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This paper presents a further improvement of the mean-field method of obtaining the Leslie viscosity
coefficients of biaxial nematic liquid crystals presented in our last gapefFialkowski, Phys. Rev. B5, 2902
(1997]. We carry out the calculations without using simplifying procedures employed in the cited paper. The
viscosities presented are expressed by suspension parameters such as second- and fourth-rank order param-
eters, three diffusion constants, temperature, number density, and certain factors depending on the shapes of the
molecules. Viscous properties of uniaxial phase composed by biaxial molecules are also considered. We show
that our results recover existing formulas for six Leslie viscosities obtained for the uniaxial system. The
problem of the rotational diffusion tensor has been investigated within the hydrodynamic approximation. The
rotational diffusion coefficients have been expressed by the common shear visgdsitan example, we also
present the viscosities calculated numerically for a mean-field model of biaxial nematic liquid crystals.
[S1063-651%98)02204-1

PACS numbegs): 61.30-v, 66.20+d, 83.70.Jr

[. INTRODUCTION evident failure caused by the use of the decoupling approxi-
mation was the prediction that two viscositigs, and u,,

In the previous papefl] we provided a systematic are equal to zero.
method of deriving the viscosities of biaxial nematic liquid The first purpose of this paper is therefore to improve the
crystals. The method is based, in general, on the mean-fielshethod by eliminating the above simplification. As a result,
molecular approach developed by O@] and Kuzuu and we obtain exact formulas for the Leslie viscosities expressed
Doi [3] for uniaxial nematics. We have adopted their methodin terms of both second- and fourth-rank order parameters
of calculating the viscosities for biaxial systems. In this way,and are free from the weaknesses caused by the use of the
the two-director phenomenological theory proposed bydecoupling procedure.
Carlsson, Leslie, and Laverfy] and Leslie, Laverty, and Moreover, the limit of the derived expressions corre-
Carlsson[5,6] was recovered. In particular, all the Leslie sponding to the uniaxial symmetrd..;, is thoroughly dis-
viscosity coefficients were calculated in terms of suspensiorussed. It is shown that the formulas presented for the Leslie
parameters such as order parameters, diffusion constantmefficients may be regarded as a natural generalization of
temperature, and number density. the existing formulas, which have recently been obtained

To proceed with the calculations, however, we employedwvithin the framework of uniaxial theory. Furthermore, we
a mathematical approximation consisting in decoupling alldemonstrate that the above-mentioned uniaxial formulas may
the averages of fourth-rank tensors and expressing them ube easily improved in such a way that some effects related to
ing the appropriate averages of the second-rank tensors. Adtlae residual biaxiality of the molecules are taken into ac-
consequence, the derived formulas for the viscosity coefficount.
cients involved only second-rank order parameters. In the In this paper we deal also with the rotational diffusion
uniaxial limit, they recovered six Leslie viscosities obtainedcoefficients characterizing the Brownian motion of biaxial
by Marrucci[7]. molecules. We show that if molecular shapes are approxi-

Although the treatment presented in our previous workmated by ellipsoids it is possible to express each diffusion
was, in general, successful and allowed us to derive all theoefficient with the common viscosityy and certain geo-
viscosity coefficients, the decoupling procedure used duringnetrical factors depending on anisotropy of the ellipsoid.
the calculations is rather rough and may lead, in the worsAlthough, as we show, such an approach to the problem of
case, to an error of the order of 100%. Perhaps the mosbtational motion of the molecule is rather rough, it enables
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us to compare relative magnitudes of the viscosity coeffilLennard-Jones type potential. Some comments on the results
cients. presented are given in the concluding section, VI.

This paper is organized as follows. In Sec. Il we outline
the two-director formulation of the phenomenological theory
for biaxial nematic liquid crystals, calculate the symmetric Il. THE STRESS TENSOR AND THE LESLIE VISCOSITY
part of the viscous stress tensor, and derive the equations of COEFFICIENTS
balance of angular momentum and, as a main result, we
present the exact formulas for the Leslie viscosity coeffi-
cients. Next, in Sec. Ill, we investigate our results in the limit  The phenomenological description of viscosity for incom-
of uniaxial symmetry. In Sec. IV we deal with the problem pressible biaxial nematic liquid crystals has recently been
of the rotational diffusion tensor in the framework of hydro- proposed by Leslie and co-workefs,6] within the frame-
dynamic approximation. Eventually, in Sec. V we presentwork of the two-director continuum theory. According to this
sample calculations of the viscosity coefficients performedheory, the viscous stress tensgy is expressed in terms of
for a mean-field model of a biaxial nematic liquid crystal, in two orthogonal vectoran andn, describing the biaxiality of
which pair interaction between molecules is described by théhe system,

A. The continuum theory

gij = a N NpANN;+ aoNin; + 3NN+ @A + asAjniN; + agAjDD; + B1MMpA MM, + BoMim; + B3Mjmy

+ BsAikMiM; + BeAjimicm; + Npmp( 1 mMin; + womyng) + DA pMp (43mM 05+ aM;i0i) + wsMMpAgpling
2.1)

where the vector§l andM are defined as V3= Mo— M1, V4= Ma— M3

N=n—Q-:n, M=m—-Q-m, _
- - - - B. The viscous stress tensor

with © and A being antisymmetric and symmetric parts of  We consider an incompressible nematic biaxial liquid

the velocity gradient tensafv;, respectively, crystal consisting of biaxial molecules. It is assumed that the
molecules are modeled by ellipsoids of the axial ratios
2Q005=(9gva=davp),  2Rap=(dovpt dgva). a:b:c, wherec=a=b. The orientation of the selected mol-

ecule is defined by the rotatidgd carrying the fixed reference
frame(l,m,n) into a frame(l,m,n) fixed in this molecule. The
Lnit vectorsl, m, andn coincide with the symmetry axes of
the ellipsoidsa, b, andc, respectively. The probability that
the molecule has orientatidR is given by the one-particle
distribution functionF =F(R).
Ba+ Br=Bs— Bs, '_I'o describe dynamics of the_molepule_s we apply the dif-
fusional model, where the reorientation is treated as a sto-
chastic Brownian precess. The rotational movement around
the three principal axes is characterized by the diffusion ten-
-0 sorD;; . Since it is assumed that the stochastic motion of the
us=0. (2.2 | .
selected molecule proceeds around all three axes indepen-

Thus, we have 12 linearly independent viscosity coefficientsdently, the tensob;; is diagonal in the molecular frame of
The balance of angular momentum is given by the follow-réference. The appropriate diagonal elements are denoted

The coefficientsy;, 8;, andu; are called the Leslie viscos-
ity coefficients and are linked by the four Onsager-Parod
relations

aztar,=ag— asg,

M1t o= pa— 3,

ing set of three Sca|ar equations: D| , Dm, anan . They Correspond, reSpeCtiVely, to the d|f'
fusion coefficients around th& b, andc principal axes of
(71Ni+ v2Ainj)Li=0, (2.3 the ellipsoid.
In order to derive the viscous stress tensgr from the
(MM + XA M1 =0, (2.9 molecular level, we use an improved version of the method

originally used by Kuzuu and D¢B] in the case of uniaxial
[(y2+ 3+ N)Ni+ (y2+ ya— N2 Ajn;Im;=0, (2.5 nematic_s. The method we use essentially_ consists _of separate
calculations of the symmetric and the antisymmetric parts of
where |=mxn. The coefficients appearing in the above the viscous stress tensor. It was thoroughly describgd]in
equations are linear combinations of the Leslie viscosities Here, we quote only the main results obtained in our previ-
ous work.
VIS a3~ an, Y=g as, The first important result derived was the formula for the
symmetric part of the viscous stress tensor expressed in
N1=PB3— B2, Ar=Bs—Bs, terms of molecular parameters,
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ZO'iSjym/d kBT: 2A<ni nj nknp>Akp+ 28<m| ml mkmp>Akp+ C(ni mjnkmpAkp+ nj minkmpAkp> — A<ni nkAjk+ nj nkAik>
— B{mimAjc+ mymAi) + A (nini Qg+ nyng Qi) + B (mymy Q.+ mymy Q)

+C1<ninkmjmpﬂkp+ minknjmpﬂkp>. (26)

In the above expressioh is the temperaturesg is the Bolt- 0=(lp[lq+|_q0p)<(|pnq+|qnp)miwi>, (2.1
zmann constant] stands for the number density of the sys-

tem, and() denotes the average taken over the equilibrium ) .
distribution function. The parametefs A, B, B, C, and  Where the vectow; is the angular velocity due to the shear-

C, are defined as ing flow 8],
fa fm fa o _

A=——" Aj=—", B=——, Bj=—, w=—I[m-(fA=Q)-n]-m[l- (f,A+ Q) n]
D, Do D, D,

+n[m-(f,A—Q)-I].
S P Y
Dw D D,/ "' \Dj Dy D/ ' The formula(2.6) together with the three equatiori8.9)—

. (2.12) allow one to obtain the whole viscous stress tensor

with the form factorsf, , f,, andf,, and, by comparison with the appropriate phenomenological
h2— 2 a2—c2 a2— b2 formulas, to predict the Leslie viscosity coefficients.

(2.9 In our previous work, to calculate the tensor averages
we applied the decoupling approximation of the
Jorm  (aibjaAgb)~(aib(aAub),  (aibjaby)
(ajbj)(aQyb;), wherea; andb; stand for the compo-

f':b2+c2’ fm:c2+a2’ f”:a2+ b2

We obtained also the following set of scalar equations
corresponding to the balance of angular momentum, Egs.

(2.3-(2.5): nents of vectors); andm;,, i.e.,a;=n;,m;, bj=n;,m;. In
' e the present paper, we carry out the averaging without using
0=(npmg+ngmp){(N,mg+nymy)l;w;), (2.9  the above-mentioned decoupling procedure. As a result, we

obtain the following expression for the symmetric part of the
0=(lpmg+1qmp){(I;mg+1gmy)n;w;), (2.10 stress tensofwithin the factordkgT/2):

o>¥"=2[Aa; +Bb;+ Cci]nn(nn:A)+2[ Aa,+ Bb,+ Cc,Jmm(mm:A) +2[ A(2a,4+a3) + B(2b,+bs) + C(c3+C4) ]
X[nm(nm:A) +mn(nm:A) ]+ [2A(as—ag) +2B(bs—bs) + C(cs—2¢3) — Ad; —Bd,](nn-A+A-nn)
+[2A(ag—az) +2B(bg—b3)+C(cg—2c3) — Ady,—Bdz](mm-A+A-mm)—2[A(1—-d;—d,—3a3)
+B(1—d,—d;—3b3)—3Cc;]/3A+[Cc7+Ad+B1d,](n-N+N-n)+[Cyicg+ Ady+ Brd3](m-M+M-m).

(2.12
|
Similarly, after calculating the averages, the equati@®—  The parameters;, b;, c;, andd;, being linear combina-
(2.11) take the following forms: tions of the equilibrium averages of the basic functiﬁrhjs
are quoted in Appendix B.
0=[X;n-A+Y|N]-m, O0=[X,m-A+Y M]-I, Each of the above quoted balance equations is undeter-
mined up to certain multipliers;, ¢, andc,,, respectively.
0=[Xn-A+Y,N]-I, (2.13 Thus,_Eqs_.(2.13) are equivalent to the following system of
equations:
with 0:[C|X|D'A+ C|Y|N]'m, (214)
X|:f|(2C4+ Cg+ CG), Y|:C8_C7, O:[Cnxnm'A+CnYnM]'l_v (213
O=[cXmun-A+cCnYmN]-L (2.19

anfn(2+d3_2d2_6b6_306), Yn=3(d3+C8),
To determine the multipliers, we make use of the fact that
Xn=fm(2+d;—2d,—6a5—3c5), Y,=3(d;+cCq). the coefficientsy,, v,, and\, have to obey the Onsager-
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Parodi relations(2.2). Comparing Eqs(2.14—(2.16) with
Egs. (2.3 —(2.5), we easily find that the relation®.2) are
satisfied if and only if

p1=— 2= Ay [C1C7+Asd;+Bid,]

+ A, [Cicg+Ardy+Bidg]— A, H[Ci(cr—cCg)
_ C,c;+Ad;+Byd, +A1(dy—dy) +By(dy—dg)],
Cm=¥f (2+d,—2d,—6a;—3cs)’

H3= pua=A(2a4+a3) +B(2bs+b3) +C(C3tCy),

CiCgtAd,+Bd;
Cn = f(2+ d5— 20, 6bs— 35) us=0, (2.17)
c _Cu(Cr—cg) +Ay(d1—dy) +B4(dp—ds) where
! fi(2c,4+c5+Cg) ' 264+ Cort o
=h—_—
The above formulas allow one to determine the balance Cg—Cy

equationg2.14—(2.16) uniquely and to establish the coeffi-
cients y1 5, N1 and y34. Having obtained the symmetric . 2+d;—2d,—6as—3cs
part of the stress tensor and the balance equations, we can An=Tm 3(d;+cy) '
recover the whole stress; and thereby calculate the viscos-
ity coefficients.

\ _, 2% ds= 20, 6bg-3cs
oo 3(dz+cg)

C. The Leslie viscosity coefficients

Comparing Egs(2.14—(2.16) to Egs.(2.3—(2.5), and the The parameters,, \,,, and\,, are related to the coeffi-
expression2.12) to the symmetric part of the phenomeno- cientsy; and\; by

logical stress tensor given by E@®.1), we arrive at the fol-
lowing formulas for the Leslie viscositiggvithin the com-

+ J—
mon factordkgT/2): _YetyaThe )\_)‘2 N.=T2

al=2Aal+ ZBbl+ ZCC]_,
a;=[C1C7+Ad; +Byd,[1-N ],
C(3:[C1C7+Aldl+ Bldz][l‘f')\r;l],

ap= 2[A(1_ dl_ d4_ 3a3)
+B(1—d,—ds;—3bs)—3Cc,]/3,

CE5:A(235_233_d1)+B(2b5_2b3_d2)
+C(cs—2¢3)—C,c7—Ad; —Bydy,

a6=A(2a5—2a3—d1)+B(2b5—2b3—d2)

+C(c5—2¢c3)+Cicy+Ad+Byds,
B1=2Aa,+2Bb,+2Cc,,
B2=[CiCs+A1ds+Byds][ 111,
B3=[CiCe+A1ds+Byds][1+N, ],

ﬁSZA(Za@_ 2a3_ d4) + B(2b6_ 2b3_ d3)
+ C(C6_ 203) - C]_Cg_Ald4_ Bldg,
BGZA(ZaG_ 233_ d4) + B(2b6_ 2b3_ d3)

+ C(CG_ 203) + C108+A1d4+ Bldg,

iyttt TN Ty

and determine the flow alignment anglgs, xm, andy,,
corresponding to the flow configurations in which the plane
of the shear is perpendicular to the direckom, or n, re-
spectively. As showed by Carlsson, Leslie, and Lavédly
and Leslig[6], only the above-mentioned three types of con-
figurations are possible. The appropriate flow alignment
angles are given by

cos & =—1/\;, cosXy,=—1/\,, C€O0SX,=—1/\,.

The obtained formulas for the viscosities are rather com-
plicated. To predict the behavior of the Leslie coefficients
one has to know the temperature dependences of the thirteen
scalar order parameters as well as of the three rotational dif-
fusion constants. Moreover, the form factdys f,,, andf,
describing the effective anisotropy of the shape of the mol-
ecules have to be known. In our approach, they play instead
a role of adjustable parameters that have to be established by
fitting the theoretical predictions of the Leslie viscosities to
experimental data.

It is also worth noting that if one deals with prolate biax-
ial molecules(rodlike), only five order parameters, namely,
(F2, (F2), (Fo, (F3), and(F3,), are of practical inter-
est, whereas the remaining eight are expected to be com-
pletely negligible in the calculations. Such a behavior of the
order parameters has been confirmed by several approaches
[9-12] based on the mean-field description of the biaxial
phase as well as by Monte Carlo simulatiofis3]. This
yields a significant simplification of the problem, especially
when the order parameters must be determined from experi-
ment.
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[ll. THE LIMIT OF UNIAXIAL SYMMETRY \. In their papef3], a complicated perturbation analysis was
erformed and a more accurate expression\fadepending

n the scalar order parameters as well as the mean-field po-
tential, was obtained. However, the tumbling parameter cal-

may easily find the viscosities for regular uniaxial nematics%UIated from the formuld3.1), obtained by neglecting flow-

consisting of axially symmetrical molecules. Moreover theInduced distortions of the scalar order parameters, is in
Sting y sy ) K excellent agreement with the experimental measurements for
transition from theD,,, to the D, symmetry allows one to

. ) - - most of the known nematic liquid crystdl$5].
also obtain formulas for the Leslie coefficients describing the When the uniaxial system is formed by biaxial molecules,

viscosity of the uniaxial phase composed of molecules pogy e problem gets slightly more complicated. Some attention
sessing the biaxial symmetry. Such formulas seem out o hould be devoted to the parametafsand \ ., which re-

reach starting from the the uniaxial approach. main different in the limit considered. They are given by the
When the molecules possess symmetry axes, the formu'?gllowing formula:

for the Leslie coefficients describe the viscosity of a regular
uniaxial nematic liquid crystal. For the molecules modeled _ 2 4
by the ellipsoids of revolution, all the formulas for the Leslie ,  _ 3(165,+5S,+ 14+ 5‘/§<F02>i8‘/€<':02>)
coefficients get considerably simpler. Indeed, in this case the ™ m 35(352i\/§<F§2>)

diffusion coefficientsD, and D, become identicalD,=D,

=D, . Similarly, f,=f,=—f, wheref=(p®—1)/(p>+1) where the upper and the lower signs correspond to the indi-
with p=c/a being the ellipsoidal length-to-width ratio. The ces| and m, respectively. The two tumbling parameters
third form factor,f, is then equal to zero. Thus, according to quoted above represent two types of flow alignments which
Egs. (2.7) we straightforwardly obtailA=—f2/D, , A;= are possible in the case of a uniaxial system composed of
—f/D,, and B=B;=C=C;=0. Furthermore, only two biaxial moleculesi, and\, correspond to the situations in
scalar order parameteréF3, and (F§y), remain nonzero which the shear makes the molecules rotate around their
in the limit considered.[Note that the basis functions short axesn andl, respectively. Note also that paramexer

F3, and Fg, are simply the second- and fourth-rank is, as in the previously discussed limiting case, undeter-

An important advantage of the method presented is thag
one can derive the uniaxial limit by simply setting the appro-

Legendre polynomials, respectivelyF3,(R)=P,(n-n), ~ Mined.

F2(R)=P,(n-n)]. Since there is only one tumbling parameter in the uniaxial
In the limit considered, the tumbling parametarsand ~ Phase, one of the quantities, eithgror A,,, represents an
A\, become identical and are equal to the parameter alignment that is physically unreachable. Formally, in view

of Egs.(2.149—(2.16, we have to set one of the multipliers,
16S,+5S,+14 c| or ¢y, equal to zero, making the appropriate balance
=%, (3.)  equation undetermined. Notice also that the conditign

=\, reduces, in the limit considered, to the requirement

The third parameten,, becomes undefined, which should ¥s= 0. Unfortunately, within the approach presented we can-
take place when the system possesses cylindrical symmetRpt establish which tumbling parameter describes the actual
and the directon is perpendicular to the plane of shear. ~ flow. One may, however, expect that it is the one that has the

All the “biaxial” coefficients, 8, and u; vanish in the Smaller magnitude, corresponding to the smaller value of the

discussed limiting case while the six “nematic” viscosities flow alignment angle.

a;=a! reduce to the following formulagwithin the com- The “biaxial” viscosities ; and u3 4 vanish after setting
mon factordkgT/2D | ): the biaxial parameters equal to zero. The viscogity is
given by w;=(\'—\; H(Cic;+A.d;+B,d,). Thus, as
al=—-2128,, ab=—f(1+\"1)S,, Ni=\p, in the limit considered, we also obtain that= u,
=0.
ay=—f(1-1"1)S,, The six “uniaxial” viscositiesa;, which remain nonva-
nishing, unfortunately cannot be written in such a compact
ai=21%(7-5S,~2S,)/35, form as in the case of axially symmetric molecules. They are
still quite complex functions of the form factors, diffusion
al=1f[f(3S,44S,)/7+S,] constants, and the five nematic order parameters.
> ’ An interesting feature of the derived formutg is the
u_ i _ existence, apart. from terms proportional t®Lland 1D, .
6= 135 +4S)/7=S,], of terms proportional to D,,. The latter are present even if
whereS,=(F2), S,=(F2y. one retains only the main order paramei@¥§,) and(Fg).

The formulas quoted above for the Leslie viscosities ard ' €xample, after dropping the secondary order parameters,
identical to those derived by Archer and Larddd, 15 and the viscosity coefficientr; reads(within the factordkgT/2)

by Kroger and Seller§16] for the uniaxial case. It should 5 5 5
also be noted here that expressithl) for the tumbling (f_m+ f_l) _f_n
parameter was obtained earlier by Stepafif}. Very simi- D,, D,/ 4D,
lar formulas for the viscosity coefficients were also derived

by Kuzuu and Doi[3]. The only difference between the Therefore, the ratio®, ,,/D, can serve as control param-
Kuzuu-Doi results and ours concerns the tumbling parametegters providing information as to whether the degree of free-

(Foo)-

a1= -
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dom related to the rotation around the long molecular axis asg=al ot (ab+ al) €. vaep,
may by neglected while considering the viscosity of the '
uniaxial nematic liquid crystal. i u

The coefficientsa! describe the viscous properties of an Where 4,=2€;— €, Aep=€1- €, and y,=ag—as. In
idealized system composed of long, thin rods in which thdhe last line, the signs =" and “ +” correspond toas and
diffusion constant®, andD,, as well as the form factorg @ respectively. Note also that the coefficients quoted
andf,, are identical. Moreover, not all effects related to the@P0ve obey the Onsager-Parodi relatiost az=ag— as.
rotational motion about the long axis are taken into account! N€ quantitiese, and e, should be regarded as adjustable
On the other hand, molecules composing real uniaxial nemParameters that need to be evaluated by fitting to experimen-
atics exhibit residual biaxiality in their shapes and in thet@l data. . _ .
diffusion coefficients as well. It is thus worth improving the ~ TO complete this section, we must mention some facts
formulas a" so that the above-mentioned effects related tg°Oncerning the three balance equati¢2s4—(2.16 in the
molecular anisotropy are taken into account. We show thafmMit of the D, symmetry. It is easy to check that the first
the exact formulag2.17) enable one to estimate the correc- @nd third equations take the forngsl=0 andg-m=0, re-

tions to the viscosities:" caused by the biaxiality of the SPEctively, wher@=y,A-n+y;N. One may also prove that
molecules the second balance equation, EJ.15, becomes undeter-

In the case of an elongated molecule, the cons@nend mined in the limit discussed. We can rewrite both scalar

D, do not differ much, while the third diffusion constant is equations obtained In-an equ!valent .f°”.“” meg=0. We
of considerably greater magnitud2,>D, .. It is thus con- see, therefore, that in the limit of unlaX|§1I symmetry Egs.
venient to describe the anisotropy of the diffusion coeffi-(z'm_(z'l@ recover the phenomenological equation for

cients and, thereby, to express the appropriate biaxial correp-alance of angular momentum obtam_ed by E_rlcksen and L_e-
tions in terms of two parametessand e, Slie. Note here that the Ericksen-Leslie equation involves, in

general, also the molecular fieldand has the forrmx(h

6=D_,/Dn, 3.2 +0)=0. However, at equilibrium, in the absence of external
e,=(D,—D.)/D,, (3.3 fieI(_jtf,(;he vectoh is collinear to the directon and may be
omitted.

with D, =D,,. Furthermore, to describe the anisotropy re-
lated to the form factor§,, andf,, we introduce the param-

etere,, IV. THE ROTATIONAL DIFFUSION COEFFICIENTS
e;=(f—f)/f, (3.9 The formulas(2.17) derived in the preceding section al-
low one to predict all the Leslie viscosities, provided the axis
wheref=f. ratio a:b:c is established and the order parametgts) as

_The paramete? is the ratio between spinning and tUm- \ye|| as the three rotational diffusion coefficierils, Dy,
bling dlffu5|0n of the molecule. When it is small, all the 5, D,, are known functions of temperature. All the above-
terms proportional to U, may be neglected. The second mentioned quantities are, unfortunately, out of reach within
parametere,, measures asymmetry in the rotational motionihe method we use to derive formulas for the viscosity coef-
about the short axes. NMR studies of 4-ficients; here they play the role of input parameters and must
methoxybenzylidene-4butylaniline(MBBA) [18,19 and 4- e calculated separately or taken from experiment.
n-pentyloxybenzylidene/4heptylaniline (50.7) [20] show However, the problem of the evaluation of the rotational
that 5 is a quantity of the order of 13" On the other hand, iffusion tensor gets somewhat easier if one assumes that the
the experimental data of 50[20] suggest thak; may be of  molecule may be treated as a macroscopic body immersed in
the order of 10*. One may thus assume that for a typical 3 viscous medium. Within this approximation, all the diffu-
nematic liquid crystal composed of elongated molecugs, sjon coefficients may be calculated by hydrodynamic meth-
> 6. As far as the parametep, is concerned, no experimen- ods. Such a treatment enables one to express the temperature
tal evidence is available. Therefore, we assume ¢and  dependences d@,, D,,, andD,,, through the common me-
€, are of the same order of magnitude. Hence, we will nedjum viscosity .
glect in our considerations the paramefeand express the  |n order to determine the diffusion coefficients, we con-
corrections in terms of the parametefsand e, only. Like-  sider the selected molecule undergoing a stochastic rotational
wise, we neglect the secondary order parame{ﬂéhé, with  Brownian motion. Since the molecule is regarded as a mac-
i #]J, since they are expected to be much smaller haand  roscopic particle immersed in a viscous fluid, its rotational
S, when the uniaxial system is composed of elongated molmotion may be considered as rotational diffusion. Therefore,
ecules. one can follow the Einstein concept and reduce the problem

To calculate the corrections we express the diffusion coef calculating the diffusion coefficients to the problem of
efficients andf, and f,,, using the parametef3, , §, and calculating the rotational friction coefficientsg; (i
e;, and f and e,, respectively, and insert them into Eq. =I,m,n), which are defined in the molecular frame of ref-
(2.17. Next, we expand the appropriate formulas into serieserence by the relatiom;=&w;, where T stands for the
with respect toe, , and §, retaining only terms linear ir;  torque exerted on the molecule rotating with the angular ve-
ande,. As a result we obtain locity w. The desired relation betweefy and D; reads

a1'4= al{'4(1+26a), [21’22
azz=ay 1+ 2ep), D,=kgT/&. (4.2)
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In our approach, the shapes of the molecules are modeledE)'=E; . Such a treatment has proved to give a fairly good
by ellipsoids with the principal axes, b, c. The principal  prediction of the temperature behavior of the diffusion coef-
axes coincide with the molecular frame of reference, deficients in the case of nematic phases as well as smectic-A
scribed by the unit vectork m, n, respectively. The most phaseg20,26.
complete treatment of the problem of rotational motion of an  One can also expect that in the case of biaxial nematic
ellipsoidal body immersed in a viscous medium was giverphase, the temperature dependenceB oéire described by
long ago by Jeffery in Ref.8]. According to Jeffery, com-  the Arrhenius-type relation with two different values Bf
ponents of the torqué& acting on the particle rotating with a gnqg E™. Therefore, the formulagt.5) may be regarded as a

small angular velocity» are the following: rough approximation of the Tarroni-Zannoni model, in
B 1677 5. which all the activation energies are identical. One may also
Tl_m(b +coy, (4.2 expect that Eqs(4.5) give a good qualitative description of
the temperature behavior of the diffusion coefficients, espe-
T = 1677 (c2+a?)w (4.3 cially if one takes into account the fact that the diffusion
™ 3(c?yo+alag) m’ coefficients vary rather smoothly with the temperature.
1677 The use of the formulag4.5 enables one to calculate

(a2+b%) w,, (4.9 relative magnitudes of the diffusion coefficients on the basis
of the temperature dependences of the order param((ﬁl?ys

where the constants,, 8,, andy, are defined in Appendix ©Only. This is an important argument motivating analysis of

C and = 75(T) is the viscosity of the medium in which the the problem of the rotational diffusion tensor within the hy-

molecule is immersed. Note that the lengths of the principafifodynamic approximation. In the next section we apply the
axes of the molecule considered a@ 2b, and Z, respec- derived formulas for the viscosity coefficients to a simple

Tn= 3(a2ag+b2By)

tively. mean-field model of a biaxial nematic liquid crystal.
From the relation4.1) and Eqgs.(4.2)—(4.4), we straight-
forwardly find V. SAMPLE CALCULATIONS

Di=Dopi, Dw=Dopm, Dn=Dopn, (4.5 To estimate the temperature behavior of relative magni-
with tudes of the viscosity coefficients, we perform numerical cal-
culations for a simple model of the biaxial phase, in which

Do=3kgT/16m7, (4.8 jnteractions between the molecular pairs are described by the
and modified Lennard-Jones potent[&7]
_b?Bo+c?yo CPytaag  @lagtb’Bo Upp=Uy(o/r) =4eg (alr)™=(a/)"].  (5.1)
PImTp2 ez PmT T2 P Tz

(4.7) Herer =|r| is the distance between the centers of mass of the
molecules, paramete is the depth of the potential, ansdl

Notice a]so that if the considered molecule is sphericallyjg 5 scalar function depending on the orientations of the mol-
symmetric @=b=c), Egs.(4.5 reduce to the well-known

Stokes f | ecules,R; andR,, and on the orientatiolR, of the unit
tokes formula vectoru=r/r, o=0(R;,R5,R,). We use a relatively simple
D,=D,,=D,=kgT/877a’. form of o,

Although the use of the formuldgd.5) yields a significant _ 2 p-1 2 -1 2 p-1
simplification of the problem of calculating the tendoy; , o =So* S1F oo Re "Ru) + SoF 2Ry "Ru) + 85 P R, “Ry)
one should be aware that the applicability of the obtained  +F24(R; 'R;)]+ s, F24(R, 'R;) +F2(R, 'R,)]
expressions for the diffusion coefficients is, unfortunately,
limited. The validity of the hydrodynamic approach that we +55[ Foa(Ry 'Ry) + FEA(R, 'R,) ], (5.2
have applied is, in general, not obvious; it is suitable only for
description of the rotational diffusion of large molecules. In whereF!j are invariants of th®,,, group defined in Appen-
particular, the prediction that th®, :D,,:D, ratio is inde-  dix A, s; are certain constants, am}, 'R, denotes the rela-
pendent of the temperature seems to be rather a rough afive orientation of the molecular paiR; 'R; (i=1,2) stands
proximation. for the relative orientation of the vector and theith mol-

In the case of uniaxial nematics, the problem of rotationalcyle.
Brownian motion has been SUCCGSSfU”y described in the In order to determine the Coefficiems' we assume that
framework of the rotational diffusion model proposed bythe molecules are modeled by ellipsoids with the principal
Tarroni and Zannon[23], who have extended the Norido axes 2, 2b, and = and apply the modified excluded vol-
[24,25 model to asymmetric molecules. Within the Tarroni- yme method12]. It is assumed that for a fixed orientation of
Zannoni model, the temperature dependences of the rotgyo molecules, a minimum distance between their centers of
tional idlfoSlon icoeff|C|_ents obey the S|miple Arrhemus_ rule, mass is determined by the conditidh,=0. Such a treat-
Di=Dg exd —EJ/kgT], i=I,m,n, where E, are activation ment is a generalization of the method developed by Ruij-
energies andy, are certain constants. The activation ener-grok and Sokalski27] in the case of nematic molecules. As
gies E'a andE]' characterizing the rotational motion around a result, we obtairs,=2(a+b+c)/3, s,=(2c—b—a)/3,
the short molecular axes are assumed to be identEi;aI, ss=v3(a—h)/3b, ands;=s,=53;=0.
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& FIG. 1. Temperature dependence of the order
@ 2 4 2
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peratureT™.
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Our aim is to find the one-particle distribution functien  with d being the number density, is the packing fraction. The
as a function of the temperature and, thereby, to determinfunction B,(T*) is given by the integral
the temperature dependence of the order parameters. For this
purpose we follow the method proposed in Rdf2]. It is R *
based on the analysis of the Helmholtz free energy functional Bo(T7) = fo x*{ex U120/ kg T]~ L}dx.
constructed within the Onsagg28| mean-field approxima-
tion. In the cited papefr12] we showed that the requirement For the Lennard-Jones potential, the above integral is ex-
that at equilibrium the free energy must be a minimum withpressed by the following infinite series:
respect td- leads to the following self-consistent equation of

the Hammerstein type for the one-patrticle distribution func- “ 1 n/{ 1\eFDmM=n)+3Vm fonin_3
tion F: 3B,(T")=2, —(T*) —)
s=0 m
*® 1/1 [s(m—n)+3]/m sn+m-3
INFI=No 2 2, K} Fu(FLy)- (5.3 Y p[Sem=3
Eo ST m
The parametek is given by (5.5
No=No(T*)=Bx(T*)p*lvy, (5.4 The coefficientsK!j are the following analytical functions of

the parameters; (within the common factor #/35):

where T*=kgT/ey denotes a reduced temperature, 0 3
=4mabd3 is the volume of the molecule, ansf=uvd, K Qo= 3585+ 425550 — 12525, + 425]5 + 453,

260

50 I FIG. 2. Temperature dependence of the vis-
cosity coefficientsy; on the reduced temperature

T*. The results are given in units dkzT/2D,.

dimensionless viscosities
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2 sl FIG. 3. Temperature dependence of the vis-
% cosity coefficients8; and ; on the reduced tem-
g peratureT*. The results are given in units of
£ dkgT/2D,.
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K2,=654(255+ 7S450— 252), original viscositya,. The simplest way to improve, is to

replace it with the suma,+ aq [15], whereay= ay(T) is a
certain viscosity coefficient that does not depend on the order
parameters. In general, the new tewryg, is a quantity whose
temperature dependence needs to be taken from experiment.
Fortunately, in this paper, to evaluate the viscosity we
_ _ may make use of the fact that, within the hydrodynamic ap-
We have _carrled out the calculations for the Lennard-proximation, the coefficientr, and the shear viscosity
Jones potentigl5.1) with m=12 andn=6 and for the ellip-  pecome identical in the isotropic phase. Therefore, the vis-
soidal axis ratica:b:c=5:1:10. For theassumed axis ratio, cosity a is given by the equation,= 17— a4(<|:=j>:0)_
the form factors,f;, f,, and f, are f;=-0.980, fy,=  Making use of the the relatiot4.6), we easily find that, in
—0.600,f,=0.923. Likewise, the ratio of the rotational dif- ynjts of dkgT/2D,, the viscosityay is a constant
fusion coefficients, according to E@.5), has been found to
beD,:D,,:D,=2.469:2.909:6.852. The packing fractipt v, 1 (f|2 f2 fﬁ)
has been set equal to 0.2. —t+—+—
We have solved the self-consistent equati®®) numeri- Pr Pm  Pn

cally and calcula_ted the thirteen order paramet{d?ﬁ), where the parameters are given by Eqs(4.7). We have
(1=2,4) as functions of the reduced temperatdre In  5i50 made use of the fact that, in the considered model of
Fig. 1 the temperature dependences of the five main secongiaxial nematic, the packing fractigit and the number den-
and fourth-rank order parameter$Fg), (F3), (Foo),  sity d are linked by the relatiop*=du,.
(Fia., and(F3,) are plotted. It is also worth noting that the  Figures 2 and 3 show the temperature behavior of the
values of the remaining eight order parametéFé,-) with  viscositiesa;, and 8; and u;, respectively. All the visco-
i #], are two or three orders of magnitude smaller than thoseity coefficients are given in units afikgT/2D,, where
with i=]j. Do=Dy(T) is given by Eq.(4.6). (To calculate the viscosi-
The values of the order parametdi|;) allow one to ties all thirteen order parameters have been used; in Fig. 1
determine the phase uniquely. As seen, the system exhibignly five of them are plotteg.
the first-order phase transition from isotropic to uniaxial In the uniaxial phase, only the six uniaxial viscositigs
nematic phase at*=0.841 and the second-order phase tran-are present. As seen, the coefficieats «s, anda, are of
sition from uniaxial to biaxial nematic phase Bt=0.483. the greatest magnitudes, while the viscosityis negligible.
The obtained values of the order parameters allow us tdt is also worth noting that the signs and relative magnitudes
calculate all the viscosities up to the common factorof the obtained viscosities close to the isotropic-nematic
dkgT/2D,, which remains undetermined. However, this istransition point are in fairly good agreement with the experi-
enough to compare relative magnitudes of the viscosity comental evidence for MBBA29]. One may thus expect that,
efficients. in spite of all the approximations made, the results obtained
At this point, one remark concerning the “isotropic” vis- capture the essential viscous properties of the biaxial phase.
cosity coefficienta, is in order. One should be aware that Below the uniaxial-biaxial transition temperature, all fif-
the formula derived describes the contribution to the viscosteen viscosity coefficients are nonzero. In the deep biaxial
ity originating only from the rotational motion of the mol- phase one may divide them roughly, with respect to their
ecules. In particular, it vanishes when the molecules argnagnitudes, into three groups. The four coefficien{s «;,
spherically symmetric. Thus, to take into account other conas, andg;, are of the greatest magnitudes. Then, the seven
tributions to momentum transport also, one has to modify theviscositiesBs, Bs, Bs, 12, andus 4, belong to the second

2 _ w2 _ 22
K30=Ko2=685(75480— 53~ S5),

K2,=652(7sy—4Sy).

(10:877p* 5 (56)
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group. Finally, the four viscositieas, a4, ag, andB, are, method and existing approaches we have investigated the
approximately, an order of magnitude smaller than thosebtained expressions in the limit of uniaxial symmetry. It
from the first group. turned out that in the limit considered, our results reproduce
Magnitudes of the coefficients; and w34 are, in units  those obtained by Archer and Larsptb] and Krager and
of dkgT/2D,, decreasing functions of temperature. Magni- Sellers[16] for the uniaxial system.
tudes ofuq , first decrease and then increase with tempera- Furthermore, we have shown that it is possible to improve
ture. As far as the viscositiea;, a,, a3, as, and ag  the above-mentioned limiting uniaxial formulas for the Le-
are concerned, their magnitudes increase Within the bi-  slie viscosities in such a way that the residual molecular
axial phase and decrease after reaching the biaxial-uniaxidiaxiality, related to the shape as well as the diffusion coef-
transition temperature. The coefficieat, is an increasing ficients, is taken into account. We have found that in the case
function of the temperature either in biaxial or in nematicof uniaxial nematic liquid crystals composed of elongated
phase. molecules, all the effects due to the molecular biaxiality may
Note also that the results obtained for the biaxial phas®e described by two parametees, and e,, which may be
are, generally, in agreement with the predictions from Refuseful in interpreting experimental data.
[4]. In particular, they fulfill two inequalities that must be  In the present paper we have also dealt with the issue
obeyed for a “rodlike” biaxial nematic,;>u,, and u,  Of the diffusion coefficient®,, D,, andD,,. We have con-
— wy>B3— B,. Also, our results confirm the prediction that sidered the stochastic rotational motion of the molecules
the viscositiesu; cannot be small compared to the coeffi- within the hydrodynamic approximation and expressed
cients ;. the temperature dependence of the diffusion coefficients
According to Leslie, Laverty, and Carlssf], the re- through the common shear viscosity This enabled us to
quirement that the Rayleigh dissipation function has to beestimate the relative magnitudes of the viscosity coefficients.
positively defined yields twelve inequalities for the viscosity We have carried out the appropriate calculations for a simple
coefficients to obey. They are quoted in Appendix D. It turnsmodel of a biaxial nematic liquid crystal in which the pair
out that the obtained viscosities satisfy all the abovedinteractions are described by the modified Lennard-Jones po-
mentioned inequalities. However, one should be aware thdential. We have found that in the biaxial phase, near the
the coefficientsg; are quite sensitive to the diffusion con- uniaxial-biaxial transition point, magnitudes of the biaxial
stants as well as the form factors and for certain valueyiscosities; andu; are much smaller than the magnitudes
of D, , and f, ,, some of the inequalities may be not ful- of the largest uniaxial coefficients,, as, anda;. How-
filled. Nevertheless, the fact that the calculated viscositiegver, in the deep biaxial phase, the coefficiep{shave
obey the relations from Appendix D is very encouragingproved to be of the same order of magnitude as the viscosi-
and testifies that the the proposed formul@sl7) may be tiesa;.
suited to describing the viscous properties of the biaxial
phase. VIl. ACKNOWLEDGMENT
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To summarize, in the present paper we have improved the
method of deriving the Leslie viscosity coefficients for biax- APPENDIX A
ial nematic liquid crystals presented in R¢L]. We have

carried out all the calculations without using the decouplinﬁ The basic functions;; generating the solution space for

he biaxial system are given by the following formula
12,30

procedures employed previously. The formulas obtaine
for the Leslie viscosities are expressed in terms of secon
and fourth-rank order parameters, three rotational diffusion
constants, number density, temperature, and certainF!j(R)=(\/§)_2_5i°_5°j > (—l)'(”_”)/zDgi),gj(R)-
parameters depending on the geometry of the molecules. ope{t—1

What is important is that the ViSCOSity coefficients presentedl\/here| 7i ,j are integer numbers arRlis the rotation param-
satisfy the four Onsager-Parodi thermodynamical relationgterized by three Euler angled( are the standard rotation

(2.2). atrix elements. The functiorfs. obey the orthonormalit
The method developed is based upon a relatively smaﬁglation ' ! y Y

number of assumptions, which makes our result quite gen-

eral. In particular, the applicability of the viscosities derived | ‘ )

is not limited by the use of a certain type of pair-interaction J dRFj;(R)F5,(R) = 6k 0im6jn 87/ (21 +1).
potential. The main assumption made, however, concerns the

molecular shapes modeled by ellipsoids. APPENDIX B

To our knowledge, pertinent formulas for the Leslie coef-
ficients in the case of the biaxial system have not been pre- The calculated coefficients;, b;, c¢;, andd; are as fol-
sented before. Thus, in order to find a relation between oulows:
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APPENDIX C

The parameters, By, andy, are given by the following integrals:

a0=a‘3fx(x+ 1)” ¥ x+(b/a)®]” Yqx+(c/a)?]” X,
0

,80=b’3f:(x+ 1)~ ¥ x+(alb)?]” Yqx+(c/b)?]~ Yadx,

y0=c_3f:(x+ 1)~ ¥ x+ (b/c)?]” Yqx+(alc)?]™ Y2dx.

APPENDIX D

Due to the requirement that Rayleigh dissipation function must be positive, the viscosity coefficients have to obey the

following twelve inequalitieg5]:
2a4+ Cll5+ a6>0,

2a'4+ a5+ a6+ﬁ5+ ﬁ6+ /_L3+ ,LL4>O,
2a4+ st Bet+ B1>0, ¥1>0,

2a4+ B5+ BG>O!

2C¥4+ a5+ a'6+ a1>0,
)\1>0, '}/1+)\1+ ’)/3>O,

ai<(2a4+ a5t agtaq)(2a,+ Bs+ Bt B1),

Y5<y1(2a4+ as+ ag),

A3<N1(2a4+ Bs+ Bs),

(ag—as—Bet Bst ma— pw3)*>(y1+ N1+ v3)(2a4+ as+ ag+ Bs+ Bet+ puat iy).
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