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Renormalization group, operator product expansion, and anomalous scaling
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Field theoretical renormalization group methods are applied to the Obukhov-Kraichnan model of a passive
scalar advected by the Gaussian velocity field with the covarigm€ex)v(t’,x))—(v(t,x)v(t’,x"))ec5(t
—t")|x—x'|*. Inertial range anomalous scaling for the structure functions and various pair correlators is
established as a consequence of the existence in the corresponding operator product expansions of certain
essential or “dangerous” composite operatfpswers of the local dissipation rdtevhosenegativecritical
dimensions determine anomalous exponents. The main technical result is the calculation of the anomalous
exponents in the order? of the ¢ expansion. Generalization of the results obtained to the case of a “slow”
velocity field is also presentefiS1063-651X98)11707-3

PACS numbdss): 47.10+g, 47.27.Gs, 05.40;j

[. INTRODUCTION where the “scaling functions’f,,(Mr) are supposed to have
powerlike behavior in the asymptotic regidmr <1,
One of the main problems in the modern theory of fully
developed turbulence is to verify the basic principles of the f (Mr)=constx (Mr)d 1.4
Kolmogorov-ObukhowKO) phenomenological theor,2] n(MF) (Mr)™. (14
within the framework of a microscopic model and to inves-

tigate deviations from this theory, provided they exist. The singular dependence of the structure functiond/fon
In particular, one is interested in the single-time “struc-for M—0 and nonlinearity of the exponentg, in n are
ture functions” usually referred to as “anomalous scaling,” and in theoreti-
cal models they are explained by strongly developed fluctua-
Sy (N =[O — 0, r=|x—x| (1.1) tions of the local dissipation ratgintermittency”); see dis-

cussion in1], Chap. 25. Within the framework of numerous
. N models, the anomalous exponeqtsare related to the statis-
in the inertial range. Herd(x)=6(t,x) can be the co,mpo— tics of the local dissipation rate or to the dimensionality of
nent of the \_/eloqlty field directed along the vecior x > OF  fractal structures formed by small-scale vortices in the dissi-
the scalar field in the problem of turbulent advection; thepative range: see for a revidil]. As a rule, these models are
brackets( ) denote the ensemble averaging, and the timeny |oosely related to underlying microscopic models, and
argument common to all the quantities is omitted in B31)  therefore some doubt remains about the universality of rep-

and analogous formulas below. The inertial rarige the  (osentations such as Ed4.3), (1.4) and the very existence
convective range in the problem of turbulent advedtian ¢ yeviations from the KO theory.

. . e _ 71 -
defined by the |nequal|t|es<r<jll__, wherel=A"" is the An effective method of studying self-similar scaling be-
internal(viscous scale and. =M ™" is the externalintegra)  hayior is that of the renormalization groGRG), see[8,9]. It
scale. was succesfully applied in the theory of critical phenomena

~ According to the KO theory, the functiond.1) in the 4 explain the origin of critical scaling and to calculate uni-
inertial range are independent of both the external and inteko g quantitiegcritical dimensions and scaling functions
nal scalegthe first and the second Kolmogorov hypotheses;, the form of series in the formal small parameter 4
respectively and are determined by the only parametethe  —d, whered is the space dimensionality, sgk]. This tech-
mean dissipation rate; see, e[d..2]. Dimensionality consid- nique is also fully applicable to the theory of turbulefta];
erations then determine the functio(ls1), apart from nu-  see also the review papgt2] and references therein.

merical coefficients, in the form In the statistical theory of turbulence, the microscopic
model is usually taken to be the stochastic Navier-Stokes
Sn(r)=c0nst><(:r)”’3. (1.2) equation(SNS with an external random force that imitates

the injection of energy by large-scale modes; see, e.g.,
. _ . . . [1,2,13. The role of the RG expansion parameter is played
Both experlmentgl _and theoretical ew_de_nce is known Inby the exponent entering into the random force correlator.
favor of some deviation from the pred|c.t|ons of the KO For the structure function$l.l), the RG method allows
theqry, seq1,3-7. For the structure fqncﬂo_nél.l), the_se proof of the second Kolmogorov hypothesiadependence
deV|at|o.ns' are .phenomenologlcally written in th'e fom of the viscous lengthfor a wide variety of realistic random
contradiction with the first Kolmogorov hypothekis forces, se¢12—-14. This is equivalent to the representation

o (1.3, in which the form of the scaling functiofi,(Mr) is
S,(r)=constx (er)"3f (Mr), 1.3 arbitrary. We note that the representati¢hs®) for any func-
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tions f,(Mr) imply the existence of scaling in the infrared the time differences increase. Of course, this effect is well

(IR) regionL,r>1 with definite “critical dimensions” known and has a simple physical interpretation as the trans-
port of turbulent eddies as a whole by the large-scale modes;
Ay=—-4,=1, A[S]=-n/3 (1.5  see[22]. Therefore, this effect is not ignored within the cor-

. rect RG formalism, as it is sometimes beliej@3,24], pro-

for any fixed value ofe. This means that the structure func- vided the RG is used beyond tlkeexpansion and is com-
tions (1.3) scale asS,—\A5S, upon the substitutio  bined with the OPE technique.
—AAMM, r—\2r (in general, the exponem[S,] is re- The analysis of thél dependence of Galilean invariant
placed by the critical dimension of the corresponding correquantities, such as the single-time structure functidng),
lation function; this dimension is calculated within theex-  requires the explicit construction of all dangerous invariant
pansion. It is this IR scaling that is analogous to the critical scalar operators, exact calculation of their critical dimen-
scaling in the theory of critical phenomena, where the role okions, and summation of their contributions in the corre-
an external scale is played by the correlation lerigthr ; sponding operator product expansidds6). This is clearly
seg[10]. In the RG approach, the critical dimensions like Eqg.not a simple problem and it requires considerable improve-
(1.5 arise as coefficients in the RG equations. The form ofment of the present technique.
the scaling functions is not determined by the RG equations In view of the difficulties encountered by the RG ap-
themselves, and therefore the anomalous exponents in Egroach to the SNS model it is tempting to apply the formal-
(1.4) arenot related to the critical dimensions of the func- ism to simpler models, which exhibit some of the features of
tions (1.1). real turbulent flows, but are easier to study. An interesting

As in the case of critical phenomept0], the dependence example is provided by the well-known Heisenberg model,
of the scaling functions on the argumemtr in the region see[l], Chap. 17, whose exact solution has recently been
Mr <1 is studied here using the well-known operator prod-rederived using the RG metho®5]. Unfortunately, the
uct expansioffOPE, or SDEshort distance expansipnsee  Heisenberg model does not involve higher-order functions
[12-17. According to the OPE, the scaling functions in ex- and is therefore not suitable for studying anomalous scaling.
pressions like Eq(1.3) are represented in the form Recently, much attention has been attracted by a simple
model of the passive advection of a scalar quantity by a
Gaussian velocity field, introduced by Obukh@®6] and
Kraichnan[27]; see[28—4( and references therein. It turns
out that the structure functions of the scalar field in this
Here Cr are coefficients regular iM, the summation is model exhibit anomalous scaling behavior analogous to Egs.
implied over all possible composite operatérsallowed by  (1.3), (1.4), and the corresponding anomalous exponents can
the Symmetry of the left-hand Side' aﬂd: are their critical be calculated eXp|ICIt|y within eXpanSionS in certain small
dimensions. In particular, only scalar Galilean invariant op-Parameter$31-34.
erators with nonzero mean value contribute to the OPE for The advection of a passive scalar fiedx)= 6(t,x) is

f(Mr)=Z Ce(Mr)2F,  Mr—o0. (1.6)

the structure functionél.1); see[12,15. described by the stochastic equation
In the theory of critical phenomena, all the nontrivial
composite operators have positive critical dimensions, Vib=voAo+f, V,=0,+v;d, 1.7

Ag>0, and the leading term in Eq1.6) is determined by

the simplest operatoF =1 with A=0, i.e., the function where g,=d/dt, 9,=0/x;, v, is the molecular diffusivity
f(Mr) is finite asM=r_"*—0, see[10]. It has long been coefficient,A is the Laplace operatoy(x) is the transverse
realized[13] (see also papers2,14-17) that the singular (owing to the incompressibilijyvelocity field, andf=f(x)
behavior of the scaling functions in the SNS model fdr is a Gaussian scalar noise with zero mean and correlator
—0 is related to the existence in the model of composite

operators witmegativecritical dimensions. These operators, (F)f(x"))=8(t—t")C(Mr), r=|x—x'|. (1.8
called “dangerous” in[13], should not be confused with IR

relevant operators considered [i8,19, whose existence The parametet =M~ is an integral scale related to the

can lead to the V|olat|o_n of the scall_ng regime. scalar noise, an€(Mr) is some function finite ag — .
Dangerous composite operators in the SNS model occyr

- . YWithout loss of generality, we tak€(0)=1 [the dimen-
or_1|y_ for finite value_s of_the .RG expansion pa_rameteand sional coefficient in(1.8) can be absorbed by appropriate
within the ¢ expansion it is impossible to decide whether or

not a given operator is dangerous, provided its critical di_rescallng of the field) and noisef].

I : . In a more realistic formulation, the fiel{x) satisfies the
mension is not found exactly using the Schwinger-type func'stochastic Navier-Stokes equation: see, é41]. Followin
tional equations or the Galilean symmetry; sg?,15— q : ahi g

17,19-21. Moreover, dangerous operators enter into th42b6_34]’ V\('EShaI.I cor(;sliie_zt; ?.S'mpl_'ILEd model in Whmhx()j
operator product expansions in the form of infinite families?eé&/osr a Laussian distrioution with zero average and cor-
with the spectrum of critical dimensions unbounded from

below, and the analysis of the smMI behavior implies the

summation of their contributions. Such a summation for the , o(t—t")

case of different-time correlators, first accomplished1ig] (vi(x¥)vj(x"))=Dg (2m)¢ f dkP;; (k)

(see als0[12,15)), establishes the substantioridl depen-

dence of the correlators and their superexponential decay as X (K?+m?) " 927 exqik- (x—x")], (1.9
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where Pij(k)zﬁij—kikj/k2 is the transverse projectok Ap=-2n(n—1)e/(d+2)+0(&?)
=|k|, Dy is an amplitude factor, @ is another integral )
scale, andl is the dimensionality of tha& space; 6<e<2 is =—2n(n—1)&/d+0O(1/d"). (112

a parameter with the regtKolmogorov”) valuee =4/3; ¢ ' _ .
=2— v in the notation 031,33, =« in the notation of We note thatA,= — p,,, in the notation of33], A,=—A in

[33], ande = y in the notation of34]. The relations the notation of 31], andA,=—A,, in [32].
Another quantity of interest is the local dissipation rate,
go=Do/vog=A® (1.10  E(X)=vo[d,0(x)d;6(x)]. The single-time correlation func-

) ) ) ) tions of its powers in the convective range have the form
define the coupling constagt (expansion parameter in the (32,34

perturbation theory, see Sec) lnd the characteristic UV

momentum scalé. (A=1/r4 in the notation 0f31,32). (EM(X)EM(x"))yoc (A1) " 2n=Sm(Mp)dnem (113
In the model(1.7)—(1.9), the odd multipoint correlation '

fpnctlons qf the sqalar .f'eld vanlgh, W.h"e th? even s'.ngle'whereA is defined in Eq(1.10 and the exponenta,, are

time functions satisfy linear partial differential equatlons.the same as in Eq1.11)

The solution for the pair correlator is obtained explicitly; it : B )

shows that the structure functid®, is finite for M,m=0 In this paper, we apply the RG and OPE approach devel

: . oped in[12-17,19-21,4lLto the model(1.7—(1.9). We
[27]. The higher-order correlators are not found explicitly, ; . .
but their asymptotic behavior fo—0 can be extracted show that the RG explains the origin of anomalous scaling

: - and allows the anomalous exponents to be calculated in the
from the analysis of the nontrivial zero modes of the corre-,

. . ) ; o form of a series in the parameter entering into the cor-
sponding differential operators in the limitdt/~ 0 [31,32 or | 1.8 Theref hi | in the R i
£—0 [33,34). It was shown that the structure functions are'c ator (1.8). Therefore, this parameter plays in the RG ap

- " . ; < proach a role analogous to that played by the parameter
finite form=0, and in the convective range>1/r>M they =4—d in the RG theory of critical phenomena, and the re-
have the form(up to the notation

sults obtained 133,34 can be interpreted as the first terms
S,n(1)=([(X) — H(X/)]2n>ocDanrn(27.e)(Mr)An, of the corresponding expansions.
(1.12) We have calculated the exponetds in the second order
of the & expansion for an arbitrary value of the space dimen-
with negative anomalous exponemts, whose first terms of sionalityd (they are given in Sec. lll In particular, we have
the expansion in #/[31,32 ande [33,34] have the form obtained

_n(n—1)e . n(n—1)e?

{2n[ 19— 66In(4/3)]+5—24In(4/3)} + O(&?)

n= 2 16
=—n(n—1)e/2+e2n(n—1)[0.00162—0.11903 + O( &%) (1.19
ford=2 and
2n(n—1)e 2n(n—1)e?
= ( 3 ) + (875) [2n(255m+/3— 1384 + 34573 — 1884+ O(£3)
=-2n(n—1)&/5+&°n(n—1)[0.01626—0.01533+ O(&>) (1.15
[
for d=3. pation rateE(x) and all its powers, their critical dimensions

Representations like Eq¢l.11), (1.13 can also be de- beingA,. Second, only a finite number of these operators
rived using the RG and OPE for any correlation function; ascontribute to the operator product expansidné) for any
an additional example, we consider the single-time pair corgiven correlation function, and the additional resummation
relators involving second-rank irreducible tensors of theof the serieq1.6), discussed above, is not required here: the

form leading term of the asymptotic behavior of the function
f(Mr) for Mr—0 is simply given by the contribution of the
d;00;0] 350956]"~?— 5[ 9509561"/d; “most dangerous” operator, i.e., that having the smallest
value ofA,,.
the special case=2 was considered previously |B82]. It was suggested ifi33] that the anomalous exponents

From the RG viewpoints, the modél.7)—(1.9) is simpler  describing the asymptotic behavior felr <1 can be related
than the “true” SNS model in at least two respects. First,to certain IR relevant interactions in a hypothetical RG ap-
dangerous operators in the mod#&l7)—(1.9) exist even for  proach, see also discussion[B2]. This is not exactly so: in
asymptotically small values of and therefore they can be fact, these exponents in the mod&l7)—(1.9) are related to
identified within thee expansion. These are the local dissi- the critical dimensions of certain “dangerous” composite
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operators in the operator product expansions for correspond- TABLE I. Canonical dimensions of the fields and parameters in
ing Green functions. It should be stressed that in the SN$e model(2.1).
model the behavior avir —0 will probably be determined

by additional resummations of the operator product expanE o o’ v v,ivg MMu gy 9
sions, which can lead to more exotic behavior than thedk 0 d 1 5 1 R 0
simple powerlike one in Eq$1.17), (1.13. d 12 12 1 1 0 o 0

The plan of our paper is the following. In Sec. Il, we 1 d+1 1 o 1 . 0

discuss the field theoretical formulation and UV renormaliza-_"
tion of the model(1.7)—(1.9) and derive the corresponding

RG equations with exactly known RG functiofige 8 func- The model(2.1) corresponds to a standard Feynman dia-
tion and the anomalous dimensjoithese equations have an 4r3mmatic technique with the triple vertexé’(vd)é and

IR stable fixed point, which establishes the existense of IR)5,e propagatoréin the momentum-frequency representa-
scaling with exactly known critical dimensions of the basicjgn,

fields and parameters of the model. In Sec. I, we discuss the

renormalization of various composite operators in the model (00" o=(0"0)=(—iw+ vok?) 1,

(1.7—(1.9. In particular, we present the second-order result

for the ¢ expansion of the quantity,,, the critical dimen- (00)=C(K)( w2+ vak*) 1

sion associated with the operatBf(x). In Sec. IV, it is

explained using the OPE that, at the same tiheplay the (6'6')9=0, (2.3

part of the anomalous exponents in relations like Efjd1),

(1.13. The results obtained are discussed in Sec. V. We alsghereC(k) is the Fourier transform of the functioB(Mr)
briefly mention there one of the possible modifications of thein Eq. (1.8) and the bare propagatéwv), is given by Eq.
model (1.7)—(1.9), that of a “slow”velocity field, in which  (1.9). The role of the coupling constant in the perturbation
the correlator(1.9) contains nos function in time. The RG  theory is played by the parametgg defined in Eq(1.10).
analysis shows that the Green functions in this model exhibit |t is well known that the analysis of UV divergences is
an anomalous scaling behavior, and the correspondingased on the analysis of canonical dimensions. Dynamical
anomalous exponents are calculated in the form of series imodels of the typ€2.1), in contrast to static models, are two

et+2. scale, i.e., to each quantify (a field or a parameter in the
action functional one can assign two independent canonical
Il. FIELD THEORETICAL FORMULATION, UV dimensions, the momentum dimensiﬂb and the frequency
RENORMALIZATION, AND RG EQUATIONS dimensiond?, determined from the natural normalization
conditions

The stochastic problenil.7)—(1.9) is equivalent to the
field theoretical model of the set of three fieldd df=—dt=1, d’=d*=0,d=df=0, d*=—d¢=
={6,6',v} with action functional
and from the requirement that each term of the action func-
S(®)=0'D 0" 12+ 0'[ — 3,0— (V) 6+ vo A 8] — VD, tvi2. tional be dimensionles@vith respect to the momentum and
2.1) frequency dimensions separatelgee[12,20. Then, based
' ondk andd?, one can introduce the “summedtotal) ca-
The first four terms in Eq(2.1) represent the Martin-Siggia- nonical dimensiordg = dk+2d¢ (in the free theoryg,=A).
Rose-type actiorj42—-45 for the stochastic problerfi.7), The dimensions for the modé2.1) are given in Table I,
(1.8 at fixed v, and the last term represents the Gaussiarincluding renormalized parameters, which will be considered
averaging over. HereD, andD,, are the correlator§l.8) later on.
and (1.9), respectively, the required integrations owver From Table | it follows that the model is logarithmithe
=(t,x) and summations over the vector indices are undercoupling constang, is dimensionlegsat e =0, and the UV
stood. divergences have the form of the polessdnin the Green
The formulation(2.1) means that statistical averages of functions.
random quantities in stochastic probléin7)—(1.9) coincide The total dimensiordg plays in the theory of renormal-
with functional averages with the weight esgb), therefore ization of dynamical models the same role as does the con-
generating functionals of tota[G(A)] and connected Vventional(momentum dimension in static problems. The ca-
[W(A)] Green functions of the problem are represented bywonical dimensions of an arbitrary 1-irreducible Green

the functional integral functionT'=(® - - - ®),; are given by the relations
dF:d_ Nodg ,
G(A)zexpW(A)zf DD exd S(d)+AP] (2.2
df*o: 1- N(I,d&),,
i i =A0 A0 i i
with arbitrary source®A\=A? A” |AV in the linear form dr=d¥+2d§’=d+2—N¢d¢, 2.9

whereNg={Ny4,N,,N,} are the numbers of corresponding

= 0 6’ ’ v )
Aq)_f dXAT) 00) +AT ()07 (x) T A (X)vi(X) ] fields entering into the functiol’, and the summation over
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all types of the fields is implied. The total dimensidp is  (the dots stand for other arguments like coordinates and mo-
the formal index of the UV d|Vergence SUperflClal UV di- menta We use’D to denote the differential Operatw&
vergences, whose removal requires counterterms, can Rgr fixed bare parametegi) vy and operate on both S|des of
present only in those functionE for which dr is a non-  Eq. (2.6) with it. This gives the basic differential RG equa-

negative integer; see, e.§8,9]. tion:
Analysis of divergences should be based on the following
auxiliary considerations: DrcWR(g,v,u, ...)=0,
(1) From the explicit form of the vertex and bare propa-
gators in the mode2.1) it follows that N, —N,=2N, for Dre=D,+B(9)d4— v.,(9)D,, 2.7

any 1-irreducible Green function, wheMy=0 is the total ) _

number of the bare propagatdi®6), entering into the func- Where we have writteDs=sd; for any variables, and the
tion (obviously, no diagrams witiN,<O can be con- RG functhns(the,B function and the anomalous dimension
structed. Therefore, the differench,, —N, is an even non- ) are defined as

negative integer for any nonvanishing function. ~ ~

(2) If for some reason a number of external momenta Y(@)=D,nZ,, B(g)=D,g=9[—e+vy,]. (2.9
occur as an overall factor in all the diagrams of a given
Green function, the real index of divergendg is smaller
thandr by the corresponding number of unitiehe Green
function requires counterterms onlydf. is a non-negative
integey.

In the model(2.1), the derivatives at the vertexd’ (vd) 6
can be moved onto the fiell by virtue of the transversality
of the fieldv. Therefore, in any 1-irreducible diagram it is
always possible to move the derivative onto any of the ex-
ternal “tails” 6 or @', which decreases the real index of ;
divergence:d;=dr—Ny— N, . The fieldsg, 6’ enter into
the counterterms only in the form of derivatives, 76’. g(d—1)Cy

From the dimensions in Table | we firdy=d+2—N, 2=l (2.10
+Ny—(d+1)N,y and dp=(d+2)(1—N4)—N,. From
these expressions it follows that for adysuperficial diver- where we have written C4=S4/(2m)¢ and S
gences can exist only in the 1-irreducible funCtiOHSEZﬂ-d/Z/]"(d/z) is the surface area of the unit sphere in
(0'0---6) with Nyy=1 and arbitrary value oiN,, for d-dimensional space.
which dr=2, dr=0. However, all the functions witiN, The one-loop approximatio(®.10 for the constang,, is
>N, vanish(see aboveand obviously do not require coun- in fact exact, i.e., it has no corrections of ordér g%, and so
terterms. We are left with the only superficially divergenton. Indeed, from the explicit form of the vertex and the bare
function (8’ 6); the corresponding counterterm must containpropagator1.9), (2.3) it follows that any multiloop diagram
two symbolsd and is therefore reduced @A 6. Inclusion  of the 1-irreducible function(6’6) contains effectively a
of this counterterm is reproduced by the multiplicative renor-closed circuit of retarded propagatgi@6’), and therefore
malization of the parametery), v, in the action functional vanishedqit is also important here that the propagatov),
(2.1 with the only independent renormalization const@pt  in Eq. (1.9) is proportional to thes function in timd.

From the definitiong2.8) using Eq.(2.10 we find exact

The relation betweerB and vy results from the definitions
and the last relation in E@2.5). In general, if some quantity
G is renormalized multiplicativelyG=ZsGR, it satisfies the
RG equation of the form

[Dret v6(9)IGR=0, 7s(9)=D,nZs (2.9

with the operatoDgg from Eg. (2.7).
Explicit calculation of the constart, in the model(2.1)
in the one-loop approximation gives

vo=vZ,, Qo=0u°Zg, zg:z;l_ (2.5 expressions for the basic RG functions:
Here u is the renormalization mass in the minimal subtrac-  , (g)= w B(g)=g| —&+ W}
tion schemgMS), which we always use in what follows, 2d 2d
and v are renormalized analogs of the bare parameggrs (2.1)

and vy, andZ=2(g,¢,d) are the renormalization constants.

. C From Eqg.(2.1]) it follows th n IR-attractive fix in
Their relation in Eq(2.5) results from the absence of renor- ° a.(2.11 it follows that a attractive fixed point

malization of the contribution witD, in Eq. (2.1), so that 2de

Do=ggvo=9gu’v; see Eq(1.10. No renormalization of the O =m (2.12
fields and “masses” is required, i.eZg=1 for all & and d

Me=m, Mo=M, Z,=2y=1. f the RG equation$B(g,)=0, B'(g,)=¢>0] exists in

Since the fields are not renormalized, their renormalize
Green functionsWR coincide with the corresponding un-
renormalized function®W=(®- - -®) (for definiteness, we

he physical regioy>0 for all e>0. The value ofy,(g) at
the fixed point is also found exactly:

discuss the connected functignthe only difference is in the Y =v,(0,)=¢, (2.13
choice of variables and in the form of perturbation the@ny :
g instead ofgo): without corrections of ordes?, £2, and so on.

It is well known that the leading term of the IR
WR(g,v, i, ...)=W(gg,vg, - ..) (2.6 asymptotic expression of any renormalized quar®8; for
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which the RG equation of the forf2.9) is valid, satisfies the (2.16), (2.17) can be found only up to some unknown func-
same equation with the substitutigr-g, , whereg, isthe tion of all the first integrals, including those of the form
IR stable fixed point: mr,Mr, Wherer=|xi—x]-| is some coordinate difference.
The anomalous exponents in the expressidngl), (1.13
[D.—v5D,+v81GR=0, ¥5=75(ds). (219  describe the behavior of the corresponding correlation func-
tions for Mr—0, and therefore araot related to the their
critical dimensiong2.19.
In terms of unrenormalized variables, the solution of the
GR=0, set of equationg2.19, (2.17) for the example of a single-
time pair correlation function can be found, apart from nu-
(219 merical factor, in the forn{ffor more details, see, e.412])

in which a={t,x,u,v,m,M,g} is the set of all arguments of

GR (t,x is the set of all times and coordinateandd® and G GR=DYSA ~76r ~def(Mr,mr), (2.21)
d® are the canonical dimensions 6f and . Substituting 0

the needed dimensions from Table | into E.15), we ob-

Canonical scale invariance is expressed by the relations

GR=0,

S dip,-d

; dz)’Da_ dg

with certain, as yet unknown, scaling functién

tain In what follows we limit ourselves to the correlation func-
[D,+ Dm+DM_2DV_DX_dé]GR:01 tions of the form(1.11), (1.13, which are finite form=0;
seg[31-34. We shall always seh=0 and study the depen-
[D,,—Dt—d(“g]GRzo. (2.16 dence of the scaling functiofgMr)=f(Mr,mr=0) on the

only remaining argumentr in the asymptotic regioMr
Each of the equation$2.14—(2.16) describes scaling <1. This can be performed within the framework of the
with dilatation of all variables, the derivatives with respect togeneral solution(2.21) of the RG equations with the aid of
which enter into the differential operator. We are interestedhdditional methods; see Sec. IV.
in scaling with dilatation oft,x, and “masses”M,m for
fixed u,v, andg, and it is necessary to exclude the corre-
sponding derivative®, by a combination of the available
equations. After eliminatin@®,, andD, from Eqgs.(2.14) and
(2.16 we obtain the desired equation of critical IR scaling  The quantities entering into the left hand sides of Egs.
for the model(2.1): (1.12), (1.13 are two-point correlation functions of compos-
ite fields(composite operators in quantum-field terminolpgy
[~ Dyt AD+ApDmt AyDy—46]G"=0 (2.17 rather than multipoint correlators of the primary fields. In
what follows, we use the term “composite operator” for any
local (unless stated to be otherwjsaonomial or polynomial
A=—A,=—2+y*=-24+¢, Ap=Ay=1 constructed from primary fields and their derivatives at a
(2.18  single pointx=(t,x). Examples ar@"(x), [ d; 6(x)d; 6(x)]",
3;0(x)9;0(x), 0" (x)V6(x), and so on.
and Since the arguments of the fields coincide, correlation
_ K o % functions with these operators contain additional UV diver-
A[G]=Ag=dg+A,ds+ 7s, (2.19 gences, which are removed by additional renormalization
procedure, see, e.g.9]. For the renormalized correlation

which are the corresponding critical dimensions. In particu- : . ; . i
lar, for any correlation functiom;szRz(CD- ..®) of the functions standard RG equations are obtained, which de

fields d we haveA ~— Na A with the summation over all scribe IR scaling with definite critical dimensionAg
G™ [OXaX = H o 1] H _
fields ® entering intoGR, and forAg using the data from ALF] of certain "basis™ operatoré'. Owing to the renor

- ) malization,A[ F] does not coincide in general with the naive
Table | and the' exact value of, —e we obtain from Eq. sum of critical dimensions of the fields and derivatives en-
(2.19 the following exact expressions:

tering intoF.
Am=leg. A=—14e/2. Ao=d+1l—g/2 Detailed exposition of the renormalization of composite
Y ' o ’ o (2.20 operators for the stochastic Navier-Stokes equation is given
' in the review papefl2] (see alsg13-17,19-2]). Below
[we recall that the fields in the mod@.1) are not renormal- we confine ourselves to only the necessary information.
ized and therefore/q,=0 for all ®]. In general, composite operators are mixed in renormaliza-
To avoid misunderstandings, we again emphasize the fadion, i.e., an UV finite renormalized operatéf has the form
that the RG equatiori2.17 describes IR scaling, i.e., the FR=F+ counterterms, where the contribution of the coun-
statement that is equivalent to the critical scaling in theterterms is a linear combination &f itself and, possibly,
theory of critical phenomena; see also discussiofili)13. other unrenormalized operators that “admix’” foin renor-
In this scaling the variables!, m are also IR relevant, i.e., malization.
they are dilated in scale transformations. In other words, the LetF={F,} be a closed set, all of whose monomials mix
expression(2.17) describes the asymptotic behavior 4s  only with each other in renormalization. The renormalization
>1 for any fixed values oMr andmr, with the UV scaleA matrix Zg={Z,z} and the matrix of anomalous dimensions
defined in Eq.(1.10. The solution of the set of equations yg={7v,p} for this set are given by

Ill. RENORMALIZATION AND CRITICAL DIMENSIONS
OF COMPOSITE OPERATORS

with the coefficients
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- an extra factor in the diagram, and, consequently, the real
Fo=2, ZogFS.  ve=Z7'D,Ze, (3.)  index of divergence is necessarily negative; see Sec. Il.

A This means that the operatéf requires no counterterms
at all, i.e., it is in fact UV finite,"=2Z[ "]R with Z=1. It
then follows that the critical dimension @f"(x) is simply
r%iven by the expressiof2.19 with no correction fromyg
and is therefore reduced to the sum of the critical dimensions
é)f the factors:

and the corresponding matrix of critical dimensioAs
={A .z} is given by Eq(2.19, in which df, d¢, anddr are
understood as the diagonal matrices of canonical dimensio
of the operators in questiofwith the diagonal elements
equal to sums of corresponding dimensions of all fields an
derivatives constituting=) and y*=1v(g,) is the matrix A[6"]=nA[0]=n(—1+¢/2). (3.9
(3.2) at the fixed point.

Critical dimensions of the s&&={F,} are given by the
eigenvalues of the matridg. The “basis” operators that
possess definite critical dimensions have the form

We note that this relation was not cleampriori and it is a
specific feature of the modé2.1). For example, in the stan-
dard modelp* of the theory of critical phenomena, the criti-
cal dimensions of the fielep and the composite operatof€
and ¢* are completely independent, and they determine in-
FR=2 U, 4F5 (3.2  dependent critical exponents, v, and w; see, e.g.[10].
B The relation analogous to E(B.4) is valid for the powers of
. . , 1. the velocity field of the stochastic Navier-Stokes equation,
where the matriXyg ={U s} is such thal g =UeAeUr IS \yhare it is a consequence of the Galilean symmetry of the

diagonal. _ model; see, e.g[12,13,15.
In general, counterterms to a given operatoare deter- Now let us turn to the operatos,=[d;64;6]" with dg
mined by all possible 1-irreducible Green functions with onezoy d2=—n. They enter into the left-hand sides of Egs.

operator F and arbitrary number of primary fields (1.13 and, as we shall see in Sec. IV, it is their critical

:<F(X)(.I)(X1)' ] 'q.)(XZ»' The total canonical dimension g ongions that determine the anomalous exponents in Eq.
(formal index of divergendefor such functions is given by (1.1D and(1.13.
dr=de—Ngdg, (3.3 In this case, from Table I in Sec. Il and E&.3 we have
dr=N,—N,—(d+1)N,, with the necessary conditioN,,
with the summation over all types of fields entering into the<2n, which follows from the structure of the diagrams. It is
function. For superficially divergent diagrand; is a non-  also obvious from the analysis of the diagrams that the coun-
negative integer; cf. Sec. Il. terterms to these operators can involve the figldg’ only
Let us consider operators of the foréfi(x) with the ca- in the form of derivativesgg, 9¢', and so the real index of
nonical dimensiord-= —n, entering into the structure func- divergence has the formdi=dr—Nyz—Ny=—N,—(d
tions(1.11). From Table | in Sec. Il and Ed3.3) we obtain  +2)N,. It then follows that superficial divergences exist
dr=-n+Nyz—N,—(d+1)N,, and from the analysis of the only in the Green functions wittN,=N, =0 and anyN,
diagrams it follows that the total number of fieldentering <2n, and the corresponding operator counterterms are re-
into the functionl’ can never exceed the number of the fieldsduced to the forn¥, with k<n. Therefore, the operatoFs,
0 in the operator" itself, i.e.,N,<n. Therefore, the diver- can mix only with each other in renormalization, the corre-
gence can only exist in the functions with,=0, N, =0,  sponding infinite renormalization matr&:-={Z,,} is in fact
and arbitrary value oh=N,, for which the formal index triangular,Z,,=0 for k>n, and the critical dimensions as-
vanishes,dr=0. However, at least one o, external sociated with the operatofs, are determined by the diago-
“tails” of the field # is attached to a verte®'(vd)0 (itis  nal elementZ,=Z,, (in contradistinction with the case of
impossible to construct nontrivial, superficially divergent operatorsg", they are not equal to unity here
diagram of the desired type with all the external tails at- Explicit calculation of the constang, in the MS scheme
tached to the vertek), at least one derivativé appears as in the two-loop approximation gives

S1_ _u n(d-1)(d+2n) u_zn(n—l)(d—1)2(d+2n)(d+2n+2)+u_2 n(in—-1)(d—1) [—(d+4)(d+1)
T 2 d(d+2) 8e2 d2(d+2)2 2e d2(d+2)%(d+4) (d+2)

(d+1)(d+3n-2)
(d+4)

+3(d—1)(d+2n)h,(d)/4— hy(d) [+0(ud), 3.9

where we have writtem=gC, with the coefficientC4 from Eq.(2.10), and
h.(d)=F(1,1d/2+2,1/4),
h,(d)=F(1,1d/2+3,1/4)=h,(d+2), (3.6

whereF (- - -) is the hypergeometric serié¢see, e.9.[46]):
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ab a(at+1)b(b+1) 22

F(a,b,c,z)=1+ ?z+ e+ D) 2!+-~~. (3.7
From Egs.(3.6) and(3.7) it follows that
“ kIT(d2+2
ha(d)= > ( ) ha(d)=h;(d+2). (3.9

k=0 4k0(d/2+2+k)

Representation€3.8) are convenient for numerical computations of the functiopgd).
From Eq.(3.5 for the anomalous dimensiothT)Mann in the two-loop order we obtain

un(d—1)(d+2n) u’n(n—1)

MW= " oq@r2y T dd+2)dr )
(d+4)(1-d*) 3(d—1)*(d+2n) (d>~1)(d+3n-2)
8 d(d+2)2 T 4dd+2) U™ Gd+2)(d+ 4) h,(d) | +0(u®), (3.9

and for the corresponding critical dimensiag at the fixed point2.12) using(2.19 anddg[F,]=0, dg[F,]=—n (see Table
I) we have

Ay=ne+yr=— 2N De sn(n—1) — 4(d+1)(d+4)2+3(d— 1)(d+2)(d+4)(d+2n)hy(d
e G gl A DG - 1A 2@+ A 2mhy(@)
—4(d+1)(d+2)(d+3n—2)hy(d) ]+ O(&?). (3.10

Expression3.10 is simplified for any integer value af  that a given order of the d/expansion is contained com-
owing to the fact that the series in E@.7) reduce to finite pletely in the corresponding order of theexpansion, but not
sums; se¢46): the reverse. We also note that thelependence of the quan-
tity A, in the second order of the expansion is no longer
reduced to the simple facton(n—1).

The resultA;=0 in Eq.(3.10 is in fact exact, in agree-
ment with the exact solution for the two-point structure func-

(31D tion obtained in[27]. Within the RG approach this can be
for any even value ofl and demonstrated using the Schwinger equation of the form

d2+1

_ k—2
(—3)%2n(413)+ >, (—3)

hi(d)=2(d+2) 2, d2—k+2

f DO I 9(x)exp Se(P)+AD]/ 56" (x)=0 (3.13

hi(d)=2(d+2)| (—1)@* V232 15

(in the general sense of the term, Schwinger equations are
any relations stating that any functional integral of a total
(3.12 variational derivative is equal to zero; see, e.g., Sec. 7 of
[47]). In Eqg. (3.13, Sg is the renormalized analog of the
for any odd value ofl, which ford=2 andd=3 gives the action (21), and the notation introduced |(22) is used.
results announced in Eql.14), (1.15. Equation(3.13 can be rewritten in the form
We explain in Sec. IV that the critical dimensions, , 2 2
from Eq. (3.10 are nothing else than the anomalous expo- (0D b=V 021+ vZ, AL 6°/2] = vZ,F1))a
nents entering into relatiord.11), (1.13), and here we only =—Ay SWR(A)/5A,. (3.14
note that the first order ie of the expressior{3.10 coin-
cides(up to the notatiohwith the result obtained ifi33] for HereD, is the correlatof1.8), {{- - - ))a denotes the averag-
n=2 and in[34] for arbitraryn, and that the first term of the ing with the weight exjS;(®)+Ad], Wy is determined by
expansion in I of the expressioi3.10 coincides with the Eq. (2.2) with the replacemens— Sz, and the argument
result (1.12) obtained in[31,37. We also note that the? common to all the quantities in E¢3.14) is omitted.
term of the expressiof8.10 behaves as df for 1/d—0 and The quantity((F))a is the generating functional of the
therefore gives no contribution to the first order of thd 1/ correlation functions with one operatérand any number of
expansionthis follows from the relatiorh,(d)=h,(d+2) fields ®, therefore the UV finiteness of the operaféris
=1+0(1/d), which is obvious from Eq(3.8)]. This fact equivalent to the finiteness of the function@F)),. The
suggests that the expansion for the dimensiofi,, in the  quantity in the right hand side of E¢3.14) is finite (a de-
model(2.1) is “better” than the 1d expansion in the sense rivative of the renormalized functional with respect to finite

(d+1)/2 (— 3)(d+1)/2—k
+2 —_—
=1 2k—1
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argumenk, and so is the operator in the left-hand side. Our=nA[E] for the powers of the dissipation rate was proposed
operatorF; does not admix in renormalization to the opera-in [48]. It was explained later ifi17], that this relation can-
tor 8'D 46 (F, contains too many fieldg), and to the op- not be considered reliable, and here we only note that even
eratorsV,[ 6%/2] and A[ 6%/2] (they have the form of total for the simple Obukhov-Kraichnan model, the critical di-
derivatives, andF; is not reduced to this forinOn the other mension ofE" is not a linear function im, see Eq(3.10), in
hand, the operata#’ D ,0 does not admix td=; (it is nonlo-  contradistinction with the powers of the field itself, Y8e4)
cal, andF, is loca), while the derivativesV,[ 6?/2] and and[12,13,15 for the case of the SNS model.
A[ #%/2] do not admix toF; owing to the fact that each field Critical dimensions of various tensor operators of the
¢ enters in the counterterms of the operatBfsonly in the ~ form d; 6(x)- - -d; 6(x) can also be calculated in the second
form of derivatived (see above Therefore, all three types order of thes expansion from the same two-loop diagrams,
of operators entering into the left-hand side of E2]14) are  which determine the constant3.5); only the symmetry co-
independent, and they must be UV finite separately. efficients differ from those for scalar operators. We shall
Since the operatorZ F, is UV finite, it coincides with  confine ourselves to the second-rank irreducible traceless
its finite part, i.e.»Z,F,=vFY, which along with the rela- tensors of the form
tion F,=Z,F% givesZ,=Z,* and thereforey,= —vy,. For
the critical exponent\;=¢+ y; we then obtaim ;=0 ex- F{}Eai 09;0F,_1— 6;Fn/d, (3.1
actly (we recall thaty’ =, see Sec. )l
In the SNS model, critical dimensions of certain compos-whereF, are the scalar operators discussed above. The op-
ite operators can sometimes be obtained exactly using varerators(3.15 mix only with each other in renormalization,
ous Schwinger equations and Ward identities for Galilearihe corresponding renormalization matrix is triangular and its
transformations; sel2—17 and[19-21]. In particular, ex- diagonal elements determine the corresponding critical di-
act critical dimension of the energy dissipation r&{e) was  mensionsA /. In the second order of the expansion we
found in [20], see also[21]. The simple relationA[E"] have obtained

proflddy=2nn-1d-1)] &*n(n-1) —A(d+1)(d+4)2Py+3(d—1)(d+2)(d+ 4
h= d-Dd72) A1) ds 2l A DT )P (d-1)(d+2)(d+4)
X (d+2n)hy(d)P;—4(d+1)(d+2)(d+3n—2)hy(d)P,]+O(e?), (3.1
|
where we have written dimensionsdg=2ndg=—n, Ar=2nA,=n(—2+¢). Then

from Eq.(2.21) with m=0 it follows that

P oD@ San(1)=Dg " (M), (3.18
d(d+1) with certain, as yet unknown, scaling functiohgMr).
P;=1 The nth power of the dissipation rate is represented as a

_ - - ,
n(d—1)(d+2n) finite linear combination of basis operat@8s2) with definite

critical dimensionsA,=ke+ y; given in Eq.(3.10, with

P.—1_ d(2d—1) (3.17) the necessary conditido=<n. Therefore, for the pair correla-
2 2n(d—1)(d+3n—-2)°’ ) tors (1.13 of the powers of the dissipation rate we obtain
from (2.21):
and the functions; ,(d) are defined in Eq(3.6).
We note that the expressioi3.16 for n=1 coincides (E"X)EM(X")y=vg " ™(Fo(X)F (X))
with the first two terms of the expansion inof the exact 0om
result obtained if31] (we explain below that the guantity =SS (Ar)-4Af, (M
A corresponds té— y in the notation of31]). For the case = (Ar) kI(Mr),

of the SNS model, critical dimensions of irreducible tensor
operators are studied, for example [i6].

Since the critical dimensions of the operata#$ and
(36)" have been found, we can use the general expressioith certain scaling function$, ((Mr) and the UV scale\
(2.21) in the case of the structure functiofis.1) and pair defined in Eq.(1.10. The leading term of the asymptotic
correlators(1.13. behavior of the expressiaf3.19 in the IR regionAr>1 is

The structure functioﬁzn(r):<[0(x)_ g(x’)]2n> is rep_ given by the Contl’ibution W|th m|n|mak+ A| y i.e.,
resented as a sum of pair correlatg(x)*(x’)™ with
fixed value ofk+m=2n and equal canonical and critical (E“(x)Em(x’)):(Ar)*An*Amfn,m(Mr). (3.20

(3.19
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We note that the structure functioi3.18 and the cor-
relator(3.20 for n=m=1 are independent of the diffusivity
coefficient, or, equivalently, of the UV scale (we recall
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The renormalized correlatd,(x;)F»(X,)) is obtained
by averaging Eq(4.1) with the weight exi5z, the quantities

(FRy=M4pfaa (g,M/u) involving dimensionless func-

thatA,=0). This statement is an analog of the second Kol+jons a,(g,M/u) appear on the right-hand side. Their

mogorov hypothesigindependence of the viscosity coeffi-
cient in the inertial and energy-containing rangies the real
fully developed turbulence; see, e.gl] and[2]. Within the

RG approach to the SNS model, the second Kolmogorov

hypothesis was established[ib3], see alsd12,14.
Expressions lik€3.18), (3.20 can easily be written down

asymptotic behavior foM/u—0 is found from the corre-
sponding RG equations and has the form

(FayxMAe. 4.2

for any single-time pair correlator, provided its canonical and=rom the operator product expansighl) we therefore find

critical dimensions are known. Let us give two more ex-
amples. For the second-rank irreducible tenddfs- vyF;,
with the operator$=|, given in Eq.(3.15 we obtain(drop-
ping the vector indices

_ n+m
_VO

(EA()ER(X")) (FA)F (X))

=(Ar)"4 " Anfr (Mr), (32D

and for the mixed correlator of the scalaf and the tensor
E, we have

n

=g (Fa()Fp(x))

=(Ar) S0 Anfl (M),

(E"OOER(X"))
(3.22

with the dimensions\,,, A}, given in Eqs(3.10), (3.16 and
certain scaling function$; (Mr), f: (Mr) (the prime is
not a derivative hepe

IV. OPERATOR PRODUCT EXPANSION
AND ANOMALOUS SCALING

From the viewpoint of the renormalization group, the ex-
pressiong2.21) and(3.18—(3.22 for any functionsf(Mr)
correspond to IR scaling in the regitreM 1, r>1=A"1
for an arbitrary fixed value oMr, with definite critical di-
mensionsAg . The inertial rangé<r<L corresponds to the
additional conditionMr <1, and representations likg.11)
and (1.13 should be understood as certain additional state
ments about the explicit form of the leading terms of the
asymptotic behavior foMr—0.

In the theory of critical phenomena, the asymptotic form
of scaling functions forM—0 is studied using the well-
known Wilson operator product expansié@PE); see, e.g.,
[9,10]. The analog of =M "1 is there the correlation length
r.. This technique is also applied to the theory of turbulence
see, e.g.[12,13.

According to the OPE, the single-time product
F1(x1)F,(x,) of two renormalized operators at=(x;
+X,)/2=const, and =x;—X,—0 has the representation

F1(X)Fa(X) =2 Cu(r)FR(X.Y), (4.1)

in which the function<C,, are the Wilson coefficients regular
in M?2 andEEf are all possible renormalized local composite
operators of the typ€3.2) allowed by symmetry, with defi-
nite critical dimensiong\ , .

the following expression for the scaling functidMr) in
the representatio(R.21) for the correlator F(x;)F»(Xy)):

f(uy=>, A (u)ude, u=Mr, (4.3

with coefficientsA,, which are regular inu2, generated by
the Wilson coefficient€ , in (4.1), which are regular itM?.

The leading contributions fou—0 are those with the
smallest dimensiom\, and in thee expansions they are
those with the smallest,=d[F ] for e=0. We shall term
the operators with\ ,<0, if they exist, dangeroyd42,13, as
they correspond to contributions to Eg.3) that diverge for
u—0.

In the standard mode#* of the theory of critical behavior
[10], there are no problem of dangerous operators within the
& expansions, because in that model=n,+O(¢g), where
n,=0 is the total number of fields and derivativesFi} .

The operatoF =1 has the smallest value,=0, but it gives

a contribution to Eq(4.3) that is regular inu? and has a

finite limit asu—0. The first nontrivial contribution is gen-

erated by the operatos? with n,=2, it has the form
2+0(2) and only determines correction to the leading term

generated by the operatbr=1, which vanishes ai— 0.

We note that for a Galilean invariant product
F1(x1)F2(X,), the right-hand side of Eq4.1) can involve
any Galilean invariant operator, including tensor operators,
whose indices would be contracted with the analogous indi-
ces of the coefficient€ ,. Without loss of generality, it can
be assumed that the expansion is made in irreducible tensors
(see Sec. lll for examplgsso that only scalars contribute to

the correlato F,F,) because the averagés?) for nonsca-

lar irreducible tensors are zero. For the same reason, the
contributions to the correlator from all operators of the form
JF with external derivatives vanish owing to translational
invariance.

" In our case, contributions from the operators l&ewith
negativedg are also forbidden by the invariance of the cor-
relators(3.18—(3.22 with respect to the shif(x)— 6(x)
+const of the fields.

The leading terms of the asymptotic behavior of the scal-
ing functions in Eq.(3.18—(3.22 for Mr—0 are therefore
determined by the scalar operatdts=[0d;63;0]" with the
minimal canonical dimensiod:=0; see Sec. Ill. From the
analysis of the diagrams it follows that the number of the
fields @ in the operatofF,, entering into the right-hand sides
of the expansion§4.1) can never exceed the total number of
the fields @ in their left-hand sides. Therefore, only a finite
number of operatorE, contributes to each operator product
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expansion in the mod¢R.1), and the asymptotic form of the dimensionsA,,, A}, entering into Eqs(3.18—(3.22), (4.4)—
scaling functions in Eqg3.18—(3.22 for u—0 is given by  (4.6) have been calculated in the second order of shex-
the expression pansion[see Eqgs(3.10, (3.16)], while the critical dimen-
sions of the model parameters, primary fields, and their
N powers have been found exactly; see E@18), (2.19,
f(u)=2 Coutnt---, (44 (2.20, and(3.4).

n=0 It should be stressed that the asymptotic expressibbs
whereN is the total number of the fieldg in the left-hand (-6 result from the fact that the critical dimensiong are
sides,C,=C,(s,d) are numerical coefficients, and the dots Negative and thaiA ;| increases monotonically with. This
stand for corrections of ordar?*©() vanishing asu—0. IS obviously so within the: expansion, in which the sign and
The leading term fou—0 is determined by the operator the n dependence of the dimensions are determined by the
with minimal A,,, i.e., with maximaln [owing to the fact first-order terms, while the higher-order terms are treated as
that the dimensiom\,, within the ¢ expansion decreases Small corrections. However, for finite values®the higher-
monotonically withn, see Eq.(3.10]. As a result, for the order terms can, in principle, change these features of the
scaling functionf, in the representatio(8.18 for the struc- ~ dimensions. Indeed, the® contribution in the second-order

ture functionS,,, we obtain approximation forA, is positive [see, e.g., Egs(1.14),
A (1.19], and soA, becomes positive provided is large
fp=constxu®r for u—0, (4.9 enough. Of course, this conclusion is based on the second-

order approximation of the expansion and is therefore not
reliable: higher-order terms of theexpansion contain addi-
tional powers ofn, and the correct analysis of the large
behavior of the dimensions, requires resummation of the
series with the additional condition tha¢ =1, but we know

of no model in which such a resummation has been per-

and for the correlatore3.20—(3.22 we have

fom, i

nme frm=constxufntm  for u—0

(4.6

with the critical dimensiona,, given in Eq.(3.10. formed
Therefore, we have derived expressiofisll), (1.13, : ) )
and relate the corresponding anomalous exponents to the 1€ comparison of Eq43.18§—(3.22, (4.5), (4.6) with
critical dimensions of the composite operat&¥Xx). the corresponding expressions if81-34 shows that
A,=—p,, in the notation of(33], A,=—A, Aj=y—4in
the notation of 31], andA,= —A,, in the notation of 32];
our results forA,, A/ are in agreement with the results
We have shown that the renormalization group combinedbtained in[31-34 for the structure functions,,(r) and
with the operator product expansion establishes the existendbe pair correlatorg3.20, and in[31] for the correlators
of anomalous scaling in the moddl.7)—(1.9) for the advec- (3.2, (3.22 with n=m=1 within the first order of the
tion of a passive scalar by a Gaussian velocity field andexpansions ire and 14.
allows the corresponding anomalous exponents to be calcu- It is noteworthy that the set of scalar operatdfg
lated in the form of series ia. =[d;09,6]" is “closed with respect to the fusion” in the
The distinguishing feature of the mod@l.7)—(1.9) that  sense that the leading term in the OPE for the pair correlator
explains the origin of the anomalous scaling is the existencéF ,F,,) is given by the operatd¥f,,, ,, from the same family
of dangerous composite operators witegativecritical di-  with the summed index+m; see Eqs(3.20, (4.6). This
mensions. They dominate the asymptotic behavior of thdact along with the inequalith,+ A > A, ., Which is ob-
scaling functions and lead to singular dependence of the cokdous from the explicit expressions fax,, can be inter-
relation functions on the IR scaM for M—0, in contrastto  preted as the statement that the correlations of the local dis-
the standard models of critical phenomena, in which all thesipation rate in the model1.7)—(1.9) exhibit multifractal
nontrivial operators have positive critical dimensions andbehavior; se¢49] and[50]. We note that the same relation
only determine vanishing corrections to the leading finiteensures the fulfillment of the Hider inequality for the struc-
contribution from the simplest operatbr=1; see, e.g/[10]. ture functions(1.11).
In contradistinction with the SNS model, the dangerous op- An important question is that of the universality of
erators in the modell.7)—(1.9) occur already for asymptoti- anomalous exponents, see d3p]. It is clear from the RG
cally small values ofe and only a finite number of these analysis, that the exponents, do not depend on the choice
operators contribute to operator product expansion for angf the correlator(1.9) (this correlator does not enter at all
given correlation function. into the UV divergent diagrams which determine renormal-
The set of expression€3.18—(3.22, (4.4—(4.6) gives ization constanis and that they are insensitive to the specific
the complete description of the IR asymptotic behavior of thform of the IR regularization in the correlat6t.8) (renor-
Green functions in the modél.7)—(1.9): Equations(3.18— malization constants do not depend on the choice of the IR
(3.22 describe the asymptotic form of the structure functionsregularization; see, e.d9]). However, the anomalous expo-
and pair correlators in the IR regidnr>I=A and deter- nents can change if the functigift—t’) in the correlator of
mine their dependence on the UV scalewhile Egs.(4.49—  the velocity field is replaced by some function with finite
(4.6) give the asymptotic form of the corresponding scalingwidth, i.e., the velocity field has small but finite correlation
functions upon additional restrictiobir<1 and determine time [36]. The RG approach to this problem will be pre-
the dependence on the IR scdleeM 1. All the critical  sented elsewhere, and here we only mention another possible

V. DISCUSSION AND CONCLUSION
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modification of the mode(1.7)—(1.9), that of a “slow” ve-  The expression$l.13 remain valid with the replacement

locity field. In this case, the functiof(t—t") in Eq.(1.9is A A . We note that the velocity field with the dimension
replaced by the unity, so that the velocity correlator is timeA[v]:l—Elz becomes dangerous far>2 [which corre-

independent. . . . :
The RG analysis can be directly extended to this model tosponds to the IR divergence of the integral in 9 with

prove that its Green functions also exhibit anomalous scalin =0], and so become all its powers. However, these opera-

behavior and the corresponding anomalous exponents can s are not Galilean invariant and therefore give no contri-
. LT o . bution to the operator product expansions of the structure
calculated in the form of series w=¢+2. The critical di-

) ~ ~ functions and correlatordl..13.
mensionsA ,=2—¢/2, A )= — 1+ ¢/4 are found exactly, and
for the structure functions defined in E¢L.11) we have
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