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We study the stochastic stability of a system described by two coupled ordinary differential equations
parameterically driven by dichotomous noise with finite correlation time. For a given realization of the driving
noise(a samplg the long time behavior is described by an infinite product of random matrices. The transfer
matrix formalism leads to a Frobenius-Perron equation, which seems not solvable. We use an alternative
method to calculate the largest Lyapunov exponent in terms of generalized hypergeometric functions. At the
threshold, where the largest Lyapunov exponent is zero, we have an exact analytical expression also for the
second Lyapunov exponent. The characteristic times of the system correspond to the inverse of the Lyapunov
exponents. At the threshold the first characteristic time diverges and is thus well separated from the correlation
time of the noise. The second time, however, depending on control parameters, may reach the order of the
correlation time. We compare the corresponding threshold with a threshold from a simple mean-field decou-
pling and with the threshold describing stability of moments. The different stability criteria give similar results
if the characteristic times of the system and the noise are well separated, the results may differ drastically if
these times become of similar order. Digital simulation strongly confirms the criterion of sample stability. The
stochastic differential equations describe in the frame of a simple one-dimensional model and a more realistic
two-dimensional model the appearance of normal rolls in nematic liquid crystals. The superposition of a
deterministic field with a “fast” stochastic field may lead to stable region that extends beyond the threshold
values for deterministic or stochastic excitation alone, forming thus a stable tongue in the space of control
parameters. For a certain measuring procedure the threshold curve may appear discontinuous as observed
previously in experiment. For a different set of material parameters the stable tongue is absent.
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[. INTRODUCTION the noise (ii) the change from discontinuous to continuous
behavior of the threshold with increasing characteristic time
The influence of stochastic modulation of parameters irof the noise, andiii) the change from a stabilizing to a

spatially extended systems is a subject of recent intgt¢st destabilizing effect of the noise if its correlation time be-
Especially well investigated are electrohydrodynamic instacomes comparable to the characteristic times of the system.
bilities in nematic liquid crystals sandwiched between twoThe quantitative agreement was, however, not satisfactory. It
parallel electrodes where the convection is driven by an extémained an open question whether the quantitative discrep-
ternal (spatially homogeneolstime dependent stochastic @ncies were the result of the approximate treatment of the

electric field. The electric field is the superposition of aneémato-electrohydrodynamic equations, of poor knowledge
“slow” (harmonically modulated or constargteterministic of material parameters, of the choice of the stochastic stabil-

A gt ; ity criterion, or depending on other reasons.
component and a “fast” stochastic compong&2+10]. Slow o o ; .
and fast refer to the characteristic times of the liquid crystal There exist different criteria for stochastic stabil[2—

15] based, for example, on the stability @frst or highejy

describing the relaxatlor_1 Of space charge and director in abrhoments, on the bifurcation of the most probable value, or
sence of external electric fields.

on the concept of sample stability describing the stability of
In experimentg2—7] it was found that the superposition b b g 0ing e

e one stochastic trajectoria sample
of a fast stochastic field increases the threshold for the deter- In this paper, we consider sample stability within a simple

ministic field (i.e., stabilizes the homogeneous statp to @  one-dimensional model describing the stability of the undis-
certain critical value of the stochastic field. Beyond thisqted state in a simplified geometry and neglecting boundary
value the homogeneous, i.e., undistorted, state is unstablggnditions. We calculate analytically the corresponding
which leads to a discontinuous behavior of the threShO'q_yapuno\/ exponenl\ and compare the threshold obtained
curve as a function of the stochastic field. by solvingA =0 with thresholds obtained from different cri-
Theoretically, this phenomenon found—at leastteria and the results of a numerical simulation of stochastic
qualitatively—an explanatiofB—11] by considering the sta- trajectories. The simulation—independent of any theoretical
bility of moments(the stochastic averages of space chargdormalism—strongly confirms the concept of sample stabil-
and director. This theory explained qualitatively) the dis- ity. We discuss under what conditions different criteria give
continuous behavior of the threshold at a critical strength oimilar or different results. We further give results for a two-
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dimensional model that is more realistic in the determinatiormous Markov proces€DMP) SPMP, which takes with equal

of the characteristic length of the pattern by mode selectiorbrobab”ity the two valuesrs, o= *+. Thuse, takes values

From the formal point of view, the exact treatment of the80:81+08_ For a given realizations, of the DMP,
stochastic dynamics leads to the problem of determining:(t) takes the constant valu€?, o=, with obvious defi-
properties of infinite products of random matrices. This No-jtion. The DMP is the simplest discrete Markovian process
toriously difficult problem[16] appears also in a number of yith finite correlation time and is easily generated in experi-
different fields in statistical physics and is a subject of recentyent. Its autocorrelation decays exponentialkg,e, )
interest, cf.[17-25. A comprehensive review is given in _  2eyqy—24(t—t')]. The parameter determines the in-
[26]. As a spin-off, in this paper we obtain an analytic resultyerse correlation time and describes the mean number of
for the largest Lyapunov exponent describing the stability ofyymps in unit time.

a dynamical system related to a new class of infinite products Note that Eq.(1.2) contains thesquareof the stochastic
of random matrices. For this class of matrices one of thgje|q. This forces us—from the formal side—to consider a
standard methods, the transfer matrix formalism, leads to grocess with a finite correlation time. From the physical side,
Frobenius-Perron equation, which, to the best of our knowlyye are also forced to consider a process with a finite corre-
edge, has not hitherto been solved. lation time. This is because one of the characteristic times of
In the one-dimensional version, the nemato-ihe system decreases with increasing field and may reach the
electrohydrodynamic equations describing the stability of thgyrger of the characteristic time of the noise so that the ide-
undistorted state in a thin layer in the middle between theyjization of white noise should fail.

electrodes against the formation of roll cells reduce to the Thegretically, the concept of sample stability is applicable

nonautonomous systef27—29 to any linear stochastic system of first order differential
) equations with a quadratic coefficient matfit3]. From the
z=C(t)z, (1.1)  practical point of view, however, the explicit evalution of the
simplest nontrivial case of aX2 system driven by dichoto-
wherez=(q,%)" and mous noise needs considerable effort. The step from pure
stochastic excitation considered [ih0] to the case of a su-
1 Ley perposition of constant and stochastic excitation investigated
C(t)=— Ze, s§+st2 . (1.2 here is not a simple exercise.

The paper is organized as follows. In the next section we
derive the formal solution of Eq1.1) for a given realization
The variablesy and ¢ describe space charge and spatialof the driving noise which—in the long time limit—leads to
variation of the angle between director and electrode plane ian infinite product of random matrices. To illustrate the dif-
dimensionless units, respectively. The undistorted state ificulty in calculating the largest Lyapunov exponent of this
characterized by=0. ¢, is the external time dependent elec- product we consider in Sec. Ill the transfer matrix formalism
tric field in dimensionless units. The time is scaled in units ofand derive the Frobenius-Perron equation. In Sec. IV we use
the relaxation time of the space chargéss a material pa- an alternative approach to calculate the Lyapunov exponent
rameter.g, is proportional to the wave number of the rolls analytically in terms of generalized hypergeometric func-
normally to be determined by mode selection. As typical fortions. The corresponding sample stability threshold is com-
one-dimensional models it is impossible to select a mode opared with thresholds obtained from different criteria and
a characteristic length determined essentially by the samplkgsults of numerical simulations. Section V contains the re-
thickness; the corresponding wave number in the conductiveults for the two-dimensional version. Details of the analytic
mode is seby handto 7/d. For the dielectric mode the wave evaluation are deferred to Appendix A. In Appendix B the
number is an order of magnitude larger and essentially dereader finds values of material parameters used in the nu-
termined by bulk properties, so that mode selection workgnerical calculations and the rescaling of dimensionless quan-
even in the one-dimensional mod&8,30. tities. Appendix C gives the explicit representation of the
The two-dimensional versioii1,30—33 contains explic-  coefficients for the two-dimensional model.

itly the distanced between the electrodes as a parameter and
thus allows one to determine also the wave number of the
rolls in the conductive regime by mode selection. The equa-
tions are—in principle—similar to the one-dimensional ver- We derive the formal solution of Eq1.1) for a given
sion but much more difficult to handle since quite a numbetrajectory of ¢?™" with jumps at timest,, »=0,1,...n,
of parameters are involved depending on material propertieghere t,>t,_,;>--->t;>t,. Let us first consider a time
andon the wave number of the rolls. This makes an analytidnterval between two jumps and diagonali@é. The (real)
treatment, such as it is possible for the one-dimensional vefigenvalues o€ are
sion, into a hopeless enterprise. Therefore we present first an

II. FORMAL SOLUTION

almost thorough analytic study of the one-dimensional ver- 14 g2+ g2 1
sion and then the numerical results for the two-dimensional N o—— 0 "o, \/_(1_82_82)2+ 262
. . .- 1/2 2 — 4 0 o o
version. The thresholds in both models show qualitatively
the same behavior and differ by less than 10%. The wave 2.9

numbers may differ in a more significant way.
We investigate the superposition of a constant determinWe look for a unitary matrixU’, U°(U%)~1=(U?)~tu°
istic field e; and a stochastic field, modeled by the dichoto-=1, which diagonalize£”:
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NS0
U7C(U”)*=| o g |=diagh)), (2.2

and

(U%)~diag \{)U=C". (2.3

Note that the eigenvalues],, do not depend on sg#, but
C? does. Therefore, the unitary matii¥’ depends not only
on the realization of the DMP but also on sgp.

We try the generafAnsatz

2
Co —pvl—c;

u7= py1—c2 Cy

(2.9

c, and p with [p|=1 are determined by inserting E(R.4)
into Eq.(2.3. C=AJc2+\g(1—c?)=—1 leads to

140g
INESVE

(2.9

which  generates CY,=—g3—&2. 7 =Co=(\3
—)\i')p\/CZU(l—CZU =—{e, leads, by exploiting Eq(2.5
via = p=(L+ AT+ N5+ ANS) = — p\ (%= —plle,l, to

p=sgne,. (2.6

It is easy to prove that Eq2.2) is satisfied. For pure sto-

chastic excitation, i.e5,=0, Eq.(2.6) reduces tp=o0.

The time evolution between two jumps is now easily ob-

tained. IntroducingJ”EZVV” we have from Eq(1.1)

\K/"zdiag()\i")VV’, (2.7)
which is solved by
WO(t)=diag{exgd N7 (t—t")[LWI(t"). (2.8
The inverse transformation leads to
Z,()=T(t—t")Z,(t'), (2.9
whereT? is the time evolution matrix
To(7)=(U%) " tdiagd exp A ] 7)JU°. (2.10

For a given realization of the driving process with jumps

at times t, between the valuese, =¢g;t0,.8,
o,=(—1)0y,, iteration of Eq.(2.9) gives the formal solu-

tion of Eq.(1.1) as
Z, (D=T(t—ty)- - T72(tg—tp) T7(t,—t;) T70

X (11~ 10)Z5 (1) =T (t,{t,},00)Zy (to),
(2.11
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where7(™ denotes the ordered productrmof 1 random ma-
trices of type(2.10. The formal solution(2.11) serves as
starting point to investigate the stability by numerical simu-
lation.

The stability of the stochastic trajectof®.11) for a given
realization of the driving proce4a samplgis determined by
the largest Lyapunov exponent of the matfiX’ in the limit
n—oo. If this exponent has a positive real part the trajectory
diverges, otherwise it is stable. This is the concept of sample
stability. As we show below, for a given parameter setting
the Lyapunov exponent is for almost all trajectories, i.e.,
with Prob1, the same.

IIl. TRANSFER MATRIX FORMALISM

To illustrate the difficulties in treating the infinite product
of random matrices of the above type we consider one of the
standard methods, the transfer matrix formalism.

We denote the staté(,m('[rpL 0) immediately after the

jump from g, t0&,  at timet,, by z,, the (randon) time
span between jumps—1 andn by 7, and write the recur-
sion (2.9) as

zn:TUn(Tn)inflzT(n)infl- (3.1
From Eq.(3.1) one obtains in the usual way closed second

order recursion relations fay,, (or ¢,). IntroducingR,; ;
=0,+1/09, We arrive at

Ro+1=Ant Bo-, 3.2
where

An=T(1r1+1>+T(1r§+l)'T(zg)/T(lg)v 3.3

B =T TR TR TR, G

SinceT("*Y) depends o, ;, andT(" depends omr,, both
A, andB,, depend onr,,, and7,. This is the origin of the
twofold integration with respect to the distribution of times
between two consecutive jumpg(t)=ae * in the
Frobenius-Perron equation associated with BR)

ﬁM(R):de'JdTJdR'p(T')p(T)FJn(R’)

X 0 R—A(T,T,)_B(T,T,)$ . (3.5

The Lyapunov exponent that governs the long time behavior
of qis

1 q g N2
=lim = InN= im = - T
}\q_|\IJITx N InqO lim N nZO In R, JdRPS(R)In R,

N— oo

(3.6

where the last equality holds with Probl aﬁg(R) is the
stationary solution of Eq(3.5. However, to the best of our
knowledge, Eg.(3.5 does not belong to the class of
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Frobenius-Perron equations, which were amenable to explicit Ny
determination of their stationary solution. /]
€1 by <0 by <0 /
b->0 ,
IV. AN ALTERNATIVE APPROACH ’/
’
In this section we exploit an alternative approddi] R4
based on a transformation frong,(/) to polar coordinates /',,Ko
(r,¢), which circumvents the problem of solving the above 1= /
Frobenius-Perron equation. NS o
. . . . 4 > + < by <0
In polar coordinates the dynamic equatiofis])—(1.2) 6 SN o 2/ 1 050
read by >0 !
b- <0 !
r=g(e,o)r, 4.2 0 T—e] ——
(‘P:h(st ) (4.2) FIG. 1. Regions of thes—&; plane whereb, and b_ do

not change sign are separated by solid lines. The dashed line
s2=g2+e?—1 separates 2a and 2b. The flo«9) is qualitatively
different in region 6, regions 5 and 2b, and regions 2a and 1; cf. Fig.
g(st,(p)=—C0§(p—§stSin 2(p—(8(2)+8t2)3inz(,0, (4.3 2. Npte tha_t we uged d_imensionle_zss quantitigs. The rescaling to

physical units is given in Appendix B. Material parameters are
taken from the set MBBA 1.

where

h(et,@)=coSe[ e (tarfe—1)+(1—&f—e{)tan o).

4.4 . . . _
(4.4 metric functions. For the case of pure stochastic excitation

Equation(4.1) is linear inr and can be solved for a given (£1=0) this was done i110]. Here, we evaluate Ed4.7)
trajectory of the driving process. This leads to the Lyapunovor the general case; #O0.

exponent
1 A. Support
t
A=lim ?f dTg(sT,qD)=j de X, P(@)g(e,, ). We determine the support of the procéd<?). The first
toe 1 J0 supp o= step is to find the zeroes of the stochastic flo(g; ,¢) for

(4.9  poth realization$,(¢), o= =. To this aim we writeh, (),

The second equality holds due to the multiplicative ergodicIntrOdUCIng the shorthant=tan ¢, as

theorem of Oseledel34] with Probl. Clearly, ifA<0 the h,(¢)= e, ,c0Lp(t2+2b,t—1)
trivial solutionr =0 of Eq.(4.1) is stable and otherwise un-
stable.P (¢) is the stationary solution of the Kolmogorov
forward equation of the joint process,(¢) associated with
Eq. (4.2

1
Egsgcosz(p(t+QU)(t— Q—), 4.9

q where
PU=£(hUPU)—a(P,U— P,), o=%*, (4.6 1o g2 2
—&p— €&

QO': bO'_ \/ﬁ- ba': 2{08 - : (41@
where h, is the shorthand foh(e,,¢). For the nonrota- c
tional casethe solution of Eq.(4.6) can be found up to

quadrature§14] and leads to The ¢-g, plane is divided into six regions whebe. and

b_ have a definite sigsee Fig. L The boundaries separat-

ing these regions are given by the zeroes ofandb, . The

f de F(d/de)Inlh, /h_]| following obviously hold: (i) sgne_=+ for g,2¢; (i)

m=-3 spcr- 2P , sgnb, =+ for 1—£2—¢220, ie., fore;-—e+1—¢2;
o= f deF/h, (i) sgnb_=+ for 1—e5—¢%20 ande_Z0, i.e., fore

supp <g;<e+1—¢2 and 0<g;<e—\1—&2; sgnb_=— for

47 1-¢2-6220 ande_Z0, ie., fore+\1—e2<e; and e

where _\/1_802<81<8.

To determine the sign of the flow,(¢) as a function of

@ 1 1 o, cf. (4.9, we have to investigate the ordering of its zeroes
F(¢,p0)=€X —af de E+h— ., @oESupp.
” 48 pr,—arctan1iQ,), (410
The degenerate case wha2é andC~ have an eigenvalue $2,= —arctan, . (4.12

in common deserves special consideration.
For our problem, the quadratures in E¢$.7) and (4.8 Since arctan is monotonic it is sufficient do discuss the or-
can be explicitly evaluated in terms of generalized hypergeodering of 1Q, and—Q,, (o= *).
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FIG. 3. SupportS (dotted regionsas a function ofe for ¢,
=0.27. The directions of the flol, are indicated by full and open
arrows foroc=— ando= +, respectively. Note the periodicity with
respect top(modmr). Material parameters are taken from the set
MBBA |.

FIG. 2. Directions of the flovh (¢) for ¢ e[ — 7/2,7/2]. The
solid (open arrows indicate the direction of the flow for the real-
izationo =+ (—) of the driving process =&+ oe. The regions
with different directions of the flow are separated ly;,
=arctan(1Q,) and ¢,,= —arctaiQ,, o= =. (a) shows the prop-
erties in region 6 of Fig. 1(b) those of region 5 and 2lf¢) those of S=[e1-,¢1+]s (4.19
2a and 1. The process, once trapped in the supporting int&rval
(marked by the fat bayswill never leave this interval since the
flows in the neighborhood point towaf&l

will never leave this interval since the flows in the neighbor-

hood point towardsS. ThereforeS and S+ 7, respectively,

constitute the support of the stationary probability density
We first consider the regions 1 and 5 whére andb_  Ps(#)=2,P.(¢). _ _

have a different sign. Sinc®,=Q_ is equivalent tob, In a similar way, the flows in the other regions are evalu-

=b_, which is in these regions never fulfilled there is aated with the results shown in Figstt? and Zc).

given order ofQ, andQ_, which holds in the entire region. In regions 5 and 2b the support is given by

In region 1 we havdo, <0 and O<b_ which leads toQ _r_

<Q_<0. In region 5 we havd_<0 and 0<b, , which S=l=m2.¢1: 1Vl ez, ml2]. (4.1
leads t0Q_<Q,<0. In region 6 we have €b,<b_. In regions 2a and 1 the support is

Observing that 1p,=—(b,+ \/b20+ 1)<0 this leads di-

rectly to 1Q_<1/Q_ <0. In region 2 we havé, <0 and S=le1+,92-]. (4.17

b_<0. It is obvious that—-Q,>—-Q_ for —b,>—-b_.
The latter inequality is equivalent ﬁ<s§+ e?—1, which
holds in region 2a. The same argument shows thgx_>
— Q. holds in 2b. Regions 3 and 4 are not considered here

Figure 3 shows for illustration the support as a functior of
for a special choice of,, ¢, andey,.

since the threshold curve—as it turns out—is outside of these B. Evaluation of integrals
regions. _ _ . _ Direct evaluation of Eq(4.9) yields
We thus established in regions 1, 2a, and 6 of Fig. 1
I~:(tan )
1 1 Fle,00)==——, (4.18
o =g <0<-Q=-Q., (4.13 * E(tan ¢o)
and in regions 2b and 5 of Fig. 1 where
~ t—1/Q, | a 1
1 1 — g - -
—+<—<0<—Q+<—Qf : (4.14 F(t)_all t+Q, | = 7 e, (Q,+1Q,)"
- (4.19

Now we discuss the example of region 6 in detail. The ~
signs of the flowh,(¢) shown in Fig. 2a) depend only on We remark that in Eq(4.7) the factorsF(tan ¢,) cancel so
the realizations of the noise and omp e[ — #/2,7/2]. For  that we ignore these terms in the remainder. Equ&#ob9)
instance, we conside e[ —m/2,¢;_]. In this interval is needed to calculate the integrals that appear in(£4).
Sgn(t+Qg_):sgn(t_1/Qa_) is negative’ and sgh, is posi_ Both integrals in Eq(47) can be reduced to integrals of the
tive. Therefore, the flow is positive for both realizations of type
the noise. Passing the boundary_ of this interval the flow

h_(¢) changes sign. Thus, in the interviab,_ ,¢,. ] the ~ _ [T 2Q, | o|t+ Qg e

: ; I(n,m, ,m_)= dt "] |
flow changes sign when the process jumps betweeand s e (t—1Q,) M (t+Q,) ™
—. Passing the next boundagy . , the flowh, (¢) changes (4.20

sign so that in[¢q,,0,_] the flow is negative for both
realizations of the noise. Obviously, the process, oncdor n=0,2 andm,=0,1. The integral in the denominator of
trapped in Eq.(4.7) is
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[dof-2] a
o=
S h+ §8+ tan(S)

1~
=——(0,1,0.
€+

1;[ |t_1/QU|K(T|t+Qo'|_KU
(t=1Q,)(t+Q4)

(4.21

Observing that

d|
@n

(1+12)?

IT (t-1Q,)(t+Q,)
(4.22

we obtain the integral in the numerator of E4.7) as

fdﬁd|
eorF ——1In
s de

h,

h_

=2(b_—b;)

h.

h_

=2(b_—b+)f dt(1+1?)

tan(S)
|t_ 1/QU|KU|t+ QU|_KJ
Al =) ara,
=2(b_—b)[1(0,1,D)+1(2,1,1].
(4.23

With b_—b, =e(1+s5—e3—?)/({e,e_) the Lyapunov

exponent is evaluated in terms of the integE’:(Ils,mJr ,m_)
as

— 2 =1+g3+ei+s?

. e(1+e2—82-£2)1(0,1,)+1(2,1,)
& 1010
(4.24

The explicit evaluation of the~l(n,m+ ,m_) in terms of

generalized hypergeometric functions depends on the para

eter region and is deferred to Appendix A.

C. The thresholds
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of the stochastic field, which means— (e,)=¢,; and &7
—(e2)y=e2+¢2 (This physical picture corresponds to a
simple mean-field type decouplir{gt£>—><st><£> of the av-
erages. With the above replacements in H3-2) we obtain
from detC=0 the threshold

2,2
2 _80+8
Sl,th_—gz_l .

(4.2

The stability of the firs{and higher moments was exten-

sively studied in[8—10Q] on the basis okxactequations of
motions for(z) and(sP"Fz), which form a closed system

due to the theorem of Shapiro and Loging88] (d/dt

+2a)(ePVP2) = (ePMPZ). For 2a>2—1 the threshold of
the first moments is determined by a parabola inghe sf
plane[8,9]

eET—¢& —(C Cr)e“—(C CiCr/Cq)eE C1Cr=0,
i—8?%)? 1+Cp)e?—(Ca+CyCy/Ca)ei+CiC=0

(4.2

where c¢;=(ei+2a)/(?—1),
—2a), andcz=g2/(%—1).

For pure stochastic excitation the first moment’s threshold
is found in[8,9] as

Co=s83(1+2a)/(?—1

min(cy,c,) for 2a<¢?—1.
(o for 2a={%—1.

2 _
€th™

(4.27

The numerical simulation investigates trajectorii($)

starting from a nonzero but small initial valuﬁO) for a
given realization of the driving stochastic proce$8™ , i.e.,

for a given sequence of jumping times, ... t,. A trajec-
tory with N jumps (corresponding to a typical timd/«) is
considered as exploding if y=d,0~ko=(me)/d
n?—”zl(d'd)' i.e., for o> ¢~ m/4. This critical value forp is
chosen, because fap~ 7/4 the linearization of sip~e,
which leads to our initial linear differential equation, is cer-
tainly wrong. We have checked that the thus determined
thresholds are practically independent Nf and ¢, for

The threshold corresponding to the criterion of the sampleN>10* (i.e., vary only within a margin of less than )%y

stability is obtained from the solution of E¢4.24 for X\
=0. For example, givemr, ey, and{, the solutione;=¢e1 4,

varying bothN and ¢, over a range of several orders of
magnitude.

determines the threshold for the deterministic component of Figyres 4 and 5 show the thresholds according to the
the driving field. Exploiting the analytical representation of 3nove criteria for pure stochastic excitation and for the su-

~I(n,m+ ,m_) by generalized hypergeometric functiofd.
Appendix A and its series representatiofi85-37 we
solved Eq.(4.24 for A=0 numerically.

perposition of a constant with a stochastic volta@er the
change from dimensionless quantities to physical units con-
sult Appendix B) The numerical simulations strongly con-

The results are compared with thresholds obtained fronfirm the results obtained from the criterion of sample stabil-
two different criteria(namely, the threshold of a simple ity. The region describing the stability of the moments is
mean-field decoupling and the threshold describing the staalways smaller than the region of sample stability but shows
bility of the first momentys and the threshold obtained by qualitatively a similar behavior.

numerical simulations based on tlesact formal solution

(2.11).

We first describe a decoupling procedyid, which as-

We remark that for identical parameters and wave num-
bers the threshold for stochastic excitatiGrmespective of
the criteria is always below that for deterministic excitation.

sumes that the characteristic time of the driving stochastidhis is understandable since a stochastic trajectory with a
process is fast compared to all characteristic times of thgiven mean number of jumps always contains slower Fourier
system. Then the system will “feel” only the average value components, which lead to a lower threshold. In the static
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U[V]T U, [V} | 200

200 et o
”

e 100

0 100 200

UV

ky FIG. 5. Stability of the one-dimensional model against the ap-
[emr1] -t pearance of roll cells in the case of a superposition of constant
voltageU; and stochastic dichotomous voltagédor a “fast” driv-

10000 ing field (»¥=1000 s%). The thresholds are obtained frofi) a

L simple mean-field decouplin¢dashed ling (ii) stability of first
moments(dash-dotted ling and (iii) sample stability(solid line).
The numerical simulation threshold is indicated @y. Note that
“ we refrained from evaluating the analytic threshold condition for

N sample stability in the rang@0 V, 75 V)<(U,U,)<(216 V,180

\ V) which leads to generalized hypergeometric functionsef4
\ arguments because of the excellent agreement with the simulation

M o o & —0m g o =0 in the other regions. Material parameters are taken from the set
00 1000 —==— MBBA I. The insert shows the case of a “slow” driving field for

v [s1] which the three criteria give the same threshold=(L00 s'*, o

. . _ =1.5x10 0! cm !, oy/o, =1.3, other material parameters
FIG. 4. Stability of the undistorted state against the appearancg, ., MBBA )

of rolls for the one-dimensional model. Shown are thresholds as a

function of the(mean number of jumps for excitation by a deter- o ] ]

ministic square voltag&lotted lin@ and by a dichotomous stochas-  With increasing values of the fields at the threshejd

tic voltage. In the stochastic case the thresholds are obtained frofiecreases and may reach the ordergf., (which is small
stability of first momentgdash-dotted ling from sample stability ~but nonzerg as illustrated in Fig. 6. In the latter case, the
(dashed ling and from numerical simulation (+) of a stochastic mean-field-like decoupling is not justified and the corre-
trajectory of about 10jumps based on the formal solutig®.11); sponding threshold is manifestly wrong, cf. Fig. 5.

the errors are within the thickness of the line. The lower part of the The exact treatment of the moments takes the finite char-
figure shows the selected wave number fordreectricmode; we  acteristic timerg,, Of the driving process properly into ac-
chosew/d as a lower cutoff fork,. (The threshold of the first count. Therefore, one finds a finite threshold for pure sto-
moments decreases monotonically withso that there is no mode

selection). Material parameters correspond to MBBA 1.

limit «— 0 only the sample stability threshold converges to o M
the deterministic result; the threshold of the moments repro- t [s] *
duces only the lower branch.

In Fig. 5 we note that for small values of the stochastic
voltage U all thresholds coincide as expected. For a large
range ofU the threshold from mean field decoupling is very
near to that of sample stability but far beyond the thresh-
old for pure stochastic excitationlJg=0) both thresholds

Tstoch

are drastically different. This behavior can be understood by \
comparing the characteristic times of the system and of the
noise.

The characteristic times of_ the fulstochastically driven 0 ] 60 260
system are by modulus the inverse of the Lyapunov expo- U V)

nentsh,<<\, of the system. At the threshold we haxeg

=0, the corresponding characteristic time diverges and is FIG. 6. The characteristic time,=|1/\,| at the sample stability
thus well separated fromgch. SinceN1+X,=1/22 SpC?  threshold shown in Fig. 5 decreases with increasing voltage. The
[14] we can evaluate the second characteristic time at thaitially clearly separated time scales of and 7= 1/2v become
threshold of the same order at sufficiently high stochastic voltage. The inset

2. 2. 2.1 shows that for the “slow” driving case the time scales are well
=], =(1+egt+e’+e]) T (4.28  separated.
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chastic excitation. The region of stable moments is always
smaller than that for sample stability but possibly of similar U, V] f
shape. The former is obvio(i$0] since the divergence of the 1o
trajectories is sufficient for the divergence of the moments:
For large times we havg=eMedi<(eMedt=(r) where
the inequality holds due to the convexity of the exp function.

The superposition of a deterministic field with a “fast” 75
stochastic field may lead to a region of sample stability that
extends beyond the threshold values of deterministic or sto-
chastic driving alone, thus forming a stable tongue in the
U—U, plane. This explains naturally why in experiments
[4-7], applying first a stochastic voltagel of a given 0 .

. . 2T 0 100 200

strength and increasing then the deterministic voltdgeup —_—
to the instability of the homogeneous phase, a discontinuous UVl
behavior of the thus determined threshold was observed: Be- FIG. 7. Comparison of sample stability thresholds for different

low U, the threshold of the deterministic voltagkiy, ap-  yajues of the conductivity in the one-dimensional model. The ten-
pears finite and above zero. A similar behaviout less pro-  gency towards formation of a stable tongue increases with increas-
nounced was observed previousl}8—10] considering the  ing conductivity. Shown are the cases=0.75<10"1° Q"% cm™*
stability of moments, cf. also Fig. 5. andoy=3x10"° Q"' cm™!, o/o, =1.5. In the latter case there
We further remark that the moment’s stability may beis a stable tongue so that, following the measuring procedure de-
totally misleading if characteristic times of noise and systenscribed in the text, the threshold curve appears discontinuous. The
are of comparable order in a larger parameter range. FdRean number of jumps is=1000 s *, other parameters are taken
example, we found for a noise of mean number of juraps rom MBBA II.
=0.66 (parameter setting MBBA | as given in Appendix B
a very pronounced stable tongue for sample stability but for
the stability of the moments we found a monotonic decreas- In the two-dimensional version the equations describing
ing threshold. If insteadrg,p is clearly separated from at the stability of the undistorted state against formation of rolls
least one characteristic time of the system, both moment’are similar to the one-dimensional case. It is more conve-

and sample stability criteria give similar resulsee insets in  pjent now to use variables in physical units denotedand

Figs. 5 and & ~ . oo~~~
The appearance of a stable tongue depends also on t% The dynamics oz=(q,4) " is given by Eq.(1.1), where

material parameters. Roughly speaking, the tendency tg*°
wards formation of a stable tongue decreases with increasing
Helfrich parametet? as observed already {i8] using mo- 1T oHE,

ment’s stability. This is confirmed also for sample stability C)=- ak; Al—AzEt2 : 5.1
thresholds, comparing results for the two sets of material

parameters MBBA | and MBBA Il given in Appendix B, o ) .
which correspond ta:?=2.39 and{?=3.08, respectively The coefficients W, oy, &, Ay, and A, given in Ap-
(see Table)l (The lower value is just above the critical value Pendix C depend all on the wave numbégsandk, to be

2.35 below which there is for the one-dimensional model naletermined by mode selectio, = E; + EP™ is the super-

mode selection in the deterministic high frequency limitposition of a constant fielé, and a dichotomous stochastic
[29].) field EPMP with the same statistical properties 88" . E,

A further important parameter is the conductivity, which takes the valueg ,=E;+ ¢E, o= *. Introducing polar co-
may, however, differ from sample to sample considerablyordinates as in Sec. IV the analog to E4.9) reads
and which can be changed easily by doping. The ratio
o/o, , which alone enters the Helfrich parameter, is a more h,(¢)= crHEgcos?@(t—Q,l,)(t— le,), (5.2
stable characteristics. The parallel component of the conduc-
tivity o comes into play if we return from the dimensionless where
variables of the one-dimensional theory to variables in physi-
cal units, see Appendix B, Eq$B2) and (B3). Roughly " , a 1/Tq—A1+A2E§
speaking, the tendency towards formation of a stable tongue Q.“=-B,* \/Bi+—, B,= = .
increases with increasing; while o/o, is kept constant TH THEo
(cf. Fig. 7).

We remark that the early experimerig—7] were per-
formed with highly salted MBBA39]; no characterization
of the material was given. In later experime®,41] with
unsalted MBBA and a different chemically more stable nem- 5
atics(for both £? was in the range 394o stable tongue and Ew=11I =Q5 o =2 -
correspondingly no discontinuous behavior of the threshold oo [t=QL T T ouE, (QE-Q2)°
was found. (5.9

V. TWO-DIMENSIONAL MODEL

(5.3

The formal resuli(4.7), (4.8) for the Lyapunov exponent
holds also in this case; the analog to E419 is

Ko
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FIG. 9. Comparison of sample stability thresholds and selected
0 10000 ——p— wave numbers in the case of pure stochastic exitation for the one-
k, [em]] dimensionaldashed lingand two-dimensional versiosolid line).
x

In the latter case, mode selection works also for the conductive
FIG. 8. Mode selection for pure stochastic excitation. Shown arénode. Note that the selected wave numbers differ considerably in
the neutral curves for the one-dimensional modelshed lingand ~ the dielectric regime, which has, however, little influence on the
the two-dimensional modésolid line) in (a) the conductive regime thresholds. Material parameters are taken from the set MBBA II.
(»=100 s'1) and in(b) the dielectric regime =400 s ). The
unstable region in the left lower corner @) corresponding to the two-dimensional versions for pure stochastic excitation and
conductive mode shrinks with increasing mean frequency of thdor the superposition of a constant field with a stochastic
driving process and is absent in the dielectric regiime This to-  field. The thresholds show qualitatively the same behavior,
pological difference explains the sharp crossover frequency in Figgthe quantitave difference is marginal. The selected wave
4 and 9. We further see if@) that for the one-dimensional model numbers, however, show significant differences.
(dashed ling the absolute minimum of the neutral curve iskat The stability chart for pure stochastic excitatiti. Fig.
=0 so that mode selection fails. The arrows(b) indicate the  8) shows a topological difference between “slow” and
selected wave numbers for one- and two-dimensional modelsifgst” driving. In the former case we have an unstable is-
which may differ considerably whereas the corresponding thresholghnd in the left lower corner of Fig.(8). The corresponding
voltages almost coincide; cf. Fig. gl'he minimum of the 'dashed mode(low threshold and small wave numbés called con-
curve be.comes. more pronounced with increasing Helfrich paramg ctive. With increasing mean frequency of the driving field
eter but it remamskver)f/ flat fgr a reasonable rang¢“of Material this island shrinks. There is a sharp transition if it disappears:
parameters are taken from the set MBBA Il. The instability is now towards a mode with a higher thresh-
old and a larger wave number, as is typical for the dielectric
The further calculations, as, for instance, the determinaregime[cf. Fig. 8b)]. We remark that also for deterministic
tion of the support and the explicit evaluation of the integralsdriving the stability chart has these properties. The change of
in (4.7),(4.8), are even more cumbersome than in the onefopology is not bound to the different symmetries of the
dimensional case, should be repeated several times in tigielectric and conductive mode, which is known to be re-
process of mode selection, and are therefore done numesstricted to deterministic driving.
cally. We always found,= =/d. In all considered cases the  In the conductive regime mode selection leads in the one-
results of numerical evaluation of the Lyapunov exponendimensional model to the unphysical valkg=0, which is
show a fair agreement with digital simulations, for not tooas usual replaced by/d. The selectedvave number of the
large strength of the stochastic field within the thickness otwo-dimensional model is of the order/d.
the lines. In the dielectric regime the selected wave number of the
In Figs. 8—10 we compare the results for the one- andne-dimensional model decreases monotonically with in-



2056 ULRICH BEHN, ADRIAN LANGE, AND THOMAS JOHN PRE 58

hydrodynamic equations seems at present not feasible. For
deterministic systems, a weakly nonlinear analysis leads to
simpler (but still complicated enoughamplitude equations
[46]. In the stochastic case, see egl7-5] it seemsa
priori not clear whether this approach would lead to equa-
tions with stochastic or averaged coefficients, having in mind
that for our system the time scales are not always well sepa-
rated and that it was crucial to take the finite correlation time
of the noise properly into account.

Nonlinear partial differential equations, e.g., of Ginzburg-
Landau or Swift-Hohenberg type, withd hocassumed ad-
ditive or multiplicative Gaussian white noise are at present a
subject of intense study, both numerically and analytically
[52-65. In this context in a spirit very close to ours, Becker
and Kramer[64,65 found a controlable approximation to
kg determine the threshold of sample stability without knowl-
femY) edge of the stationary distribution. A zero-dimensional ver-
sion, the Stratonovich model, was solved rigorously for
Gaussian white noisgs6] and dichotomous noidé7].

3000 | In both the one- and two-dimensional versions of the stan-
dard model considered here the conductivity enters as a ma-
terial parameter. Recently, Treiber and Kramé8] devel-
oped a more sophisticated model where ionic migration,
diffusion, and dissociation-recombination are included so
that the conductivity becomes a variable that introduces new
----------------- time and length scales. The analysis of stochastic driving
0 150 2~ ———w— within this model remains a task for the future.

In this paper we considered the stability of the undistorted

FIG. 10. Comparison of thresholds and selected wave numbergtate againstnemode describing rolls of a given wave num-
for the superposition of a constant with a stochastic dichotomou®€r. We expect, however, that, if the characteristic time of
voltage obtained from the sample stability criterion for the one-the noise is of the order of the inverse growing rate of a
dimensional modeldashed ling and the two-dimensional model typical mode, the process of mode selection will be not com-
(solid ling). Material parameters are taken from MBBA I} pleted until the next jump of the noise, so that a band of
=1000 s 2. wave numbers is involved. This could lead to a sort of dy-

namical pattern as observed in experiment.
creasing mean frequency and reaches rapidly the cutoff value We observed in the digital simulations of the two-
wld (cf. Fig. 9. The two-dimensional version shows more dimensional model that the fluctuations in the distribution of
realistic behavior. With increasing mean frequency the wavé-yapunov exponents for trajectories of finite lengtbhich
number decreases first and then increases with a slope mugkean fluctuations of the thresholeshcrease if the character--
smaller than for deterministic driving as is qualitatively alsoistic times of noise and system become comparable, cf. Fig.
found in experimenf42]. 10. The analytic treatment of these fluctuations leads to the

For the superposition of deterministic and stochastic fieldProblem of generalized Lyapunov exponefi§,69. Fluc-

(cf. Fig. 10 the wave number for the one-dimensional ver-tuations of thresholds were also observed in experiment for
sion is given by the cutoff value whereas for the two-large enough noispd0—42. _ _

dimensional version it increases drastically with increasing Finally we remark that it would be interesting to look for
strength of the stochastic field, which qualitatively corre-different physical systems described by infinite products of
sponds better to experimental findingt0—44. A detailed random matrices of the type considered here.

guantitative comparison of two-dimensional theory and ex-

periment is in preparation. ACKNOWLEDGMENTS
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the parameter region. In any case, we arrive at integrals gfeating this procedura—1 times, which leads to general-

the form

[(a,B1,B2,7iX1,X2) = foldu u i (1-uyr et

X (14 x,u) “A1(1—x,u) A2,
(A1)
where|x,| <1 but|x,| is not generally bounded by 1. Only i
|x,|<1 the integral(Al) is immediatelyrelated to the gen-

eralized hypergeometric function ¢fvo arguments, cf. the
general definition 35—-37,

FD(anBl! LA an,?’;Xl, L 1Xn)
_ F(Y) ! a—19 _ —a—1
‘F<a>rw—a>fod““ (1=w?
X (1=xqu) P (1—x,u) " Pn, (A2)
where|x;|<1,i=1,...n.

We consider the case<lx;<2, which leads to a repre-

sentation by generalized hypergeometric functionshoée
arguments. Choosing an arbitraXy x; <X<2, the transfor-
mationXu=v yields

(X . 1 \r—e-1 X, |\ A
=X 0dvv (1—§U) 1+YU)
|1-22 b A3

<V (A3)

We now split the integral in Eq(A3) into two parts,
X~(f5dv+---+f3dv---)=1,+1,, with obvious mean-

ing of I 5. 14 is already of normal form, i.e., directly related
to Fp . The second integra}, is subject to the transformation

z=(v—1)/(X—1), which leads to

y-a-1 x,| AL
|2=x—“(x—1)<1—§) (”Y)
X5 —B2 r1 B o
X 1_Y) fodz[1+(x—1)z]“ Y1-z)r ot
X—1 “hA X—1 ~h2
x| 1+ X+X1X12) (1— X_szzz (A4)

Since 1<x;<X<2 the modulus of all coefficients of is
smaller than one and we arrive at

I(alBI!IBZvy;Xl-X2)

1
:—FD

1 X1 X
X@ a,l+a—vy,B1,B2,at+1,;

X' X'X
. X—1 1 1\vet e “hA L% ~h2
(y—a)X®\ = X X X

1,,31,[32,1—a,'y—a+ 1,

XFp

X-1
X1, o0——

T XTx, (AS)

The casesi<x;<n+1,n=2,3,..., can bdreated by re-

ized hypergeometric functions af+2 arguments. We re-
frained, however, from extending the numerical calculations
ton=2.

We now evaluatd in the different parameter regions in
consecutive order.
1. In regions 1 and 2a the supportSs-[ ¢4, ,¢,_]; cf.

¢ EQ. (4.17). From Egs.(4.11),(4.12 we get tan§)=[1/Q .,

—Q_]. Fortetan(S) we havet—1/Q,>0 andt—(—Q,)
<0; cf. Fig. Ac), so that Eq(4.20 can be written as

~ Q- 1 \%e= Mo
i(nm, m)=(-1)> maJ “ate ] (t——)
1/Q 4 o=+

Qs
X(—t—=Q,) <o~ Mo, (AB)
Introducing the shorthands
=1/Q,-1/Q_,
s=-Q_-1Q,, (AT)
r=-Q.—-(-Q-),
where obviously |,s,r=0, the transformationt’=(t

—1/Q,)/s yields
T(n,m+ lm*):(_l)z, m‘rsl+K+*m+*K_*m_|K_*m_
n

L
st'+

Q+

1
x(s+r)*K+*m+f dt’
0

XtrK+fm+(l_tr)7K_fm_

B PR Y
S+r

—Ky—my

S
1+ -t

X
I

(A8)
In our case, cf. Eq4.24), n is an integer so that the integral
in Eqg. (A8) leads to integrals of the forrfAl).

Only for 0<s/I<1 is Eq.(A8) immediately related to the
generalized hypergeometric function of two arguments. For
s/l>1 and as long as €9s/(s+r)<0.5 holds, we exploit
two typesof transformations foiF[see[36], p. 116, Egs.
(103) and (10,,3)], which finally give the transformation
t'=1-2z for the integral in Eq(A8). We obtain, introducing

S S
Il:|<1—K,—K,K++1,K++1—K;_STI,—F),
(A9)
S S
Iz=|(—K_,—K_+1,K++1,K+—K_;—m,_r>,
(A10)

S S
Iszl(—K,—K+1,K++1,K++1_K,_m,_r>,

(A11)
=1 1 1 2 ; > S
4= —k_,—k_+1lk;+1lk;+ —K,,—m,—r ,

(A12)
the integrals appearing in E(.24 as
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~I(0 1,0= —§(|S+SZ)I (A13) TABLE I. Material parameters of MBBA.
sy - 1
~ Quantitiy MBBA | MBBA I
1(0,1,1) =£&7,, Al4
(01Dh=¢2p (A14) e, 4.5 4.72
1 25 & 5.0 5.25
1(2,1,) =& =T+ =T+, (A15) o [Q7"em™!] 6.0<10 1 1.5x10°*°
QL " Q. o [Qtem ] 4.6x10° 11 1.0x10°10
cmls?t 6.5 1072
where the factors é=s<+ % "1*~L(s+r) *+"1(1 Zl %g I 571% 83.2¢ 102 83.2¢ 102
+s/)*-[1—s/(s+r)] “+1 cancel in Eq.(4.24. Since y4 [gem s3] 76.9¢ 10-2 26.9¢ 10-2
s/r<1 for 0<s/(s+r)<0.5 ands/(s+1)<1, the integrals 71 [gem s3] —7é?><10‘2 —75 8% 102
. . . 2 . .
g% ,tv.v.o.a,%ufrirrzn(:gectly related to hypergeometric funcUonsB [gem ! s 1] 11.9¢10°2 11.9¢10°2
: —1 o1 -2 —2
2. In the regions 2b and 5 we obtain from E¢4.1), 7 9 Cm,l S,l] 12033531100,2 12033511(?2
(4.12, and (4.1 tan(§)=[-»,1Q,JU[-Q_,»]. Ob-  72lgcm <] oo, oo,
serving the signs df—1/Q, andt+Q, in both intervals we ~K1[9¢m 372] SO 9
can write Kss[gem s 4] 7.3x10 7.25x 10
I 2.39 3.08
~ 1/Q 1 Kg— Mg
I(n,m+,m_):j “dte[] (——t)
- 4 o s s
. I;5=|(K+,—K-|-1,1<+-|-1,K+—K;I—,SH_—r ,
X(=Qu=t) " Mot f_ dtt" (A20)
1|« Ir=1| ki +1 +1lkit+lxi+1 2
x]T | t— Q_) (t+Qg) o Mo, [ e e “Trsrr)
7 7 (A21)
(Al16) s s
Zg=1 K++2,—K_+1,K++1,K++2_K_;l—,T ,
Introducing the shorthandi contrast to EQ9A7)] we have ST
(A22)
I=Q,—Q_, the integrals in Eq(4.24 are then
s=-1Q_-Q,, (A17) 1(0,1,00= ¢'IsZs,
r=-1Q,+1Q-_, T(0,1,)=¢(Q3Te+25Q. I;+°T,),  (A23)

which are obviously non-negative, the transformatidn
=(1t—Q,)/s leads to
-s

Q+ K_—Mm_
1_Q_) (a

X(1+QF) ™ M (1+Q-Qy) ™M

~ Kp—my
I(n,m,,m_)=s

1
XJ dt't/K+_m+(St,+Q+)_2_n+22 m,
O o

-

X(1—t) e

S
1- —t'

—Kyp—my
S+r )

S
X ( 1+ l—t,
(A18)

Again, only for 0<s/I<1 is Eq.(A18) immediately related

to generalized hypergeometric functions of two arguments.

For 1<s/1<2 we follow the line described above. Introduc-
ing

S
Is=1 K+,—K,,K++1,K++1—K,;I—,

s
s+r)’
(A19)

T(21,0)=¢'Tg,

where the factors &' =[1/(Is)][1/(s+r)][1/(Q?s)]*-
{s/[Q2 (s+r)]}*+ cancel in Eq(4.24). I, . . . Ig are given
by Egs.(A19)-(A22), andl, s, r are given by Eq(A17).
Note thatZg, . .. Zg are related to the hypergeometric func-
tions of threearguments by EqQLA5).

3. In region 6 we obtain from Eq$4.11), (4.12, (4.195
tan(S)=[1/Q_,1/Q,]. For tetan(S) we have 1 <t
<1/Q,<—-Q_<—-Q,, so that Eq(4.20 can be written as

Q4

T(n,m+,m_)=(—1)2m++m—f dt

1/Q_
Xt(—t—Q_)Tx- M-

1 |k -m
>

><(—t—Q+)‘“+‘”‘+(t—
1
——t

e

Introducing the shorthandEn contrast to Eqs(A7) and
(A17)]

X (A24)




PRE 58 ELECTROHYDRODYNAMIC CONVECTION IN LIQUDD . .. 2059

s=1/Q, —1/Q_, which amounts tor=150.7a[s '] for MBBA | and v
~359.4a[s '] for MBBA Il. The time 7, is defined by Eq.
m=—-Q_-1/Q,, (A25)  (B2). For voltages one obtains

r=—Q,+Q_, 47 e
Q-7 U= \/——Lde, (B3)
: T 8,8 Tq

where obviously s,m,r=0, the transformationt’=(t

—1Q-)/s yields where 7= y,— (71— v2)%4n;, which gives U=74.1£[V]

for MBBA | and U=115.3¢[V] for MBBA II.
I(n m,,m_)=(—1)M-glttr-"mFre =M (g m) r-—m-

N 1\n APPENDIX C
X(s+mr) M fo dt’| st' + o The coefficients in Eq(5.1) are explicitly given by
Xtuc_fm_(l_tr);g_fm_,_ 1 O_Hki_’_a_ k2
B ()
s —Kk_—m_ Tq € kX+£LkZ
- orm! ) .
(o —e 0 )k tky)
s S o= (C2)
X 1—mt (A26) 8”kx+8 ks
For integern, sinces/(s+m)<1 ands/(s+m+r)<1, Eq. 11 (n— YKyt (y1+ y2)KGkS
(A26) can be directly evaluated in terms of hypergeometric |2 aqkEKE+ (KE+K2) (ke + 7pk2)

functions oftwo arguments.
&K

APPENDIX B - 5|
g kyt+e k;
I 1

(C3

We use two sets of material parameters for MBBA from
the literature denoted by MBBA [I70] and MBBA Il [71].
The quantities in the following table are the dielectric con- —=A;—A,E7, (CH

stants and conductivities paralle|,andoy, and perpendicu- Tu
lar, e, ando, , to the director, the viscous coefficients, where
@4, Y1, Y2: By 11, @nd s, the elastic constants;; andK ;3, 5 5
and the Helfrich parametgf. A sample thickness af=100 o 1 [(yi— vkt (y1+y2)Kz]?
um is assumed. We remark that both[i#0] and[71] only T4 kA (K KD (1Kot 75K2) ©
the ratioo /o, is given by 1.3 and 1.5, respectivelfhe
conductivities may differ from probe to probe up to an order 1
of magnitude; the ratio is a more stable characterjstibe m=5 @~ vt 5 (Bt v, (C6)
value of o, we used for MBBA Il is found in[31]. The
Helfrich parameter is defined by 1 1
M=5l ast vt S (B v | (C7)
e 0T Yi— Y € 2 2
2=[1- 1+ (1_¥_), (B1)
€0, 2n, €, A 1 ) )
l_?[K33kx+Kllkz]a (C9
Wher683=sH—8L.
The rescaling from dimensionless quantities for the mean 1 sasl(k§+ kZ)
number of jumps of the stochastic field is given by Ao=7| ————|" (C9
f 47T(8Hkx+8lkz)
1 471'0'H ' .
v=—a=——a, (B2) Note that both IV, and oy are proportional too if
Tq g oylo, =const.
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