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Phase transition in a computer network traffic model
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We propose and study here a simple model of computer network traffic that can exhibit a phase transition
from a low to high congestion state measured in terms of average travel time of packets as a function of the
packet creation rate in the network. In the model, packets are generated with destination addresses, and are
transferred from one router to another toward their destinations. The routers are capable of queuing packets and
autonomously selecting a path to the next router for a packet. Through simulations on a two-dimensional lattice
model network, we found that the phase transition point into the congestion phase depends on how each router
chooses a path for the packets in its queue. In particular, an appropriate randomness in path selection can shift
the onset of traffic congestion to accommodate more packets in the model n€i84383-651X98)04107-3
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[. INTRODUCTION ceived from neighbor nodes. A node on the boundary gener-
ates a packet according to the Poisson arrival witland

The phenomenology of the nature of computer networksends it to a destination node selected randomly from among
traffic has commanded much attention recently. Analysisthe nodes on the boundafiyncluding itself. Each node has a
simulations, and experiments based on such concepts agceiving queue of unlimited length through which packets
“phase transitions” and “self-similarity” are active research are forwarded to the destination and then destroyed.
topics in physics as well as in computer scieltsee, e.g., During each unit time, each node goes through the follow-
[1]). Against this background this paper also addresses thieg process in order to forward packets. It picks the packet at
phase transition nature of computer network traffic. Ourthe head of its queue, decides to which node among its
main focus, however, is not so much on understanding theeighbors it will forward the packet, and then puts it at the
nature of traffic itself, rather we concentrate on shifting ofend of the queue of the selected node. The next node is
phase transition points from a low to high congestion state aselected so that the packet is delivered to its destination
we change path selection strategy for packets. Our approactiong the shortest path. If more than one candidate of the
is first to create a simple simulation model of network traffic next node exist, a strategy is needed to select the recipient. In
that shows phase transition for the average travel time obur simulation we consider two strategies. One of them
packets as a function of packet generation rate in the netnakes the decision deterministically, which we call “deter-
work. We then propose a probabilistic routing strategy thaministic routing,” and the other does so probabilistically,
can shift the phase transition point. We show that, with awhich we call “probabilistic routing.” With deterministic
suitable value for a parameter to control randomness in theouting, the node among the candidates to which the least
path selection, onset of the phase transition into the congestumber of packets has been forwarded so far is selected as
tion phase is “eased,” i.e., the network can accommodate #he next node.
higher rate of packet generation before it goes into that The probabilistic routing strategy that we compare with
phase. To gain more insight into this effect, we vary thethis deterministic routing is given by introducing a particular
number of routers that take this probabilistic strategy. Weorm of routing probability function. When we have multiple
found that the effectiveness of the model shows a nonlineatoutesA andB based on the destination address, we assign
response as a function of the proportion of probabilistic routthe probability to choose a rout® or B by the following
ers. From this result we infer that the shifting of the phasesquation:
transition point is due to interactions between these adaptive

routers rather than as a sum of separate contributions from P(A)= e P 1)
individual units. We conclude with a discussion of this simu- e Prate AXs’
lation model.
e Pe
P( B) = T BX~  ——BXa: (2)
Il. THE MODEL e Pate e
The network architecture considered in the model consists 1=P(A)+P(B), (3

of nodes placed as a two-dimensional lat{fiEey. 1(a)]. It is

a square witiN nodes(routers on each side and? nodes as where is a parameteiX, andXg are the number of pack-
a whole. Packets are generated and destroyed on nodes ets the router has already sent in the directiodaind B.

the boundary of the latticesquares in the figujebut not on We note a couple of points about this probability function.
inner nodeg(circles. Inner nodes only forward packets re- First, the main difference with the deterministic routing is
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<I> FIG. 2. Comparison of the phase transition behavior of the de-
terministic (a) and the probabilistic 4= 0.008) (b) routing for(L).
1500 The system size i?N=25. A similar graph is obtained for other

values ofN.
1250

properties of real computer networks, it can capture some
1000 qualitative behavior of the traffic.

We now turn our attention to comparison of the determin-
istic routing with the proposed probabilistic routing. One
such example is shown in Fig. 2. We can see that the onset of
phase transition is moved to highar, showing that the
250 model network with probabilistic routing can tolerate more
packets before going into a congestion phase.

To examine the effect of randomness for this shift of
phase transition point, we plot in Fig(é8 the phase transi-
®) tion points as a function g8. We see that we need to choose

B appropriately[ ~0.01 in Fig. 3a)] to have the optimal

FIG. 1. Model network architecture and phase transition behavPnase point shift. This existence of an optimal amount of
ior with deterministic routing measured in average lifetime of aEandomngss for System perfo”na:nce is similar to ,the, cases of
packet(L) as we vary packet creation rake The system size is Stochastic resonance[3] and “simulated annealing{4].
varied asN= 25 (diamond, 50 (staj, 100(squarg, 150 (triangle, ~ FOr individual routers, the deterministic routing appears to be

and 250(circle). The lines are drawn for the reader's convenience.the most balanced way of sending packets to the next router.
Use of the probabilistic routing strategy means that this bal-

. . . . ance is sometimes intentionally upset. The fact that easing of
that even ifX,>Xg, there is some probability of choosing ihe phase transition point nonetheless takes place means that
and sending a packet ®. Second, we can recover the de- 3y emergent collective behavior of routers is playing a cru-
terministic model by lettingd—co. Also, if we set3=0, we  cjal role in deciding the congestion nature of the network.
have a completely random choice AfandB, i.e., A andB To gain more insight into the collective behavior of the
will be chosen with equal probability of 0.5 regardlessXgf  model, we investigate how the phase transition point changes
andXg. Hence, is a control parameter that determines thewhen only a portion of the routers have the probabilistic
degree of randomness of path selection. routing and others operate using the deterministic routing; a

representative example is shown in Fi¢h)3We see that the
critical points of phase transition change nonlinearly and
IIl. SIMULATION RESULTS show saturation as a function of the proportion of probabi-
We quantify network traffic congestion by the averageliStic routers. From a system design point of view, this re-
“lifetime” of a packet (L), which is the average time be- sponse shape indicates a possibility of faglt tolerance:.the
tween the sending and receiving of a packéwerages are effgct|vene§s of the system does not deteriorate apprg_mqbly
taken over packetsIn Fig. 1(b) we show the behavior of unpl a certain proportion of routers become nonp_robablllstlg:.
(L) as we change the creation rateof the packet using the This nonlinear shape together Wlth phase transition beha\_/lor
deterministic routing. The simulation is performed with vari- suggests that th_e collective behaw_or Qf. the model is not sim-
ous system sizes ™, and the system is run up to time step ply an aggregation of the effect of |pd|y|dL_1aI routers. Ra_ther,
10 000. The phase transition behavior is clearly observabl € Interaction among routers, Wh'.Ch IS |nd|r_ectly med|at§d
as\ increases beyond a “critical rateX;. This transition y paqkets passing through, is playing a role in the collective
into the congestion phase is sharper with increasing size, r,gehawor of the model system.
seen in other physical systems showing phase transitions.
Such sudden change into a congestion state with increasing
flow of packets is observed in a real computer network. The emergent behavior observed here with our model is
Thus, even though our model is simple, omitting severarather intricate to analyze theoretically, particularly in deal-
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tion between packet flow and routers collectively: packet
flow affects the behavior of routers, which in return regulates
the flow. We are currently studying a dynamic traffic pattern
formation for this two-dimensional model as well as search-
ing for an analytical framework in which to study it.

As a related topic, the traffic flow problem on motorways
has also been investigated through theoretical modelings.
There are models using fluid dynamics analogy, cellular au-

tomata, and so ofi2]. There is also a series of research
reports on controlling automobile traffic]. We have re-
cently proposed an autonomous distributed signal control
model in that contexit6]. We report here briefly that average
B velocity of the model traffic with signals has shown improve-
ment with an autonomous adaptive dynamics strategy for
signal periods. There, as in this network traffic model, a col-
lective behavior is important, and a self-organized periodic
pattern of traffic emerged.
R It should again be noted that the probabilistic routing
scheme proposed here does not explicitly contain a proce-
. dure to adjust for better performance, and individual routers
occasionally send packets to a direction that appears to in-
005l @ ® crease congestion. Hence, the effectiveness of the routing
scheme only emerges as the collective behavior of the entire
system. In this sense these models belong to a class of mod-
els often termed emergent computation mod@I|§]. These
models aim to derive effective computation from the inter-
action of autonomous local actions from each unit in the
system rather than by top-down style algorithms or by hier-
FIG. 3. (@ Change of “critical rate,”\. as 8 is varied for  archical controls with or without feedbacks, which are com-
probabilistic routing. The system sizeNs=25. (b) Change of crit-  monly seen with more realistic network traffic control
cal rate,\., as the proportion of the probabilistic routers is varied schemes(See, e.g.[9,10].) Even though the guiding prin-
in the system. The system sizeNs=20 and8=0.008. ciples of designing such emergent computation models vary,
experience, concepts, and insight gained from studies of sys-
ing with packet destination information. Hence, we are atems showing emergent behaviors such as in neural network
this point relying on computer simulations to find a shift of modelings[11] can be a useful guide for theoretical under-
phase transition points and effectiy®e We can, however, standing of this routing model and its behavior, and remains
gualitatively view the model behavior as a result of interac-to be undertaken in the future.
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