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Exact calculation of force networks in granular piles

G. Ororf and H. J. Herrmann
Laboratoire de Physique et Manique des Milieux Herogenes, URA CNRS 7636, Ecole de Physique et de Chimie Industrielles,
10 rue Vauquelin, 75231 Paris Cedex 05, France
(Received 9 June 1997; revised manuscript received 10 March 1998

We present calculations of forces for two-dimensional static sand pile models. Using a symbolic calculation
software we obtain exact results for several different orientations of the lattice and for different types of
supporting surfaces. The model is simple, supposing spherical, identical, rigid particles on a regular triangular
lattice, without friction and with unilateral springlike contacts. Special attention is given to the stress tensor and
pressure on the base of the pile. We show that orientation of the lattice and the characteristics of the supporting
surface have a strong influence on the physical properties of the pile. Our results agree well with humerical
simulations done on similar systems and show, in some specific cases, a dip, i.e., a depression under the apex
of the pile. We also estimate that the algorithm we have developed can be easily adapted to other configura-
tions and models of granulates and can be used in other physical cases where piecewise linear systems are
encountered.S1063-651X98)09607-X]

PACS numbg(s): 83.70.Fn, 46.16-z, 46.30.Cn, 07.05.Tp

I. INTRODUCTION granular behavior, since these models are homogenized mod-
els taking a mean over a large number of grains. Some mi-
Extensive interest has been devoted to the study of granweromechanical models were proposed in order to link the
lar matter in the last few yeafd]. It exhibits many surpris- grain-size physics to the pile-size phenomébd-21. One
ing phenomena and even though classical mechanics is simple model is an array of rigid spheres arranged on a dia-
mature domain, granulates in general, and static granulanond lattice[15]. Under this kind of pile the normal force
systems in particular still pose many open questions. In thevas shown to be constant even when periodic vacancies are
case of a static heap of grains it was observed that the prestroduced throughout the pile7]. Varying the sizes of the
sure on the supporting surface presents a local minifam grains or introducing attractive forces might change the
dip) under the apex of the pile rather than the intuitively forces under the pile, but still does not reproduce the experi-
expected maximuni2,3]. This observation is qualitatively mental force profilg18].
explained by an arching effect, transporting the charge of the Many of the discrete models used for granular matter use
grains’ weight to the sides of the pild]. This idea was later a large variety of numerical simulation techniques such as
incorporated in a new continuum approd&s-8| under the  molecular dynamic$21,14], contact dynamic§22], cellular
so-called “fixed principal axis”(FPA) hypothesis model, in automatg 19,20, and others. Although these algorithms are
which the constitutive equation needed to close the system afseful in reproducing many of the characteristics of granular
equations states that the stress tensor has its principal axisatter, none of these methods is completely satisfactory.
always pointing in the same direction. It is claimed that thisConvergence is very slow due to the highly nonlinear char-
characteristic is “remembered” by the grains from the mo-acter of the contact forces. The amplitude of forces in granu-
ment they were buried at the surface of the pile when the piléar matter spawns several orders of magniti&i 1] produc-
has grown. This model gives results in very good agreemerihg badly conditioned numerical systems, and granular
with the experimental data of three-dimensiof@D) piles. media are extremely sensitive to fluctuatidi$,24. As a
The validity of this approach is not generally accepted, andesult, much care should be taken when numerically simulat-
some author§9,10] reject the basic assumption of the FPA ing granulates since cumulative roundoff errors might give
model, pointing out that experiments on wedge form piles daise to errors of considerable amplitude. Moreover, besides
not show any dip as predicted by the FPA model and that theome very simple modelsl5,17,25, analytical results are
FPA model cannot account for the observed sensitivity of theincommon for these discrete models so that numerical re-
force networks in the heap to the base boundary conditionsults are seldom verified.
(see Refs[9,10], and references hereginlt is claimed that A symbolic calculation software allows us, in some cases,
the well known elastoplastic continuum model of soils is stillto perform numerical-like calculations while avoiding any
valid in the pile’s case. The dip, in this model, is accountednumerical errors. When using such software one can perform
for by the existence of regions with different constitutive automated analytical calculations as if they were done by
behaviors, plastic in the outer region and elastic in the innehand but on systems of a size too large to be calculated by a
region[11,12. human.
Even though continuum models are very useful they do In this paper we present an implementation of such a cal-
not give many clues about the micromechanical origin of theculation, in the case of a pyramidal piling of 2D disks, under
the effect of gravity, and in the absence of friction. We use
“springlike” contacts under compression between disks and
*Electronic address: oron@pmmbh.espci.fr suppose them having infinite rigidity, solving the equilibrium
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equations in a straightforward way. We do not need anybolic calculation software, so some kind of simplifying as-
damping at the contacts, as it is often the case in numericaumption must be introduced. In particular, we consider the
methods, since no dynamics is used in order to find the scease of hard disks;
lution. Results obtained with this scheme are free of any
numerical error. T<R/w. 2

We study a wide variety of geometrical configurations,
with different supporting surfaces, lattice orientations, andSince forces are finite, this condition implies that the dis-
external constraints. In particular, some of the configurationplacements of the disks from the lattice points must tend to 0
proposed in Ref[21], and studied using molecular dynam- with 7, hence, when calculating to first order i these
ics, will be treated so as to provide a cross check of numeridisplacements are proportional to We can develop the
cal results. equations to first order in all the displacements, linearizing

The generality of this method makes it versatile and easilythe (2R_|Fd _Fd |)(Fd _Fd )/|Fd _Fd | terms. The re-

. . . . . 1 2 1 2 1 2

adaptable to other static cases like silo geometries, 3D p'lfnaining nonlinear parts involved are thefunctions that
ings of spheres, or the study of the force network undet,nnot be linearized around O.
external mechanical constraints or any other case where Dealing with the nonlinearity arising from the function

piecewise linear equation systems are to be resolved. 5 1o hardest part of the solution. One may consider calcu-

The outline of the paper is the following. The model is |5ing 4il possible combinations of absent or present contacts,
exposed in Sec. Il and the different configurations are listed e the linear system obtained for each one of them, and
in Sec. lll. The algorithm is detailed in Sec. IV. Section V yeen only solutions consistent with the conditions of the
presents the results for the different realizations that are d'%riginally supposed contact network. Unfortunately, this
cussed in Sec. VI. method is extremely time consuming, since one must solve

for 2¢ different realizations, witle the number of contacts in
Il. THE MODEL the system. We will deal with this difficulty by an iterative
method described in Sec. IV.

Since we aim at getting exact results we must consider a Although we can use this algorithm for any valuero$o
simple model. First, we will consider only two-dimensional that r<R/w (slightly deformable grains in the following
piles formed of identical, frictionless, spherical grainswe will limit ourselves to the case of rigid disks, taking
(disks, of same radiu®k and weightw. Those grains will  (analytically the limit 7—0, in order to get results indepen-
always be arranged on a horizontal surface to form a pile ogent of 7.

a triangular lattice, which is the natural lattice in this case. In A question we did not address in this work is the exis-
this case the coordination numbey (the number of neigh- tence and uniqueness of the solution. Since the system of
bors or the number of possible contadtsgreater than twice equations is nonlinear both questions are open and deserve
the space dimension so that if one only considers infinitelyfurther investigation. We always found a solution for what-
stiff disks, the system is hyperstatic, i.e., the number of deever pile size we studied, so that the existence is assured, at
grees of freedom in the system is bigger than the number déast for the pile sizes we have investigated.

equations imposed by the mechanical equilibrium and the

stability of the systemYF =0) is not sufficient to determine Il. THE GEOMETRICAL CONFIGURATIONS
all forces. In such a case, one must introduce new relations in _ _ _ .
order to solve the problem. We have studied the following geometrical configura-

The easiest way to introduce the necessary relations is é°ns. o _ _ o
consider elastic, springlike contacts between the disks, re- (1) A “tilted” (in the following we will use “tilted” to
placing the pile by an array of pointlike masses linked bydesignate a lattice of the type shown in Figs. 1 and 2; the

springs, so that the force applied by digk on diskd, is term “untilted” will refer to a lattice of the type shown in
Figs. 3 and #triangular lattice pile with 30° slope and the

following surface conditions.

,zd == 1(2R—|Fd _Fd ) (a) “Bumpy” surface, as shown in Fig. 1. The pile poses
17%2 T 12 on top of two layers of fixed disks; the centers of those disks
- - are maintained on the triangular lattice points in order to
Fa,—Td, - - simulate an infinitely rough surface. We will refer to this
me(ZR_“dl_ Fa,l), (D case as the TBS ca¢€BS denotes tilted bumpy surface
dp Ty (b) “Smooth” flat surface with only the outermost base

disks fixed, as shown in Fig. 2. In the following we will refer

wherer is the inverse of the elastic modul(m the softnegs  t0 these disks as theorner stonesThis case will be referred
of each disk-disk contact, arlr*qn the position of the diskl, . to as the TSS cas€TSS denotes tilted smooth surface.

- ) _ (2) A 60° slope, “untilted” pile on a smooth surface, see
0 represents the Heaviside step function. Bhenctions are Fig. 3. The NT60 case(NT60 stands for not tilted 60°
introduced in order to take into account the unilateral Char'slope)
acter of the contact forces ip dryﬁgranular matter, i.e., that the (3) A 30° slope, “untilted” pile on a smooth surface, see
disks can pusliwhen R—|[rq —rg,|>0) but not pull each  Fig. 4, the NT30 case. In this case we have studied the in-
other. The system is therefore nonlinear and clearly imposfluence of applying a force on the lower row of disks by

sible to solve analytically, with or without the use of a sym- slightly displacing the corner stones. This configuration
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FIG. 1. A “tilted” triangular lattice pile of five layers(TBS I S L
cas¢ with a slope of 30°, the two gray layers represent the /"\'\\f/'\\f//'\\, N e s
“bumpy” floor. Those two layers have their centers fixed on the \ Iy | |
lattice points. The indexing convention,|) used is shown. . \Y/” \\/\1/ vl
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(among others was studied in Ref[21] using “spring-
dashpot” contacts and solved with molecular dynamics.

7

| |
A \ )
IV. THE ALGORITHM USED * FAN

The algorithm was implemented on a Sun computer run- g 3. A triangular lattice pile of nine layers in the NT60 case,

ning MAPLE-v symbolic calculation software. Basically, the the two gray diskgcomer stonesare fixed on the lattice points.
algorithm is looking for a configuration of the contacts for

which the solution for the positions of the disks is compat-center disk. It is simple to see thé&) for the tilted piles

ible with all of Heaviside’s# functions. (Figs. 1 and 2 we havet;=i, h;=[(i+1)/2|, and h{
A simplified flow chart of this algorithm is shown in =|i/2|, (b) for the 60° slope untilted lattice piléFig. 3, t;
Fig. 5. =i, hy=[(i+1)/2], andh{ =]i/2|, and(c) for the 30° slope

untilted lattice pile(Fig. 4), t;=3i—2, h;=[(3i—2)/2|, and
A. Notations h! =[(3i—1)/2|. || denotes the integer part &f

(7) The variableZ will contain, in our algorithm, the list
of the forces between the couples of neighboring disks which
are not in contact. These forces will be removed from the
system of equations.

Here and below, we will use the following notations.

(1) The disks are indexed by the couplej wherei is
the row number, counting from the top to the bottom, and
is the disk’s position counting from the left to right. See Fig.
1, for example. )

(2) The forces that might act on the disk ) are named B. Resolution steps
aj, bij, ¢, dij, &, fij, andp; ;. Note that the no- The general resolution steps are the followifsge also
tations are different for the two lattice orientations and thathe flow chart shown in Fig.)5
pi,; is only present in the untilted case with smooth surface (1) Initialize Z=(J. One can also start with another initial
(see Fig. 6. contact configuration closer to the solution in order to speed

(3) We denote witha(i1,j1,i2,j,) the angle between the up the calculation time.
horizontal and the line connecting the centers of disks (2) write the system of equatiorSF;=0 for the entire
(i1,J1) and (2.]2). . pile for thex andy projections. In order to limit the size of

(4) We designate by; ; andy; ; thex andy coordinates  the equation system we take immediately into account the
of the center of the diski(j). _ . Xx— —X symmetry of the pile. In other terms, we write only

(5) We call N the number of layers in the pile. In the the projections on the axis of the equations for the disks
bumpy surface case we consid¢ras the number ofree o (j j) withi=1, ... Nandj=1, ... h! and the projections

movelayers. . _ on they axis forj=1, ... h;. At the end of this step the
(6) We namet; the total number of disks on théh layer, system is written in terms of the forces; ,b; ;,c; ;i ;€ ;

hi the number of disks in onlealf of theith layer, center disk (30 eventuallyy, ;) and the angles between the disk centers
included, and finallyh; the same number but excluding the (see Fig. 6. '

7

X

FIG. 2. A “tilted” triangular lattice pile of seven layeréTSS FIG. 4. A triangular lattice pile of eight layers with 30° slope
case with a slope of 30°, the two gray disksorner stongshave  (the NT30 casg the two gray diskgcorner stongsare fixed on the
their centers fixed on the lattice points. lattice points.
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Start with all X: =X
contacts present, F : i—1j i,]
. Coia(l,l,l—ld)]:\/( T 7
Xij " X)) "t T Yie

Write the equation (3)

system not considering
absent contacts . . . . . i
(7) At this point the equations are written entirely in terms
Apply conditions of x; j andy; ;. The assumption of very high stiffness enters
at borders and here, we rewrite the positions in terms of the displacements
surfaces . . .
from the lattice pointséx;; and dy;;, i.e., we setx;;
Apply Hook’s law. = X:é-mce‘l‘ 5Xi,j and yi,j = y:?jttlce‘F éyi,j .
All equations are written (8) We develop the equations to first order in those dis-
in terms of disk center
displacements placements.
(9) We resolve the linear equations to fiag, ; andéy; ; .
Develop to first These displacements are proportionarithe inverse elastic
order in softness
modulus.
| (10) In some case$TSS, NT60, NT3D the system ob-
Update contact Solve for the tained in step(8) does not have any solution because too
network displacements 8 . !
I many forces were removed at once at the previous iteration
Talke limit and stability can no longer be assured. If such a case appears,
softness=0 we remove fromZ the force having the minimal value for
|2R—1ri, j,—1i,.,ll, in other terms we reintroduce a contact
Compare between the closest couple of separated disks until equilib-
Different to the initial \__ Equal @En p rium is regained.
rfgilv‘;ii (11) Once the displacements are known, we use Hook’s

law again in order to calculate the contact forces.
(12) If some of those forces are found to be negative, i.e.,
FIG. 5. A simplified flow chart of the resolution algorithm used the corresponding contact is attractive, we add thenZ to
(see Sec. IV for more detajls [those forces will be eliminated in ste@)]. In a similar
manner, forces currently i which are no longer attractive

(3) We introduce the conditions at the border and at theSince for the last solution foundRe-|r; ; —ri, ;|=0),
bottom of the pile. In other terms, substitute O for forces likeare removed fronZ.
(in the TSS caseb;,ci1.ey_1j, etc. wherei=1, ..., (13) If the last step produced no change, we conclude that
N-1,j=1,... ,thl_' ’ ’ our solution satisfies all of Heaviside# functions and the

(4) We remove forces between neighbors not in contact!gorithm stops, returning the forceg, and the displace-
In other words. we substitute 0 for all of the forces in theMeNts. As we mentioned before this proves the existence of a
variableZ ’ solution, but there might be others. Otherwise, the Ziss

(5) We apply Hook's law[Eq. (1), replacing thes func- updated and the algorithm returns to st@p
tions by 1], so that the forces are now expressed in terms of

the positions of the centers of the disks. C. Computer resources used
~ (6) Replace the angles by their expressions in the posi- The computer time needed in order to get the final force
tions. For example, in the TSS and TBS case, pose configuration varied from some minutésur layers to sev-

(1) (ii) (ii1)

FIG. 6. The notations used for the force nam@stepresents the case of a tilted latti@BS and TSS casgdii) and(iii ) represent the
untilted one(NT60 and NT30Q, where(ii) is the case of a disk in one of the uppér 1 layers andii) is the case of disks that touch the
surface. The angles are those for the limit-0.
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eral days(more than twenty layeyson a Sparc 20 station.
The maximum size varied from one configuration to the
other, because soméike the TSS or NT3D needed more
iterations than other cases before arriving at the correct con-
tact configuration. Another limitation is memory; large sys-
tems create huge systems of equations that can occupy a
large amount of memorjwe used up to 30 Mbytes of ran-

dom access memorRAM) in some casdgs FIG. 7. The force network for a pile of 15 layers in the TBS
case. The linewidth is proportional to the force amplitude, the
V. RESULTS dashed lines represent absent contésete Sec. V for more detalls
For each of the geometrical configurations we present 1. The resulting force network

several interesting characteristics derived from the solution. In this case, shown in Fig. 7, one can notice that the

st oﬂs]evxfgrgﬁtaai‘gda Eggig‘; ::tw;)rﬁf :;/\:]r;eirgstgj grlgg;'ézn;or missing contacts tend to appear on the flanks of the pile,
PS, Perp $Fhile in the inner part of the pile all neighboring disks are in

network. We will represent those networks in a single plc?tcontact. This behavior is incompatible with the basic FPA
where a dashed line represents an absent contact, a full ling

o . ; ; Ssumption since a particle at the open surface is in a com-
represents a contact and it is drawn with a width proportiona letely different situation once it is buried. None of the con-
to the amplitude of the force. In some cases we observe t :

existence of a limit case where a contact exists but the forc cts downwards are missing and we can notice that these
: X R . Eontacts are the preferred paths for the forces thus excluding
vanishes(osculatory disks This kind of contacts will be

represented by a dash-dotted line. These plots will give us aa" arching.

idea of the effective lattice in different zones of the pile and
the possible existence of an arching effect. ' . o
The stress tensoiThe stress tensar,;, averaged over The resulting stress tensor is shown in Fig. 8. As we could

one particle and in the case of pointlike contacts, is given byxpect, we do not observe in this geometry a fixed principal
axis direction, but rather a typical result that would follow

from the traditional IFE(incipient failure everywhepeas-
- sumption(Ref. [7], Sec. 2.5. The stress tensors’ variations
O'a,B:(lN)Ek Folg (49 are quite smooth and all of the pile seems to have the same
behavior.

2. The stress tensor

. 3. The pressure profile
where the sum runs over all external forces acting on the P P

particle, F¥ is the ath component of th&th force,r'§ is the In the TBS case it is not straightforward to define
Bth component of its contact point position, avies wR? is uniguely the pressure or the normal force distribution on the
the volume of each particle. Since we neglect tangentiafupporting surface since it is in contact with two different
forces the particles are torque free and the stress tensor lgyers. We show in Fig. 9 the normal and shear forces on the
symmetric. In these plots, the stress tensor for each particl@st layer of disks, ignoring those on the layér 1. Because
will be represented by two segments of length proportionaie took into account only thélth layer, the sum of the
to the eigenvalues and pointing at the direction of the eigennormal forces is smaller than the total weight of the pile.
vectors(principal and secondary aXeJhe stress tensor will Anyhow, it is clear that the distribution does not show a dip
help us compare our results to results from various conbut rather a maximun{Both distributions of normal forces
tinuum mechanics approaches, especially to the fixed princien theNth and (N—1)th layer are peaked under the apex of
pal axis hypothesis. the pile]

Pressure profile on the base of the pilethe normal and
(when presenthorizontal forces applied by the pile on the 4. Dependence on the size of the pile
;upporting surface W_iII be p_Iotted as a fu_nction of the posi- The evolution of the forces acting on the disk (2,1) is
tion x. Thesg plots will provuje a comparison qf our reSU“SpIotted in Fig. 10. For small values o, the finite size
to the experimental data, mainly in order to verify whether agffects are large and the forces fluctuate considerably. But as
dip is present or not. the size increases, these effects disappear, and a linear re-

_Size dependency of the forcd2y solving for different  gime js established. The important point here is that all the
pile sizes we can trace the evolution of the forces acting on a

given disk as a function of the size of the pile. In order to get
the maximum number of data points we concentrated on disk ’
(2,1). .

.+ - -
—_—— -

A. “Bumpy” surface tilted lattice: TBS Lt f

e i el

In this section we present the results for a piling of disks
posed on two layers of disks attached to the lattice, as shown FIG. 8. The principal and secondary axes of the stress tensor for
in Fig. 1. a pile of 11 layers for the TBS cageee Sec. V for more detalls
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— contact
== no contact

—-= osculatory discs

FIG. 11. The force network of a pile of ten layers in the TSS
case(see Sec. V for more detalls

iteration approaches the final solution. Here, this is not the

FIG. 9. The normalfull line) and sheatdashed lingforces on 556 Contacts often reappear, making the approach to the
the base of a pile of 17 layers in the TBS case. We do not obserVﬁna| solution much slower.

any dip in the normal force distribution. The shear forces vanish at
the center of the pile as expected from symmesge Sec. V for
more details

1. Force network

An example of the force network obtained is shown in

) , Fig. 11. This network differs considerably from the one in
forces, even those at the top of the pile, are highly correlateghs TBs case. First of all the number of absent contacts is

to the size and “feel” each added layer. We can expect thaf, ,ch |arger and they appear mainly in the center of the pile
this should not be the case when the size of the pile gets eveghq not just on the surface as in the TBS case. Secondly, a
bigger and a saturation should occur. The question is howew case has appeared for which the force vanishes exactly,
will it occur? Will asymptotically the forces tend to a con- eyen though the corresponding contact does éastulatory

stant value, or will they rather continue changing linearlygiskg. Again, nearly all of the vertical contacts are present
until one of them(in the figure’s case; ;) will reach zero  go no arching is observed.

causing the corresponding contact to disappear and the other

forces to stabilize? We are not able to study the behavior of

the forces at the point where, for exampés,; vanishes,

since the computer resources needed would be too large for The stress tensors’ principal and secondary axes are

the corresponding pile sizémore than 30 layels shown in Fig. 12. Again, the results differ from the TBS
case. We can observe three regions with different behaviors
with an abrupt transition(a) Disks on the surface of the pile,

B. Tilted lattice, smooth surface: TSS having the principal axis pointing along the surfa@®,disks

The geometrical situation is presented in Fig. 2. Disks inin the inner part of the pile, having the principal and second-

the last row are free to move without friction on the surface,ary axes pointing h°”?°”“?‘”y or vertically, ard) d.'SkS. at
only the corner stoneén gray) are fixed on the lattice and the shoulders of the pile with no clear preferred direction. In

are not allowed to move. This situation is technically harderth|s case our result is in contradiction to the basic assumption

than the previous one because on a bumpy surface the alggf-the FPA model since the stress tensor on the surface of the

rithm only removed contacts in every iteration without everplle differs considerably from the one of a buried particle.
creating them again in the following iterations, so that every

2. Stress tensor

3. Pressure profile

The normal forces acting on the surface of a 13 layer pile
(the biggest pile size we were able to calculate in this case
are shown in Fig. 13. The shear force acting on the bottom
layer is zero because of the smoothness of the surface. This
pressure profile is close to the one in the TBS case displayed
in Fig. 9. As in the TBS case we do not observe a dip but
rather a maximum.

+

I %
' { t )T .
e
- 1 1 + >~
R RN
FIG. 10. The dependence of the forces acting on @&k on 7y , P S

the size of the pile for the TBS casi.is the number of layers, B e e e I e I e I
d, e, andf are forces acting on the disk as defined in Fig. 6. All '
forces are normalized by a disk weigts#ee Sec. V for more de- FIG. 12. Principal and secondary axes of the stress tensor in a

tails). pile of ten layers for the TSS cagsee Sec. V for more detalls
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6
4 FIG. 15. Force network in the NT30 case for a six layer fslee
2f Sec. V for more detai)s
-15 -10 -5 0 5 10 15 % (among others, not studied hg¢ra Ref.[21], and studied by

_ _ numerical simulation using the molecular dynamics method.
FIG. 13. Pressure profile on the base of a 13 layer TSS(pdle  Since in this kind of pile the number of disks grows faster

Sec. V for more details with the number of layers than in the previous configura-
tions, we were only able to calculate the force network for
4. Variations of the forces with the size of the pile piles having fewer than seven layers, making a systematic

The variations of forces acting on disk (2,1) are presentediZ€ effect study impossible.
in Fig. 14 (compare with Fig. 10 We observe a strong de-
pendence on the parity &f and a saturation of the forces for
large pile sizes of the same parity. We do not have enough An example of the force network obtained in this case is
data in order to determine whether the dependence on thghown in Fig. 15. We notice three regions somewhat similar
parity of N continues for even larger piles. to those observed in the TSS casee Sec. VB 1 and Fig.

11). Only at the outermost parts of the pile are traces of
arching seen where some contacts downwards are absent. In
the central part of the pile all of the horizontal contacts are

The system in this case is shown in Fig. 3. When one doeabsent, and between those two zones all contacts are present.
not consider the horizontal contadisquivalent to taking a In Fig. 16 we show numerical results obtained by molecular
slope slightly inferior to 60°) it is easy to calculate analyti- dynamics and provided by Ludif@6,21 for the same pile.
cally the forces and find that the distribution of normal forcesThey show excellent agreement with ours, even though the
is uniform on the base and that the shear force on the basmmerical results present some differen¢esme contacts
varies linearly with the positiofl5,17,23. In this case we that are absent and should be present or the vice vargh
always get a contact network in whiall horizontal contacts imperfectiong(notice that the numerical force network is not
are absent, thus giving the same solution as the one in Reéxactly symmetric, especially at the corner stones
[15]. This gives us another verification for our method and
an indication about the uniqueness of the solution. Numerical 2. The stress tensor
calculations give the same effd&1].

1. The force network

C. The NT60 case: “untilted” lattice, 60° slope pile

The stress tensor in this case, shown in Fig. 17, is quite
_ ) _ similar to the one obtained for the TBS pileee Fig. 8 and
D. The NT30 case: “untilted” lattice, 30° slope pile no FPA is observed. For comparison, results from Refs.
The configuration in this case is the one shown in Fig. 4[26,21 are superpose@tepresented by ellipspsThe agree-
As in the TSS case, we fix the corner stones in order to keefent is so good that the plots are hardly distinguishable.

the heap stable. This particular geometry was proposed
3. The pressure profile

N The pressure profiles for a five layer pidashed lingand
iy a six layer pile(full line) are shown in Fig. 18. Both present
— Reven a plateau and a shallow minimum under the apex of the pile
 Nodd or near it. We also observe a small depression at the shoul-
ders of the pile that, as we will see in Sec. V D 4, will play
an important role when the corner stones are pushed in. We
also plot in the same figure results from Rdf26,21] (in

circles that, again, agree well with ours.

aro

08

0.6

Fw

04

02

0.0

FIG. 14. Variation of the different forces acting on the disk
(2,1) as a function of the size of the pile measured in lay¥rsn
the TSS case. For claritf, ; is not shown since we obtain for all
sizes thatf, ;=1—e,,. Notice the dependence in the parity Mf
that stays pronounced even for larije(see Sec. V for more de- FIG. 16. The force network obtained for the NT30 case by mo-
tails). lecular dynamics simulation of a pile of six layd26)].
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FIG. 17. The principal and secondary axes in the NT30 case for
a six layer pile(in the cross representatipand a comparison to

results obtained in Ref21] (represented by ellipsgsNotice the
excellent agreement between the t@ee Sec. V for more detajls

4. The effect of displacing the corner stones

Another point studied in Ref21] is the effect of horizon-
tally pushing or pulling the corner stones on the bottom
layer. It was observed that pushing in those disks, i.e., fixing
their position at a position slightly closer to the axis of the
pile, causes the pressure distribution on the base to present a
deeper dip than the one observed without it.

We studied the same problem using an exact symbolic
algorithm which is an extension of the previous one. Since 0 i 0 3 10
all calculations are done to the first orderrimve should only X
consider dlsplaceme_nts proportlor_lalﬁ,a.e., 5XN:1:qT_ a_”‘?' FIG. 18. The normal pressure profile for the NT30 case for a
X1, = — 07, otherwise the resulting forces will be infinite. fq (qashed lingand six(full line) layer pile. For the six layer pile

To find the correct contact configuration for a given valuewe obtain a small dip below the apex of the pikee Sec. V for
of the parameteq, namely,genq, We proceed in the follow- more details
ing way.

(1) We apply the algorithm described in Sec. IVB in
order to solve forg=0.

(2) For the contact network obtained in stgp and for an
arbitrary g we find the distance between every couple of
neighboring disksd; ;(q) to first order in7. Those distances
depend ory linearly, so we can writ@l; ;(q)=«; ;q+8; ;.

(3) We solve all the equatiord ;(q) =2R for g. When a
solution exists it is unique, and we denoteqﬁj. In other
terms,qi’,j are the values of] where the contact network
might change, i.e., contacts might disappear or reappear.

(4) We calculate

For example, two neighboring disks that were approaching
one another fomg<q”, i.e., ai,j|qaq”+<0 and for which

d; ;(q9")=2R will be supposed in contact in the new net-
work, but if ai,j|qﬂq,,7>0 this contact should not reappear.
When the algorithm detects such cases the contact network is
corrected.

An example for results of the implementation of this
method is shown in Fig. 19 and the variations of the normal
forces on the supporting surface are shown in Fig. 20. The
values ofg where the contact network rearranges for the six
layer pile are given in Table I. We observe several interest-
., , . ing points in this case. The initial pile is insensitive to posi-
min(a ;[ (ai;>a) if denc>0 (5)  tive values ofg, in other terms no change in the force net-
ma>(qi"j|qi"j<q) if Qgeng<O. work appears when the corner stones are pulled apart. This

appears to be a characteristic of the solution for all lattice
In practice, we find the nexj for which the contact network orientations when the surface is smodtiot exposed heje
might change. On the contrary, when pushing the corner stones together

(5) If |9”|>]9end then no change in the contact network (q<0) the network is restructured at many values gpf
will happen betweerg and q” and since the network and (Table ). The number of those values is finite so that for
d; ;(q) are known for this interval of values, and hence forlarge values of-q the contact network no longer changes.
g=Jeng» W€ can calculate the forces fqr g qe€asily from At this point (see Fig. 19 the network is characterized by a
Eqg. (1) and the algorithm stops. large number of absent vertical contacts and all of the hori-

The expression of each force, as a function of the posizontally neighboring disks in contact, which is exactly what
tions, is continuous aroung’ [Eq. (1)] so that no disconti- one might classify as an arching effect. As observed in Ref.
nuity can occur in the forces if contacts haviudg;(q"”) [21] the arching is accompanied by the appearance of a pro-
=2R disappear, onlyy; j=dd; ;(q)/dq might be modified. ~ nounced depression under the apex and a FPA situation. We

(6) We modify the contact network to take into accountwere able to calculate the exact evolution of the pressure
the changes supposed to take placg’atWe setq=q” and under the apex of the pile as a functiongpfsee Fig. 20. For
jump back to stefg2). large values of-q the pressure under the apex of the pile is

(7) In some cases the modification we applied to the condecreasing with—q until it reaches its asymptotic value.
tact network must be reviewed since in certain cases a forc8urprisingly, we also observe a region for small values of
F; ; vanished ing” but sgia; ;(|a|<|q"])]1=—sgi; j(lal ~ —q for which the minimum is less pronounced and even
>|q”|)] so that the corresponding contact should not changebecomes a maximurtsee the third frame in Fig. 19The

q/I:
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FIG. 19. The changes in the force netwdsk, pressure profiléb), and the stress tens@r) for growing values of-q (see Table I for

the values ofy;) for a six layer NT30 pile. In columfb) the abscissa represents thaxis, and varies between14 and 14 in disk radii unit,
and the ordinate represents the force measured in disk wdightsvarying in the range 0—6. The length of the representation of the
principal axis of the stress tens@) and the width of the lines in the force network plé& are in a logarithmic scale.
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TABLE I. Values of the parametey for which the contact network rearranges in the NT30 case for a six

layer pile.
_ 64757787245, _ 61636606607, _ 762822774179,
1= ~13047053469° 2= ~11780554268° ds= ~ 13520054821°
_ 6707882705971, _ 4445792285474, _2397551418033037,
94~ ~106282447594 95~ ~ 687757544473 A= ~365699270454797 3
_892376842807618, __ 1040529221853421, _ 1076022900610240
97~ "11845689528673 98~ ~ 13682656579176 99~ ~137282178399115
_ 688471800160333, _ 8424287631067 2308807487856
910~ ~ 8396110906348 A=~ 57998087996 > 9127 7139322695779
_ 203779480235, _ _ 54690800571 _ 122907611189,
913~ 710761198684 914~ ~ 5080923200 915~ " 73605129400
13899925451 8553278999 258704085
G5~ ~ 359467512 '3 7=~ 35751424 G~ ~5gap12 V3
15648333 35529 100-11
%5~ 375195 \° G0~ ~704 13 92~ 3136 \°
2209 266
(122:*?\/§ Q23:*T\/§

mechanism of this change can be understood from Fig. 19. tems where the “untilted” lattice is the one generally used.
is not the small depression under the apex of the pile, obSince real granular systems are disordered, real effects
served forq=0, that is the source for the dip whenq is  should not depend on the local orientation of the lattice.
big, but rather the depressions observed at the flanks of thduch care should be taken when interpreting results that do

pile. These depressions move toward the center to create tif¢pend on the orientation. o
dip. We confirm the claims in Ref9] about the sensitivity of

the results to the boundary conditions at the base of the pile,
especially the roughness of the surface has a large influence
on both the contact network and the stress terisompare

In this paper we have presented an approach capable 6f9- 7to 11and 8to 12
producing exact results for the force and contact networks 1Nne results we get with this method can be used to check
for piles of regularly packed hard disks for a large variety ofthe precision of widely used numerical simulations, for much
cases: different orientations, geometries, and supporting sur-
faces. The advantage of this method is that results are com-
pletely reliable since they are free of roundoff or other nu-
merical errors. We obtain a wide variety of results for the
different realizations we study. We conclude that lattice ori-
entation and the characteristics of the supporting surface
have a very important impact on the physical properties of
the pile even when the pile is globally the same, and the
contacts are of the same nature. Permitting propagation of
forces vertically downwards when using a “tilted” lattice
(TBS and TSS casgteads to a behavior completely contrary
to arching where the contact forces of the largest amplitude
are vertical. On the other hand, when no vertical propagation
is possible arching is more likely to occur, as we notice in
the “untilted” case NT30. Arching can also be stimulated by
imposing external constraints on the system that favor the
horizontal contacts, like pushing in the corner stones. We
were able to follow step by step the reorganization of the . :
contact network while the pile is increasingly controlled by 2* q 150
arching and a dip is established as the constraints grow. Ex-
perimental evidence for the importance of the orientation of FIG. 20. Variation of the pressure under the apex of the pile
the lattice of 2D granular systems was already observed fagith g in the NT30 case. The dots represent the values where
dynamic systemf27], but is generally ignored for static sys- the contact network rearrangésee Table)l

VI. CONCLUSIONS
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larger systems. We were able to do so in the NT30 casdients that give rise to the depression under the apex of the
producing the same results as in R&fl]. We also confirm  pile or to the FPA situation.
the effect that pushing the corner stones has on the pressure The method we used can be easily adapted to other ge-
profile, i.e., the dip becoming pronounced. ometries like silos or 3D pilings of spheres. One might also
On the other hand, we do not get comparable results whegonsider the introduction of other physical ingredients like
pulling out the corner stones. In Re21] asymmetric solu-  friction or polydisperse disk sizes. The introduction of fric-
tions were obtained in this case, and might indicate the extion doubles the number of degrees of freedom of the system,
istence of more than one solution or of a numerical flaw. WeSince tangential components of the contact forces are added
do not observe any rearrangement of the contacts when tHj@ €ach of the contact forces. On the other hand, Coulomb’s
comner stones are pulled apart, which seems to be a chara&iction law does only supply us with an inequalify
teristic of all solutions withq=0. One must keep in mind, —#F1 rather than an equality. One can face this problem in

. . - two ways.
however, that in Ref.21] results are given for a finite value : . . S :
of the stiffness Whi:[e h]ere the stiffngss is infinite. (1) Use the inequality solving faC|I|_ty IMAPLE in order 1o
In the NT30 ,CaséFig. 18 the pressure on the base of the ggtl bounds to t_he force values. This W.OUId probably be a
pile presents, for an even number of layers, the famous digIffICUIt task mainly beclause of the funct|ons. he fri
observed under the apex of granular heldh8]. : (2 Introdgce a supplementary assumption about. the fric-
We also observe, as in ReR1], that the dip becomes tion forces likeF;=uF, which is the IFE assumption, or

more pronounced as we increase the applied force on th%n3_1_ﬁ;hii;rgﬂtclggnbgfwggir: dtgfirf]?czctise's stdpolydisperse
corner stones, but we also conclude that this dip is not ystepolydisp

formed by deepening of the shallow minimum observed forgrains does not present conceptual problems and could be

g=0 but rather from the small depressions at the flanks thafctaced in principle in the framework of our approach. How-

; . ever, it would be hard, in this case, to get reliable statistics
move toward the center of the pile wherng increases.

However, in the light of the discussion above, concerningdue to the long resolution times.

the sensitivity of results to the type of supporting surface and We would like to thank Sighane Roux for enlightening
lattice orientation, and since a dip wast observed for the discussions, Lai Sorbier for his work on the algorithm,
“tilted” piles (Figs. 9 and 18 we believe that one cannot and Reuven Zeitak for a fruitful discussion on thealgo-
conclude that this simple model contains the physical ingrerithm.
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