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Impulsive model for the Richtmyer-Meshkov instability
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A general formula for the growth rate of the Richtmyer-Meshkov instabiRy D. Richtmyer, Commun.
Pure Appl. Math.13, 297 (1960; E. E. Meshkov, Sov. Fluid Dyn4, 101 (1969] is derived within the
framework of the impulsive model. It allows us to predict the growth rate in both heavy-light and light-heavy
configurations. This formula is validated over more than 100 cases with various values of the shock strength
and the adiabatic exponents. The range of validity of the impulsive model is also specified. Comparisons are
performed against the results available in the literature. This expression may be reduced to the Richtmyer or
the Meyer-BlewetfPhys. Fluidsl5, 753(1972] formulas in particular cases. Specific configurations are built
in order to emphasize the differences between the latter prescriptions and the formula proposed in this paper.
[S1063-651%98)13108-3

PACS numbd(s): 47.20.Ma, 47.40.Nm

I. INTRODUCTION case of a reflected shock wave. He used Laplace transforms
and found a simple solution for weak shock waves. The so-
When two different materials are impulsively acceleratediution for strong shock waves may be given by a power
into each other by a shock wave, small perturbations of theeries. The results obtained from this approach were com-
interface first grow linearly and then evolve into nonlinearpared with Richtmyer’'s prescription by Mikaelig]. He
structures. This instability was theoretically discovered andound reasonable agreement in most cases, but he also found
described by Richtmydd] and experimentally confirmed by some configurations where Richtmyer's prescription fails.
Meshkov[2]. The Richtmyer-MeshkoyRM) instability oc-  These discrepancies were attributed to compressibility ef-
curs in various situations, from incompressible configurafects. However, it was not possible to determine a range of
tions[3] to high Mach number experiments in inertial con- validity in the parameters space.
finement fusion[4]. In the framework of the impulsive More recently, Yang, Zhang, and Sha| have pre-
model, Richtmyef1] proposed the following expression for sented an analysis of the Richtmyer-Meshkov instability.

the linear growth rate of the instability: The linear theory is formulated and, as opposed to Fraley’s
work, numerically solved. Moreover, a systematic compari-

d—a=kAuA+ag , 1) son vyith Richtmyer’s prescription is carr'ied out. They draw
dt certain conclusions from the results obtained for the reflected

) ) o shock and reflected rarefaction cases. First, the agreement
wherea is the amplitude of the perturbatiokijts wave num-  petween both approaches is better as the incident shock
ber, Au the velocity jump across the shock waw, the  strength decreases. Second, the agreement is better as the
amplitude immediately after the shock passage, Ahdhe  adiabatic exponents of the fluids increase and when they are
Atwood number after the interaction. In the above, the At-not too different. These two requirements are closely related
wood number is defined ap{—p1)/(p2+p1), Wherepy is  to the compressibility effects.
the density of the first shocked fluid. The preshocked and An analytic theory of Richtmyer-Meshkov instability has
postshocked amplitudes, anda, , respectively, are linked been published by Velikovicfo] for the case of a reflected
by the compression factor-1Au/Wgpoe[1], whereWgoois  rarefaction wave. He used the same kind of techniques as
the speed of the incident shock wave. It is usually admittedhose used by Fraley. Moreover, the author claims that the
that expressiornil) gives relatively good results for light to “qualitative explanation of the RM instability provided by
heavy accelerations, although several exceptions to Richtmyhe impulsive model is therefore inadequate, regardless of
er's formula have been fouri®,6]. Richtmyer’s formula(l)  the successes or failures of any prescriptions based on it.”
gives the growth rate of the instability during its linear phase Wouchuk and Nishihar@10] have also recently estab-
using the postshocked quantities only. For heavy to lightished an analytic model for the asymptotic growth in the
accelerations, Meyer and BlewéB) found, on empirical linear RM instability. Two different formulas are obtained
grounds, that the terrag in Eq. (1) was to be replaced by whether the reflected wave is a shock or a rarefaction.
the average of the initial unshocked and shocked amplitudes In nearly all publications, the impulsive model is still used

to match their numerical resulf3] and many configurations have been found in which it gives
wrong results. The purpose of this paper is to propose a

da 1 O simple formulation of the impulsive model that includes both

dt 2 kAuA™(ag +ap). (2) Richtmyer and MB expressions. It is first postulated and

validated on more than 100 configurations taken in Refs.
These two formulas are just prescriptions. On the othef5, 6, 9], which allows us to estimate the range of validity of
hand, Fraley[{8] solved the perturbation equations for the the impulsive model. This formula is then heuristically de-
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rived by using the equation of evolution of a perturbatione. These graphs are plotted in Figdat1(d) where the
subjected to a Rayleigh-Taylor instability within the frame- dashed lines correspond to Mikaelian’s results obtained from
work of incompressible fluidésee the Appendix This for-  Fraley’s analysis and the continuous lines to Richtmyer’s

mula reads prescription. In Figs. (e)—1(h), for the same values of pa-
da 1 rameters, thégg is calculated by the impulsive model with
=3 kAu(Atal +A-ay) formula (4) (continuous linesand compared with Fraley’s

analysis. From these comparisons, it appears clearly that, in
1 the weak shock limit, i.e., smad, all growth rates obtained
~35 KAU(A*™—A")(ag —ag). (3  from formula(4) are tangential to Mikaelian’s curves. On the
contrary, the normalized growth rate obtained from Richtmy-

The second part of the right-hand side of Eg). appears to er's prescription deviates from FM values even for very
be very small in most cases tested. Consequently, we shajMall shock strength parameterin other words, the slope at

validate the following formula[11] on numerous results the origin dNgg/de|._o of curves obtained from formula
available in the literature: (4), is very close to FM's results for all cases reported in Fig.

1. The relative errors defined & =agichimye/arn—1 and
E,=agq 4/apm—1 for the two considered impulsive mod-
els, i.e., Richtmyer’'s and formul@), are plotted versus the
shock strength parameter in Figs. 2a) and Zb), for the
These three formulaél), (2), and (4) may be seen in the parameter values,=y,=1.667 andA~=0.25, 0.5, 0.75,
following way. Richtmyer's prescription uses only post- and 0.95. For shock strength parametesmaller than 0.4,
shocked quantities, while Meyer and Blewett's prescriptionihe relative erroE, is less than 10% and is tangential to zero
takgs into gccounti the v_arlatlon of the perturbation amplitud§,hen ¢ decreases. This is not true for Richtmyer's prescrip-
during the interaction with the shock wave. The formula pro—,g-on (1). These two conclusions are still valid for the other

FhOSEd "}.tthés pagirrltazttes m';jo accgun; bqth ttne .Vat‘”a“ot.” Olombinations of parameters. Note that such a definition of
€ ampatude anc e /AWo0d nUMBET auning the INteractiony,» ejative error ag, is irrelevant as one of the growth

As a result, specific limiting cases lead to either Richtmyer’s

or Meyer and Blewett's prescriptions. ratIenS Iggfe SEC;{]O f(ears . Zhang, and SharfYZS) compare the
The outline of this paper is the following. In Sec. Il for- Pty 9. 9, P

mula (4) is validated on the reflected shock wave cases. Ir{GSUItS of Rlchtm_yer’s impulsive model to .those obtained
Sec. Ill the reflected rarefaction wave case is studied. In Sed©m small-amplitude theory. The relative erroEs

IV we discuss the validity of our proposal and consequently ™ 2richimye/ vzs— 1 between the terminal growth rate of the
the range of applicability of the impulsive model. The deri- linear theory and the one of the impulsive model is plotted,

da—lkA Ataj+A ay 4

vation of the basic formul&3) is given in the Appendix. for various combinations of gases, versus the incident shock
strengthe in Fig. 16 of[6] and is reproduced in Fig.(8).
Il. CASE OF A REFLECTED SHOCK WAVE The relative error for the model presented in this pagar,

. . o _ =agq 4 /ayzs—1, is plotted in Fig. &). The conclusions
In this section formuld4) is first validated for the case of previously drawn from Figs. 1 and 2 still hold in these cases.

a reflected shock wave. A comparison with the results ofrpe results of the linear theof] and the impulsive model

Fraley[8] and Mikaelian[5] (FM) is carried out. Let us first  gafineq by Eq(4) tend to each other as the incident shock

define our notations. Following Mikaelian, the normalized grength decreases. In the weak incident shock limit, they are

growth rate is defined as in better agreement than the linear theory and Richtmyer’s
impulsive model.

(5 To confirm this conclusion, we have carried out a system-
atic comparison of the predictions of the linear theory,
Richtmyer’s impulsive model, and formul@), as it was
done in[6]. For these comparisons, following Yang, Zhang,

Po and SharpNgg is defined adNgr=a/(ag Wshoek). Varying

e=1- p_3 (6) parameters are the adiabatic exponentsand y,, the inci-

dent shock strengtla, and the preshocked density raio
where Py is the initial pressure anB; the pressure behind =p,/p;. The results of this comparison are presented in
the incident shock wave. Table I. For each entry, the upper number is Richtmyer's
In the reflected shock wave case, Mikaelj&hcompares impulsive model result, the second one is our impulsive
the growth rate obtained from Fraley’s wo[B] with the  model result, and the lower one is obtained from numerical
classical Richtmyer growth rate. This is done for several ini-simulation of YZS's linear theory. For small strength shock

tial Atwood numberg0.25, 0.5, 0.75, and 0.9%nd various parametek, the normalized growth rati ;g calculated with
pairs of adiabatic exponents/{, y,): (1.1, 1.667, (1.667, formula (4) is closer to the linear theory than Richtmyer’'s

1.667, (1.1, 1.1, and(1.667, 1.}. The evolution of the nor- result. Furthermore, as one could expect from an incom-

malized growth raté&cg given either by Fraley’s analysis or pressible model, the discrepancy between formdlaand

by the impulsive model with Richtmyer’s prescriptioh) is  the linear theory increases with the shock strength parameter

computed versus the dimensionless shock strength parameteand the difference between the adiabatic exponents.

a
CR™a, Auk’

The shock strengtl is defined as
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FIG. 1. (8)—(d) Normalized growth rate Ngg) according to Richtmyer’'s prescriptioftontinuous lines and according to Fraley’s
analysis(dashed lines (e)—(h) Ngr according to formuld4) (continuous linesand according to Fraley’s analysigashed lines For (a) and
(e), the initial Atwood numbers are given &y =0.0, 0.25, 0.50, 0.75, and 0.95 and the adiabatic exponents aré.1 andy,=1.667. For
the other graphs, the initial Atwood numbers are giverAby=0.25, 0.50, 0.75, and 0.95 and the adiabatic exponents aréy)fand (f),
v,=1.667 andy,=1.667, for(c) and(g), y;=1.1 andy,= 1.1, and for(d) and(h), v,=1.667 andy,=1.1. In all cases, the curves obtained
from Eq.(4) are tangential to Fraley’s curves for small values of shock strength paraemethich is not true for Richtmyer’s prescription.

lll. CASE OF A REFLECTED RAREFACTION WAVE remain smaller than 10% for values of the shock strength

The same comparisons between the linear theory formlﬁaram_etere as large as 0.5. : .
lated and numerically solved {I6] and the impulsive model As in Sec. ll, we now present n Table 1, for various sets
can be carried out for the case of a reflected rarefactiofff Parameter values, the ,normahzed growth rislig; given
wave. The combinations of gases are the same as those ctf. Impulsive models{MB'’s and Eq. (4)] and the linear
sen in[6] and correspond to values commonly used in ex-theory (YZS’s) in the case of a refI.ected rgrefactlpn wave.
periments. Let us remark that, in Ré6], the authors use For each entry, the upper number is MB’s impulsive model
MB’s prescription(2) for the case of a reflected rarefaction result, the second one is our impulsive model result, and the
wave, while they use Richtmyer's formuld) for the re- lower one is obtained by numerical simulation of the linear
flected shock wave. We emphasize that in this paper théheory(YZS's). Our formula gives here again good results in
same formula(4) is used in both reflected rarefaction and the weak shock limit for ratia/, / v, not too different from 1.
shock wave cases. In Fig.(& the relative errorEg Formula(4) can also be tested in configurations defined
=ays/ayzs— 1 between the terminal growth rates of the im- by Velikovich [9], who uses the failure of both Richtmyer’s
pulsive model with MB’s prescription and the linear theory and MB'’s prescriptions to deny the relevance of the impul-
is plotted. The relative errdg, for formula (4) is presented sive model. The parameter values axe=1.8, y,=1.45, and
in Fig. 4(b). For the parameter values considered, the errore=0.213 and the preshocked Atwood number varies from
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FIG. 2. (a) Relative errorE; = agicnmye/@rm— 1 Vs the shock strength parameteBgicnmyeris the growth rate obtained from Richtmy-
er's prescription andgy the one given by Fraley’s analysi®) Relative errolE,=agq 4)/agv— 1 vs the shock strength parameteag, )
is the growth rate obtained from formu{d). This case corresponds to Figgbfland Xf), i.e., the initial Atwood numbers are given by
A~ =0.25, 0.50, 0.75, and 0.95 and the adiabatic exponentg,aré.667 andy,=1.667. For a given value of the shock strength parameter
€<0.4, the larger the initial Atwood number, the larger the relative eftEgrandE,. The relative erroE, is less than 10% foe smaller
than 0.4. The slope at the origin Bf, is clearly zero. This is not true fdg; .

—0.02 to 0. As shown in Fig. 5, formulé#) givesNgg al-  persion relation for a Rayleigh-Taylor instability in incom-
most equal to the one obtained from Velikovich’'s analytic pressible fluidsa(t)=Agka(t), whereg is the acceleration.
theory, whereas Richtmyer's and MB'’s prescriptions are faiThis equation is applied to the Richtmyer-Meshkov instabil-
from the theoretical result. For example, for a preshockedty by defining a nonzero constant acceleration during the
Atwood number equal to O, the relative error figg is  interaction between the incident shock wave and the inter-
about 9% for our model, whereas it is about 97% for MB’s face. Furthermore, the amplitude of the perturbation and the
prescription. Figure 5 defines a phenomenon of freeze-ouitwood number are supposed to vary linearly during this
that occurs when the growth rate is zero. The preshockefhteraction. By doing so, we obtain a formula that takes ac-
Atwood number for the freeze-out is found to be approxi-count of the variation of both the amplitude and the Atwood
mately equal to—0.0078 from Velikovich’s theory and number. As already stated, this is not the case for the pre-
—0.0070 from formula(4). In this case, Richtmyer's and scriptions of Richtmyer, and Meyer and Blewett. Our mod-
MB'’s prescriptions give approximately the same Atwoodeling takes into account the shock induced compression of
number,—0.0150, very far from the two previous results. the perturbation in a simplified way. This effect has to be
distinguished from what is usually called compressibility ef-
fects. In other words, formul&d) takes into account a large
part of the compression during the interaction, but takes no
In this paper we propose a formula for the growth rate ofaccount of the compressibility effects after the interaction.
the Richtmyer-Meshkov instability in the linear phase within Indeed, compressibility effects are controlled by several pa-
the framework of the impulsive model. This formula is de- rameters. The most important ones seem to be the Mach
rived in a heuristic way based on an analogy with thenumber of the incident shock wave and the ratio of the adia-
Rayleigh-Taylor instability(see the Appendijx We start batic exponents. Consequently, we cannot expect foridiila
from the ordinary differential equation, which gives the dis-to give good results for large values of the shock strength

IV. DISCUSSION
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FIG. 3. (a) Relative errorE;= agicnmye/ayzs— 1 between the terminal growth rate of the linear thelgfyand the one of Richtmyer's
prescription vs the incident shock strength parametir various combinations of gases. The parameters usegigreya = yxe=1.667,
Yair= 1.4, ¥co,= 1.3, ys,= 1.0935,pc0, /pair= 1.53, pxe/par= 3.29, psr, /pair= 5.1, andpai/pue= 7.25.(b) Same as irfa), but for the relative
error E,=agq 4)/ayzs— 1. The slope at the origin d&, is clearly zero. This is not true fdE;. The relative erroE, is smaller than 10%
for e smaller than 0.4.
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TABLE I. Comparisons of normalized growth rates as given by the impulsive model with Richtmyer’s
prescription, the impulsive model with formu{d), and the linear theor$¥ZS). The first column gives the
two adiabatic exponents. The second column is the shock strength paraestdrthe top row is the
preshocked density ratigp§/p,). The upper number in each entry of the table is Richtmyer's result, the
second one the value obtained from form{#a and the lower one is obtained by numerical simulation of the
linear theory. The reflected wave here is a shock.

p2/p1
vl vy, € 1.1 2.0 4.0 8.0 16.0
1.1/1.1 1.0 0.001 0.016 0.050 0.095 0.14
0.023 0.150 0.252 0.303 0.32
0.004 0.031 0.064 0.094 0.11
0.5 0.012 0.079 0.13 0.14 0.14
0.017 0.104 0.16 0.17 0.15
0.015 0.093 0.14 0.15 0.13
0.05 0.0020 0.012 0.018 0.018 0.016
0.0021 0.012 0.018 0.018 0.016
0.0021 0.012 0.018 0.018 0.016
3.0/3.0 1.0 0.010 0.070 0.12 0.14 0.13
0.017 0.103 0.16 0.17 0.15
0.014 0.089 0.14 0.16 0.14
0.5 0.0074 0.046 0.069 0.072 0.064
0.0084 0.050 0.074 0.076 0.067
0.0081 0.049 0.072 0.075 0.065
0.05 0.00077 0.0046 0.0067 0.0068 0.0059
0.00078 0.0046 0.0067 0.0068 0.0060
0.00078 0.0046 0.0067 0.0068 0.0060
1.5/3.0 1.0 —0.099 -0.071 —0.012 0.054 0.10
—0.033 0.064 0.141 0.179 0.19
—0.0038 0.071 0.14 0.19 0.20
0.5 —0.018 0.036 0.077 0.091 0.086
—0.002 0.060 0.098 0.105 0.094
0.004 0.064 0.10 0.11 0.095
0.05 0.00099 0.0071 0.010 0.010 0.0088
0.00114 0.0073 0.010 0.010 0.0089
0.0012 0.0073 0.010 0.010 0.0089
E 5. E 4
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FIG. 4. (a) Relative errolEs=ayg /ayzs— 1 between the terminal growth rate of the linear thedryand the one of the prescription of
Meyer and Blewett vs the incident shock strength paramefer the same combinations of gases as in Figh3.Same as ina), but for
the relative erroE4:aEq,(4)/é1st—1. The relative erroE, is smaller than 10% foe smaller than 0.5.
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TABLE Il. Same as Table |, except the reflected wave here is a rarefaction and the upper number in each
entry is Meyer and Blewett's prescription.

p2/p1
v1lys € 0.91 0.5 0.25 0.125 0.0625
1.1/11 1.0 —0.0085 —0.060 -0.11 —-0.15 —0.18
—0.0230 -0.172 —0.33 —0.43 —0.50
—0.0039 —0.025 —0.042 —0.047 —0.044
0.5 —0.017 —0.13 —0.26 —0.35 -0.41
—0.017 -0.13 —0.26 —0.35 -0.41
—0.016 -0.12 -0.24 —0.33 —0.39
0.05 —0.0021 —0.017 —0.035 —0.051 —0.062
—0.0021 —0.017 —0.035 —0.051 —0.062
—0.0021 —0.017 —0.035 —0.051 —0.062
3.0/3.0 1.0 —0.015 -0.12 -0.23 —0.33 —0.39
—0.017 -0.13 -0.25 -0.33 —0.42
—0.014 -0.11 —0.22 -0.31 —0.38
0.5 —0.0086 —0.069 —0.14 —0.20 —0.24
—0.0086 —0.069 —0.14 —0.20 —0.24
—0.0085 —0.068 -0.14 —-0.19 —-0.24
0.05 —0.00081 —0.0065 —0.013 —0.019 —0.024
—0.00081 —0.0065 —0.013 —0.019 —0.024
—0.00081 —0.0066 —0.013 —0.019 —0.024
3.0/1.5 1.0 0.17 0.093 —0.029 —0.16 —0.26
0.04 —0.086 -0.23 —0.35 —0.43
0.016 —0.073 —0.18 —0.28 —0.36
0.5 0.011 —0.059 —-0.14 —0.20 —-0.25
—0.0001 —0.068 —-0.14 —0.20 —-0.25
0.0011 —0.066 —-0.14 —0.20 —-0.25
0.05 —0.00080 —0.0073 —0.015 —0.021 —0.025
—0.00088 —0.0074 —0.015 —0.021 —0.025
—0.00088 —0.0074 —0.015 —0.021 —0.025

parametere or for large values of the ratio of the adiabatic which corresponds to the incompressible limit. We have also
exponents. This quasi-incompressible assumption is not splotted in Fig. §b) the errorE; between Richtmyer’s pre-
restrictive: Experiments have been recently carried out at lovgcription and FM's theory. For the Atwood numbers consid-
shock Mach number by Jacobs, Jones, and Niedefi#lls  ered, this error is at least three times larger than the &ryor
From the results presented in Secs. Il and Ill, it appears thdh the particular cases of Figs. 1 and 6, it turns out that for
the maximum relative errors between the various theoreticdixed values of adiabatic exponents, the difference between
results[6,8,9 and Eq.(4) is about 10% fore-parameter val- formula(4) and Fraley’s theory reduces as the Atwood num-
ues smaller than 0.4 and ratios of adiabatic exponentber decreases. On the other hand, for ratio of adiabatic ex-
Ymax! Ymin SMaller than 1.5, whergax (vmin) IS the maxi-  ponents far from the value 1.5, for example, 2 as used in
mum (minimum) of the two adiabatic exponents. This value Tables | and I, Eq(4) may give wrong results.

of 10% is an upper bound and many cases can be found with It can be noticed that the weak shock limit of the Fraley
a much smaller error. The range of validity may be defined8] and Wouchuk-Nishiharfil0] analytic expressions leads
up to €e=0.5 if a relative error of about 20% is tolerated. to the same relation. Taking the incompressible limit for the
Once again, this is a maximum value and relative errors ofeflected shock case with large adiabatic exponepis

2% can often be found even fer=0.5(see Tables | and)l  =1y,, one obtains, at first order ia

The condition about the ratio of adiabatic exponents is not so )

restrictive since values of adiabatic exponents of physical a R-1 € 1-VR

gases are between 1.09 and 1.67. Furthermore, for a ratio ag kAu " R+1 + Ty 1+R (@)

equal to 1 but with large values of adiabatic exponents cor-

responding to nongaseous fluids, the relative eEgrbe-  This expression is also the first-order expansiom of for-
tween formula(4) and FM’s theory is still smaller than 10% mula(4). So, although formul#4) is based on an analogy of
for e smaller than 0.4. As we can see in Figaefor a small  the Rayleigh-Taylor instability, it provides the same expres-
value of the shock strength parameter=(0.1), this error sion at the incompressible limit as approximate formulas de-
tends to zero as the adiabatic exponents tend to the infinityjved from exact theories.
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NGR TABLE Ill. Normalized growth rates and relative errors as
0.02 given by Richtmyer's prescription, the impulsive modEq. (4)],
and Fraley’'s theory. The adiabatic exponents aye=1.667 and
v,=1.9 and the molar masses at®1,=40g/mol and M,
=44 g/mol. The shock strength parametekis0.4.

Source Ngr Relative erron%)
At
Richtmyer 0.005 14 38.3
L_-= Eq. (4) 0.008 46 1.6
=777 Ea(4) -0.01 Fraley 0.008 33
-0.015
-0.02

configurations in which this prescription should have
worked. This point can be illustrated by the two following
examples. In the case of a reflected shock wave, we consider
two gases with adiabatic exponents=1.667 andy,=1.9

FIG. 5. Normalized growth rates given by Velikovich’s linear
theory (curve L), the impulsive model with the prescription of
Richtmyer(curveR), the prescription of Meyer and Blewstturve

MB), and formula(4) [curve Eq.(4)] vs the initial Atwood number. = _
The adiabatic exponents arg;=1.8 and y,=1.45. The shock and molar masses, =40 g/mol andM,=44 g/mol. The

strength parameter is= 0.213. Formuld4) gives results very close SNOcK strength parameter és=0.4. The values of thélgr
to the linear theory, which is not true for Richtmyer's and Meyer 91Ven by theory and models are presented in Table lil. In this
and Blewett's prescriptions. configuration, the ratio of the adiabatic exponemtS,/ ¥min
is 1.14, which is close to 1, and the shock strength parameter

We would like to underline that the model proposed inis e=0.4. These values should be in the range of validity of
this paper gives a good approximation for the growth ratean incompressible model. Indeed, Hg) produces a quite
provided the parameters fall in the range of validity definedgood result: The relative error with respect to Fraley’s theory
by €<0.4 and yna/¥min=1.5. Indeed, no counterexample is less than 2%. However, Richtmyer’s prescription is inac-
has been found and the range of validity holds in the cases @urate: The relative error is about 40%.
both a reflected shock wave and a reflected rarefaction wave. The second example deals with a reflected rarefaction

On the contrary, Richtmyer’s prescription is only used forwave and is borrowed from VelikovicfB]. The initial At-
reflected shock wave case, whereas MB'’s prescription hagood number i\~ = —0.02, the shock strength parameter is
been introduced to handle the reflected rarefaction wave=0.213, and the adiabatic exponents ate=1.8 andvy,
case. Moreover, nobody was able to establish a reliable range1.45. The results are presented in Table IV. Here again,
of validity for these two prescriptions. For example, in his even in these quasi-incompressible conditiosts 0.213 and
original paper Richtmyelrl] built his prescription from con- y,/y,=1.24) MB'’s prescription fails to give a reasonable
figurations ate=1. He applied his incompressible prescrip- value. The relative error is about 60%. However, E4).
tion to these very compressible configurations and surprisprovides a rather good result with a 7% relative error.
ingly obtained good results. This inconsistency has been In this paper a formula for the growth rate of the
pointed out by Yang, Zhang, and Shaf}: “The agreement Richtmyer-Meshkov instability was derived within the
between the impulsive model and linear theory found byframework of the impulsive model. It has been heuristically
Richtmyer in the case of a strong incident shock was theestablished from the Rayleigh-Taylor growth rate by using a
accidental result of a specific choice of parameters.” nonzero constant acceleration during the interaction between

On the other hand, specific examples can show the failuréhe incident shock wave and the interface. All reported com-
of Richtmyer’s prescription even for quasi-incompressibleparisons have shown that the revisited impulsive model pro-

E, E,
0.002
[! 20 40 0Y
0.0015 20,0005
(a) (b)
0.001 ~0.001
0.0005 -0.0015
¥ -0.002

0 20 40 60 80 100

FIG. 6. (a) Relative errorEzzéEqA (4)/é1FM— 1 between the terminal growth rate of the linear theory and the one obtained fro)Eq.
vs the adiabatic exponent In this casey=y,;=17,, €=0.1 and the initial Atwood numbers are given Ay =0.25, 0.50, 0.75, and 0.95.
The errorE, increases with the Atwood numbéb) Same as irta), but for the relative erroE, = éRichtmyer/é,:M— 1. In that case the absolute
value of the erroE; decreases with the Atwood number. For large valueg, @k., in the incompressible limit, the errBy, is at least three
times larger than the errdt, .
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TABLE IV. Normalized growth rates and relative errors as  During the interaction between the incident shock wave
given by MB'’s prescription, the impulsive modfEq. (4)], and  and the perturbation the amplitude varies frajnto ag . As
Velikovich's theory. The adiabatic exponents are=1.80 andy,  the velocity of the interface is taken to be constant, the evo-
=1.45 and the initial Atwood number i&~=—0.02. The shock |,tion of the amplitudea(t) versus time is linear during the
strength parameter is=0.213. interaction. Its overall evolution can be modeled by

Source NGr Relative error(%) a(t)=(1-Y_)ag+Y_(1-Y,)y(t)+Y, [af +f(t)],
MB —0.0045 60 (A2)
Eq. (4) —0.0121 7 where
Velikovich —-0.0113

_ Wshock + — 1 + _
y(t)y=—= (ao_ao)t+§(ao+ao)-
3

duces a good estimate of the growth rate of the Richtmyer- _ )
Meshkov instability provided it is used within its range of In this expressiony. =Y., aw, (t) andf(t) is a con-
validity. Nowadays, approximate formulas derived from ex-tinuous function taken to be constant and equal () for
act theorie§8—10Q] are available. However, it was useful to t<0 and toa(t) for t>ag 12Wgnock-
understand and explain the failures of the impulsive model During the interaction between the incident shock wave
noticed in the literature for yeaf$,6,9. Indeed, the revis- and the perturbation, the Atwood number varies framto
ited impulsive model gives good results in both heavy-lighta*  However, the evolution of the Atwood number is quite

and light-heavy configurations provided that it is used withincomplicated. We shall approximate it by a linear function
its range of validity, i.e.€<0.4 andymax/ Ymin=1.5, which

corresponds to nearly incompressible flows. A=(1-Y_ )A"+Y_(1-Y )z()+ Y, A" (A3)
where
APPENDIX: DERIVATION OF THE FORMULA FOR THE
GROWTH RATE OF THE RM INSTABILITY W 1
2(t)= —;'lmk(A*—A*)H 5 (AT AT,

During the interaction between a monomode perturbation 0

and a shock wave, the interface is accelerated and com- we start from the ordinary differential equation, which
pressed. The acceleration begins when the shock wave hifjyes the dispersion relation for a Rayleigh-Taylor instability
the interface. It finishes when the incident shock wave hag, incompressible fluidsa(t)=Agka(t), wherek is the
gone right through the perturbation. If the initial peak to peakyave number of the perturbation. By introducing the expres-
amplitude of the perturbation &, , the acceleration occurs sjons for the acceleratiog(t), the Atwood numberA(t),
betweent = —ag /2Wgnock aNd 8g [2Wgpock, WhereWspoekiS  and the amplitudea(t), the previous differential equation
the speed of the incident shock wave. The instan® cor-  can be integrated frorm= — to t>ag 12Wahock

responds to the moment the shock strikes the middle of the
perturbation. Furthermore, we do not model the shock wave
as a pure step function but as a regularized function that
extends over a small thicknelsThis thicknes$ is taken to

be much smaller than the amplitudg . The effect of the Equation(Ad) gives, fort>ay /2Wshock,
acceleration is to transmit the fluids a velocityi that we
consider constant. The acceleratigris modeled as a non-

Ji g(t’)A(t’)ka(t’)dt’=fj a(t’)dt’. (A4)

a(t)~3kAu[A~(3a, +3a5)+A"(3a5 +3a5)].

zero constant function during the action of the incident shock (A5)
wave Finally, we propose the following formula for the linear
growth rate of the Richtmyer-Meshkov instability:
_ WshoclAu
g(t)_ a—_ Y_aalzwshock(t)[l_Y+a(;/2Wshock(t)]’ da 1 g
0 da 2 _
(A1) at 2kAu(A ag tA ag)

whereY, (t) is a regularized Heaviside function centered at 1 b a4 o
t=t 0 —gkAu(A —A7)(ag —ag). (AB)
=t,.
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