the maximum number of data points we concentrated on
(2,1).

A. ‘‘Bumpy’’ surface tilted lattice: TBS

In this section we present the results for a piling of dis
posed on two layers of disks attached to the lattice, as sh
in Fig. 1.
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1. The resulting force network

In this case, shown in Fig. 7, one can notice that
missing contacts tend to appear on the flanks of the p
while in the inner part of the pile all neighboring disks are
contact. This behavior is incompatible with the basic FP
assumption since a particle at the open surface is in a c
pletely different situation once it is buried. None of the co
tacts downwards are missing and we can notice that th
contacts are the preferred paths for the forces thus exclu
any arching.

2. The stress tensor

The resulting stress tensor is shown in Fig. 8. As we co
expect, we do not observe in this geometry a fixed princi
axis direction, but rather a typical result that would follo
from the traditional IFE~incipient failure everywhere! as-
sumption~Ref. @7#, Sec. 2.5!. The stress tensors’ variation
are quite smooth and all of the pile seems to have the s
behavior.

3. The pressure profile

In the TBS case it is not straightforward to defin
uniquely the pressure or the normal force distribution on
supporting surface since it is in contact with two differe
layers. We show in Fig. 9 the normal and shear forces on
last layer of disks, ignoring those on the layerN21. Because
we took into account only theNth layer, the sum of the
normal forces is smaller than the total weight of the pi
Anyhow, it is clear that the distribution does not show a d
but rather a maximum.@Both distributions of normal forces
on theNth and (N21)th layer are peaked under the apex
the pile.#

4. Dependence on the size of the pile

The evolution of the forces acting on the disk (2,1)
plotted in Fig. 10. For small values ofN, the finite size
effects are large and the forces fluctuate considerably. Bu
the size increases, these effects disappear, and a linea
gime is established. The important point here is that all

FIG. 8. The principal and secondary axes of the stress tenso
a pile of 11 layers for the TBS case~see Sec. V for more details!.

FIG. 7. The force network for a pile of 15 layers in the TB
case. The linewidth is proportional to the force amplitude,
dashed lines represent absent contacts~see Sec. V for more details!.
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2084 PRE 58G. ORON AND H. J. HERRMANN
forces, even those at the top of the pile, are highly correla
to the size and ‘‘feel’’ each added layer. We can expect t
this should not be the case when the size of the pile gets e
bigger and a saturation should occur. The question is h
will it occur? Will asymptotically the forces tend to a con
stant value, or will they rather continue changing linea
until one of them~in the figure’s casee2,1) will reach zero
causing the corresponding contact to disappear and the o
forces to stabilize? We are not able to study the behavio
the forces at the point where, for example,e2,1 vanishes,
since the computer resources needed would be too larg
the corresponding pile sizes~more than 30 layers!.

B. Tilted lattice, smooth surface: TSS

The geometrical situation is presented in Fig. 2. Disks
the last row are free to move without friction on the surfa
only the corner stones~in gray! are fixed on the lattice and
are not allowed to move. This situation is technically hard
than the previous one because on a bumpy surface the
rithm only removed contacts in every iteration without ev
creating them again in the following iterations, so that ev

FIG. 9. The normal~full line! and shear~dashed line! forces on
the base of a pile of 17 layers in the TBS case. We do not obs
any dip in the normal force distribution. The shear forces vanis
the center of the pile as expected from symmetry~see Sec. V for
more details!.

FIG. 10. The dependence of the forces acting on disk~2,1! on
the size of the pile for the TBS case.N is the number of layers,a,
d, e, and f are forces acting on the disk as defined in Fig. 6.
forces are normalized by a disk weight~see Sec. V for more de
tails!.
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iteration approaches the final solution. Here, this is not
case. Contacts often reappear, making the approach to
final solution much slower.

1. Force network

An example of the force network obtained is shown
Fig. 11. This network differs considerably from the one
the TBS case. First of all the number of absent contact
much larger and they appear mainly in the center of the
and not just on the surface as in the TBS case. Second
new case has appeared for which the force vanishes exa
even though the corresponding contact does exist~osculatory
disks!. Again, nearly all of the vertical contacts are prese
so no arching is observed.

2. Stress tensor

The stress tensors’ principal and secondary axes
shown in Fig. 12. Again, the results differ from the TB
case. We can observe three regions with different behav
with an abrupt transition:~a! Disks on the surface of the pile
having the principal axis pointing along the surface,~b! disks
in the inner part of the pile, having the principal and secon
ary axes pointing horizontally or vertically, and~c! disks at
the shoulders of the pile with no clear preferred direction.
this case our result is in contradiction to the basic assump
of the FPA model since the stress tensor on the surface o
pile differs considerably from the one of a buried particle

3. Pressure profile

The normal forces acting on the surface of a 13 layer p
~the biggest pile size we were able to calculate in this ca!
are shown in Fig. 13. The shear force acting on the bott
layer is zero because of the smoothness of the surface.
pressure profile is close to the one in the TBS case displa
in Fig. 9. As in the TBS case we do not observe a dip
rather a maximum.

ve
t

l

FIG. 11. The force network of a pile of ten layers in the TS
case~see Sec. V for more details!.

FIG. 12. Principal and secondary axes of the stress tensor
pile of ten layers for the TSS case~see Sec. V for more details!.
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4. Variations of the forces with the size of the pile

The variations of forces acting on disk (2,1) are presen
in Fig. 14 ~compare with Fig. 10!. We observe a strong de
pendence on the parity ofN and a saturation of the forces fo
large pile sizes of the same parity. We do not have eno
data in order to determine whether the dependence on
parity of N continues for even larger piles.

C. The NT60 case: ‘‘untilted’’ lattice, 60° slope pile

The system in this case is shown in Fig. 3. When one d
not consider the horizontal contacts~equivalent to taking a
slope slightly inferior to 60°) it is easy to calculate analy
cally the forces and find that the distribution of normal forc
is uniform on the base and that the shear force on the b
varies linearly with the position@15,17,25#. In this case we
always get a contact network in whichall horizontal contacts
are absent, thus giving the same solution as the one in
@15#. This gives us another verification for our method a
an indication about the uniqueness of the solution. Numer
calculations give the same effect@21#.

D. The NT30 case: ‘‘untilted’’ lattice, 30° slope pile

The configuration in this case is the one shown in Fig
As in the TSS case, we fix the corner stones in order to k
the heap stable. This particular geometry was propo

FIG. 13. Pressure profile on the base of a 13 layer TSS pile~see
Sec. V for more details!.

FIG. 14. Variation of the different forces acting on the di
(2,1) as a function of the size of the pile measured in layers;N, in
the TSS case. For clarityf 2,1 is not shown since we obtain for a
sizes thatf 2,1512e2,1. Notice the dependence in the parity ofN
that stays pronounced even for largeN ~see Sec. V for more de
tails!.
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~among others, not studied here! in Ref. @21#, and studied by
numerical simulation using the molecular dynamics meth
Since in this kind of pile the number of disks grows fas
with the number of layers than in the previous configu
tions, we were only able to calculate the force network
piles having fewer than seven layers, making a system
size effect study impossible.

1. The force network

An example of the force network obtained in this case
shown in Fig. 15. We notice three regions somewhat sim
to those observed in the TSS case~see Sec. V B 1 and Fig
11!. Only at the outermost parts of the pile are traces
arching seen where some contacts downwards are abse
the central part of the pile all of the horizontal contacts a
absent, and between those two zones all contacts are pre
In Fig. 16 we show numerical results obtained by molecu
dynamics and provided by Luding@26,21# for the same pile.
They show excellent agreement with ours, even though
numerical results present some differences~some contacts
that are absent and should be present or the vice versa! and
imperfections~notice that the numerical force network is n
exactly symmetric, especially at the corner stones!.

2. The stress tensor

The stress tensor in this case, shown in Fig. 17, is q
similar to the one obtained for the TBS pile~see Fig. 8!, and
no FPA is observed. For comparison, results from Re
@26,21# are superposed~represented by ellipses!. The agree-
ment is so good that the plots are hardly distinguishable

3. The pressure profile

The pressure profiles for a five layer pile~dashed line! and
a six layer pile~full line! are shown in Fig. 18. Both presen
a plateau and a shallow minimum under the apex of the
or near it. We also observe a small depression at the sh
ders of the pile that, as we will see in Sec. V D 4, will pla
an important role when the corner stones are pushed in.
also plot in the same figure results from Refs.@26,21# ~in
circles! that, again, agree well with ours.

FIG. 15. Force network in the NT30 case for a six layer pile~see
Sec. V for more details!.

FIG. 16. The force network obtained for the NT30 case by m
lecular dynamics simulation of a pile of six layers@26#.
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4. The effect of displacing the corner stones

Another point studied in Ref.@21# is the effect of horizon-
tally pushing or pulling the corner stones on the botto
layer. It was observed that pushing in those disks, i.e., fix
their position at a position slightly closer to the axis of t
pile, causes the pressure distribution on the base to pres
deeper dip than the one observed without it.

We studied the same problem using an exact symb
algorithm which is an extension of the previous one. Sin
all calculations are done to the first order int we should only
consider displacements proportional tot, i.e.,dxN,15qt and
dxN,tN

52qt, otherwise the resulting forces will be infinite
To find the correct contact configuration for a given val

of the parameterq, namely,qend, we proceed in the follow-
ing way.

~1! We apply the algorithm described in Sec. IV B
order to solve forq50.

~2! For the contact network obtained in step~1! and for an
arbitrary q we find the distance between every couple
neighboring disks:di , j (q) to first order int. Those distances
depend onq linearly, so we can writedi , j (q)5a i , jq1b i , j .

~3! We solve all the equationsdi , j (q)52R for q. When a
solution exists it is unique, and we denote itqi , j8 . In other
terms, qi , j8 are the values ofq where the contact networ
might change, i.e., contacts might disappear or reappear

~4! We calculate

q95H min~qi , j8 u~qi , j8 .q! if qend.0

max~qi , j8 uqi , j8 ,q! if qend,0.
~5!

In practice, we find the nextq for which the contact network
might change.

~5! If uq9u.uqendu then no change in the contact netwo
will happen betweenq and q9 and since the network an
di , j (q) are known for this interval of values, and hence f
q5qend, we can calculate the forces forq5qend easily from
Eq. ~1! and the algorithm stops.

The expression of each force, as a function of the po
tions, is continuous aroundq9 @Eq. ~1!# so that no disconti-
nuity can occur in the forces if contacts havingdi , j (q9)
52R disappear, onlya i , j5ddi , j (q)/dq might be modified.

~6! We modify the contact network to take into accou
the changes supposed to take place atq9. We setq5q9 and
jump back to step~2!.

~7! In some cases the modification we applied to the c
tact network must be reviewed since in certain cases a f
Fi , j vanished inq9 but sgn@a i , j (uqu,uq9u)#52sgn@a i , j ~uqu
.uq9u)] so that the corresponding contact should not chan

FIG. 17. The principal and secondary axes in the NT30 case
a six layer pile~in the cross representation! and a comparison to
results obtained in Ref.@21# ~represented by ellipses!. Notice the
excellent agreement between the two~see Sec. V for more details!.
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For example, two neighboring disks that were approach
one another forq,q9, i.e., a i , j uq→q91,0 and for which
di , j (q9)52R will be supposed in contact in the new ne
work, but if a i , j uq→q92.0 this contact should not reappea
When the algorithm detects such cases the contact netwo
corrected.

An example for results of the implementation of th
method is shown in Fig. 19 and the variations of the norm
forces on the supporting surface are shown in Fig. 20. T
values ofq where the contact network rearranges for the
layer pile are given in Table I. We observe several intere
ing points in this case. The initial pile is insensitive to po
tive values ofq, in other terms no change in the force ne
work appears when the corner stones are pulled apart.
appears to be a characteristic of the solution for all latt
orientations when the surface is smooth~not exposed here!.
On the contrary, when pushing the corner stones toge
(q,0) the network is restructured at many values ofq
~Table I!. The number of those values is finite so that f
large values of2q the contact network no longer change
At this point ~see Fig. 19! the network is characterized by
large number of absent vertical contacts and all of the h
zontally neighboring disks in contact, which is exactly wh
one might classify as an arching effect. As observed in R
@21# the arching is accompanied by the appearance of a
nounced depression under the apex and a FPA situation
were able to calculate the exact evolution of the press
under the apex of the pile as a function ofq, see Fig. 20. For
large values of2q the pressure under the apex of the pile
decreasing with2q until it reaches its asymptotic value
Surprisingly, we also observe a region for small values
2q for which the minimum is less pronounced and ev
becomes a maximum~see the third frame in Fig. 19!. The

or

FIG. 18. The normal pressure profile for the NT30 case fo
five ~dashed line! and six~full line! layer pile. For the six layer pile
we obtain a small dip below the apex of the pile~see Sec. V for
more details!.
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FIG. 19. The changes in the force network~a!, pressure profile~b!, and the stress tensor~c! for growing values of2q ~see Table I for
the values ofqi) for a six layer NT30 pile. In column~b! the abscissa represents thex axis, and varies between214 and 14 in disk radii unit,
and the ordinate represents the force measured in disk weightsF/w varying in the range 0–6. The length of the representation of
principal axis of the stress tensor~c! and the width of the lines in the force network plots~a! are in a logarithmic scale.
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TABLE I. Values of the parameterq for which the contact network rearranges in the NT30 case for a
layer pile.

q152
64757787245
13047053469

A3 q252
61636606607
11780554266

A3 q352
762822774179
132529054821

A3

q452
6707882705971
1062824475948

A3 q552
4445792285474
687757544473

A3 q652
2397551418033037
365699270454792

A3

q752
892376842807618
118456895286735

A3 q852
1040529221853421
136826565791760

A3 q952
10760229006102401
1372821783991152

A3

q1052
688471809160333
83961109063488

A3 q1152
8424287631067
527998087996

A3 q1252
23088074878561
1393226957796

A3

q1352
203779480235
10761198684

A3 q1452
54690800571
2080923200

A3 q1552
122907611189

3605129400
A3

q1652
13899925451

389467512
A3 q1752

8553278999
235721424

A3 q1852
258704085

689612
A3

q1952
15648333

325195
A3 q2052

35529
704

A3 q2152
100-11
3136

A3

q2252
2209

33
A3 q2352

266
3

A3
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mechanism of this change can be understood from Fig. 1
is not the small depression under the apex of the pile,
served forq50, that is the source for the dip when2q is
big, but rather the depressions observed at the flanks o
pile. These depressions move toward the center to creat
dip.

VI. CONCLUSIONS

In this paper we have presented an approach capab
producing exact results for the force and contact netwo
for piles of regularly packed hard disks for a large variety
cases: different orientations, geometries, and supporting
faces. The advantage of this method is that results are c
pletely reliable since they are free of roundoff or other n
merical errors. We obtain a wide variety of results for t
different realizations we study. We conclude that lattice o
entation and the characteristics of the supporting surf
have a very important impact on the physical properties
the pile even when the pile is globally the same, and
contacts are of the same nature. Permitting propagatio
forces vertically downwards when using a ‘‘tilted’’ lattic
~TBS and TSS cases! leads to a behavior completely contra
to arching where the contact forces of the largest amplit
are vertical. On the other hand, when no vertical propaga
is possible arching is more likely to occur, as we notice
the ‘‘untilted’’ case NT30. Arching can also be stimulated
imposing external constraints on the system that favor
horizontal contacts, like pushing in the corner stones.
were able to follow step by step the reorganization of
contact network while the pile is increasingly controlled
arching and a dip is established as the constraints grow.
perimental evidence for the importance of the orientation
the lattice of 2D granular systems was already observed
dynamic systems@27#, but is generally ignored for static sys
It
b-

he
the

of
s
f
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m-
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e
f
e
of

e
n

e
e
e

x-
f

or

tems where the ‘‘untilted’’ lattice is the one generally use
Since real granular systems are disordered, real eff
should not depend on the local orientation of the latti
Much care should be taken when interpreting results tha
depend on the orientation.

We confirm the claims in Ref.@9# about the sensitivity of
the results to the boundary conditions at the base of the p
especially the roughness of the surface has a large influe
on both the contact network and the stress tensor~compare
Fig. 7 to 11 and 8 to 12!.

The results we get with this method can be used to ch
the precision of widely used numerical simulations, for mu

FIG. 20. Variation of the pressure under the apex of the p
with q in the NT30 case. The dots represent the values ofq where
the contact network rearranges~see Table I!.
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larger systems. We were able to do so in the NT30 c
producing the same results as in Ref.@21#. We also confirm
the effect that pushing the corner stones has on the pres
profile, i.e., the dip becoming pronounced.

On the other hand, we do not get comparable results w
pulling out the corner stones. In Ref.@21# asymmetric solu-
tions were obtained in this case, and might indicate the
istence of more than one solution or of a numerical flaw. W
do not observe any rearrangement of the contacts when
corner stones are pulled apart, which seems to be a cha
teristic of all solutions withq50. One must keep in mind
however, that in Ref.@21# results are given for a finite valu
of the stiffness, while here the stiffness is infinite.

In the NT30 case~Fig. 18! the pressure on the base of th
pile presents, for an even number of layers, the famous
observed under the apex of granular heaps@2,3#.

We also observe, as in Ref.@21#, that the dip becomes
more pronounced as we increase the applied force on
corner stones, but we also conclude that this dip is
formed by deepening of the shallow minimum observed
q50 but rather from the small depressions at the flanks
move toward the center of the pile when2q increases.

However, in the light of the discussion above, concern
the sensitivity of results to the type of supporting surface a
lattice orientation, and since a dip wasnot observed for the
‘‘tilted’’ piles ~Figs. 9 and 13!, we believe that one canno
conclude that this simple model contains the physical ing
da
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dients that give rise to the depression under the apex of
pile or to the FPA situation.

The method we used can be easily adapted to other
ometries like silos or 3D pilings of spheres. One might a
consider the introduction of other physical ingredients li
friction or polydisperse disk sizes. The introduction of fri
tion doubles the number of degrees of freedom of the syst
since tangential components of the contact forces are ad
to each of the contact forces. On the other hand, Coulom
friction law does only supply us with an inequalityF uu
<mF' rather than an equality. One can face this problem
two ways.

~1! Use the inequality solving facility inMAPLE in order to
get bounds to the force values. This would probably be
difficult task mainly because of theu functions.

~2! Introduce a supplementary assumption about the f
tion forces likeF uu5mF' which is the IFE assumption, o
any other relation between the forces.

The introduction of disorder into the system~polydisperse
grains! does not present conceptual problems and could
faced in principle in the framework of our approach. How
ever, it would be hard, in this case, to get reliable statis
due to the long resolution times.

We would like to thank Ste´phane Roux for enlightening
discussions, Loı¨c Sorbier for his work on theq algorithm,
and Reuven Zeitak for a fruitful discussion on theq algo-
rithm.
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