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Dynamics of a simple quantum system in a complex environment
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We present a theory for the dynamical evolution of a quantum system coupled to a complex many-body
intrinsic systemenvironment By modeling the intrinsic many-body system with parametric random matrices,
we study the types of effective stochastic models that emerge from random matrix theory. Using the Feynman-
Vernon path integral formalism, we derive the influence functional and obtain either analytical or numerical
solutions for the time evolution of the entire quantum system. We discuss thoroughly the structure of the
solutions for some representative cases and make connections to well known limiting results, particularly to
Brownian motion, Kramers classical limit, and the Caldeira-Leggett apprd8di063-651X98)04207-X]

PACS numbg(s): 05.60+w, 05.40:+j, 24.10.Cn, 24.606-k

[. INTRODUCTION time evolution of the collective or slow quantum system has
the character of quantum dissipative dynamics. In our formu-
Quantum dissipation is a problem with a long history andlation, we will neglect other physical mechanisms that lead
a multitude of results over several decafiles11]. In spite of ~ to dissipative contributions, such as particle evaporation or
this impressive effort, many people do not consider the probcoupling to electromagnetic fields. This can be viewed as
lem of quantum dissipation a solved issue, and its charactéimiting the present study to shorter time scales. Such phe-
and microscopic origin still call for the attention of a large "0mMena can in principle be introduced into the formalism,
community across many, if not all, subfields of physics. ThePut we shall not attempt it here. We shall not either try here
present paper represents a continuation of our effort to urf® defend the legitimacy of such a terminologssipation,

derstand the character of energy flow between the slow débe issue at stake, however, is unquestionably sound. The

grees of freedom and the intrinsic degrees of freedom i,_qeade_r will recognize e_asny that the problem we address here

many-body systems. Our initial motivation was to under-iS typical and under different guises appears in many sub-

stand the “irreversible” time evolution of the large ampli- fields of physics. _

tude nuclear collective motiof—10] and for that reason we ~ AS @n introduction, let us consider for the moment that a

have adopted a traditionally nuclear physics approach. Theertain simple system interacts with some relatively large

large body of evidence, both experimental and theoretical(Put finite) many-body system. The question is the following:

suggests that many fermion systems can be described reas&®" one describe the dynamical behavior of the simple sys-

ably well within the framework of a random matrix formal- tem using, for example, an equation of the form

ism. Another way of saying the same thing is that a many )

fermion system is predominantly a quantum chaotic system avx _ dux) M d_X+f X.) €1

and thus a random matrix approach is a natural approach. At a2 dX Ydt X, '

the same time, both theory and experiment strongly suggest

that there are some degrees of freedom, that are not chaotg in the case of a Brownian particle, if in the absence of the

and usually are referred to as collective or shape. Howeveinteraction the Hamiltonian of the system is

these collective degrees of freedom are coupled with a large

number of noncollective degrees of freedom and as a result a

rather generic situation results: a relatively small quantum

system in contact with an “environment.” Even though the

whole system is finite and in a strict sense there is no irreand wherey is a friction coefficient andf(X,t) is a

versible behavior in this case, for all practical purposes the angevin-like force? The forcé(X,t) can in principle de-
pend not only on time but on position as well, and in this
way one can describe a large variety of physical situations,

*Electronic  address:  bulgac@phys.washington.edu, http:/fanging from diffusion to localizatiofil1]. If one could start

2

P
Ho(X,P)= 537 +U(X) (1.2

www.phys.washington.edtibulgac/ from a description of the entire systgneservoir plus simple
TElectronic address: Giu.Dodang@th.u-psud.fr system with a Hamiltonian
*Electronic  address: dimitri@nst4.physics.yale.edu, http://

nst4.physics.yale.edu/people/dimitri.html H(X,P,x,p)=Hy(X,P)+H(X,x,p), 1.3
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whereH;(X,x,p) describes the reservoir and its interactionthe dynamics is chaotic. This has been seen to be the general
with our system, under what circumstances could one deriveituation in studies of many-body systems, from nuclei to
an equation of motion like EqJ.1)? Moreover, would the molecules, so it is reasonable to approach the modeling of
fluctuating force have Gaussian character or not? Since ouhese degrees of freedom with random matrices, suitably tai-
approach is a fully quantum mechanical one, we shall be ablpyred to the problem. The generic form of the Hamiltonian
to answer another important question, on the specific fO'@overning the dynamics of a “slow” quantum system

played by the quantum effects. As we shall show, the clasgoypled to a complex environment is described as follows
sical results are recovered when the appropriate limits are

taken, however, the classical limit is not at all a trivial one PZ
nor is it reached in a simple fashion. If one were to take the H(X.X)=Ho(X)+H1(X,X)= 7+ U (X) +Hy(X,X).
approach of postulating that an equation of the type(Ed) 2.1

governs the dynamics and assume, for example, that the fluc-

tuation properties of (X,t) are Gaussian in character, then We shall often refer t& as “shape” variables, since in large

the entire powerful apparatus developed for Brownian moamplitude collective nuclear motion it represents the collec-

tion can be then invokefil1]. But such an approach will tive coordinates which characterize the nuclear mean field.

leave unanswered the main questions of whether one can The part of the total Hamiltonian E@2.1) that depends

describe in this way collective degrees of freedom in a finiteon the intrinsic coordinatelsl;(X,x) is defined as a matrix,

closed system, like atomic nuclei. whose matrix elements depend parametrically on the “slow”
We address this problem using a well known approackcoordinateX:

based on the double path integral formulation of Feynman

and Vernon[1]. Our original input is in the functional form [H1(X)]ij=[holi; +[h1(X) ];; - 2.2

of the influence functional, which arises from a parametric . . ) .

random matrix description of the “environment.” This has hg is taken to be diagonal and defines the average density of

been attempted earlier in ReB]. The functional form for  States, with(k|ho[l)=[ho]iy=edi . We refer in the main
the influence functional we determine is qualitatively differ- €t t0 these eigenstates as “typical states” of the intrinsic
ent from the popular Caldeira-Leggett type derived by FeynSystem with an energy. One can think oh, as a Hamil-
man and Vernof1]. The parameters that define the influ- tonian describing a “bath” or a “reservoir” and df(X) as
ence functional have a rather simple and intuitive meaning Hamiltonian describing the interaction between the “bath-
from a microscopic point of view and we refer the reader tof€Servoir” and the “slow” system. Whereas in statistical
earlier publications for details and discussidits-10. It physics the |nte_ract|o_n b_etween the thermostz;t _and the sys-
comes as no surprise that under such circumstances the Otym under consideration |s.assgmed to be negligible, we shall
namical evolution of a quantum dissipative system in ourf10t make such an approximation here. As a matter of fact,
case has new features as well, as we shall amply exemp“fgpr the physically mterestlnglsnuatlons we envision, 'th|s. cou-
in the body of the paper. Here we restrict our attention to théling term can be large. This fact alone leads to significant
Markovian limit only and we hope to address the importamdlfferences_of various dlstrlbgt_lons when compared with the
problem of memory effects in the future. In spite of its physi- corresponding results of traditional approaches.
cal restrictions(high temperature limit for the intrinsic sys- _ FOr an intrinsic subsystem with a large number of degrees
tem) this limit shows already the qualitative differences with Of freedom, the average density of states,
the previously known approaches. _

The paper is organized as follows. In Sec. Il we discuss p(e)=Tr 6(Hy(X)—¢), 2.3
the time evolution equation for the density matrix of the
“slow” quantum system coupled to a complex many-body
system. In Sec. lll we show that, at high temperatures, th
evolution equation for the density matrix can be brought t
the Kramers form, when the classical limit is taken. Section
IV-V discuss exact solutions to the evolution equations fo
certain potentials. In Sec. VI we study tunneling. A short

summary and discussion of the results is given in the final X _ :
an extensive quantity. The fact that the average density of

for each given shap¥ increases sharply with energy. The
gverline denotes here a procedure for extracting the smooth
art of p(g) as a function of energy, which amounts essen-
gially to an ensemble average, to be introduced below. For a
jnany Fermion systenp(e) has a roughly exponential be-
havior. Recall that Ip(e) is approximately proportional to
he thermodynamic entropy of the intrinsic system, which is

section. A S
states for the intrinsic subsystem has such a behavior is a key
Il. EVOLUTION EQUATION element of the entire approach. This is equivalent to stating
FOR THE DENSITY MATRIX that the intrinsic subsystem has a large heat capacity and thus

can play the role of a “reservoir,” although not necessarily
In this section we discuss the description of the internalgeal. In principlep(g) can beX dependent as well, but we
degrees of freedortor complex environmenthrough para-  shall ignore this aspect here. Without drependence of the
metric random matrix theory, and derive the equation of mO'average density of states, mechanical work cannot be per-
tion for the density matrix of the slow degrees of freedom byformed on or by the model environment we study here, and
integrating over the internal states. only heat exchange is allowed.

In Refs. [6-10] we discussed the reasons why one
chooses this specific form of the Hamiltonian. In the basis of
The basic assumption concerning the intrinsic states ithe eigenstates dfy, we defineh,(X) as a parameter depen-

that there are no governing constants of the motion, so thatent, NXN real Gaussian random matrix, which is com-

A. Random matrix model



198 AUREL BULGAC, GIU DO DANG, AND DIMITRI KUSNEZOV PRE 58

TABLE I. The definition of our parameters as well as some of the limits used in this analysis.

Parameters:
Xo Characteristic scale over whidh, (X) changes.
N Dimension of the Hilbert space of the intrinsic subsystem. We take the Nemit..
« The bandwidth of the random matiik;(X). The average number of states coupled together at a given excitation energy
0 is determined by the density of statd~ kgp(e). For kg— oo, we recover the full random matrix limit.
r! Spreading width. For an initially uncorrelated state evolving under a random matrix, the average propagator decays as
o(t)~exp(T/24).
B=1T Inverse thermodynamic temperature, defined through the density of states.
p(g) The density of states. We use the fopifz) = py exp(Be). WhenB=0, the intrinsic system has a constant level density.
G(x) Correlation function for the intrinsic states. It describes how far one must g6 lrefore the intrinsic states are

statistically uncorrelated. Typically one can u8éx)=exp(—x%2), 1—x3/2 or cosx.
Friction coefficient obtained in the classical limit and in the full quantum dynamical solution, givery by
Y _ ! 2

= BT I2M X,

D Diffusion constant, given by =2X3/ 8T\ #i.

Limits:

Xo—® Weak coupling limit.

AlXy—0

XoIT'—0 Brownian motion limit.

y=finite

h—0 Classical limit.

Kg—® Adiabatic limit. This implies that the collective time scalg/V is much longer than the intrinsic one given b¥«,.
pletely specified by its first two moments To complete the tailoring of the random matrices, we re-

[hy(X)]q=0, quire a realistic average density of states for the reservoir. It
(2.4 is reasonable to assume that in a suitable energy intesval,
Lh1(X) ]i;[h1(Y) T = 6ik 6j + 61 ] Gij (X=Y). has the behavidi5]

The overline stands for statistical averages over the ensemble

of random Gaussian matrices from the Gaussian orthogonal 1 d

ensemble(GOB) [12]. G;;(X—Y) can be taken as a “bell p(e)=po eXHBe), B=F=qg-Inp(e). (2.9
shaped” correlation function with a characteristic wickh,

or, in some physically interesting cases even periodic, with

period «X,. The fact that this correlator is “translational § can thus be interpreted as the thermodynamic temperature

invariant” is not a crucial limitation, and a general form can t the intrinsi h AB is ind dent of the int |
be adopted without any significant changes in the formalism®' the Intrinsic system. A is independent of the interna
Xcitation energy, this particular type of intrinsic quantum

We limit our analysis to the GOE case only for the sake of® . 4
simplicity of the argument, as any other Gaussian ensembfgyStém plays the role of a “perfect” thermal quantum reser-

can be treated in a similar manner. The dependencijon VOIr. We note in pass_ing that even though the temperature of
allows for the description of banded matrices, where an efthe “reservoir” remains constant throughout the entire dy-
fective number of statello<N are coupled by;(X). It is namical evolution of the whole system, one should not con-
convenient to use an explicit parametrization, which incor-clude from this that the “reservoir” is in thermal equilib-
porates the average density of states and the bandwidth ¢m. As we have shown explicitly in Refd8,9] the

the statistical fluctuations explicitly5]: population of various energy levels of a uniformly driven
“reservoir” is far from an equilibrium Boltzmann distribu-
rt (gi_gj)Z X tion. The parameters of the present construction are summa-
Gi(X)=——F——=exp ————— |G| |- rized in Table I.
N 2m\p(ei)p(e)) 2K% Xo
(2.5
HereG(x)=G(—x)=G*(x)<1, G(0)=1, and the spread- B. Influence functional
ing width T'!, «, [linked with the effective band widtiNy The quantum description of our coupled system will be

~kop(e)] and X, are characteristic of the intrinsic system. treated through the path integral construction of the density
Even though it is not necessary, in this paper we shall conmatrix. According to Feynman and Vernphl, one can write
sider a particular from for G(x), namely, G(x) the following double path integral representation for the den-
=exp(—x4/2). sity matrix of the entire system
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X(t)=X Y(t)=

y .
R(X.X,Y,y.t)=f dXod Yoih(Xo) ™ (Yo) DX(t)f DY(t)qu' ;L—[So(X(t))—So(Y(t))]]
X(0)=Xg Y(0)=Y,

i [t it
><<x T exp[—gfo dt’ Hy(X(t')) ¢><¢ T, exp[%fo dt’ H,(Y(t"))

whereT andT, represent the time ordering and time antiordering operators, respectively. In this representation, we have used
a particular form for the initial state wave function,

W (X,x)=¢(X) p(x). (2.8

Other choices are equally possible, such as an initial density matrix. By introducing the influence fun®@ftd)Y(t),t):

E

one readily obtains the following double path integral representation for the density matrix for the “slow” subsystem

g e

i t i [t
LX(1),Y(1), )= < d)’ { T, exr{;i— jo dt” Hl(Y(t”))} ] { T ex;{ - ;L—fo dt’H(X(t"))

X(t)=X Y(t)=Y
PO Y0= [ dxaYoutxow (Yo [ x| DY (e IS0~ SV £X(0 Y00,
(2.10

The formulation of the problem through a path integral representation serves only as a very convenient vehicle to obtain an
evolution equation for the density matrix X,Y,t).

C. Evolution equations

The evolution equation for the influence functioddX(t),Y(t),t) has been solved in Refi8—10 for the caseN—« and
the case when the “temperature” of the reservoir is infinite. In Appendices A—D we compute the first order corregion in
to the influence functional in the adiabatic limit, when the characteristic time scale of the “resefdoip’is significantly
shorter than the characteristic time scale of the slow system for which we derive the dynamical evolution equation. We thus
obtain for the influence functional

It X(s)—Y X(s)—Y
L(X(1),Y(1)= exp‘ hfods[G(%o(s))—lﬂ p[ 4X0fds[X(s)+Y( )]G'(%O(S))], (2.11

whereG’(x) =dG(x)/dx. The physical significance of all other quantities entering this expression has been explained and
discussed at length in Reff6—9], and is briefly summarized in Table I. It is worth noting that the functional form of the
influence functional derived by us is different from the Caldeira-Leggett f@nwhich is a quadratic expressionX{t) and
Y(t). If we were to use only the first term in a Taylor expansiorGgf X(s) — Y(s)]/ Xp)— 1, we would obtain an expression
similar to Caldeira-Leggett form for the influence functional. However, the present form of the influence functional leads in the
classical limit to a velocity dependent frictional force, see R9)].

By combining the double path integral representation for the density matkxY,t) with the above expression for the
influence functional in the adiabatic approximation one readily obtains that the density matrix satisfies the following
Schralinger-like equatior(for similar examples see Ref2,4]):

_ P2 P2 BU 1
ifidp(X,Y,1)= m—mw(X) VY~ M

X—-Y _
G'(—)(PX—PY)ﬂFi
Xo

Gl ——|-1|{p(X,Y,t) (2.12
Xo

with an arbitrary initial condition sion that the slow subsystem we consider here is character-
ized by one degree of freedom only. As a simple analysis
p(X,Y,0)=po(X,Y). (2.13  will show, however, that the slow subsystem can have an

arbitrary number of degrees of freedom and most of the for-
This equation is the central object of our study and the remulas we shall present are equally valid in this case.
mainder of the paper is devoted to determining various lim- This evolution equation is somewhat peculiar in certain
iting regimes and the character of its solutions upon varyingspects. It is obvious that in the absence of the coupling to
B, T't, X,, and#. (In this paper we have already taken the the “reservoir,” it describes a purely quantum evolution of
limit ko—.) At first glance the reader might get the impres-the “slow” subsystem. Equatior{2.12 has been derived
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from a purely quantum description of the entire system, by D. Coordinate and momentum distributions
performing the expansion iB. In Eq. (2.12), however, the and the cumulants expansion
inverse temperature enters only in the combinatigs 87, We will derive the time dependent solutiopéX, Y,t) in

which can be interpreted as a thermal titaealogous to the  he foliowing sections, and from that it will be useful to
thermal de Broglie wavelengthThus the expansion in the gyiract information concerning the behavior of coordinates
inverse temperaturg is at the same time an expansioin 554 momenta. The most convenient way to do so is through

Our limitation to the zeroth and first order termsf for  he cumulant expansion. To define this, we start by introduc-
the coupling between the “slow” subsystem and the “reser-ing the new variables:

voir” can consequently be interpreted as a semiclassical ap-

proximation.
It has been argued by Dio$#] that for the case of a o X+Y Ry (2.16
Caldeira-Leggett correlatof G(x)=1—x%/2] the similar 2 S= ' |

high temperature limit of the evolution equation requires the

retention of the next order term if in order to bring the  Coordinate and momentum information can readily be ex-

corresponding approximate evolution equation to a Lindbladracted from the following Fourier transform of the density
form [13], which guarantees the positivity of the density dis- matrix:

tribution for any physically acceptable initial conditions.

(We have computed thg? corrections, and will discuss

them at a later time If these higher order terms i@ are not ikr

introduced, such an equatijas Eq.(2.12] cannot be ap- d(s,k,t):f dr exp( - T)P(f,S,t)- (2.17
plied to an initial state, which is narrower than the thermal de

Broglie wavelength,\y=2# B/M. This restriction 10 4 githers=0 or k=0, d(s,k,t) is the characteristic func-

wave packets that are wider than the thermal de Broglig;,, [14] for the spatial or momentum distribution of a given

\I/_vavelength is mat?ifest in ? sr?mewhaft c:]iffe“rent Iway as \,',VEIfIquantum state, respectively. For example, if we are interested
thet lﬂsl coTputl;e t (:‘ rate Oh'ch angek()) tdef_ to(tja ertwergl?/ %Tin the spatial diffusionX, as measured b X?)), then we
e “slow™ subsystem, which can be defined naturally aSget from Eq.(2.17 and integration by parts:

follows:
Eo(t)=Tr{ Hop(t)]. (2.149 <x2>=j dX'p(X' X", t)X"?
2
Using the evolution equation Eq2.12) for the density ma- - —hzd—d(O,k,t) = (X)) +(X)2. (2.18
trix p(X,Y,t), after some straightforward manipulations one dk? ke

obtains the following expression for the rate of change of the
“total energy”:
Similarly, in order to compute the average collective energy
one needgP?):
dEs(t) _ [T (P?) -
at Y2 2m | 219
(P2>=J dX dX p(X, X" ,t)(X'|P?|X)

wherey is the friction coefficient in the small velocity limit

to be introduced below, see E(.2). This rate has an ap- -
parently pure classical content. This is of course deceiving, 2mh
as quantum effects are clearly retained in both Egsl? iPs
and(2.195, even though not entirely in E¢2.15. However, :f ds dPexF(—)d(S,O,t)PZ
since one has to assume tH&t-#2/ML2, wherelL is the h
characteristic spatial extension of the state, it is possible in 2

Eq. (2.15 to replace the quantityP?)=(P)?+((P?)) with = _ﬁzd_d(s,o't)

iP(X’—X)
dX dX'dP p(X,X’,t)exg ————

2
—

simply (P)2. This renders Eq2.15 purely classical in char- ds?
acter. One incurs a certain loss of accuracy and a small de-

gree of inconsistency by proceeding in this manner, so it iy quantities denoteq(- - - )) are the cumulants of the dis-
better to leave Eq2.19 as it is. tribution.

Even though one can go beyond the first ordegiand From the definition of the functiod(s,k,t) one defines

derive a more accurate evolution equation for the density, general coordinate and momentum cumulant expansion
matrix p(X,Y,t) in the high temperature limit, we shall not .

do that in this work, for the sake of simplicity of the presen-

=((P?))+(P). (219
=0

s=

tation. We do not expect that such corrections will lead to a =1 (k|
qualitatively new behavior, aside from the question of the In d(s,k,t)]s—o= 2 _('_) (rmy (2.20
positivity of the density matrix, as mentioned earlier. R =N R ’
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o 1[s)" 1 iPR
MCK&KU“—NiZ%ﬁT&z)<“ﬂ»a (2.20) fﬂlPi)=§;%JadRex4——TgJ
X Q+1RQ—£RJ (3.1
where((r")) and({p")) are the(time dependentcumulants P 27T 2 ) '

of the spatial and momentum distributiqn, respectively. Ong; is well known that whilef (Q,P,t) can be interpreted as a
can show that the zeroth order terms in both cumulant exg|assical probability distribution in a phase spa@eR), it is
pansions vanish, which is consistent with the fact that thgyn|y 5 quasiprobability since its sign can be positive or nega-
probability is conserved within the present formalism. tive at a given phase space point, while its integral over any

A Gaussian process has only nonvanishing first and segmit phase space cebf sizet) is positive semidefinite. We
ond cumulants. In general it is known from Marcienkiewics’ will further introduce the friction coefficient:

[14] or Pawula’s[15] theorem, that for a probability distri-
bution, one either has a Gaussian process with only the first Br''h
two cumulants nonvanishing, or all cumulants are present. Y= oMX2
Furthermore, while there are some inequalities that relate 0
cumulants of varying order, in most cases there is no restricFhis definition will emerge naturally from the analysis of the
tion on their sign, which can be positive or negative. dynamical evolution of quantum systems. However, in tak-
ing the Wigner transform g6(X,Y,t), the classical limits of
the quantitied™! and X, must be taken, which have an in-
lll. CLASSICAL LIMIT: KRAMERS EQUATION trinsic quantum interpretation. While it is not entirely clear
how to define such limits, we will see that the combination
It is interesting to explore the classical transport equationvhich appears iny has a natural classical interpretation.
that emerges from Eq2.12. The standard approach is to  From the definition, the classical evolution equation can
construct the Wigner transforf(Q, P,t) of the density ma- be computed, which is the Wigner transform of the right
trix p(X,Y,t) as hand side of Eq(2.12:

(3.2

1 iPR 1 1
c?tf(Q,P,t):m dR ex T op Q+§R’Q_§R’t

S de PR i U U 1R iri1-G R
—W ex _T —mﬁQaRJt‘ — Q—E —1 - X_O

1 1
Q+§RQ—§RJ. (3.3

+1R
Q+t3

R
Xo

For the contribution due to the potential enetdyX), the Kramers-Moyal expansion gives

f dR iPR U 1 rI—uU 1 R 1 R 1 R
s Q+3 Q—3R||p|Q+5RQ-FR
2 (hdgdp
=U(Q)sin —— | H(Q.P.1)=dqU(Q) 3T (Q.P,) +0(h), (34
|
where do and dp in the sine term act only ot and f, af(Q,v,t) af(QV,t) 1 dU(Q) df(Q,V,1)
respectively. In the last line only terms (%) were re- at +V Q M dQ EV;
tained. For the terms that depend upon the correlation func-
tion G(x), we consider a general expansion JVEQ,V,1)] T #f(Q,V,t)
= +— , (3.6
Vv M V>
x? .
G(X)~1= 5 +--. (3.5  whereT=1/8 is the temperature, and the velocity\Vis=Q

2 =P/M. We have thus obtained Kramers equatji®b].

We will derive transport coefficients below, and it is
The terms beyond the quadratic ones in the expansion willvorth noting that taking classical limits is not straightfor-
come with higher powers ok into the evolution equation ward. In quantum Brownian motion, we extract a diffusion
and are hence omitted. Integrating by parts and using the facbnstant that is related to the frictionthrough the classical
that p(X,Y,t) vanishes wheiX,Y— +, we have Einstein relation:
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2X2 T Using the method of characteristics for wave equatidrég
Doo= %= o (3.77  one can find the solution in parametric form:
prin M
JIFS(t—t")

We note here that our transport theory has a consistent clas- d(S,k,t)=d0(S(t),k)exp{ fodt [T
sical limit for all of these transport coefficients only when
they remain finite agi—0. This requires in turn that the r S(t—t')
parameters of our theory cannot remain constart-a$, if 7 G Xo -4 (4.9

we are to recover a well defined classical transport.
where the time dependent functi&t—t') is the solution of

IV. LINEAR POTENTIAL the auxiliary equation
AND QUANTUM BROWNIAN MOTION

dS(7) k pgra ([ S(7)
The classical picture of a Brownian particle in a constant dr _ Im- 2MX, Xo ) . (4.6
force fieldF and interacting with a heat bath is described by
the Langevin equation for the velocity: Here d(s,k,t)|i—o=do(s,K) is the initial distribution, which
is just the Fourier transform gby(r,s). The coordinates
: F appears in this solution as an initial condition 8n S(0)
vEwe T f(t). 4D _s These equations define the flow of the density matrix in

time. For an arbitrary’ the functionS(t—t') also satisfies
Here y is the friction coefficient, and(t) is Gaussian white the homogeneous equation
noise. In the long time limit the particle energy equilibrates I
with ((p?))=TM and there is a finite drift velocity.. |(9 + h_ﬂg(i>
=F/yM. In this section we consider the dynamics of a quan- T IM 2XM T (X

tum particle in a constant force field interacting with our . , i "
random matrix bath and contrast it to this classical limit. TheA9ain, S(t—t") depends ors through the initial condition.

results discussed here should be contrasted with those for tifg'€ can reexpress the full solution in terms of an initial
caseB=0, where we have found that the quantum dynamic<ondition density matrip, as well:

is similar to turbulent diffusior}9,10]. e f f drdk . p{ N
p rysv = po r y eX .
A. Exact solution 2mh h

Let us consider the case when there is a linear potential N Jtdt’[iFS(t_t,) 11[ (S(t—tf)) _lHJ

aSJ S(t—t')=0. (4.7

n %

acting on the slow variables 0 Xo
Ho(X) = — 1 52 4.2 “9
o(X)=— max— . (4.2

There are no restrictions on the initial conditigngr,s),

One can consider the case of a time dependent linear Otebut it is convenient in our considerations below to use a
P P Barticular form. If we have an initial Gaussian wave func-

tial as well, i.e.,U(X,t)=—F(t)X, with only very slight _ _  N2Ip 2 2\ 1/4
modifications of the ensuing formulas. The equation for thetlon’ Yo(X)=exp(-X7407)/(2mo) T, then

density matrix now becomes s 1 Ar2+ g2 @9
r,s)= exp — , .
omr o ipr? (s Po 2m0? 852
ifd+ M&rﬁs— WG X_o ds|p(r,s,t)

k?0? &?
. s do(s,k) = exp( 5 —2> . (4.10

={ —Fs+il'!|G <1 p(r,s,t) 4.3 8a

0

with the initial conditionp(r,s,0)=po(r,s). It is not neces- B. Attractors and repellors

sary to consider a pure state as an initial state, and we allow 1t is clear that the time evolution gf(r,s,t) depends on
for any general initial density matrix. The mixed partial de-the properties ofS(t). Hence the flow of the solution
rivative can be removed by passing to the Fourier transp(r,s,t) can be better understood if we examine the stable
formed equatior(see Sec. Il D for d(s,k,t). This satisfies and unstable fixed points &t). In order to discuss further

the equation the character of this solution it is convenient to use a specific
form for the correlatofG, so for illustrative purposes we use
k BI''a _[s G(x) =exp(—x?/2). The fixed points are determined from the
gt M 2MX, . | X, dsid(sk.t) condition

_[iFs T (s) k_ﬁrlﬁe/(s) 41
=1 7 Gl 1 sk @4 =2x: C'lx ) (4.1
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15 - - y - y time limit. By changing the integration variable in Ed..5)
tob-—-——-—----<- Nt from time to_x=s/_Xo, using Eq.(4.6), in the limit t—oo,
05 / \ where all trajectories have the property tisét) —0 we ob-

0:0 : J \ ] tain

0.5 \ /ﬁ In d(s,0t)=In do(S(t),0) ! ZFMXSF/XOd ;{XZ
0.5} ] n d(s,0t)=Indg O+ 5 ——— X exp =
if ! 2
ob oINS BI'*h Jo
& -15 ; ; : ; } 2M X(z) sIXod X X2
} +— J —|1—ex > | (4.19
Lop-"----- AN AN NI hep Jo X
05¢ // \\ // \ From the power series expansion of the integrands, one can
0.0 / \ / readily read off all the momentum cumulants in the limit
_os} : —oo, In this limit the initial conditions become irrelevant as
\ / \ / Indy(S(t),00— 0. In particular the first and second cumulants
ok /T ____ N - - 7] are
-1.5 : : . ' .
-6 -4 -2 0 2 4 6 2M FXS =
= =—, 4.1
S/%, «p)) PR (4.19
FIG. 1. Time dependent flo®(t) associated with the time evo- M
lution of the density matrix in a linear potential. Top: The case of a <<p2>> =—=MT. (4.16
Gaussian correlatios (x) =exp(—x%/2). Bottom: The flow for a B

periodic correlation functionG(x)=cosk). The stability of the

lines of fixed points are indicated by the directions of the arrows. One can see the physical picture emerging here. In the

long time limit the quantum patrticle reaches a terminal ve-

which is plotted in Fig. Ztop). [The analogous result for the [0City determined from the first cumulant:

case of a periodic correlation functio®(x)=cos) is

2
shown in Fig. 1(bottom).] This has a maximum valuk, v :<(p>> — 2F X3 — i (4.17)
given by M grip My’
B % with the definition of the friction coefficieny identical to
ko= . (4.12  that in Kramers equation, E@3.2). Further, the kinetic en-
2\/EX0 ergy of the particle equilibrates to the proper thermal equi-
_ ) _ ) librium results:
The character of the trajectori€r) determined by solving
Eqg. (4.6) depends on whethék|>k, or |k|<k,. Sincek is (P P2 (p?) Mu2
not dynamical, the evolution is only along tisedirection. SM - oM T oM - 2 T (4.18

The flow linesS(7) are shown in Fig. 1 with the arrows for

selected values df. As one can see, the part of the curve  \what is more notable, however, is that the momentum
between—1<s/Xo<1 is a line of stable fixed point@ttrac- jstribution has higher than second order cumulants, which
tors), while for [s/Xo| >1, it becomes a line of unstable fixed increase exponentially with the order of the cumulant. In the
points (repellorg. When k| >k, the right-hand side of Eq. absence of the linear potentiaF€0) only the even order

(4.6) maintains a definite sign s§(7) is either a monotoni-  cymulants are nonvanishing, and are given by
cally increasing or decreasing function of time, for any given

initial condition S(0)=s. When —ky<k=k, one can see ) ((2n—1)n MX3/( % |2
from Fig. 1 that there are two types of solutions. Further, {p")y=(—1)"" — A% (4.19
sinceky depends o8, asB—0, k,— 0 and the character of hZB\ 7o
the dynamical evolution depends on temperature. )
In general the trajector$( ) can be determined through a The presence of adds only odd cumulants:
simple quadrature FXof |21
() =1 Hen-am Y 2
_Fmd BT (X)) s T G
R I VI TV S B 413 '

All higher than second order cumulants vanish in the strict
classical limit2#—0. These cumulants also vanish in the
limit X,— o0, which shall be interpreted as a weak coupling
In order to determine the momentum cumulants we muslimit to the thermostatwhich is the case in statistical phys-
construct the Taylor expansion of the functiom(gk,t) in ics). When the coupling to the “thermostat” is not weak, in
powers ofs atk=0. One can see from Fig. 1 that along the the t—co limit the function d(s,0t) (which is the Fourier
k=0 line, all trajectories flow to the origiB=0 in the long transform of the momentum distributipis narrower than a

C. Momentum cumulants: Thermalization
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k
S(7)= ( s+ 7_M> exp— y71)— M (4.22

In the t—oo limit, by retaining only terms linear in time we
obtain

ik 2FX3t

In d(s,k,t)[s—o=In do(S(t),k)— h pr's

f

1(k>24rlxa

— (,BFW +0(k%). (4.23

2

FIG. 2. Fourier transform of the momentum distribution, For an initial Gaussian wave packet, dg(S(t).k)

d(s,0t), as a function ofs, for F=0 andM=#%=8=1. From :_Sz(t)/SUZ—.kZUZ/Zﬁ.Z. In the long time limit,S(t) ap-

narrowest to widest we havé,=0.1,0.5,1,2. TheX,=o (widest ~Proaches the fixed poirg;(k) of Eq. (5.10, wheres, (k)

curve is a Gaussian distribution. = —kM/y+o0(k®). From this we can determine the first two
spatial cumulants:

Gaussian and which thus leads to an equilibrium momentum

distribution with longer tails. This is exemplified in Fig. 2, B

where we compare the natural logarithm of the momentum ()= i

characteristic function Eq4.14) for the case wheM =#

= B=1, F=0 with (from narrowest to wide$tX,=0.1, 0.5, 2

1, 2 andXy=0 (the Gaussian limjt The presence of a linear (r3))y=o?+ t=r2+ 2Dt

potential does not modify the absolute value of the charac- 4

teristic function, only its phase. (4.29
Naively, one would have expected that the coupling to the , ) )

thermostat is controlled by the magnitude Bf alone. As  Physically we see a consistent picture of the quantum dy-

one can easily convince oneself, however, the coupling be_namlics. The particle_position grows Iinearly, with the veloc-
tween the two systems is also controlled by the correlatiodly 9iven by the terminal velocity obtained frofdp)). Fur-

length X,. In the limit X,—c there is no energy exchange ther, the average position displays diffusion consistent ywth
between the two subsystems, irrespective of the value of thBroWnian motion, which can be used to determine the diffu-

“coupling constant”T'\. For X,=c the reservoir never re- sion constanD g . This is the same expression g,q that

sponds to the “external agent” and only its excitation spec-VaS grgugd'from the quctuaFion—dissipation theorem in the
classical limit(Kramers equationin Sec. Ill.

trum acquires GOE fluctuation characteristic§'if p,, and X S . L
d Po As with the momentum distribution, the coordinate distri-

o satisfy certain well known requirements. bution in not Gaussian, and has longer taila.the Brown-
ian motion limit, these tails vanish; see belpwn analytical
explicit construction of the entire spatial distribution and its
For the coordinate distributions, we compute the Fouriecumulant expansion is not quite trivial, as the characteristic
transformd(s=0k,t). Sinces enters as the initial condition, function d(k,0t) has singularities and different asymptotic
the solutions that characterize the spatial information are alime behavior depending on the valuekofin particular, for
trajectories with initial condition$§(0)=s=0 and arbitrary small values ofk the position of the repellors,(k)
k. From Fig. 1, we can see that there are three regions te-sgn k)Xov—2 In|k| is not analytical aroun&=0. This is
consider:(1) for |k|<k, the trajectories have the property an indication that either various moments of the spatial dis-
that S(7—) approach the attractor exponentiall) for  tribution do not exist(perhaps they are divergent, as in the
|k|=Kko, the trajectories approach the attractor as an inversease of the Cauchy distributipor they increase with time at
power law, and(3) for |k|>k,, the trajectories diverge lin- a rate much faster than linear, similar to the cgse0 dis-
early in timeS(7—»)— —sgnk)%=. We shall analyze next cussed in Refs.[9,10. In other words, the function

2FX3
- (4.24

t1=v.t,
h

X3
1

+
M202y?  BT'h

D. Coordinate cumulants and diffusion

the behavior of the characteristic functia{s=0k,t) in
these different regimes.

1. |k|<kq

For smallk one can linearize Eq4.6) around the origin
and solve the simpler equation:

Br'ns(r)  k

ds(r) B k

whose solution is

In d(skt)|s—o has some singularities in the plane, which
have to be dealt with more care.

More generally, fofk| <k, and large times Eq4.6) can
be written approximately as

o

X[S(7)=s1(K)], (4.2

wheres; (k) is thek-dependent position of the attractor and
the boundary condition is in this caSér—o)—s;(k). In

Br'h

ds(r)
2M X3

dr

B s1(k)?
2X3

_ Sl(k)2
X3
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computing the leading term inone can use this approximate
trajectory. In this way one arrives at

100

r!

h

iFs,(K)
%

s,(k)?
exp(— ng )—1Ht. (4.27)

For small values ok the functiond(0k,t) is narrower than

a Gaussian, as one can establish easily by comparing the
Taylor series irk of this expression with Eq4.23. Since

the Fourier transform of this function is nothing else but the
spatial distribution, we can thus conclude that at large dis-
tances the spatial distribution has longer tails than a Brown-

In d(s,K,t)|s—o~In do(Sl(k)ak)|s=O+[

X

ian particle.

For this critical value ok, the trajectory with initial con-
dition s=0, k= £ kg, will approachS= ¥ X in the limit 7
—oo, as seen in Fig. 1. It is sufficient to look at the c&se
=ky. To examine the behavior &( ) in the neighborhood
of the fixed point, it is convenient to take

S(7)=—Xo[1=&(7)]. (4.28
The dynamics is then given by
de(7) B Ko (1—¢)? Ko )
e __MX0+7(1_8)8XF{_ 5 __MX08 .
(4.29

The solution in terms o6 then has the power-law behavior:

koT

S(T):—Xom. (43@

Substituting this into the solution fal(s=0k,t), we obtain

In d(0ko,t)=Ind ko) +| [ rRX%
n d(0kg,t)=1In do(S(t),ko) MXgy 7 it
r! _FngI Ko 3
+ iy i 7ikg n 1+Mxot +o(kp).
(4.31
3. |k|>kg

In the other regime, whejk|>k, andt—«, 8 no longer

0.4

06 08
k/k,

1.0 1.2

FIG. 3. Fourier transform of the coordinate distributit(® k,t)
for the case of a linear potential. The solid curve is the result ob-
tained from Eqgs(4.5 and(4.6) from integration tat=100. This is
compared to a Gaussiddashes obtained from the second cumu-
lant alone. The top and bottom correspond to different correlation
lengthsXy=1 andX,=1/10.

T \2aMX
| YET R0 (4.33
A

Notice, that if for|k| <k, the characteristic function is nar-
rower than a Gaussian, ftk| >k, one has just the opposite,
the characteristic function tends to time-dependent constant
(modulo a nontrivial phase, howeverThe above relation
shows that the short distance behavior of the propagator has
a quite unusual behavior. In order to construct the propagator
one should use the initial density distributiopy(r,s)

= 4(r) and thusdy(s,k)=1. The above behavior for larde
implies that even at finite times an exponentially small part
of the initial spatial distribution is left at the origin, namely,
exp(THa)&r).

4. General behavior for all k

An alternate manner to construct the coordinate distribu-
tion d(0Kk,t) is by solving numerically Eq4.6) for S(t) and
substituting the trajectory directly into EGt.5) for d(0k,t).

In Fig. 3 (top) we compare the numerical solution to Egs.
(4.5 and (4.6) (solid) with the Gaussian limit obtained by
keeping only the second cumulafdashes The solutions
are obtained for a time= 100, andXy= 1. The results are all

plays a role. Strictly speaking, this analysis is only valid insimilar.

the =0 limit. The approximate equation for the trajectory

However, if one goes to shorter correlation lengths, the
importance of higher order cumulants is striking. In the bot-
tom figure we show the same for a much shorter correlation
length,Xy=0.1, also at=100. All the remaining parameters
are kept at unity. As one can see, the exact result drops off
abruptly atk=k,. The reason is that fgk| > ko, the function

and thus the characteristic function acquires approximatel$(t) escapes towards « linearly in time while the solution

is
ds(7) k
a9 wm S=—yT (4.32
the form
kt iFkt?
In d(s,k,t)|s=0=ln dO —M,k —Zﬁ_M

for |k| <k, slowly converges to the stable fixed points. If one
factors out the overall exp(I'‘t/4) from |d(s,k,t)], the re-
minder grows exponentially in time fdk| <k, and tends to

a time independent function fdk|>k, and as a result the
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discontinuity at|k| =k, becomes thus more pronounced. V. QUADRATIC POTENTIAL

A classical particle in a harmonic oscillator potential,
treated with the Fokker-Plank or Langevin equations, will
Even though we have shown that the system equilibratethermalize, with the equilibration given by the virial theo-
to the correct thermal limit, the time evolution towards thisrem. When the patrticle is quantum, the fluctuations are cha-
equilibrium state is rather complex. FRe=0 all trajectories  otic and moreover the coupling between the two subsystems
have the same asymptotic behaviS(y—«<)—0, irrespec- is finite, we observe significant departures from this idealized
tive of the initial conditions. It is not difficult, however, to situation.
see that if a trajectory starts far away from the origin, it will
take an exponentially long time to reach the neighborhood of
the origin, as the rhs of Ed4.6) is exponentially small for
|s|>Xo. For a particle in a harmonic oscillator potential, we start
One can see from the expressions for the cumulants that ifith
the limits (see also Ref.9])

E. Brownian motion limit

A. Exact solution

h? , Mw?X?
h Ho(X)=— o dxt —% - (5.0
——0, (4.39
Xo
The equation fod(s,k,t) can be solved through quadratures,
ﬁ—>0 (4.35 in the same manner we solved for the linear potential. We
r! ' note that the solution we obtain is not limited to the simple

case under consideration. Analytic solutions are also possible
are taken, with the friction coefficient remaining finite, one if we want to include a linear time independent potential
obtains the case of pure classical Brownian motion. All butterm, a general quadratic time dependent potential, and/or a
the first two cumulants for coordinate and momenta vanishmultidimensional treatment.
and one is left with a Gaussian process. These limits can be We shall look for a solution using the same representation
achieved also by keepirfg finite and thus obtaining the case of the density matrix introduced in the previous section in

of a quantum Brownian particle. Eqg.(2.17. The equation for the density matrix is in this case
i he iﬁr%ze' > M w? =Tt G ° 1 5.2
o+ M&r&s— 2X M X_o ds—Maw?sr|p(r,s,t)=1i X_o —1|¢p(r,st) (5.2

and the corresponding equation for the functi{s,t,k) is

X BF%G'S M w?sd,  d(s,k —FlGS 1|d(s,k 5.3
t+ M—WXO X_O (95— w S(9k (S, ,t)—? X_o — (S, ,t). ( . )
I
The solution of this equation can be obtained again using the S(r=0)=s, and K(7=0)=k. (5.6)

method of characteristidsl6]. In this case we will have a
two-parameter solution fod(s,k,t), which will depend on
the functionsS(t) and K(t), which satisfy the auxiliary
equations:

We do not write the full solution here since it is more con-
venient to solve the equations in action-angle variables. Be-
fore we do so, let us examine the fixed point structure that
will emerge.

ds(r)
dr

K(r) BT'%h ,(S(T)
M _ZMXOG Xo

” (5.9 B. Attractors and repellors

The flow in the “phase space”3,K) is not Hamiltonian
in character, which is not surprising. Some typical trajecto-
ries are shown in Fig. 4 foB(x) =exp(—x?/2). In this case
dK(7) ) L ) ;
——=Muw?S(7), (5.5 there is no qualitative difference between the dynamics of
dr this correlator or a periodic function such @¢x) = cos).
In Fig. 4 (left) we takew=1 andy=0.5. (In the right we
with the initial conditions illustrate the flow for the inverted parabola, which is ob-
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2 \
M o v
_2 L
—2 -1 0 1 2
(a) S (b)

FIG. 4. Left: Time dependent flopS(t),K(t)] associated with the time evolution of the density matrix in a harmonic oscillator potential,
with the correlation functioi®(x) = exp(—x42). The values of the parameters are 1 andy=0.5. Right: Time dependent flow associated
with the time evolution of the density matrix in an inverted harmonic oscillator potential. The paramet8rg=atél0 andy=1/2. The flow
of certain trajectories is shown with the arrow§he units are determined froy=M=A=8=T'=1))

tained from our results below through the analytic continua- . Jk+2Me?s yr
tion w=i(,.) The general pattern of the trajectories in the K(7)=|k coswr+ ——— sinwr ex;{ - 7)
(S,K) plane seems to be quite simple, in the limit>o, 20

irrespective of the initial conditions, all trajectories spiral (5.12
counterclockwise around the origifunless the motion is
overdampef The origin is thus a stable focus. There are noywhere
trajectories going away to infinity in any direction in the
“phase space” §,K). The plane §K) is separated into

four regions by the two curves

— BT ‘1 [, 7
w= w?— =/ w?— . 5.1
AMX3 4 (613

_ . , The casew<vy/2 is formally similar to the casev=i(}.
Each of these lines correspondsKg§7)=0 andS(7)=0,  Strictly speaking, in the first order i, in which we have
respectively. Near the focus it is simpler to solve the linearyerived our formulas so far. one has< o and we shall use

ized equations of motion mostly this approximation from here on.

!
LU I

S=0 andm— ZMXO x_o

ds(7) __ K(7) _ ﬁFLhS(T) (5.9 C. Solution in action-angle coordinates

dr M 2MX5 The flows shown in Fig. 4 suggest that action-angle coor-
dinates might be better suited to the dynamical analysis of
dK(7) this probler_n. The analytical construction of the highe_r qrder
=M w?S(7), (5.9  cumulants is somewhat cumbersome and we shall limit our
dr analysis to some general features. The action-angle variables
are in this case

which can be solved analytically. If the condition

k2 M ws?
>,8Flﬁ_'y 5.10 |:2Mw+ 5 (5.19
aMx3 2 '
is fulfilled, then the required trajectories are k
b= arctanm . (5.15
— 2k+Mys  — vT
S(7)=|s coswT— ——Sihw7|exp — =/, ) ]
2Mw 2 Here | is related to the energy. We can now rewrite the

(5.11) evolution equation Eq5.3) in these variables
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) dy+ | cos’ ¢ [sin ¢ $dy+21 cofpa ] d(l,¢,t) FL | cos’ ¢ 1|d(l,¢,t)
) exp — ————-|[sin ¢ cos co O ) =—|exp ————| — &,1).
sy M X2 ¢ ' fi Mo X2
(5.1
|
The equations for the trajectories acquire the following form 2M Xg lde o
Ind(l,¢,t)= f— 0 5
dd(7) Y. h2B Jo @ 2M wX3
ar =w—5sin 2b(7)
F{ o T o
(7 —ex 2 0 2
xexpl ~ " [1+cos 2b(n)] 2Mwx3) ||l 2M w3
2M wXj 1
o
5.1 -7 5.2
619 Y 2M X2 523
di(7)
g, — Y(n[1+cos 2>(7)] wherel =1(0), which was defined above as the initial value

of the action variable. One can construct in a straightforward
1(7) manner all the spatial and momentum cumulants, by revert-
Xexp — 2[14—005 2b(7)];, (5.18 ing to the initial space-momentum variablesand k. Note
2M wXq thatd(s,k,t)=d(l,¢,t) is time independent in this limit, as
expected. One can extract easily the behavior for large and

with initial conditions

smalll.
(0)= = 4 Mos’ 5.1 2
O=ome™ 2 619 L 3l . 1<MowX3,
h2wB  16h%Bw?MX3
Kk In d(l,¢,t)~ 2 3/2
(0) =arctan—. (5.20 _ 8\27M xo[ | e Mox.
36h% | 2MwX2
Irrespective of the initial conditions the actib(r) is always (5.249

a monotonically decreasing function, vanishing in the long

time limit. If the motion is not overdampsd(e., o> y/2) the By taking the Fourier transform of the above expression for
phase®(7) is a monotonically increasing function of time. d(s,k,t) for eitherk=0 ors=0 one can determine either the
In the weak friction limit, wheny<w, one can replace the momentum or the spatial equilibrium distribution of a har-
equations for the trajectories with the following approximatemonic oscillator coupled with a “reservoir.” For the oscil-

equations: lator, the action variableis, up to a trivial factor, simply the
total energyE. Hence one can also extract the energy distri-
dd(7) bution from the above expressions.
P (5.21)

D. Eigenvalues of the time evolution operator

di(7) = —yl(r)exg — I(7) It is instructive to construct the eigenvalues and the eigen-
dr 2M X3 vectors of the time evolution operator. If we rewrite the time
evolution equation for the density matrix in the form
I(7) I(7)
- , (5.22 ihdp(r,s,t)=0p(r,s,t 5.2

0 ZMng 1 2MwX(2, o( ) p( ) (5.29
obtained after averaging the initial equations over the fas¥ve can consider the eigenvalue problem associated @ith
motion (i.e., over one period 2/w). HereZy(x) andZ;(x) Op(r,5)=\p(r,S). (5.26

are the modified Bessel functions of first kind. The rhs of Eq.

(5.22 behaves Iinearlyirhfo_r small v_alugs of th_e action_ and The equilibrium solution will correspond ta=0, and in

as 1A/l for large values. This behavior is consistent with thegeneral the spectrum should be complex. While an analytical
fact that the friction term is effective only near the origin in g tion does not seem possible for a gen@&k), if we

coordinate, i.e., foB~O(Xo). _ . takeG(x)=1—x3/2, one can readily solve the problem.
After manipulations similar to those used in the previous £, the equilibrium stateX=0) one obtains

section, and averaging over the fast motion and by changing

the integration variable from time to actiofusing Eq. BM w22 M
(5.22], one obtains that the asymptotic expression for the polr.S)=exp| — ' 232 . (527
characteristic function is 2 2B%h
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We will discuss the physical properties of this solution in thelimit. These patterns are shown in Fig. 5 8r-0, where it
next section. This problem now becomes identical to thds clear that all eigenvalues with the exception of the equi-
eigensolutions of the Fokker-Plank equation for the oscillatotibrium state § =0) lead to decay. Fo8=0, the spectrum

[15]. Following that analysis, the eigenvalue spectrum isyq|japses to the real axis, and all poits nw are infinitely
given in terms of two integers,; andn,. The basic roots are degenerate.

iy 52 The eigenvalues for the inverted parabola can be obtained
)\i=—7ih5, 0= wz—z (5.28 by making the transformatiom=i{,. In the eigenvalue
spectrum one replacas with i(Q3+7?/4)Y2 In this case
and the entire spectrum can be written as the eigenvaluexzo, which Corresponds to an equilibrium

solution, is no longer present. The eigenvalues are all purely

i yh _ imaginary, and have values above and below the real axis.

Mnyn,= T(n1+ ny)+iw(ni—ny), (n=0.1,..).
(5.29
E. Recovery of equilibrium thermodynamics

The time evolution of the density matrix will equilibrate to
the A =0 eigenvector, as all other components will decay in For the harmonic oscillator, we would like to see whether
time as exp—(n;+ny)t/24]. The temperature dependence or not the random matrix bath can act as an ideal heat bath.
appears indirectly throughl, which vanishes in thgd=0  The quantum equilibrium density matrix we would expect is

= 1 - 1
Ped X, Y)= 2, Xy — B\ Nt |fw| $n(Xbn(Y) [ 2 exp — Bl n+5 ko), (5.30
where ¢, are the oscillator wave functions given by
X)= o 1/4H X p( azxz) 2 Mo 5.3
n(X)= 722712 n(@Xjexg ———|, a“=—— (5.3
andH, is the Hermite polynomial. Defining=ex{ — fiw], we can write
a(l-2) 2(x2+Y2) - n1
Peg X,Y) = — ——ex 2, | 5] prHa(@)H(aY) (5.32
a n=0 :

D O eyt 1e - axy (5.33
= 7_r(leZ)cx 2(1_22)[( )(1+29) 7. .

In the last line we have used the generating function for <<p2>> <<Mw2r2>) 1
Hermite polynomials. If we take the leading ordergnand oM 5 =252 (5.39
transform fromX,Y tor,s, we find
z ) 255 as one might have expected. The higher order cumulants can
PedT19)= 1 @B wexp{— @ 2 @ B @2 be obtained by setting=0 or s=0 respectively in the Tay-
e 2m 2phw 2 ' lor expansion in of the Eq.(5.23. We shall not try here to

(5.39 derive explicit expressions for higher order cumulants, as
they apparently seem to be quite complicated and hardly
very revealing. As Eq(5.24) clearly shows, the equilibrium
distribution is much narrower than a Gaussian one, which is
already indicative of the presence of non-negligible higher
‘than second order cumulants. In Fig. 6 we compare
In d(l,¢,t—) as a function ofyl obtained from Eq(5.23
for X=0.5,1,2% (narrowest to wide$t The widestX,=
is the equilibrium distribution exp{BH,) [the first term in

To get the cumulants, one can use the procedure describéige low| expansion, see E@5.24)]. Notice that the equilib-
previously (see also Ref[9]) and derive that in thé—oo rium distribution is¢ independent as well as independent of
limit the actual values of the friction coefficieptand of the cou-

which is precisely the.=0 eigenvector found in the previ-
ous section. Hence, to leading order@n(and# in a sense,

as B enters as8#), and in the Brownian motion limit, we
recover the equilibrium density matrix. In general the equi
librium density matrix will have a non-Gaussian character.

F. Cumulant expansion
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FIG. 5. Eigenvalue spectrum for the time-evolution operator of

the density matrix(r,s,t) for the harmonic oscillator witi8>0. FIG. 7. Tunneling rate to the right hand well f6¢ =7 and g
For 8=0, the frictiony vanishes, and all eigenvalues lie on the real —_q 9 05 0.10.0.15 0.20downward from the highest curyeThe
axis. Thex =0 solution corresponds to the equilibrium density ma- 5 miltonian parameters ara=5, b=M=1/2, i=X,=1. Here

trix. P(t) is the probability to be in the right hand well.

pling const_antl“l. Except for a trivial oyerall factor, the yajues of the parametét. Let ¢,(X) andp,(X) be the first
shape of this function is controlled by a single parameter, th@yo eigenstates of the double well. We take as initial state
“characteristic action” MwX2, which depends on the the combination
“roughness” of the coupling to the “reservoir”.
1
VI. TUNNELING IN A DOUBLE WELL POTENTIAL $o(X)= E[dm(x)— #2(X)], (6.2

For the problem of tunneling, we consider also the dy- . . . .
namical evolution of a particle in the double well potential Which represents a wave packet that is mostly localized in

given by the left well. In view of the fact that splitting between the
first two states is very smal\E~3x 10" ®, the tunneling of

52 b \2 the wave packet to the other well would take a very long
Ho(X)=— m¢9§<+a X?— 2—) (6.1  time should there be no dissipation. At the beginning of the
a tunneling process, the rate increases almost linearly with this

) , ) , parameter. For very large time, all the tunneled strengths
For this or more complex potentials, analytlc soluthns are NQpproach the limiting value 1/2 corresponding to the equal
longer possible, and we solve the dynamics numerically on Qistribution between the two wells.
grid. To examine the effect of dissipation on tunneling, we Next, we study the dependence of the tunneling on the
first put =0 and solve the equation for some representativqemperature_ For this, we fix a value bf and solve the
evolution equation for different values ¢f. One would ex-
. pect that the rate would increase with the temperature, i.e.,
when B decreases. Figure 7 shows such a behaviorgfor
y =0,0.05,0.10,0.15,0.20. For larger values@fthe strength
on the right-hand side may come out negative for reasons we
. discussed in Sec. Il.
At this point, we are also able to compare our results with
y that obtained from the Caldeira-Leggett model. To reproduce
the latter, it is sufficient to replace the Gaussian form of the
y correlation function that we have used up to now by its qua-
dratic approximationG(x)=1—x2/2. The effect may be
0.0 . seen better by choosing a smaller value for the correlation
0.0 05 li(}z 1.5 =0 lengthX,. The difference can be appreciable, not only in the
I tunneled strengths but also in their shapes.

FIG. 6. Fourier transform of the momentum and coordinate dis- W& have numerically computed the eigenvalue spectrum
tribution (they coincide in this cagdor the harmonic oscillator for by e€xpanding the density matrix in the eigenvectors of this
the caseM =% =w=B=1 here represented as a function &  guartic potential, and diagonalizing the evolution operator.
wherel is the action. The curves corresponddg=0.5,1,2% from  The complex eigenvalues with the smallest imaginary parts
the narrowest to the widest. The Gaussian distributigg=(>c), ~ are shown in Fig. &top) for =0 and 0.2. One can see in
obtained from the Brownian motion limit in which only the qua- Fig. 8 that the tunneling can be influenced by several nearby
dratic cumulant is nonzero, is shown as a dashed curve. eigenvalues, and that g increases, the patterns of impor-
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0.6
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0.4

0.2
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0.0F U H ™ widths the influence functional in our model can be brought
to a form similar to the one suggested by CoHéd] to
a describe localization, although we did not analyze this limit
a o s here. It would be interesting to explore whether localization
in the “reservoir” states induces localization in the simple
! T ! . quantum system coupled to such a reservoir.
5 -5 0 The quantum evolution equation we have derived for the

Re[A] density matrix is not more complicated to solve than a clas-

0.0F . : . I sical Fokker-Planck equation. Although we started with a

Gaussian process characterized by parametric random matri-

ces, we ended up with a non-Gaussian dynamical process.

-0.2 -% 3 The spatial and momentum distributions are characterized by
10 20

Im[A]
|

cumulants of all orders.
We thus have now at our disposal a quantum evolution
equation, with an effective velocity dependent friction coef-
T=1/8 ficient and also a finite coupling strength to the “reservoir.”
) ) As far as we know, these latter two aspects have not been
FIG. 8. Top: Temperature behavior of the complex eigenvalueg, \iqered previously in the literature. In particular, previous
of the double well potential with the smallest imaginary parts. BOt'approaChes designed the coupling between the subsystem
tom: Temperature dependence of the imaginary part of the eigen-

. ' and the environment in such a way as to reproduce the stan-
values with smallest absolute value. One of the eigenvalues appar:

ently vanishes in the limiff—0, which suggests that aE=0 dard statistical physics results, which are only obtained in the

dissipation decreases the tunneling ré2é One can see that the limit of vanishing coupling. The shape of equilibrium distri-

tunneling process is not always dominated by a single eigenvaluebFJtions that We, have determined can b? un‘?mbigl_JOUSly at-
tributed to the finite strength of the coupling, in particular to

gt.he specific functional form of5(x).

30 40 50

tant eigenvalues change considerably. In the bottom of Fi
8, we plot the imaginary parts of the eigenvalues as a func-

tion of temperature for the ones with the smallest imaginary ACKNOWLEDGMENTS
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where the environment is a “chaotic” bath of intrinsic exci- at the INT.
tations. The model Hamiltonian we introduce for the intrinsic

subsystem incorporates the generic properties of finite many- AppeNDIX A: EVOLUTION EQUATIONS FOR THE

body systems. This includes an average level density of A\ ERAGE PROPAGATOR AND THE INFLUENCE
states sharply increasing with energy, the presence of univer- FUNCTIONAL

sal spectral fluctuations for the intrinsic system, and the
variation of these properties while changing the “shape” of The time evolution of the fast subsystem is found by solv-
the intrinsic system modeled with parametric banded randoring the time-dependent Scliioger equation in the forf6—
matrices. In this way, the intrinsic system is capable absorbi0]:
ing energy due to its large heat capacity. In the present real-
ization, the intrinsic system was not allowed to perform me- i [t
chanical work. P()=T exp{— 7 f ds Hl[X(S)]}¢(0)=U(X(t))¢(0),
; ; ; ; ; 0

The dynamical evolution equation has been derived with-
out making any uncontrollable approximations or assump- (A1)
tions, and in many instances one can construct full solutions
by quadratures. In the classical and weak-coupling limits, th&vhere T is the time ordering operator, and(X(t)) the
evolution equation reduces to Kramers form. propagator(We assume that the initial sta®(0) is uncor-

Our analysis was limited to the case when the motion ofelated with the Hamiltoniair (X(t)) at later times; corre-
the simple system can be treated in the adiabatic approximéated initial conditions have been discussed elsewhéf¢
tion. Thus, we have not taken advantage of another paranfone can show that in the leading order in an expansion in
eter in our description of the reservoir: the bandwidth of thel/N, the average propagattr(X(t))=U(X(t)) is diagonal
random matrix. It is known that banded random matricedn the representation we have chosen. Its diagonal matrix
lead to localizatior{17]. One can show that for finite band- elements have the following form:

VII. CONCLUDING REMARKS
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i t Ko K%SZ
U X(1))={ k|T ex —%Lds H, (X(s)) ||k Po(s)zﬂex g —8(s) (B3)
V&
=exp< - ﬂ) a(X(1)), (A2) s legitimate and compute the first correction fto the
fi propagator.

. . - In the equations for the propagator and the influence func-
[note thato(X(1)) is state independehand o (X(t)) satisfies g5 P 4(s) enters under integrals with some arbitrary func-

the following integral equatiofi8]: tions as follows:
B ]"l t S1 0 0
"“'tO)_l_Wﬁodsi , 4%20(51:52) (52, %) f_mds PB(S)F(S)~f_wdS Po(S)F(s)
X(s1) = X(S,) :
XPB(Sl_SZ)G(%)' (A3 n ﬁfo dsaPolS) e o)
0 2 )« ds

In the following we shall consider thag=0. HereP 4(s) is .
the fourier transform of the matrix band form factor in the -~ E 1BKo
~3 F(0)+ 5 F(0)

correlator[ h,(X) ];;[ h1(Y) ], defined in Eq(2.4): N2
2 2 i Bh dF(s)
Pt O o] 0B - , (B4)
Pﬁ(s)—Pﬁ( s)= \/ﬁﬁ ex;{ 72 S+i 5 . 4 ds o
(A4) :
where we have used the relations
The influence functional can be determined by solving the 1
. - . 0
following evolution equation: f ds Py(s)F(s)= EF(O)’ (B5)
L(X(ty),Y(t))=0o(ty,000*(1,,0)
— s1),X(s s s)= - ,
o Jo 51 0 2 1 2 —x ds 2 h 2 ds s=0
B6
* X(s1)—Y(s2) (B6)
xXP (51_52)6 - v
B Xo Ko
Po(0)= . B7
X a(ty.5)0* (1,5, (A5) O (87
APPENDIX B: AVERAGE PROPAGATOR AT EINITE After a few Simple manipulations and after taking into ac-
TEMPERATURES count that
For a given pattX(t) the averaged propagatersatisfies o(s,s)=1, (B8)
the following equation:
do(s;,s do(s;,s
rlors sy ¥ :¥ ~0, (89
(T(t,to):]_— 7J;0 dSl % dSZO'(Sl,Sz)(T(Sz,to) $ $1=5, S $1=5,
X(Sl)_x(32)> d (X(Sl)_X(SZ))
X P (51— 5,) G| — ]|, B1 Rl B VA 24
p(51-%) ( % (B1) 35, %)l
1 2
where d X(s1)—X(s
:d_G( ( 1>X ( 2)) o (10
Ko Ko 1iB\? 51 0 51=5,
Pg(s)= —-exg — o s+|7
N2mh 2h one can easily show that up to terms of ord(B?) the

i Bh dPy(s) averaged propagator is given by the following expression:

=Po(s)+ 5~ —g—+O(B). (B2

It iBry BT
. o(t,0)=o(t)=exg — - 1— -—]].
In the above equations(s;,s,) represents the averaged 2h 27 4
propagator from times, to times,;, as for an arbitrary path (B11)
X(t) it is not obvious that this propagator depends only on
the time differences, —s,, as was the case in the adiabatic In the equation for the influence functional we shall need
limit and for 8=0. We shall assume that the replacement the quantity
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o Ii(t+t") [iBko
o(t)o* (t )—ex;{— T \/ﬂ

4 2%

~erg -

i Wrlt—t!
+£)F(t t')

rH(t+t")
2%

. (B12)

We are allowed to neglect the imaginary contribution in the

exponent as in all relevant integralst’=O(g).

APPENDIX C: INFLUENCE FUNCTIONAL AT FINITE
TEMPERATURES

In order to simplify somewhat the derivation we shall
introduce the “reduced” influence functional at temperature

B:
Ity +1,)
2h '
(Cy

A p(X(t1),Y(t2))=Ls(X(ty) ,Y(tz))exr{

which, up to correction terms of ordék 8?) in the averaged
propagators, satisfies the equation

't (u to
ApX(t) V(1) =1+ 5 [ ", [ “adsn p0x(50). Y(52)

X(s1)—Y(sp)

xPz(sl—sz)G( Xg ) (C2

We have shown earlidi8] that for 3=0

Ao(X(t),Y(t2)) =Ag(ty,t2)
B rt (< X(s)—Y(s))
—exp[7f0 [G(—XO

where t_.=min(t;,t;). In computing the first order correc-
tions in B8 for A g(X(t;),Y(t2)), we shall proceed as in the
previous appendix, by making the expansion

s,

(C3

i Bh dPq(s)
PE(s)~Po<s>—% d(’és

(C9

and taking the limitky—c0, which allows us to make the
replacemenPy(s)— 4(s) in all the integrals. The only term

that requires a more careful treatment in the equation for the

reduced influence functional is

dA p(X(s1),Y(s2)) _ INo(X(s1),Y(S2))
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t t t 5
[0 [ asF(sis0= [ as: [ “asF(sis

0 0 0 0

t Sy
+j dszj ds;F(s1,8y)
0 0

(C6)

for an arbitrary functiorF(s;,s,) and by applying the rules
described in the previous Appendix we obtain that

ot
Ap(X(),Y(0)=1+ fodsAB(X(s),Y(s))

X(s)—Y(s)
G( Xo )

ipr (t
+4_X0f0dsAB(X(S),Y(S))
x[X(s)+Y(s)]G’(%OY(S)> '

(C7)

where G’ (x)=dG(x)/dx. In the above evolution equation
one can use eithekq(s;,s;) or A(X(s),Y(s)) on the rhs.
An alternative way to derive this equation is to use the fact
that for two given path¥(s;) andY(s,) one has the explicit
symmetryAy(S1,S,) = Ag(S2,S1) and also that

dPq(s)

ds

dPy(—5)
- ds

(C8

before making the replacemety(s)— &(s) as described
earlier.

This evolution equation can be easily solved as in the case
of B=0 and the final answer for the influence functional is
Eqg. (2.17).

APPENDIX D: EFFECTIVE HAMILTONIAN AT FINITE
TEMPERATURES

Having obtained an expression for the influence func-
tional at finite temperatures we can write down from the
Feynman-Vernon path integral an expression for the effec-
tive Lagrangian:

S MY?2 - (X—Y)
L=———U(X)———+U(Y)-il'|G X; -1
B ,(X—Y)
+4—X0[X+Y]G ol (DY)

We can introduce now the corresponding canonical conju-

— 2
(s1—Sy) d(s;—S,) =0(B%), gate momenta
(CH

aL . Br''a [ X=Y
which can thus be neglected. The reason is that Px:&:MXJF %, G (X_o) (D2
Ao(X(s1),Y(s,)) has a discontinuous partial derivative at
$:-S,=0. Remembering that we need the influence func- L Il XY
tional fort;=t,=t only and by using the obvious exact rep- Py=—=— MY + G’( ) (D3)
resentation of the integral term aY 4Xo Xo
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and construct the effective Hamiltonian according to usuahient to reorder the different terms in the Hamiltonian as

rules follows:
H=PyX+PyY—L Px+Py)(Px—P
X Y H:( X \(2)|\(/IX Y)+U(X)—U(Y)
1 Bt [X=Y\]?
=i | P ¢ +U(X) |
2M 4Xq Xo BI''h ’(X_Y)(P Py tir! G(X_Y) 1}
- N x_ Y I - .
1 ,BFlﬁ o X—Y 2 4M XO XO XO
C2M| Y ax, Xo (D5)
- X=Y Any other choice of ordering leads to an evolution equation

—U()+il G Xo -1 (D4 for the density matrixp(X,Y,t), which does not conserve

probability. One can consider alternative orderings, but in
The requantization of this effective Hamiltonian is straight-the final analysis these lead to slight renormalizations of
forward (Px— —ifdyx and Py— —ifdy) and it is conve- various quantities, but to no qualitative effects.
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