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Interface dynamics, instabilities, and solute bands in rapid directional solidification
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In rapid solidification experiments on metallic alloys structures have been observed which are periodic along
the growth direction. The origin of thesmanded structurebas been ascribed to an oscillatory instability of the
solid-liquid interface characterized by large variations of the interface velocity; this instability was predicted by
several authors incorporating nonequilibrium effects into the classic Mullins-Sekerka analysis. In this paper the
rapid solidification of a binary alloy, directed by a moving temperature field, is studied with the phase-field
model; in a region of the parameter space an oscillatory instability is evidenced, which reflects in alternating
low and high concentration solute bands. The equations of the model are numerically solved to show under
what conditions(i.e., isotherm velocity and temperature gradieghie banded structure can be observed. In
many respects the results agree with the linear stability analysis of the free-boundary equations performed by
Merchant and Davi§G. J. Merchant and S. H. Davis, Acta Metall. Mat@8, 2683(1990]; we detected also
significant deviations which trace their roots to the diffuse solid-liquid interface characteristic of the phase-field
model, opposed to the zero dimension interface of the free-boundary (i8d6b63-651X98)08807-2

PACS numbsd(s): 81.10.Aj, 05.70.Ln, 64.70.Dv

[. INTRODUCTION for the diffusion of the latent heat released at the interface.
The most relevant consequence of this effect is the reduction
In rapid solidification experiments on various binary al- of the parameter range where the banded structure should
loys, at growth rates close to the absolute stability limitoccur; moreover a restabilization effect at zero wave number
structures have been observed which are periodic along theas also detected. It was also shown, in a numerical study
growth direction[1-4]. These structures consist of a regular conducted with the Greens-function techniqdg], that the
succession of dark and light bands, parallel to the solideoscillatory instability actually leads, in a nonlinear regime, to
liquid front, with a band spacing ranging from 0.3 to k.  time-periodic changes in interface velocity and interface
The dark bands have a precipitate structure, either cellulaemperature, which reflect in periodic variations of the solute
dendritic or eutectic, depending on the alloy composition; theconcentration along the growth directitthe so-calledolute
light bands are formed of precipitation-free solid solution,bands.
with a composition that is uniform and equal to the nominal To better understand the mechanism underlying the for-
concentration of the alloy. It has been argiBfithat planar mation of the banded structure, a different approach could be
front growth in absolute stability is responsible for the for- based on the phase-field modBFM). Within this method a
mation of the light bands. phase field¢(x,t) characterizes the phase of the system at
At first, the physical origin of the banded structure waseach point. A free-energypr entropy functional is then con-
not clearly understood, as it was not expected within thestructed, that depends @has well as on the temperature and
classic Mullins-Sekerka analysi§]; however, very soon it concentration fieldd,c; a (V ¢)? term accounts for the en-
was realized that departures from local interface equilibriumergy cost associated to the solid-liquid interface. The extrem-
neglected in this former approach, could result in a richelization of the functional with respect to these variables re-
behavior of the dynamics of the moving interface. sults in the dynamic equations for the evolution of the
Coriell and Sekerk&7] modified the linear stability analy- process. This approach was pioneered by Caginalp and Fife
sis to account for nonequilibrium effects via a velocity de-in a series of studigll4—16 and was initially applied to the
pendent segregation coefficiek(v), defined as the ratio solidification of pure substancg47-21]; subsequently the
¢/ c; of the solute concentration in the growing solid to thatPFM was extended to describe the solidification of binary
in the liquid at the interface. Along the same lines Merchantalloys [22—-28. Several studies both analytiddl6—18 and
and David 8] incorporated into the problem the results of the numerical[19—21] established on a firm basis the notion that
continuous growth model of Azif9] and Aziz and Kaplan the phase-field model for a pure substance, in the limit of a
[10], allowing the segregation coefficiektand the interface vanishingly small interface width, reduces to the sharp inter-
temperatureT, to depend on the interface velocity in a  face diffusional equations, incorporating in a natural fashion
thermodynamically consistent way. These studies led tdhe Gibbs-Thomson effect as well as the kinetic undercool-
identification of an oscillatory instability characterized by aning of the moving interface. Moreover, the PFM for binary
infinite wavelength along the solid-liquid front; this instabil- alloys, in the formulation given below, accounts for nonequi-
ity should be related to the mechanism of band formation. librium effects as solute trapping, recovering the results pre-
The above studies assumed an infinite thermal diffusivitydicted by the continuous growth model for steady growth
resulting in a uniform temperature gradient along the growtrconditions[27].
direction. Subsequently Huntley and Dayikl] and Karma In the present study the rapid solidification of a binary
and Sarkissiarf12,13 relaxed this hypothesis, accounting alloy, driven by a moving temperature field, is simulated in
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one dimension through the phase-field model. Due to nu- RT
merical tractability, the effect of the latent heat diffusion is puh=1A¢, T)+ o In(1—-c), 5)
neglected; nevertheless we hope to capture the most relevant m
characteristics of the process. It will be shown that an oscil- RT
latory instability arises in a region of the parameter space uB=18(4,T)+ — In(c). (6)
where the driving force for solidificatiofthe dynamic un- Um
dercooling is a decreasing function of the associated flux
(the growth ratg When the operating point of the process is
selected in this region, the interface velocity and temperatur
undergo large oscillations originating low and high concen-
tration solute bands. T T

The picture of the process given by the present study fA=TGA(¢)+p(¢)LA( _F)_CT In(ﬁ), (7)
agrees in many respects with the free-boundary formulation
of the problem, integrated with the constitutional laW$v)
andk(v) resulting from the continuous growth model; how-
ever, we detected also significant deviations, which trac
their roots to the diffuse solid-liquid interface intrinsic to the
phase-field model, opposed to the zero-dimension interfa
of the free-boundary equations.

The paper is organized as follows. In Sec. Il the govern- 1~ _
ing equations of the model will be derived, through the ex- GA(¢)= 2 WAP(1— ¢)2=WAg( ) )
tremization of an entropy functional. In Sec. Ill some details
of the numerical method will be given, and in Sec. IV the
results of the numerical simulations will be presented an&
discussed. The conclusions will follow in Sec. V. A brief
summary of the present work has recently been published igr
a Rapid Communicatiof29].

HereR is the gas constant ang, is the molar volumef” is
the free energy density of the pure spedlestaken in the
orm

with LA and TA representing the latent heat per unit volume

and the melting temperature of puke C is the specific heat,

for which we assume constant and equal values for both
hases and materials. In EJ) the functionG”(¢) is given

Yy

hat is a symmetric double well potential with equal minima
at =0 and 1, scaled by the positive well height*.
Choosing the functionp(¢) as p(¢)= ¢3(10—15¢
6¢2) the condition is enforced that bulk solid and liquid
are described by=0 and 1, respectively, for every value of

temperaturg 18].
Il. DESCRIPTION OF THE MODEL Equation(7) still holds for the free energy® if all the
A. Derivation of the governing equations material parameters labeled with the superschiptare re-

placed with the ones related to tBespecies.

The model describes the directional solidification of an . )
A conservation law governs the solute transport:

ideal solution of component& (solven} andB (solute, in
terms of three fields: the scalar phase figldhe local solute t=-V.J,. (9)
concentrationc, and the temperatur€. The field ¢ is an

order parameter assuming the valugs O in the solid and  To ensure that the local entropy production is always posi-

#=1 in the liquid; intermediate values correspond to thetive, the solute flux can be written in a simple form as
interface between the two phases. As a starting point an en-

tropy functional is defined as 6S
J=M.V — (10)
62 oC
8=fse, ,C)— = |V |?|dv, 1 _ o
(€:¢.C) 2 V%o @ and the evolution of the phase field is given by

where integration is performed over the system volume; the ) 5S

last term in the integrand is a gradient correction to the ther- =My % (11)
modynamic entropy density, that depends on the internal

energy densitye and on the concentration and phase fieldsynerem, andM , are positive constants.

through the thermodynamic relations: Evaluating the variational derivatives gives the dynamic
equation for the phase field in the form

x_s @
== 3 3
’° %=|V|¢[62V2¢—(1—C)HA(¢,T)—CHB(¢-T)],
is _ ph-pf @ (12
gc T -
where the functioH”(¢,T) is defined as
E=—£i[(1—c) At cuB] (4) T-TA
Z2ERET 2 HAG.T) =G (#)-p (LA =5 (13

In Egs.(3) and(4) u” and 1B are the chemical potentials of 5
the solvent and the solute, given for an ideal solution, respea@nd a similar expression holds fe¥®(¢,T).
tively, by Starting from Eqs(3), (9), and(10) and observing that
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uh—uB 0 uh— uB d ph—uB and foIIowing_ the lines suggested by Warren and Bogttinger
v T % T Vot T Ve [28] to associate the model parameters to the material prop-
erties, the governing equations become
MA_/-LB
e VT, 14 d
gt T 49 a—(f=[(1—C)mA+CmB][V2¢+(1—C)QA(T,¢)
where
+cQ¥(T,¢)], (24)
9 MA_MB _ _
— ———=HA(¢,T)—HEB(¢,T), (15) ac
¢ T —r =V {M@)Ve—c(1-0)\($)[HA(4.T) —HE(4,T)]
A-u®B R 1
owe_ R_I (16 XV ¢—c(1—cN($)T (4, TIVT), (25)
ac T Um C(1l—c)
9 wh—uB al vaT VoG (26)
R ot V0o T T Vo
T T I'(¢,T), 17
_ where
with the functionI'(¢,T) defined as
d d T-TAB
- D) A HAs(p Ty —was SU8) ap i AP TZT
I'(¢p,T)y=~— T2 (L"=LP) (18 do R d¢ TT™
the dynamic equation for the concentration field is written as _Im '|Z|A,B(¢,-|-), (27)
R
P V| Dec(1—c) LT [FA(p.T)—F%(,T)IV
gt 1Dcc(1-0) R [H(&,T) (6. TV Ae &2 dg(¢)
AT w2 g
Um ~
DcVe+Deo(1-c) ' T(¢.T)VT). (19 1 2LAB T-TAB dp(g)
+ 6v3 o~BRAB T T dé (28)
In Eqg. (19) the standard definition of the solute diffusiviby; 2 '
has been recovered taking
Um ~
5 _ M. R - I(¢.T)=7 [(.T), (29
c— C(l_ C) a . ( ) 5
S S
To allow for different diffusivities in the solid and liquid AN p)= gl+p(¢)(1— E)’ (30)
phases, in the followind . will be taken as
De=Dy+p(#)(D,~ D), @) R @1
|

D, and D being the diffusivities in the liquid and in the AB LAB i .
solid, respectively. In Eqg. (28) ™", h™" indicate the surface tension and the

As we neglect the latent heat diffusion, the temperaturdntérface thickness of the pure componeftandB, respec-
field is decoupled from the phase and concentration fielddively; T, is the initial (equilibrium interface temperature.
and is represented as a traveling wave moving towards théhe model parametens™®, WA® depend on the physical
positive x direction with uniform gradienG and constant Properties of the alloy components through

velocity Vg : A.B_ABTAB A.B
A,B '8 7 T A,B

JT ~ JT ~ ~ mee= AB ' WAE=—— ABLAB’
==V 0 =—VG. 22 DiL vz R T%%h

12v, o
= (32)

. . where g8 is the kinetic undercooling coefficient of puke
The model is then synthesized through E@), (19), and o B, that relates the interface undercooling to the interface
(22). velocity v throughv = BAB(TAB—T,). Notice that Eqs(32)
were derived using the equilibrium planar solution of the
B. The nondimensional equations and the model parameters  phase-field equations, which gives“B=eyWAB; A8

The problem will be treated scaling lengths to some ref-=(eTAB/W*B)/(6v2) [28].
erence lengtl¥ and time tog?/D, . Allowing M «» to depend To estimate the above parameters we referred to the ther-
on the local composition as mophysical properties of nickdkolven) and copper(sol-
ute), summarized in Table I. The length scale was fixed at
My=(1-c)M%+cM5 (23)  £=2.1x10"* cm; the kinetic undercooling coefficients were
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TABLE |. Material parameters for the Ni-Cu alloy. 100 o
. 090 | .
Nickel Copper .
0.80 [
To (K) 1728 1358 .
0.70
L (J/cn?) 2350 1728
v (cmmole)? 7.0 7.8 0.60 - .
o (Jlend) 3.7x107° 2.9x10°° %050 |
D, (cn?/s) 10°5 1075 ® .
1 (c 040 L
8An average value of 7.4 has been taken. 030 | ‘
. A 1y-1 B 020 | . ..
fixed to pB"=128.64cms K and B°=153.60 .
cm s 1K1, not far from the actual best estimaf{&§] and a 010 F .
realistic value for the interface thickness was selected as 0.00 beereent ' !
1.68<10° 7 cm. With these values it resulte/*=0.963; 20.008  -0004  0.000 0.004 0.008 0.012
WEB=0.960; m*=mB=2350. X-X

1

FIG. 1. Normalized concentration profile fof,=800; x, rep-
resents the position of the solid-liquid interface.

The evolution of Eqs(24)—(26) has been considered in
one spatial dimension, in the domais@=<x,, with x,,large  rate and with uniform concentratia, ., in the solid phase.
enough to prevent finite size effects. Fluxless boundary confhe solute segregation on the moving front was evaluated
ditions for ¢,c and transparent conditions fdr were im-  computing the minimum and maximum valug, ¢ of the
posed at the domain’s walls. To discretize the equations segolute concentration across the interface, and defining the
ond order in space and first order in time finite-differencepartition coefficient ak(v)=c%/c} ; the interface tempera-
approximations were utilized; then, an explicit scheme wasure was determined interpolating the temperature field at
employed to advance the solution forward in time. To ensure( $=0.5t).
an accurate resolution of both the phase field and concentra- To compare our findings with the predictions of the con-
tion profiles, the grid spacing was selected A%=4  tinuous growth mode{CGM) we recall that the latter gives
X 10™%, that is one-half the nominal interface thickness; athe dependence of the partition coefficient on the growth
time stepAt=2x10"*°was required for numerical stability. velocity in the form
To verify the accuracy of the numerical scheme, at each time
step the solute conservation was checked and in all the simu-
lations was verified within 0.001%. The initial temperature
profile is defined as

Ill. THE NUMERICAL METHOD

ke+U/Ud

= T,

(34)

with k. the equilibrium value for a stationary interface, and
vg4 a characteristic velocity describing the diffusional solute
— redistribution across the moving froniy is generally ex-
with a phase boundary at temperatliieseparating the solid pressed asy=D/a, whereD is an interface diffusivity and
region X<xq,¢=0) and the liquid regionX>Xq,¢=1). 3 is the width of the phase transition layer. In the same

The initial solute concentration is set to the equilibrium Val'mode| the dependence of the interface temperature on veloc-
ues in the two phases. Then the temperature profile is pulleg s given, for dilute alloys, by

towards the positivex direction, starting the solidification
process.

T(x,00=T,+G(X—Xg), (33

T,(v)=TA+

m,C, v
{1-k+[k+(1—-Kk)y]In(k/ke)}— ?,

1-k
IV. NUMERICAL RESULTS (35

A. The basic steady state wherem, is the slope of the equilibrium liquidus line; the
At first we characterized the solidification process inparametery describes the dissipation of free energy due to
steady conditions, determining the two constitutional lawssolute drag across the interfa¢®1]: this phenomenon is
k(v) andT,(v) which describe the interface dynamics; the completely neglected withy=0 and accounted for withy
stability of this basic state will be investigated in the next=1. o
subsection. Some of the results reported in the following Figure 1 shows the solute profile normalized &)
were published elsewhef27], and are included here for the =[c(x)—c,..J/(¢* —c,..), for V;=800. The graph displays in
sake of completeness. an instructive way the diffuse interface nature of the present

The initial concentration of the alloy was set to
=0.056 09 in the solid phase ard ..=0.070 68 in the lig-

uid phase, corresponding to an equilibrium temperafiyre

model: we observe that the transition ofx) takes place
within a length that is approximatelg=2x10"3; with D
being bounded adD,<D<D,, we expect a value of

=1706.06 K. To force stable growth we chose a high valuey 4<<500. This prediction is confirmed in Fig. 2 where the

of the temperature gradienGE= 200 K); with this value af-

partition coefficient is represented versus the growth velocity

ter an initial transient solidification proceeded at constanv; the solid dots refer to the results of the present simula-
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FIG. 2. Partition coefficienk(v) versus the front velocity. The FIG. 4. The interface velocity versus time. The isotherm veloc-

solid dots correspond to the value/cy of the present simula- ity is Vo=1200 and the temperature gradienGs-40 K.
tions; the solid line is drawn through E@4) with v4= 290 (best fit

valug). the reduction of solute concentration on the liquid side of the

. . . interface, at low velocitiesT,(v) first rises, then falls with
tions, whereas the continuous line was drawn through E

. X ) ncreasingu reflecting the increasing undercooling required
f(gj)n dU;t'ng ”3 Q%S an adjustable parameter, the best fit Wag, 54yance the solidification front. In the range of positive
Vg= .

. . slope the driving force for the procesgse., the thermody-
Figure 3 shows the numerical results for fi€v) depen-  amic undercoolingis a decreasing function of the associ-

dence; on the same graph we sup_erimpoied the curves ol flux(the growth rateand instabilities must be expected.
puted through_Eq(35) corresponding toy=0 (neglecting 1 ifferent pictures can arise, depending on the selected
solute drag y=1 (complete solute dragand to the best fit jsqtherm velocity and the restabilizing effect of the tempera-

value y=0.65. Notice that the phase-field model suggests §,re gradient. Figure 4 shows the interface velocity versus
picture of the solidification process characterizedpaytial e “for V,=1200 andG=40 K. The initial condition is
solute drag this feature can be related to the diffuse interfacerapid|y reabsorbed; after a few damped oscillations the sys-

nature of the model10,31; it should also be observed that o setties on its steady state withk V. A totally different

experimental evidence of partial solute drag has been foungynamic behavior emerges from Fig. 5, where the interface
in an experimental study on dendritic solidificatitg2]. velocity and temperature are represented versus time, for
Vy=700 andG=40 K: the process never reaches a steady
regime, and the interface velocity continuously oscillates
TheT,(v) curve shown in Fig. 3 exhibits a nonmonotonic around the average valug,. These results agree with pre-
behavior: due to suppression of solute partitionjagd to  Vvious findings of Merchanet al. [33] and Brattkus and
Meiron [34] which predicted relaxation oscillations of the

B. The oscillatory instability

1704

000
1703 5 . 1706
1702
4000
~ 1701 =
Z g
) 4 -
£ 1700 £ 1704 5
2 g 3000 3
= i) -
2 1699 4 g
g 3 =]
2 & g
1698 5 2000 g
= g
= 11702 @
1697 —~
Z
1696 + 1000
1695 e
100 1000 10000 100000 0 k 1700
Interface velocity 0 2 4 6 8 10

FIG. 3. Interface temperature versus interface velocity for
steady growth. Solid dots: results of the present model. The predic- FIG. 5. Interface velocitydotted ling and temperaturésolid
tions of the continuous growth model are given by the solid,line) versus time. The isotherm velocity \,=700 and the tem-
dashed, and dotted lines fer=0, 0.65, and 1, respectively. perature gradient i&=40 K.
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FIG. 6. The orbit followed by the process in tfig, v plane; the FIG. 7. Partition coefficienk(v) versus the front velocity, with

isotherm velocity is indicated by the vertical lin&/{=700); G V=700 andG=40 K. The solid dots correspond to the values
=40 K. Solid dots: results of the present simulation; diamonds:xc}/c; of the present simulations; the solid line is drawn through
predictions of the continuous growth model assumipg ¢ and Eq. (34) with v4=290 (best fit valug.

v=0.65. The solid line indicates the stealifv) curve. The mean-

ing of the pointsA,B,C is illustrated in the text namics when the transient characteristic time is of the order

of 7 (or the characteristic frequency is of the order of)1/
This is precisely the situation depicted in Figs. 5 and &
here of the order of 10 and the fast transients shown in Fig.
5 exhibit Fourier components comparable withr;1then
conditions(34) and (35) should not be consistent with the

diamonds represent the data calculated along the predictio@@sunS of the present model. This suggestion is cqnflrmed by
of the CGM, i.e., through Eqg34) and (35) with y=0.65 ig. 7,*wh*ere we have cqmpared th.e.cycle de.sgrlbed by the
and using the actual values gf for the solute concentration "alio ¢s/ci’ (solid dots with the partition coefficienk(v)

in the liquid. For most of the cycle the interface velocity is Predicted by Eq(34) (solid line). We note thatg/cf" is not
lower thanV, and the interface cools down; then the orbit @ uniquely defined function of the interface velocity, show-
traverses the steady;(v) curve at pointA, where the front ing a hysteretic behavior and deviating frdew) during a
velocity is not far fromV, and with a strong acceleration Significant portion of the cycle.

reaches poinB on the stable branch. Here the interface ve- Due to the above arguments, we do not expect a sharp
locity is much higher thav, and the interface warms up; agreement between our results and the predictions of the lin-
solidification is decelerated and the operating point shifts teear analysis performed by Merchant and Dgdk Assum-

C. Notice that the shape of the cycle can be modified whering a periodic perturbation parallel to the advancing front of
the latent heat diffusion is taken into acco{ib8]. The orbit  the form expigy+ wt) they determined the region in the pa-
predicted by the CGM closely resembles the actual cycléameter space where the oscillatory instability should arise,
performed by the solidification front; however, some differ-i.e., where Raf)>0 and w,=Im(w)#0; the dependence of
ences arise which are discussed in the following. The conthe oscillation frequency on the relevant parameters that
tinuous growth model, if not regarded from a proper perspeccharacterize the process was also determined. Their results
tive, can originate ambiguities and inconsistent results. I{corrected to account for the partial solute drag ejfece
supplies the nonequilibrium conditions needed to solve th€ompared to our present simulations in Fig. 8, where the
free-boundary diffusional problem; these conditions are aposcillation frequency is represented versus the isotherm ve-
plied on the moving front that is treated, under all respectslocity, with G=40 K. The solid line corresponds to the pre-
as a zero-dimension interface. But the model itself is intrin-dictions of the linear analysiglue to an erroneous estimation
sically based on a diffuse interface picture of the solidifica-of m;, in a previous papef29] these data were incorrectly
tion process, where it describes the solute reequilibratiomeported; the solid dots give the results of our simulations.
through the finite diffusional velocity 4. This ambiguity, The instability range is bounded between £50,< 1200 for
accurately clarified in the original papers of Afi&], Aziz  the linear analysis and between ¥50,<<1000 for the
and Kaplan[10], and Aziz and Boettingef31], was in the  present model. It is worth observing that, as it could have
past at the origin of some misunderstandings. Equatifis been expected, the agreement is better at low frequency.
and(35), derived for steady growth, are generally assumed to Figure 9 showsw, versus the temperature gradie@t
work even for a time dependent process; on the contraryith Vo=600; the linear analysis predicts higher frequencies
solute relaxation across the interface is not instantaneous batd a more extended instability range: oscillations are sup-
takes a time of the order~a?/D=alvy, and conditions pressed alG>70K in the present simulations, and @t

(34) and (35) give an unrealistic picture of the interface dy- >120 K for the linear analysis.

interface speed starting from the free-boundary diffusiona
formulation of the problem. The orbit followed by the sys-
tem in theT,,v plane is shown in Fig. @solid dotg. The
vertical line indicates the isotherm velocit4y=700; on the
same graph the solid line is the steaflfv) curve, and the
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FIG. 8. The oscillation frequency versus the isotherm velocity;  FIG. 10. Time variation ot (solid dots, ci (solid line), and
G=40K. Solid line: as predicted by the linear stability analysis. the interface velocity(dotted ling. The isotherm velocity iV
Solid dots: solutions found in the present simulations. The instabil= 700 and the temperature gradieni3s=40 K.
ity range is bounded between 5% ;<1200 for the linear analysis
and between 150V,<1000 for the present model. estimated as =0.0724, which is practically coincident with

the expected value2V,/w,=0.0727.
The oscillating behavior of the interface dynamics has a

strong influence on the structure of the solidified alloy. In V. CONCLUSIONS
Fig. 10 we show the time dependencecdfandc] ; on the o o
same graph the interface velocity is also shown. Hése In summary, we addressed rapid directional solidification

=700 andG=40K, corresponding to Ref>0. We ob- through the phase—fi(_alpd .modekc which pro;/ides an gfficient
serve that at low velocities? reaches its minimum; then the V\{ayt'to tr%at nonlng IF::I[:Im el.gﬁlts %S_S:’ ufte tralpplntg "’(‘jnd
interface accelerates, solute partitioning is suppressed, arwf'e Ic undercooling of the Solid-liquid Intertace. In steady

* . . cpnditions we recovered with good agreement the results of
c; increases. Notice that due to the depletion of solute aheatﬁ) . o o )

f the interface(see thec* curve the maximum ofc* an- e free-bogndary equations, with mterfac_e C(_)ndltlons given
ot h i (I)i Th ocity di S h by the continuous growth model; the dissipation of free en-
ticipates the maximum ob. Then, as velocity diminishes, oy ¢ the growing front seems to be properly described
solute segregation becomes again effective@ndecreases. assyming partial solute drag. In a region of the parameter

In Fig. 11 we show the concentration profile with,  gpace the interface dynamics enters an oscillatory regime
=700 andG=40. We observe low and high concentration characterized by periodic variations of the growth rate. Here,
solute bands which reflect the periodic variationsch{t).  due to the fast transients involved, the interface conditions
The wavelength of the solute concentration profile has beeprovided by the CGM no longer work, and the results of the
phase-field simulations deviate, to some extent, from the pre-
dictions of the free-boundary model.
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ent; the isotherm velocity i¥,=600. Solid line: as predicted by the
linear stability analysis. Solid dots: solutions found in the present FIG. 11. Solute concentration profile along the growth direction.

simulations. The instability range extends up@s=70K in the  The isotherm velocity i8/,=700, and the temperature gradient is
present simulations, and =120 K for the linear analysis. G=40K.
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Due to numerical tractability, in this study we neglectedbands should have been properly evidenced. In view of fu-
the latent heat released at the solid-liquid interface, assumingire extensions and refinements in this subject, it is worth
an infinite thermal diffusivity. As shown by Karma and noting that the phase-field model allows an easy description
Sarkissian13], relaxing this approximation leads to an in- of rapid solidification processes even for concentrated solu-
crease of the effective temperature gradient probed by thgons, with no limitations due to the actual shape of the alloy
advancing front, and to a reduction of the parameter rangphase diagram, while at present the free-boundary approach
where the oscillatory instability should be expected; nonetheean only be applied to very dilute solutions, when the alloy
less, the basic mechanism underlying the formation of solutphase diagram can be conveniently linearized.
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