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Robust reduced-order controller of laminar boundary layer transitions
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A framework to derive optimal and robust reduced-order controllers of fluid mechanics and plasma physics
flows using linear-quadratic-Gaussian design, or, in modern tekpglesign, is presented. As a test case,
two-dimensional channel flow is considered. A reduced model is derived, and a controller is designed based
upon this model. Initial conditions creating transient growth of wall-shear stress are constructed. The controller
is tested on a 32 wave number simulation. A wall-shear stress reduction, up to 90%, is obtained. The potential
transferability of the controller to engineering applications is discugSi63-651X%98)06408-§

PACS numbes): 47.62+q, 47.27.Cn, 47.27.Rc, 47.27.Vf

The reduction of drag produced by skin friction, or, in paper also addresses the potential transferability of the con-
other words, the reduction of wall-shear stres@atSS’'s  troller to engineering applications.
generated by near-wall turbulence have received wide atten- We consider two-dimensional incompressible Poiseuille
tion. “The skin friction constitutes about 50%, 90%, and flow in a periodic channel of lengthh and height 2. The
100% of the total drag on commercial aircraft, underwateundisturbed velocity field has a parabolic profile with center-
vehicles, and pipelines, respectiveljI]. Two are the near- line velocityU.: see Fig. 1. Since we are interested in con-
wall flows of interest: boundary layers that change fromtrolling the transition of the boundary layer from laminar to
laminar to turbulent regimes, and boundary layers that aré!rbulent regimes, we consider a small perturbation of flow
inherently turbulent. Correspondingly, efforts to reduce skinduantities. The reader should be aware that with the term

friction fall into two broad categories: transition inhibition ~transition,” we identify the disruption of the laminar re-
and turbulence suppression. Referendes4| are recent re- gime in a fully developed boundary layer due to the growth

views summarizing achievements and open questions | f spatlally Iocallzed_near-wall pertur_bauons. The linearized
avier-Stokes equations are written in terms of the perturba-
boundary layer control.

Boundary layer control has been attempted with sometIon stream-functiony,
success. Referencgs—23 are articles published in the past (9 +Ud) Ay—U",=Re LAA Y, (1
four years. It is becoming widely accepted that even better
results can be obtained by using controllers able to analyze satisfy continuity identically. The problem is made dimen-
distributed measurements and coordinate distributed actuaionless by usindy as a characteristic length ahdU, as a
tors. However, very little has been dof@1—-26 to exploit  characteristic time. The Reynolds number issRé.h/v.
the tools recently developed in the control community
[27,28. In particular, linear-quadratic-Gaussi@nQG) de-
sign, or, in modern termgy{, design, combined with model Poiseuille ;Uc
reduction techniques for multiinput-multioutputIMO) Flow
systems, has never been used in fluid mechanics nor plasma
physics.

Using a case study, this paper introduces the reader to a
framework for deriving optimal and robust reduced-order FFT FET
controllers for flows of interest in fluid mechanics and
plasma physics. As a case study, we show that MIMO LQG
(H,) design can be successfully applied to suppress up to |.... u l
90% of the WSS in a two-dimensional transitional channel !

|

disturbance t,
t, t
2

t3

flow. The framework can be easily applied to control prob-
lems described over simple domaifectangles, circles and
ellipsis, cubes, cylinders, tori, exdy linear partial differen-
tial equations with nonhomogeneous boundary conditions. u l T
The spectral decomposition depends on the geometry of the N [Cnf— .ENEJ Zy

problem and, consequently, appropriate base functions

should be selected. Once the spectral decomposition is in . sensor = actuator
order, the framework can be applied step by step. In the case .
when there is more than one partial differential equation, the controller estimator
state space equations for the full problem are obtained by fast Fourier transform
stacking the ordinary differential equations generated by the

Galerkin projection of each partial differential equation. This FIG. 1. Controller architecture.
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To suppress perturbations evolving within the bottom Subsequently, flow quantities are spectrally decomposed
boundary layer, we apply blowing and suction at the bottormby using circular functions in the streamwise direction and
wall (see Fig. 1 For simplicity we assume that the actuators Chebyshev polynomials in the vertical direction. We expand
are uniformly distributed. Perturbations in the top boundary¢$ and y as follows:
layer are left free to evolve. The corresponding boundary
conditions are M
¢=2, 2 [@nm(t)COK anX) + b D)SIN @X) ICm(Y),
l/fx|y:—1:_vw(xyt)i ¢y|y:t1:¢|y:1:0a (2) n= =0 (8)

where the control functiorv,, prescribes the amount of

blowing and suction at the bottom wall. We impose that the

mass of fluid injected equals the mass of fluid removed. X=
To detect and measure the deviations of the boundary

layer from the laminar regime, we measure the gradient O\flvherea

the streamwise velocity component at given poiRrtsx; h

-
3

M =z

l[pn(t)cos{anX)+qn(t)sin(anX)]D(y), 9

n

=2mn/L. FunctionsC,,, andD are combinations of
Chebyshev polynomials constructed to satisfy the boundary

along the bottom wal(see Fig. 1, conditions, i.e., Cp(£1)=C/(+1)=D(1)=D’(%1)=0
2(Xi £ = yyly= 1 (3y ~andD(— 1?2 1. We also expand the measurement function
as follows:

In other words, we measure the first term of the W&g,

=Re*1(¢/yy— ¥yl ly——1. The second term of the WSS is N .
zero in the uncontrolled case, and is known in the controlled Z:nzl [Cn(t)cog anX) +dn(t)sin(anX) ]. (10
case.

_ We define an optimal performance indéxor cost fgnc- Substituting expansion), (9), and (10) into equations5)
tion, to c_ie5|gn a co_ntroller for t_he LQGH,) problem. Since  gng (6) and using Galerkin’s projection, we obtain
we are interested in suppressing the WSS, we define

dy du
o (ut —=Ay+B,u+B,—, z=Cy+Dsu.
3= lim J fo (W2, + d2)ly——1dx dt (%) gt AYTBUT B, z=CyFDau (1Y)
tfHoo t
To transform the above equations into standard state-space
ri‘I)rm, we define a new vector=y+ B,u, and two new ma-

trices B=B;+AB,,D=D;+CB,. Finally, we obtain the

The integrand represents the cost of the WSS being differe
from zero. Moreover, the integrand implicitly accounts for
the cost of implementing the control itself. There are tWOstate-space equations
reasons to minimize the cost of the controller: In any engi-
neering application the energy available to drive the control- dx

ler is limited, and a large control action may drive the system — =Ax+Bu, z=Cx+Du, (12
away from the region where the linear model is valid. dt

To reduce Eqs(1)—(3) to a set of first-order ordinary . . .. . . .

differential equations, we make a few transformationsw'th initial condition x(0)=xX,, wherex is the internal state

loosely based on Ref$24] and[26]. We write the stream vector, u is the control vector, and is the measurement

function asy= ¢+ y to embed the actuator into the evolu- vector. MatricesA, B, and C contain the dynamics of the

tion equation, and to make the boundary conditions homogel?oiseuille flow, actuators, and sensors, respectively. Matrix

neous. Substituting= ¢+ y into Eq. (1), we obtain a forced D contﬁms thef d|re_ct cotl;pllng between sensors and actua-
equation for the Poiseuille flow tors. The cost functioi7) becomes

o — —1 t
(at+Ul9x)A¢ U ¢X Re AA¢ J= limff[ZTZ+UTWTWU]dt, (13)
— (0 Ud) Ax+U"xy et
+Re 1A Ay, (5)  where the superscript denotes transpose. The matiiis

obtained by spectrally decomposing the last term in the cost
with homogeneous boundary conditio¢¢y:ﬂ=¢y|y:ﬂ function (7).
=0. The forcing functiony satisfies the nonhomogeneous The advantage of the present formulation is that the whole
boundary conditions2), i.e., Xx|y:_1=—uw(x,t), XIy:1 problem decouples with respect to the wave number. All
= Xyly-=1=0. We also substitutey=¢+ y into Egs.(3)  matrices in Eqs(12) and(13) are block diagonal. The block

and(4). The measurement equati¢d) becomes diagonal structure of the matriA was first recognized in
Ref. [24]. The above state-space system is consequently
Z(Xi 't):(¢yy+ny)|X=xi y=-1 ©) equivalent toN state-space subsystems, one for each wave
. ) ) number. For a given wave numberthe state-space equa-
while the cost functior{4) takes the following form: tions are
J=lim ! L[(<;s + xon) 2 X4 ] dx dt  (7) dx,
t Jo yy ™ Xyy Xoody=-1 —— =AXx+Bu, z=Cx+Du,, (149

dt

tg—o
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with initial conditionx, (0)=Xx,. Vectorsx, , U, , andz have
the following structurex,=[a,q, . - . @ bros - - - b 1",
u=[p;,a,1", z=[c,.d,]". The cost function also de-
couples with respect to the wave number, and we obtain
optimal performance indexes. For a given wave number
the cost function is defined as follows:

t
J,= lim f 172 +uTWIW,u, Jdt. (15)
t

tg—

Consequently, the design of an optimal and robust controller
for system(12) with Eq. (13) has been reduced to the inde-  (a)
pendent design dfl optimal and robust controllers, one for
each wave number, for the subsystefhd) with Eq. (15).

The challenge of the present study is to reduce the size of
the controller. The controller of the full system would have
2N(M +1) states. A controller with thousands of states is of
no interest in engineering applications, because of the
amount of hardware and computer power necessary to com-
pute a real-time control law. We derive a lower order con-
troller in two steps: First we construct a lower order model of
Eq. (14), and subsequently we design an optimal and robust
controller for the reduced-order model. To obtain a lower
order model, we transform Ed14) into Jordan canonical

form. The matricesA,, B,, C,, and D, that describe the
dynamics of the reduced-order model are obtained from the
matrices in Jordan canonical form by retaining rows and col-
umns corresponding to equally well controllable or observ-
able states. Hat denotes the quantities associated with the
reduced-order model.

The design of an optimal and robust controller for the
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LQG (H,) problem is divided in two parts: the linear qua-
dratic regulatolLQR) and the minimum variance estimator
(Kalman-Bucy filtey [27,28. The LQR provides an optimal

control law in terms of the internal state vector. In general,
however, the internal state vector is not directly measurable.
The Kalman-Bucy filter provides an optimal estimate of the

internal state vector in terms of the measurement vegtor
The result of the LQG%{,) design of an optimal and robust
controller based on the reduced-order model of @4) is
summarized by the following equations:

u=—Kyx, (16)

r[zr_ér;(r_Drur]’ (17)

I
p>3
X1
+
>
£
+
| bl

with initial conditionsx,(0)= 0. Equation(16) is the control

law. The gains matri>f<r is obtained by minimizing the op-
timal performance index

~ t ATA
3, = lim f 1772+ uTWIW,u, Jdt, (18)
t

tg—

wherez =C,x,—D,u, . Equation(17) is the the minimum
variance estimator. The matrﬁg is obtained by minimizing
the variance of the estimated state vectowith respect to

Vw
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FIG. 2. Temporal evolution of wall-shear stress along the bot-
tom wall of the channel: uncontrolled ca&®; controlled caséb).
Temporal evolution of blowing and suction along the bottom wall
of the channelc).

this study, however, the power spectral densities of the ad-
ditive noise are used as design parameters to produce robust

controllers. The initial conditiorx,(0)=0 implies that the

estimator starts with no information abobt.

Figure 1 links with simplicity the mathematical formula-
tion to its computational implementation, by summarizing in
a block diagram the control strategy described above. The
controller can be programmed in a computer routine whose
input is an array containing the gradients of the streamwise
velocity component, and whose output is an array containing
the blowing and suction at the wall. The gradient of the
streamwise velocity component,, is converted by a fast
Fourier transform{FFT) into z's. Each pair of estimatdil7)
and controller(16) blocks is integrated in time by, for ex-
ample, a third-order low-storage Runge-Kutta scheme. Par-

the internal state vectot. assuming that the reduced model allel computation produces,’s. An inverse FFT converts
of Eq. (14) is affected by additive Gaussian white noise. Inu,’s into the actuating signal,,. This routine can be embed-
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ded in any Navier-Stokes solver able to handle time-WSS along the bottom wall of the channel for the uncon-
dependent boundary conditions for the control of more realtrolled case. The WSS presents a rich structure because of
istic two-dimensional transitional boundary lay¢2$]. the transient growth of 32 stable and unstable wave numbers.
Figure 1 also provides the basic architecture for the pofFigures 2b) and 2c) show the temporal evolution of the
tential implementation of the present controller in practicalcontrolled WSS and of the blowing and suction along the
engineering applications. The gradient of the streamwise vepottom wall of the channel. Although the estimator starts
locity component, ¢y,, can be measured by with no information about the internal state of the system,
microelectromechanical-systent®IEMS) hot film sensors  he controller reduces the initial WSS in the first few time
[30]. Analog to digital convertersA/D) and digital signal  giens Subsequently, the amplitude of blowing and suction
processor¢DSP's convert the measured gradients igfs.  jses to suppress the effects of transient growth. Eventually,

Each pair of estimatof17) and control(16) blocks is re- p,ing and suction decreases as the transient growth sub-
placed by a MICroprocessor, and a parallel computation P"%ues. The controlled WSS shows only some low amplitude

ducesu,’s. A DSP and a d'g'ta.l to analog convertdbfA) . ripples during the entire simulation. The comparison of the

prod_uce the actuating signal. Finally, MEMStech_noIogy will Figs. 2a) and Zb) shows up to 90% WSS reduction. The

tors can mimic small amplitude blowing and suction at the?'emaining unsuppressed WSS is due to the modes that can-
P 9 not be controlled. The performance of the controller can be

wall: porous walls, micropumps, deformable walls, and ther'improved at the price of increasing its order.
mal actuator$30].

We use a combination of unsteady modes and transient In conclusion, we presented a framework for the applica-
y on of LQG (H,) design and model reduction to flows of

. |
growth to create a worse scenario test case. We choose t}'eterest in fluid mechanics and plasma phySiCS. As a case

; I
Reynalds number and channel length in ordgrto have at leagriudy this framework has been used to design an optimal
a feV.V unstable.modes_. The nonorthogonallty of the €19€N:nd robust reduced-order controller able to suppress up to
functions associated with E@L) permits us to construct ini-

0 X e ; >
tial conditions leading to transient growth: see R for 90% of the WSS in a two-dimensional transitional channel

references. We obtain initial conditions specifically able toﬂOW' This controller can be programmed in a computer rou-
' P y ine whose inputs are the gradients of the streamwise veloc-

generate transit_anfc growth Of. the WSS, ins_tead of internafl[y component, and whose outputs are the blowing and suc-
energy, by modifying a technique proposed in R81. Al- tion at the wall. This routine, suited for parallel computing,

I/?gggl:‘s t;?}%%fsnti tgr(()evrvr:whit;vltltlast;% e\:ﬁgtggné;ﬁf dg]??hgycg:fcan be embedded in any Navier-Stokes solver for the control
troller in su réssiﬁ disturbancgs that cgn tri ¢ er nonlinea?f more realistic two-dimensional transitional boundary lay-

ppressing 99 ers[29]. We also presented a hardware architecture for the
effect and transition to turbulence.

We design a controller for two-dimensional Poiseuille pqten_tial implementation of the contro_ller in engine_eriljg ap-
flow in a periodic channel of length= 207 at Re=10 000. plications. Extensions of LQGH,) design and applications

of H.. design[27,28 to three-dimensional Poiseuille flow
The wave numbers=8,9, and 10 are unstable. We use a ) T . :
grid resolution ofN=32 andM = 124. The order of the full and two- and three-dimensional Blasius boundary layers are

system is 8000. Using the model reduction technique previ'—n progress.

ously described, we create a reduced model of order 640. The authors thank Dr. J. Burns, Dr. S. Joshi, Dr. R.E.
This reduced model maximizes the ratio between perforKelly, Dr. J. Kim, and Dr. R.T. MCloskey for enlightening
mance and the number of states. We derive 32 controllers afiscussions. This work was supported by AFOSR Grant No.
order 20, one for each wave number. Controllers operate iF49620-97-1-0276 and by NASA Grant No. NCC 2-374 Pr
parallel. Figure 2a) shows the temporal evolution of the 41.
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