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Electrohydrodynamic convection in liquid crystals driven by multiplicative noise:
Sample stability
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We study the stochastic stability of a system described by two coupled ordinary differential equations
parameterically driven by dichotomous noise with finite correlation time. For a given realization of the driving
noise~a sample!, the long time behavior is described by an infinite product of random matrices. The transfer
matrix formalism leads to a Frobenius-Perron equation, which seems not solvable. We use an alternative
method to calculate the largest Lyapunov exponent in terms of generalized hypergeometric functions. At the
threshold, where the largest Lyapunov exponent is zero, we have an exact analytical expression also for the
second Lyapunov exponent. The characteristic times of the system correspond to the inverse of the Lyapunov
exponents. At the threshold the first characteristic time diverges and is thus well separated from the correlation
time of the noise. The second time, however, depending on control parameters, may reach the order of the
correlation time. We compare the corresponding threshold with a threshold from a simple mean-field decou-
pling and with the threshold describing stability of moments. The different stability criteria give similar results
if the characteristic times of the system and the noise are well separated, the results may differ drastically if
these times become of similar order. Digital simulation strongly confirms the criterion of sample stability. The
stochastic differential equations describe in the frame of a simple one-dimensional model and a more realistic
two-dimensional model the appearance of normal rolls in nematic liquid crystals. The superposition of a
deterministic field with a ‘‘fast’’ stochastic field may lead to stable region that extends beyond the threshold
values for deterministic or stochastic excitation alone, forming thus a stable tongue in the space of control
parameters. For a certain measuring procedure the threshold curve may appear discontinuous as observed
previously in experiment. For a different set of material parameters the stable tongue is absent.
@S1063-651X~98!14508-7#

PACS number~s!: 61.30.2v, 47.20.2k, 47.65.1a, 05.40.1j
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I. INTRODUCTION

The influence of stochastic modulation of parameters
spatially extended systems is a subject of recent interest@1#.
Especially well investigated are electrohydrodynamic ins
bilities in nematic liquid crystals sandwiched between t
parallel electrodes where the convection is driven by an
ternal ~spatially homogeneous! time dependent stochast
electric field. The electric field is the superposition of
‘‘slow’’ ~harmonically modulated or constant! deterministic
component and a ‘‘fast’’ stochastic component@2–10#. Slow
and fast refer to the characteristic times of the liquid crys
describing the relaxation of space charge and director in
sence of external electric fields.

In experiments@2–7# it was found that the superpositio
of a fast stochastic field increases the threshold for the de
ministic field ~i.e., stabilizes the homogeneous state! up to a
certain critical value of the stochastic field. Beyond th
value the homogeneous, i.e., undistorted, state is unst
which leads to a discontinuous behavior of the thresh
curve as a function of the stochastic field.

Theoretically, this phenomenon found—at lea
qualitatively—an explanation@8–11# by considering the sta
bility of moments~the stochastic averages of space cha
and director!. This theory explained qualitatively~i! the dis-
continuous behavior of the threshold at a critical strength
PRE 581063-651X/98/58~2!/2047~14!/$15.00
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the noise,~ii ! the change from discontinuous to continuo
behavior of the threshold with increasing characteristic ti
of the noise, and~iii ! the change from a stabilizing to
destabilizing effect of the noise if its correlation time b
comes comparable to the characteristic times of the sys
The quantitative agreement was, however, not satisfactor
remained an open question whether the quantitative disc
ancies were the result of the approximate treatment of
nemato-electrohydrodynamic equations, of poor knowled
of material parameters, of the choice of the stochastic sta
ity criterion, or depending on other reasons.

There exist different criteria for stochastic stability@12–
15# based, for example, on the stability of~first or higher!
moments, on the bifurcation of the most probable value,
on the concept of sample stability describing the stability
one stochastic trajectory~a sample!.

In this paper, we consider sample stability within a simp
one-dimensional model describing the stability of the und
torted state in a simplified geometry and neglecting bound
conditions. We calculate analytically the correspondi
Lyapunov exponentl and compare the threshold obtaine
by solvingl50 with thresholds obtained from different cr
teria and the results of a numerical simulation of stocha
trajectories. The simulation—independent of any theoret
formalism—strongly confirms the concept of sample stab
ity. We discuss under what conditions different criteria gi
similar or different results. We further give results for a tw
2047 © 1998 The American Physical Society
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dimensional model that is more realistic in the determinat
of the characteristic length of the pattern by mode select

From the formal point of view, the exact treatment of t
stochastic dynamics leads to the problem of determin
properties of infinite products of random matrices. This n
toriously difficult problem@16# appears also in a number o
different fields in statistical physics and is a subject of rec
interest, cf.@17–25#. A comprehensive review is given i
@26#. As a spin-off, in this paper we obtain an analytic res
for the largest Lyapunov exponent describing the stability
a dynamical system related to a new class of infinite produ
of random matrices. For this class of matrices one of
standard methods, the transfer matrix formalism, leads
Frobenius-Perron equation, which, to the best of our kno
edge, has not hitherto been solved.

In the one-dimensional version, the nema
electrohydrodynamic equations describing the stability of
undistorted state in a thin layer in the middle between
electrodes against the formation of roll cells reduce to
nonautonomous system@27–29#

zẆ5C~ t !zW, ~1.1!

wherezW5(q,c)T and

C~ t !52S 1 z« t

z« t «0
21« t

2D . ~1.2!

The variablesq and c describe space charge and spa
variation of the angle between director and electrode plan
dimensionless units, respectively. The undistorted stat
characterized byzW50. « t is the external time dependent ele
tric field in dimensionless units. The time is scaled in units
the relaxation time of the space charges.z is a material pa-
rameter.«0 is proportional to the wave number of the rol
normally to be determined by mode selection. As typical
one-dimensional models it is impossible to select a mode
a characteristic length determined essentially by the sam
thickness; the corresponding wave number in the conduc
mode is setby handto p/d. For the dielectric mode the wav
number is an order of magnitude larger and essentially
termined by bulk properties, so that mode selection wo
even in the one-dimensional model@28,30#.

The two-dimensional version@11,30–33# contains explic-
itly the distanced between the electrodes as a parameter
thus allows one to determine also the wave number of
rolls in the conductive regime by mode selection. The eq
tions are—in principle—similar to the one-dimensional ve
sion but much more difficult to handle since quite a num
of parameters are involved depending on material prope
andon the wave number of the rolls. This makes an analy
treatment, such as it is possible for the one-dimensional
sion, into a hopeless enterprise. Therefore we present firs
almost thorough analytic study of the one-dimensional v
sion and then the numerical results for the two-dimensio
version. The thresholds in both models show qualitativ
the same behavior and differ by less than 10%. The w
numbers may differ in a more significant way.

We investigate the superposition of a constant determ
istic field «1 and a stochastic field, modeled by the dicho
n
n.
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mous Markov process~DMP! « t
DMP, which takes with equal

probability the two valuess«, s56. Thus« t takes values
«s5«11s«. For a given realization«s of the DMP,
C(t) takes the constant valuesCs, s56, with obvious defi-
nition. The DMP is the simplest discrete Markovian proce
with finite correlation time and is easily generated in expe
ment. Its autocorrelation decays exponentially,^« t« t8&
5«2exp@22a(t2t8)#. The parametera determines the in-
verse correlation time and describes the mean numbe
jumps in unit time.

Note that Eq.~1.2! contains thesquareof the stochastic
field. This forces us—from the formal side—to consider
process with a finite correlation time. From the physical si
we are also forced to consider a process with a finite co
lation time. This is because one of the characteristic time
the system decreases with increasing field and may reach
order of the characteristic time of the noise so that the i
alization of white noise should fail.

Theoretically, the concept of sample stability is applicab
to any linear stochastic system of first order different
equations with a quadratic coefficient matrix@13#. From the
practical point of view, however, the explicit evalution of th
simplest nontrivial case of a 232 system driven by dichoto
mous noise needs considerable effort. The step from p
stochastic excitation considered in@10# to the case of a su
perposition of constant and stochastic excitation investiga
here is not a simple exercise.

The paper is organized as follows. In the next section
derive the formal solution of Eq.~1.1! for a given realization
of the driving noise which—in the long time limit—leads t
an infinite product of random matrices. To illustrate the d
ficulty in calculating the largest Lyapunov exponent of th
product we consider in Sec. III the transfer matrix formalis
and derive the Frobenius-Perron equation. In Sec. IV we
an alternative approach to calculate the Lyapunov expon
analytically in terms of generalized hypergeometric fun
tions. The corresponding sample stability threshold is co
pared with thresholds obtained from different criteria a
results of numerical simulations. Section V contains the
sults for the two-dimensional version. Details of the analy
evaluation are deferred to Appendix A. In Appendix B th
reader finds values of material parameters used in the
merical calculations and the rescaling of dimensionless qu
tities. Appendix C gives the explicit representation of t
coefficients for the two-dimensional model.

II. FORMAL SOLUTION

We derive the formal solution of Eq.~1.1! for a given
trajectory of « t

DMP with jumps at timestn , n50,1, . . . ,n,
where tn.tn21.•••.t1.t0. Let us first consider a time
interval between two jumps and diagonalizeCs. The ~real!
eigenvalues ofCs are

l1/2
s 52

11«0
21«s

2

2
6A1

4
~12«0

22«s
2 !21z2«s

2.

~2.1!

We look for a unitary matrixUs, Us(Us)215(Us)21Us

51, which diagonalizesCs:
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UsCs~Us!215S l1
s 0

0 l2
sD [diag~l i

s!, ~2.2!

and

~Us!21diag~l i
s!Us5Cs. ~2.3!

Note that the eigenvaluesl1/2
s do not depend on sgn«s but

Cs does. Therefore, the unitary matrixUs depends not only
on the realization of the DMP but also on sgn«s .

We try the generalAnsatz

Us5S cs 2rA12cs
2

rA12cs
2 cs D . ~2.4!

cs and r with uru51 are determined by inserting Eq.~2.4!
into Eq. ~2.3!. C11

s 5l1
scs

21l2
s(12cs

2)521 leads to

cs
252

11l2
s

l1
s2l2

s
, ~2.5!

which generates C22
s 52«0

22«s
2 . C12

s 5C21
s 5(l2

s

2l1
s)rAcs

2(12cs
2)52z«s leads, by exploiting Eq.~2.5!

via 2rA2(11l1
s1l2

s1l1
sl2

s)52rAz2«s
252rzu«su, to

r5sgn«s . ~2.6!

It is easy to prove that Eq.~2.2! is satisfied. For pure sto
chastic excitation, i.e.,«1[0, Eq. ~2.6! reduces tor5s.

The time evolution between two jumps is now easily o
tained. IntroducingUszW5WW s we have from Eq.~1.1!

WẆ s5diag~l i
s!WW s, ~2.7!

which is solved by

WW s~ t !5diag$exp@l i
s~ t2t8!#%WW s~ t8!. ~2.8!

The inverse transformation leads to

zWs~ t !5Ts~ t2t8!zWs~ t8!, ~2.9!

whereTs is the time evolution matrix

Ts~t!5~Us!21diag@exp~l i
st!#Us. ~2.10!

For a given realization of the driving process with jum
at times tn between the values «sn

5«11sn«,

sn5(21)ns0, iteration of Eq.~2.9! gives the formal solu-
tion of Eq. ~1.1! as

zWsn
~ t !5Tsn~ t2tn!•••Ts2~ t32t2!Ts1~ t22t1!Ts0

3~ t12t0!zWs0
~ t0![T ~n!~ t,$tn%,s0!zWs0

~ t0!,

~2.11!
-

whereT (n) denotes the ordered product ofn11 random ma-
trices of type~2.10!. The formal solution~2.11! serves as
starting point to investigate the stability by numerical sim
lation.

The stability of the stochastic trajectory~2.11! for a given
realization of the driving process~a sample! is determined by
the largest Lyapunov exponent of the matrixT (n) in the limit
n→`. If this exponent has a positive real part the trajecto
diverges, otherwise it is stable. This is the concept of sam
stability. As we show below, for a given parameter setti
the Lyapunov exponent is for almost all trajectories, i.
with Prob1, the same.

III. TRANSFER MATRIX FORMALISM

To illustrate the difficulties in treating the infinite produ
of random matrices of the above type we consider one of
standard methods, the transfer matrix formalism.

We denote the statezWsn11
(tn10) immediately after the

jump from «sn
to «sn11

at time tn by zWn , the ~random! time

span between jumpsn21 andn by tn and write the recur-
sion ~2.9! as

zWn5Tsn~tn!zWn21[T~n!zWn21 . ~3.1!

From Eq.~3.1! one obtains in the usual way closed seco
order recursion relations forqn ~or cn). IntroducingRn11
5qn11 /qn we arrive at

Rn115An1Bn

1

Rn
, ~3.2!

where

An5T11
~n11!1T12

~n11!
•T22

~n!/T12
~n! , ~3.3!

Bn5T12
~n11!~T21

~n!1T22
~n!
•T11

~n!/T12
~n!!. ~3.4!

SinceT(n11) depends ontn11, andT(n) depends ontn , both
An andBn depend ontn11 andtn . This is the origin of the
twofold integration with respect to the distribution of time
between two consecutive jumpsr(t)5ae2at in the
Frobenius-Perron equation associated with Eq.~3.2!

P̃n11~R!5E dt8E dtE dR8r~t8!r~t!P̃n~R8!

3dFR2A~t,t8!2B~t,t8!
1

R8
G . ~3.5!

The Lyapunov exponent that governs the long time beha
of q is

lq5 lim
N→`

1

N
ln

qN

q0
5 lim

N→`

1

N (
n50

N21

ln Rn5E dRP̃s~R!ln R,

~3.6!

where the last equality holds with Prob1 andP̃s(R) is the
stationary solution of Eq.~3.5!. However, to the best of ou
knowledge, Eq. ~3.5! does not belong to the class o
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Frobenius-Perron equations, which were amenable to exp
determination of their stationary solution.

IV. AN ALTERNATIVE APPROACH

In this section we exploit an alternative approach@14#
based on a transformation from (q,c) to polar coordinates
(r ,w), which circumvents the problem of solving the abo
Frobenius-Perron equation.

In polar coordinates the dynamic equations~1.1!–~1.2!
read

ṙ 5g~« t ,w!r , ~4.1!

ẇ5h~« t ,w!, ~4.2!

where

g~« t ,w!52cos2w2z« tsin 2w2~«0
21« t

2!sin2w, ~4.3!

h~« t ,w!5cos2w@z« t~ tan2w21!1~12«0
22« t

2!tan w#.
~4.4!

Equation~4.1! is linear in r and can be solved for a give
trajectory of the driving process. This leads to the Lyapun
exponent

l5 lim
t→`

1

t E0

t

dt g~«t ,w!5E
supp

dw (
s56

Ps~w!g~«s ,w!.

~4.5!

The second equality holds due to the multiplicative ergo
theorem of Oseledec@34# with Prob1. Clearly, ifl,0 the
trivial solution r 50 of Eq. ~4.1! is stable and otherwise un
stable.Ps(w) is the stationary solution of the Kolmogoro
forward equation of the joint process (« t ,w) associated with
Eq. ~4.2!

Ṗs5
d

dw
~hsPs!2a~P2s2Ps!, s56, ~4.6!

where hs is the shorthand forh(«s ,w). For the nonrota-
tional case the solution of Eq.~4.6! can be found up to
quadratures@14# and leads to

4l52 (
s56

SpCs2

E
supp

dw F~d/dw!lnuh1 /h2u

E
supp

dw F/h1

,

~4.7!

where

F~w,w0!5expF2aE
w0

w

dwS 1

h1
1

1

h2
D G , w0Psupp.

~4.8!

The degenerate case whereC1 andC2 have an eigenvalue
in common deserves special consideration.

For our problem, the quadratures in Eqs.~4.7! and ~4.8!
can be explicitly evaluated in terms of generalized hyperg
cit

v

c

-

metric functions. For the case of pure stochastic excitat
(«1[0) this was done in@10#. Here, we evaluate Eq.~4.7!
for the general case«1Þ0.

A. Support

We determine the support of the process~4.2!. The first
step is to find the zeroes of the stochastic flowh(« t ,w) for
both realizationshs(w), s56. To this aim we writehs(w),
introducing the shorthandt5tan w, as

hs~w!5z«scos2w~ t212bst21!

[z«scos2w~ t1Qs!S t2
1

Qs
D , ~4.9!

where

Qs5bs2Abs
211, bs5

12«0
22«s

2

2z«s
. ~4.10!

The «-«1 plane is divided into six regions whereb1 and
b2 have a definite sign~see Fig. 1!. The boundaries separa
ing these regions are given by the zeroes of«2 andbs . The
following obviously hold: ~i! sgn«256 for «1,

.«; ~ii !
sgnb156 for 12«0

22«1
2

,
.0, i.e., for «1,

.2«1A12«0
2;

~iii ! sgnb251 for 12«0
22«2

2
,
.0 and «2,

.0, i.e., for «
,«1,«1A12«0

2 and 0,«1,«2A12«0
2; sgnb252 for

12«0
22«2

2
,
.0 and «2.

,0, i.e., for «1A12«0
2,«1 and «

2A12«0
2,«1,«.

To determine the sign of the flowhs(w) as a function of
w, cf. ~4.9!, we have to investigate the ordering of its zero

w1s5arctan~1/Qs!, ~4.11!

w2s52arctanQs . ~4.12!

Since arctan is monotonic it is sufficient do discuss the
dering of 1/Qs and2Qs (s56).

FIG. 1. Regions of the«2«1 plane whereb1 and b2 do
not change sign are separated by solid lines. The dashed
«1

25«0
21«221 separates 2a and 2b. The flow~4.9! is qualitatively

different in region 6, regions 5 and 2b, and regions 2a and 1; cf.
2. Note that we used dimensionless quantities. The rescalin
physical units is given in Appendix B. Material parameters a
taken from the set MBBA I.
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We first consider the regions 1 and 5 whereb1 and b2

have a different sign. SinceQ15Q2 is equivalent tob1

5b2 , which is in these regions never fulfilled there is
given order ofQ1 andQ2 , which holds in the entire region
In region 1 we haveb1,0 and 0,b2 which leads toQ1

,Q2,0. In region 5 we haveb2,0 and 0,b1 , which
leads toQ2,Q1,0. In region 6 we have 0,b1,b2 .
Observing that 1/Qs52(bs1Abs

211),0 this leads di-
rectly to 1/Q2,1/Q1,0. In region 2 we haveb1,0 and
b2,0. It is obvious that2Q1.2Q2 for 2b1.2b2 .
The latter inequality is equivalent to«1

2,«0
21«221, which

holds in region 2a. The same argument shows that2Q2.
2Q1 holds in 2b. Regions 3 and 4 are not considered h
since the threshold curve—as it turns out—is outside of th
regions.

We thus established in regions 1, 2a, and 6 of Fig. 1

1

Q2
<

1

Q1
,0,2Q2<2Q1 , ~4.13!

and in regions 2b and 5 of Fig. 1

1

Q1
<

1

Q2
,0,2Q1<2Q2 . ~4.14!

Now we discuss the example of region 6 in detail. T
signs of the flowhs(w) shown in Fig. 2~a! depend only on
the realizations of the noise and onwP@2p/2,p/2#. For
instance, we considerwP@2p/2,w12#. In this interval
sgn(t1Qs)5sgn(t21/Qs) is negative, and sgn«s is posi-
tive. Therefore, the flow is positive for both realizations
the noise. Passing the boundaryw12 of this interval the flow
h2(w) changes sign. Thus, in the interval@w12 ,w11# the
flow changes sign when the process jumps between1 and
2. Passing the next boundaryw11 , the flowh1(w) changes
sign so that in@w11 ,w22# the flow is negative for both
realizations of the noise. Obviously, the process, o
trapped in

FIG. 2. Directions of the flowhs(w) for wP@2p/2,p/2#. The
solid ~open! arrows indicate the direction of the flow for the rea
izations51 (2) of the driving process«s5«11s«. The regions
with different directions of the flow are separated byw1s

5arctan(1/Qs) andw2s52arctanQs , s56. ~a! shows the prop-
erties in region 6 of Fig. 1,~b! those of region 5 and 2b,~c! those of
2a and 1. The process, once trapped in the supporting intervS
~marked by the fat bars!, will never leave this interval since th
flows in the neighborhood point towardS.
re
e

e

S5@w12 ,w11#, ~4.15!

will never leave this interval since the flows in the neighbo
hood point towardsS. ThereforeS and S1p, respectively,
constitute the support of the stationary probability dens
Ps(w)5(sPs(w).

In a similar way, the flows in the other regions are eva
ated with the results shown in Figs. 2~b! and 2~c!.

In regions 5 and 2b the support is given by

S5@2p/2,w11#ø@w22 ,p/2#. ~4.16!

In regions 2a and 1 the support is

S5@w11 ,w22#. ~4.17!

Figure 3 shows for illustration the support as a function o«
for a special choice of«1, z, and«0.

B. Evaluation of integrals

Direct evaluation of Eq.~4.8! yields

F~w,w0!5
F̃~ tan w!

F̃~ tan w0!
, ~4.18!

where

F̃~ t !5 )
s56

Ut21/Qs

t1Qs
Uks

, ks52
a

z«s

1

~Qs11/Qs!
.

~4.19!

We remark that in Eq.~4.7! the factorsF̃(tan w0) cancel so
that we ignore these terms in the remainder. Equation~4.19!
is needed to calculate the integrals that appear in Eq.~4.7!.
Both integrals in Eq.~4.7! can be reduced to integrals of th
type

Ĩ ~n,m1 ,m2!5E
tan~S!

dt tn)
s

ut21/Qsuksut1Qsu2ks

~ t21/Qs!ms~ t1Qs!ms

~4.20!

for n50,2 andms50,1. The integral in the denominator o
Eq. ~4.7! is

FIG. 3. SupportS ~dotted regions! as a function of« for «1

.0.27. The directions of the flowhs are indicated by full and open
arrows fors52 ands51, respectively. Note the periodicity with
respect tow(modp). Material parameters are taken from the s
MBBA I.
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E
S

dw
F̃

h1
5

1

z«1
E

tan~S!

dt

)
s

ut21/Qsuksut1Qsu2ks

~ t21/Q1!~ t1Q1!

5
1

z«1
Ĩ ~0,1,0!. ~4.21!

Observing that

d

dw
lnUh1

h2
U52~b22b1!

~11t2!2

)
s

~ t21/Qs!~ t1Qs!

,

~4.22!

we obtain the integral in the numerator of Eq.~4.7! as

E
S

dwF̃
d

dw
lnUh1

h2
U52~b22b1!E

tan~S!

dt~11t2!

3)
s

ut21/Qsuksut1Qsu2ks

~ t21/Qs!~ t1Qs!

52~b22b1!@ Ĩ ~0,1,1!1 Ĩ ~2,1,1!#.

~4.23!

With b22b15«(11«1
22«0

22«2)/(z«1«2) the Lyapunov

exponent is evaluated in terms of the integralsĨ (n,m1 ,m2)
as

22l511«0
21«1

21«2

1
«~11«1

22«0
22«2!

«2

Ĩ ~0,1,1!1 Ĩ ~2,1,1!

Ĩ ~0,1,0!
.

~4.24!

The explicit evaluation of theĨ (n,m1 ,m2) in terms of
generalized hypergeometric functions depends on the pa
eter region and is deferred to Appendix A.

C. The thresholds

The threshold corresponding to the criterion of the sam
stability is obtained from the solution of Eq.~4.24! for l
50. For example, given«, «0, andz, the solution«15«1 th
determines the threshold for the deterministic componen
the driving field. Exploiting the analytical representation

Ĩ (n,m1 ,m2) by generalized hypergeometric functions~cf.
Appendix A! and its series representations@35–37# we
solved Eq.~4.24! for l50 numerically.

The results are compared with thresholds obtained fr
two different criteria ~namely, the threshold of a simpl
mean-field decoupling and the threshold describing the
bility of the first moments!, and the threshold obtained b
numerical simulations based on theexact formal solution
~2.11!.

We first describe a decoupling procedure@3#, which as-
sumes that the characteristic time of the driving stocha
process is fast compared to all characteristic times of
system. Then the system will ‘‘feel’’ only the average val
m-

le

of
f

m

a-

ic
e

of the stochastic field, which means« t→^« t&5«1 and « t
2

→^« t
2&5«1

21«2 ~This physical picture corresponds to

simple mean-field type decoupling^« tzW&→^« t&^zW& of the av-
erages!. With the above replacements in Eq.~1.2! we obtain
from detC50 the threshold

«1,th
2 5

«0
21«2

z221
. ~4.25!

The stability of the first~and higher! moments was exten
sively studied in@8–10# on the basis ofexactequations of

motions for ^zW& and ^« t
DMPzW&, which form a closed system

due to the theorem of Shapiro and Loginov@38# (]/]t

12a)^« t
DMPzW&5^« t

DM PzẆ&. For 2a.z221 the threshold of
the first moments is determined by a parabola in the«22«1

2

plane@8,9#

~«1
22«2!22~c11c2!«22~c31c1c2 /c3!«1

21c1c250,
~4.26!

where c15(«0
212a)/(z221), c25«0

2(112a)/(z221
22a), andc35«0

2/(z221).
For pure stochastic excitation the first moment’s thresh

is found in @8,9# as

« th
2 5H min~c1 ,c2! for 2a<z221.

c1 for 2a>z221.
~4.27!

The numerical simulation investigates trajectorieszW(t)

starting from a nonzero but small initial valuezW(0) for a
given realization of the driving stochastic process« t

DMP, i.e.,
for a given sequence of jumping timest1 , . . . ,tn . A trajec-
tory with N jumps ~corresponding to a typical timeN/a) is
considered as exploding if c5]xw;kw5(pw)/d
.p2/(4d), i.e., for w.wc'p/4. This critical value forw is
chosen, because forw

;
. p/4 the linearization of sinw'w,

which leads to our initial linear differential equation, is ce
tainly wrong. We have checked that the thus determin
thresholds are practically independent ofN and cc for
N

;
. 104 ~i.e., vary only within a margin of less than 1%! by

varying bothN and cc over a range of several orders o
magnitude.

Figures 4 and 5 show the thresholds according to
above criteria for pure stochastic excitation and for the
perposition of a constant with a stochastic voltage.~For the
change from dimensionless quantities to physical units c
sult Appendix B.! The numerical simulations strongly con
firm the results obtained from the criterion of sample stab
ity. The region describing the stability of the moments
always smaller than the region of sample stability but sho
qualitatively a similar behavior.

We remark that for identical parameters and wave nu
bers the threshold for stochastic excitation~irrespective of
the criteria! is always below that for deterministic excitation
This is understandable since a stochastic trajectory wit
given mean number of jumps always contains slower Fou
components, which lead to a lower threshold. In the sta
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limit a→0 only the sample stability threshold converges
the deterministic result; the threshold of the moments rep
duces only the lower branch.

In Fig. 5 we note that for small values of the stochas
voltage U all thresholds coincide as expected. For a la
range ofU the threshold from mean field decoupling is ve
near to that of sample stability but forU beyond the thresh
old for pure stochastic excitation (U150) both thresholds
are drastically different. This behavior can be understood
comparing the characteristic times of the system and of
noise.

The characteristic times of the full~stochastically driven!
system are by modulus the inverse of the Lyapunov ex
nentsl2,l1 of the system. At the threshold we havel1
50, the corresponding characteristic time diverges and
thus well separated fromtstoch. Sincel11l251/2(sSpCs

@14# we can evaluate the second characteristic time at
threshold

t25u1/l2u5~11«0
21«21«1

2!21. ~4.28!

FIG. 4. Stability of the undistorted state against the appeara
of rolls for the one-dimensional model. Shown are thresholds a
function of the~mean! number of jumps for excitation by a dete
ministic square voltage~dotted line! and by a dichotomous stocha
tic voltage. In the stochastic case the thresholds are obtained
stability of first moments~dash-dotted line!, from sample stability
~dashed line!, and from numerical simulation (•) of a stochast
trajectory of about 105 jumps based on the formal solution~2.11!;
the errors are within the thickness of the line. The lower part of
figure shows the selected wave number for thedielectricmode; we
chosep/d as a lower cutoff forkx . ~The threshold of the first
moments decreases monotonically withkx so that there is no mode
selection.! Material parameters correspond to MBBA II.
-

c
e

y
e

-

is

e

With increasing values of the fields at the thresholdt2
decreases and may reach the order oftstoch ~which is small
but nonzero! as illustrated in Fig. 6. In the latter case, th
mean-field-like decoupling is not justified and the corr
sponding threshold is manifestly wrong, cf. Fig. 5.

The exact treatment of the moments takes the finite ch
acteristic timetstoch of the driving process properly into ac
count. Therefore, one finds a finite threshold for pure s

ce
a

m

e

FIG. 5. Stability of the one-dimensional model against the
pearance of roll cells in the case of a superposition of cons
voltageU1 and stochastic dichotomous voltageU for a ‘‘fast’’ driv-
ing field (n.1000 s21). The thresholds are obtained from~i! a
simple mean-field decoupling~dashed line!, ~ii ! stability of first
moments~dash-dotted line!, and ~iii ! sample stability~solid line!.
The numerical simulation threshold is indicated by(•). Note that
we refrained from evaluating the analytic threshold condition
sample stability in the range~90 V, 75 V!,~U,U1),(216 V,180
V! which leads to generalized hypergeometric functions ofn>4
arguments because of the excellent agreement with the simula
in the other regions. Material parameters are taken from the
MBBA I. The insert shows the case of a ‘‘slow’’ driving field fo
which the three criteria give the same threshold (n.100 s21, s i
51.5310210V21 cm21, s i /s'51.3, other material parameter
from MBBA I !.

FIG. 6. The characteristic timet25u1/l2u at the sample stability
threshold shown in Fig. 5 decreases with increasing voltage.
initially clearly separated time scales oft2 andtstoch51/2n become
of the same order at sufficiently high stochastic voltage. The in
shows that for the ‘‘slow’’ driving case the time scales are w
separated.
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chastic excitation. The region of stable moments is alw
smaller than that for sample stability but possibly of simi
shape. The former is obvious@10# since the divergence of th
trajectories is sufficient for the divergence of the momen
For large times we haver t5e^l[«t] &t<^el[«t] t&5^r t& where
the inequality holds due to the convexity of the exp functio

The superposition of a deterministic field with a ‘‘fast
stochastic field may lead to a region of sample stability t
extends beyond the threshold values of deterministic or
chastic driving alone, thus forming a stable tongue in
U2U1 plane. This explains naturally why in experimen
@4–7#, applying first a stochastic voltageU of a given
strength and increasing then the deterministic voltageU1 up
to the instability of the homogeneous phase, a discontinu
behavior of the thus determined threshold was observed:
low Uc the threshold of the deterministic voltageU1th ap-
pears finite and above zero. A similar behavior~but less pro-
nounced! was observed previously@8–10# considering the
stability of moments, cf. also Fig. 5.

We further remark that the moment’s stability may
totally misleading if characteristic times of noise and syst
are of comparable order in a larger parameter range.
example, we found for a noise of mean number of jumpsa
50.66 ~parameter setting MBBA I as given in Appendix B!
a very pronounced stable tongue for sample stability but
the stability of the moments we found a monotonic decre
ing threshold. If insteadtstoch is clearly separated from a
least one characteristic time of the system, both mome
and sample stability criteria give similar results~see insets in
Figs. 5 and 6!.

The appearance of a stable tongue depends also on
material parameters. Roughly speaking, the tendency
wards formation of a stable tongue decreases with increa
Helfrich parameterz2 as observed already in@8# using mo-
ment’s stability. This is confirmed also for sample stabil
thresholds, comparing results for the two sets of mate
parameters MBBA I and MBBA II given in Appendix B
which correspond toz252.39 andz253.08, respectively
~see Table I!. ~The lower value is just above the critical valu
2.35 below which there is for the one-dimensional model
mode selection in the deterministic high frequency lim
@29#.!

A further important parameter is the conductivity, whic
may, however, differ from sample to sample considera
and which can be changed easily by doping. The ra
s i /s' , which alone enters the Helfrich parameter, is a m
stable characteristics. The parallel component of the cond
tivity s i comes into play if we return from the dimensionle
variables of the one-dimensional theory to variables in ph
cal units, see Appendix B, Eqs.~B2! and ~B3!. Roughly
speaking, the tendency towards formation of a stable ton
increases with increasings i while s i /s' is kept constant
~cf. Fig. 7!.

We remark that the early experiments@4–7# were per-
formed with highly salted MBBA@39#; no characterization
of the material was given. In later experiments@40,41# with
unsalted MBBA and a different chemically more stable ne
atics~for bothz2 was in the range 3–4! no stable tongue and
correspondingly no discontinuous behavior of the thresh
was found.
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V. TWO-DIMENSIONAL MODEL

In the two-dimensional version the equations describ
the stability of the undistorted state against formation of ro
are similar to the one-dimensional case. It is more con

nient now to use variables in physical units denoted byq̃ and

c̃. The dynamics ofzW5(q̃,c̃)T is given by Eq.~1.1!, where
now

C~ t !52S 1/Tq sHEt

aEt L12L2Et
2D . ~5.1!

The coefficients 1/Tq , sH , a, L1, andL2 given in Ap-
pendix C depend all on the wave numberskx and kz to be
determined by mode selection.Et5E11Et

DMP is the super-
position of a constant fieldE1 and a dichotomous stochast
field Et

DMP with the same statistical properties as« t
DMP. Et

takes the valuesEs5E11sE, s56. Introducing polar co-
ordinates as in Sec. IV the analog to Eq.~4.9! reads

hs~w!5sHEscos2w~ t2Qs
1 !~ t2Qs

2 !, ~5.2!

where

Qs
1/252Bs6ABs

21
a

sH
, Bs5

1/Tq2L11L2Es
2

2sHEs
.

~5.3!

The formal result~4.7!, ~4.8! for the Lyapunov exponen
holds also in this case; the analog to Eq.~4.19! is

F̃~ t !5 )
s56

Ut2Qs
2

t2Qs
1Uks

, ks5
a

sHEs

1

~Qs
12Qs

2 !
.

~5.4!

FIG. 7. Comparison of sample stability thresholds for differe
values of the conductivity in the one-dimensional model. The t
dency towards formation of a stable tongue increases with incr
ing conductivity. Shown are the casess i50.75310210 V21 cm21

ands i53310210 V21 cm21, s i /s'51.5. In the latter case ther
is a stable tongue so that, following the measuring procedure
scribed in the text, the threshold curve appears discontinuous.
mean number of jumps isn51000 s21, other parameters are take
from MBBA II.
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The further calculations, as, for instance, the determi
tion of the support and the explicit evaluation of the integr
in ~4.7!,~4.8!, are even more cumbersome than in the o
dimensional case, should be repeated several times in
process of mode selection, and are therefore done num
cally. We always foundkz5p/d. In all considered cases th
results of numerical evaluation of the Lyapunov expon
show a fair agreement with digital simulations, for not t
large strength of the stochastic field within the thickness
the lines.

In Figs. 8–10 we compare the results for the one- a

FIG. 8. Mode selection for pure stochastic excitation. Shown
the neutral curves for the one-dimensional model~dashed line! and
the two-dimensional model~solid line! in ~a! the conductive regime
(n5100 s21) and in ~b! the dielectric regime (n5400 s21). The
unstable region in the left lower corner of~a! corresponding to the
conductive mode shrinks with increasing mean frequency of
driving process and is absent in the dielectric regime~b!. This to-
pological difference explains the sharp crossover frequency in F
4 and 9. We further see in~a! that for the one-dimensional mode
~dashed line! the absolute minimum of the neutral curve is atkx

50 so that mode selection fails. The arrows in~b! indicate the
selected wave numbers for one- and two-dimensional mod
which may differ considerably whereas the corresponding thres
voltages almost coincide; cf. Fig. 9.~The minimum of the dashed
curve becomes more pronounced with increasing Helfrich par
eter but it remains very flat for a reasonable range ofz2.) Material
parameters are taken from the set MBBA II.
-
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-
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two-dimensional versions for pure stochastic excitation a
for the superposition of a constant field with a stochas
field. The thresholds show qualitatively the same behav
the quantitave difference is marginal. The selected w
numbers, however, show significant differences.

The stability chart for pure stochastic excitation~cf. Fig.
8! shows a topological difference between ‘‘slow’’ an
‘‘fast’’ driving. In the former case we have an unstable i
land in the left lower corner of Fig. 8~a!. The corresponding
mode~low threshold and small wave number! is called con-
ductive. With increasing mean frequency of the driving fie
this island shrinks. There is a sharp transition if it disappea
The instability is now towards a mode with a higher thres
old and a larger wave number, as is typical for the dielec
regime@cf. Fig. 8~b!#. We remark that also for deterministi
driving the stability chart has these properties. The chang
topology is not bound to the different symmetries of t
dielectric and conductive mode, which is known to be
stricted to deterministic driving.

In the conductive regime mode selection leads in the o
dimensional model to the unphysical valuekx50, which is
as usual replaced byp/d. Theselectedwave number of the
two-dimensional model is of the orderp/d.

In the dielectric regime the selected wave number of
one-dimensional model decreases monotonically with

e

e

s.

ls,
ld

-

FIG. 9. Comparison of sample stability thresholds and selec
wave numbers in the case of pure stochastic exitation for the o
dimensional~dashed line! and two-dimensional version~solid line!.
In the latter case, mode selection works also for the conduc
mode. Note that the selected wave numbers differ considerab
the dielectric regime, which has, however, little influence on
thresholds. Material parameters are taken from the set MBBA I
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creasing mean frequency and reaches rapidly the cutoff v
p/d ~cf. Fig. 9!. The two-dimensional version shows mo
realistic behavior. With increasing mean frequency the w
number decreases first and then increases with a slope m
smaller than for deterministic driving as is qualitatively al
found in experiment@42#.

For the superposition of deterministic and stochastic fi
~cf. Fig. 10! the wave number for the one-dimensional ve
sion is given by the cutoff value whereas for the tw
dimensional version it increases drastically with increas
strength of the stochastic field, which qualitatively corr
sponds better to experimental findings@40–42#. A detailed
quantitative comparison of two-dimensional theory and
periment is in preparation.

VI. CONCLUDING REMARKS

In studying a linearized version of the electrohydrod
namic equations we tacitly assumed that the system un
goes a supercritical bifurcation. It could, however, not
excluded that there is a noise-induced change from su
critical to subcritical bifurcation as found in different mode
@43–45#. For electrohydrodynamic convection in liquid cry
tals there are only vague experimental hints of noise indu
hysteresis.

A theoretical treatment of the full set of nonlinear electr

FIG. 10. Comparison of thresholds and selected wave num
for the superposition of a constant with a stochastic dichotom
voltage obtained from the sample stability criterion for the on
dimensional model~dashed line! and the two-dimensional mode
~solid line!. Material parameters are taken from MBBA II,n
51000 s21.
ue

e
ch

d
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e
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hydrodynamic equations seems at present not feasible.
deterministic systems, a weakly nonlinear analysis lead
simpler ~but still complicated enough! amplitude equations
@46#. In the stochastic case, see e.g.,@47–51# it seemsa
priori not clear whether this approach would lead to eq
tions with stochastic or averaged coefficients, having in m
that for our system the time scales are not always well se
rated and that it was crucial to take the finite correlation ti
of the noise properly into account.

Nonlinear partial differential equations, e.g., of Ginzbur
Landau or Swift-Hohenberg type, withad hocassumed ad-
ditive or multiplicative Gaussian white noise are at presen
subject of intense study, both numerically and analytica
@52–65#. In this context in a spirit very close to ours, Beck
and Kramer@64,65# found a controlable approximation t
determine the threshold of sample stability without know
edge of the stationary distribution. A zero-dimensional v
sion, the Stratonovich model, was solved rigorously
Gaussian white noise@66# and dichotomous noise@67#.

In both the one- and two-dimensional versions of the st
dard model considered here the conductivity enters as a
terial parameter. Recently, Treiber and Kramer@68# devel-
oped a more sophisticated model where ionic migrati
diffusion, and dissociation-recombination are included
that the conductivity becomes a variable that introduces n
time and length scales. The analysis of stochastic driv
within this model remains a task for the future.

In this paper we considered the stability of the undistor
state againstonemode describing rolls of a given wave num
ber. We expect, however, that, if the characteristic time
the noise is of the order of the inverse growing rate o
typical mode, the process of mode selection will be not co
pleted until the next jump of the noise, so that a band
wave numbers is involved. This could lead to a sort of d
namical pattern as observed in experiment.

We observed in the digital simulations of the tw
dimensional model that the fluctuations in the distribution
Lyapunov exponents for trajectories of finite length~which
mean fluctuations of the threshold! increase if the character
istic times of noise and system become comparable, cf.
10. The analytic treatment of these fluctuations leads to
problem of generalized Lyapunov exponents@26,69#. Fluc-
tuations of thresholds were also observed in experiment
large enough noise@40–42#.

Finally we remark that it would be interesting to look fo
different physical systems described by infinite products
random matrices of the type considered here.
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APPENDIX A

The evaluation of the integralĨ given by Eq.~4.20! in
terms of generalized hypergeometric functions depends
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the parameter region. In any case, we arrive at integral
the form

I ~a,b1 ,b2 ,g;x1 ,x2!5E
0

1

du ua21~12u!g2a21

3~11x1u!2b1~12x2u!2b2,
~A1!

whereux2u,1 but ux1u is not generally bounded by 1. Only
ux1u,1 the integral~A1! is immediatelyrelated to the gen-
eralized hypergeometric function oftwo arguments, cf. the
general definition@35–37#,

FD~a,b1 , . . . ,bn ,g;x1 , . . . ,xn!

5
G~g!

G~a!G~g2a!
E

0

1

du ua21~12u!g2a21

3~12x1u!2b1
•••~12xnu!2bn, ~A2!

whereuxi u,1, i 51, . . . ,n.
We consider the case 1,x1,2, which leads to a repre

sentation by generalized hypergeometric functions ofthree
arguments. Choosing an arbitraryX, x1,X,2, the transfor-
mationXu5v yields

I 5X2aE
0

X

dv va21S 12
1

X
v D g2a21S 11

x1

X
v D 2b1

3S 12
x2

X
v D 2b2

. ~A3!

We now split the integral in Eq.~A3! into two parts,
X2a(*0

1dv1•••1*0
Xdv•••)5I 11I 2, with obvious mean-

ing of I 1/2. I 1 is already of normal form, i.e., directly relate
to FD . The second integralI 2 is subject to the transformatio
z5(v21)/(X21), which leads to

I 25X2a~X21!S 12
1

XD g2a21S 11
x1

X D 2b1

3S 12
x2

X D 2b2E
0

1

dz@11~X21!z#a21~12z!g2a21

3S 11
X21

X1x1
x1zD 2b1S 12

X21

X2x2
x2zD 2b2

. ~A4!

Since 1,x1,X,2 the modulus of all coefficients ofz is
smaller than one and we arrive at

I ~a,b1 ,b2 ,g;x1 .x2!

5
1

aXa FDS a,11a2g,b1 ,b2 ,a11;
1

X
,2

x1

X
,
x2

X D
1

X21

~g2a!XaS 12
1

XD g2a21S 11
x1

X D 2b1S 12
x2

X D 2b2

3FDS 1,b1 ,b2,12a,g2a11;

2
X21

X1x1
x1 ,

X21

X2x2
,12XD . ~A5!

The casesn,x1,n11, n52,3, . . . , can betreated by re-
ofpeating this proceduren21 times, which leads to genera
ized hypergeometric functions ofn12 arguments. We re-
frained, however, from extending the numerical calculatio
to n>2.

We now evaluateĨ in the different parameter regions i
consecutive order.

1. In regions 1 and 2a the support isS5@w11 ,w22#; cf.
Eq. ~4.17!. From Eqs.~4.11!,~4.12! we get tan(S)5@1/Q1 ,
2Q2#. For tPtan(S) we havet21/Qs.0 and t2(2Qs)
,0; cf. Fig. 2~c!, so that Eq.~4.20! can be written as

Ĩ ~n,m1 ,m2!5~21!(
s

msE
1/Q1

2Q2

dt tn )
s56

S t2
1

Qs
D ks2ms

3~2t2Qs!2ks2ms. ~A6!

Introducing the shorthands

l 51/Q121/Q2 ,

s52Q221/Q1 , ~A7!

r 52Q12~2Q2!,

where obviously l ,s,r>0, the transformation t85(t
21/Q1)/s yields

Ĩ ~n,m1 ,m2!5~21!(
s

mss11k12m12k22m2l k22m2

3~s1r !2k12m1E
0

1

dt8S st81
1

Q1
D n

3t8k12m1~12t8!2k22m2

3S 11
s

l
t8D k22m2S 12

s

s1r
t8D 2k12m1

.

~A8!
In our case, cf. Eq.~4.24!, n is an integer so that the integra
in Eq. ~A8! leads to integrals of the form~A1!.

Only for 0,s/ l ,1 is Eq.~A8! immediately related to the
generalized hypergeometric function of two arguments.
s/ l .1 and as long as 0,s/(s1r ),0.5 holds, we exploit
two typesof transformations forFD@see@36#, p. 116, Eqs.
(103) and ~10n13)], which finally give the transformation
t8512z for the integral in Eq.~A8!. We obtain, introducing

I15I S 12k2 ,2k2 ,k111,k1112k2;2
s

s1 l
,2

s

r D ,

~A9!

I25I S 2k2 ,2k211,k111,k12k2 ;2
s

s1 l
,2

s

r D ,

~A10!

I35I S 2k2 ,2k211,k111,k1112k2;2
s

s1 l
,2

s

r D ,

~A11!

I45I S 2k2 ,2k211,k111,k1122k2 ;2
s

s1 l
,2

s

r D ,

~A12!

the integrals appearing in Eq.~4.24! as
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Ĩ ~0,1,0!52j~ ls1s2!I1 , ~A13!

Ĩ ~0,1,1!5jI2 , ~A14!

Ĩ ~2,1,1!5jF 1

Q1
2 I21

2s

Q1
I31s2I4G , ~A15!

where the factors j5sk12k221l k221(s1r )2k121(1
1s/ l )k2@12s/(s1r )#2k121 cancel in Eq. ~4.24!. Since
s/r ,1 for 0,s/(s1r ),0.5 ands/(s1 l ),1, the integrals
I1 , . . . ,I4 are directly related to hypergeometric functio
of two arguments.

2. In the regions 2b and 5 we obtain from Eqs.~4.11!,
~4.12!, and ~4.16! tan(S)5@2`,1/Q1#ø@2Q2 ,`#. Ob-
serving the signs oft21/Qs andt1Qs in both intervals we
can write

Ĩ ~n,m1 ,m2!5E
2`

1/Q1

dt tn)
s

S 1

Qs
2t D ks2ms

3~2Qs2t !2ks2ms1E
2Q2

`

dt tn

3)
s

S t2
1

Qs
D ks2ms

~ t1Qs!2ks2ms.

~A16!

Introducing the shorthands@in contrast to Eqs.~A7!# we have

l 5Q12Q2 ,

s521/Q22Q1 , ~A17!

r 521/Q111/Q2 ,

which are obviously non-negative, the transformationt8
5(1/t2Q1)/s leads to

Ĩ ~n,m1 ,m2!5sS 12
Q1

Q2
D k22m2S 2s

Q1
D k12m1

3~11Q1
2 !2k12m1~11Q2Q1!2k22m2

3E
0

1

dt8 t8k12m1~st81Q1!222n12(
s

ms

3S 11
s

l
t8D k22m2S 12

s

s1r
t8D 2k12m1

3~12t8!2k22m2. ~A18!

Again, only for 0,s/ l ,1 is Eq.~A18! immediately related
to generalized hypergeometric functions of two argume
For 1,s/ l ,2 we follow the line described above. Introdu
ing

I55I S k1 ,2k2 ,k111,k1112k2 ;
s

l
,

s

s1r D ,

~A19!
s.

I65I S k1 ,2k211,k111,k12k2 ;
s

l
,

s

s1r D ,

~A20!

I75I S k111,2k211,k111,k1112k2;
s

l
,

s

s1r D ,

~A21!

I85I S k112,2k211,k111,k1122k2;
s

l
,

s

s1r D ,

~A22!
the integrals in Eq.~4.24! are then

Ĩ ~0,1,0!5j8lsI5 ,

Ĩ ~0,1,1!5j8~Q1
2 I612sQ1I71s2I8!, ~A23!

Ĩ ~2,1,1!5j8I6 ,

where the factors j85@1/(ls)#@1/(s1r )#@ l /(Q2
2 s)#k2

$s/@Q1
2 (s1r )#%k1 cancel in Eq.~4.24!. I5 , . . . ,I8 are given

by Eqs. ~A19!–~A22!, and l, s, r are given by Eq.~A17!.
Note thatI5 , . . . ,I8 are related to the hypergeometric fun
tions of threearguments by Eq.~A5!.

3. In region 6 we obtain from Eqs.~4.11!, ~4.12!, ~4.15!
tan(S)5@1/Q2,1/Q1#. For tPtan(S) we have 1/Q2,t
,1/Q1,2Q2,2Q1 , so that Eq.~4.20! can be written as

Ĩ ~n,m1 ,m2!5~21!2m11m2E
1/Q2

1/Q1

dt

3tn~2t2Q2!2k22m2

3~2t2Q1!2k12m1S t2
1

Q2
D k22m2

3S 1

Q1
2t D k12m1

. ~A24!

Introducing the shorthands@in contrast to Eqs.~A7! and
~A17!#

TABLE I. Material parameters of MBBA.

Quantitiy MBBA I MBBA II

«
i

4.5 4.72
«

'
5.0 5.25

s
i

@V21 cm21# 6.0310211 1.5310210

s
'

@V21 cm21# 4.6310211 1.0310210

a1 @g cm21 s21# 6.531022

a4 @g cm21 s21# 83.231022 83.231022

g1 @g cm21 s21# 76.331022 76.331022

g2 @g cm21 s21# 278.731022 278.831022

b @g cm21 s21# 11.931022 11.931022

h1 @g cm21 s21# 103.531022 103.531022

h2 @g cm21 s21# 23.831022 23.831022

K11 @g cm s22# 6.131027 6.131027

K33 @g cm s22# 7.331027 7.2531027

z2 2.39 3.08
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s51/Q121/Q2 ,

m52Q221/Q1 , ~A25!

r 52Q11Q2 ,

where obviously s,m,r>0, the transformation t85(t
21/Q2)/s yields

Ĩ ~n,m1 ,m2!5~21!m2s11k22m21k12m1~s1m!2k22m2

3~s1m1r !2k12m1E
0

1

dt8S st81
1

Q2
D n

3t8k22m2~12t8!k12m1

3S 12
s

s1m
t8D 2k22m2

3S 12
s

s1m1r
t8D 2k12m1

. ~A26!

For integern, sinces/(s1m),1 ands/(s1m1r ),1, Eq.
~A26! can be directly evaluated in terms of hypergeome
functions oftwo arguments.

APPENDIX B

We use two sets of material parameters for MBBA fro
the literature denoted by MBBA I@70# and MBBA II @71#.
The quantities in the following table are the dielectric co
stants and conductivities parallel,« i ands i , and perpendicu-
lar, «' ands' , to the director, the viscous coefficientsa1,
a4, g1, g2, b, h1, andh2, the elastic constantsK11 andK33,
and the Helfrich parameterz2. A sample thickness ofd5100
mm is assumed. We remark that both in@70# and @71# only
the ratios i /s' is given by 1.3 and 1.5, respectively.~The
conductivities may differ from probe to probe up to an ord
of magnitude; the ratio is a more stable characteristic.! The
value of s' we used for MBBA II is found in@31#. The
Helfrich parameter is defined by

z25S 12
«

i
s

'

«
'
s

i
D S 12

g12g2

2h1

«
i

«a
D , ~B1!

where«a5«
i
2«

'
.

The rescaling from dimensionless quantities for the m
number of jumps of the stochastic field is given by

n5
1

tq
a5

4ps
i

«
i

a, ~B2!
pn
c

-

r

n

which amounts ton.150.7a@s21# for MBBA I and n
.359.4a@s21# for MBBA II. The time tq is defined by Eq.
~B2!. For voltages one obtains

U5A 4ph«
i

2«a«
'
tq

d«, ~B3!

where h5g12(g12g2)2/4h1, which gives U.74.1«@V#
for MBBA I and U.115.3«@V# for MBBA II.

APPENDIX C

The coefficients in Eq.~5.1! are explicitly given by

1

Tq
54p

s
i
kx

21s
'
kz

2

«
i
kx

21«
'
kz

2
, ~C1!

s
H
5

~s
i
«

'
2«

i
s

'
!~kx

21kz
2!

«
i
kx

21«
'
kz

2
, ~C2!

a5
1

f F1

2

~g12g2!kx
41~g11g2!kx

2kz
2

a1kx
2kz

21~kx
21kz

2!~h1kx
21h2kz

2!

2
«akx

2

«
i
kx

21«
'
kz

2G , ~C3!

1

Tc
5L12L2Et

2 , ~C4!

where

f 5g12
1

4

@~g12g2!kx
21~g11g2!kz

2#2

a1kx
2kz

21~kx
21kz

2!~h1kx
21h2kz

2!
, ~C5!

h15
1

2Fa42g21
1

2
~b1g1!G , ~C6!

h25
1

2Fa41g21
1

2
~b1g1!G , ~C7!

L15
1

f
@K33kx

21K11kz
2#, ~C8!

L25
1

f F «a«
'
~kx

21kz
2!

4p~«
i
kx

21«
'
kz

2!
G . ~C9!

Note that both 1/Tq and sH are proportional tos i if
s i /s'5const.
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