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Renormalization group, operator product expansion, and anomalous scaling
in a model of advected passive scalar
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Field theoretical renormalization group methods are applied to the Obukhov-Kraichnan model of a passive
scalar advected by the Gaussian velocity field with the covariance^v(t,x)v(t8,x)&2^v(t,x)v(t8,x8)&}d(t
2t8)ux2x8u«. Inertial range anomalous scaling for the structure functions and various pair correlators is
established as a consequence of the existence in the corresponding operator product expansions of certain
essential or ‘‘dangerous’’ composite operators@powers of the local dissipation rate#, whosenegativecritical
dimensions determine anomalous exponents. The main technical result is the calculation of the anomalous
exponents in the order«2 of the « expansion. Generalization of the results obtained to the case of a ‘‘slow’’
velocity field is also presented.@S1063-651X~98!11707-5#

PACS number~s!: 47.10.1g, 47.27.Gs, 05.40.1j
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I. INTRODUCTION

One of the main problems in the modern theory of fu
developed turbulence is to verify the basic principles of
Kolmogorov-Obukhov~KO! phenomenological theory@1,2#
within the framework of a microscopic model and to inve
tigate deviations from this theory, provided they exist.

In particular, one is interested in the single-time ‘‘stru
ture functions’’

Sn~r ![^@u~x!2u~x8!#n&, r[ux2x8u ~1.1!

in the inertial range. Hereu(x)[u(t,x) can be the compo
nent of the velocity field directed along the vectorx2x8, or
the scalar field in the problem of turbulent advection; t
brackets^ & denote the ensemble averaging, and the ti
argument common to all the quantities is omitted in Eq.~1.1!
and analogous formulas below. The inertial range~or the
convective range in the problem of turbulent advection! is
defined by the inequalitiesl !r !L, where l[L21 is the
internal~viscous! scale andL[M 21 is the external~integral!
scale.

According to the KO theory, the functions~1.1! in the
inertial range are independent of both the external and in
nal scales~the first and the second Kolmogorov hypothes
respectively! and are determined by the only parameterē, the
mean dissipation rate; see, e.g.,@1,2#. Dimensionality consid-
erations then determine the functions~1.1!, apart from nu-
merical coefficients, in the form

Sn~r !5const3~ ēr !n/3. ~1.2!

Both experimental and theoretical evidence is known
favor of some deviation from the predictions of the K
theory, see@1,3–7#. For the structure functions~1.1!, these
deviations are phenomenologically written in the form~in
contradiction with the first Kolmogorov hypothesis!

Sn~r !5const3~ ēr !n/3f n~Mr !, ~1.3!
PRE 581063-651X/98/58~2!/1823~13!/$15.00
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where the ‘‘scaling functions’’f n(Mr ) are supposed to hav
powerlike behavior in the asymptotic regionMr !1,

f n~Mr !.const3~Mr !qn. ~1.4!

The singular dependence of the structure functions onM
for M→0 and nonlinearity of the exponentsqn in n are
usually referred to as ‘‘anomalous scaling,’’ and in theore
cal models they are explained by strongly developed fluct
tions of the local dissipation rate~‘‘intermittency’’ !; see dis-
cussion in@1#, Chap. 25. Within the framework of numerou
models, the anomalous exponentsqn are related to the statis
tics of the local dissipation rate or to the dimensionality
fractal structures formed by small-scale vortices in the dis
pative range; see for a review@7#. As a rule, these models ar
only loosely related to underlying microscopic models, a
therefore some doubt remains about the universality of r
resentations such as Eqs.~1.3!, ~1.4! and the very existence
of deviations from the KO theory.

An effective method of studying self-similar scaling b
havior is that of the renormalization group~RG!, see@8,9#. It
was succesfully applied in the theory of critical phenome
to explain the origin of critical scaling and to calculate un
versal quantities~critical dimensions and scaling functions!
in the form of series in the formal small parameter«54
2d, whered is the space dimensionality, see@10#. This tech-
nique is also fully applicable to the theory of turbulence@11#;
see also the review paper@12# and references therein.

In the statistical theory of turbulence, the microscop
model is usually taken to be the stochastic Navier-Sto
equation~SNS! with an external random force that imitate
the injection of energy by large-scale modes; see, e
@1,2,12#. The role of the RG expansion parameter is play
by the exponent« entering into the random force correlato
For the structure functions~1.1!, the RG method allows
proof of the second Kolmogorov hypothesis~independence
of the viscous length! for a wide variety of realistic random
forces, see@12–14#. This is equivalent to the representatio
~1.3!, in which the form of the scaling functionf n(Mr ) is
arbitrary. We note that the representations~1.3! for any func-
1823 © 1998 The American Physical Society
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tions f n(Mr ) imply the existence of scaling in the infrare
~IR! regionL,r @ l with definite ‘‘critical dimensions’’

DM52D r51, D@Sn#52n/3 ~1.5!

for any fixed value ofē. This means that the structure fun
tions ~1.3! scale asSn→lD[Sn]Sn upon the substitutionM
→lDMM , r→lDr r ~in general, the exponentD@Sn# is re-
placed by the critical dimension of the corresponding cor
lation function; this dimension is calculated within the« ex-
pansion!. It is this IR scaling that is analogous to the critic
scaling in the theory of critical phenomena, where the role
an external scale is played by the correlation lengthL[r c ;
see@10#. In the RG approach, the critical dimensions like E
~1.5! arise as coefficients in the RG equations. The form
the scaling functions is not determined by the RG equati
themselves, and therefore the anomalous exponents in
~1.4! are not related to the critical dimensions of the fun
tions ~1.1!.

As in the case of critical phenomena@10#, the dependence
of the scaling functions on the argumentMr in the region
Mr !1 is studied here using the well-known operator pro
uct expansion@OPE, or SDE~short distance expansion!#; see
@12–17#. According to the OPE, the scaling functions in e
pressions like Eq.~1.3! are represented in the form

f ~Mr !5(
F

CF~Mr !DF, Mr→0. ~1.6!

Here CF are coefficients regular inM , the summation is
implied over all possible composite operatorsF allowed by
the symmetry of the left-hand side, andDF are their critical
dimensions. In particular, only scalar Galilean invariant o
erators with nonzero mean value contribute to the OPE
the structure functions~1.1!; see@12,15#.

In the theory of critical phenomena, all the nontrivi
composite operators have positive critical dimensio
DF.0, and the leading term in Eq.~1.6! is determined by
the simplest operatorF51 with DF50, i.e., the function
f (Mr ) is finite asM[r c

21→0, see@10#. It has long been
realized@13# ~see also papers@12,14–17#! that the singular
behavior of the scaling functions in the SNS model forM
→0 is related to the existence in the model of compos
operators withnegativecritical dimensions. These operator
called ‘‘dangerous’’ in@13#, should not be confused with IR
relevant operators considered in@18,19#, whose existence
can lead to the violation of the scaling regime.

Dangerous composite operators in the SNS model oc
only for finite values of the RG expansion parameter«, and
within the « expansion it is impossible to decide whether
not a given operator is dangerous, provided its critical
mension is not found exactly using the Schwinger-type fu
tional equations or the Galilean symmetry; see@12,15–
17,19–21#. Moreover, dangerous operators enter into
operator product expansions in the form of infinite famili
with the spectrum of critical dimensions unbounded fro
below, and the analysis of the smallM behavior implies the
summation of their contributions. Such a summation for
case of different-time correlators, first accomplished in@13#
~see also@12,15#!, establishes the substantionalM depen-
dence of the correlators and their superexponential deca
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the time differences increase. Of course, this effect is w
known and has a simple physical interpretation as the tra
port of turbulent eddies as a whole by the large-scale mo
see@22#. Therefore, this effect is not ignored within the co
rect RG formalism, as it is sometimes believed@23,24#, pro-
vided the RG is used beyond the« expansion and is com
bined with the OPE technique.

The analysis of theM dependence of Galilean invarian
quantities, such as the single-time structure functions~1.1!,
requires the explicit construction of all dangerous invaria
scalar operators, exact calculation of their critical dime
sions, and summation of their contributions in the cor
sponding operator product expansions~1.6!. This is clearly
not a simple problem and it requires considerable impro
ment of the present technique.

In view of the difficulties encountered by the RG a
proach to the SNS model it is tempting to apply the form
ism to simpler models, which exhibit some of the features
real turbulent flows, but are easier to study. An interest
example is provided by the well-known Heisenberg mod
see @1#, Chap. 17, whose exact solution has recently be
rederived using the RG method@25#. Unfortunately, the
Heisenberg model does not involve higher-order functio
and is therefore not suitable for studying anomalous scal

Recently, much attention has been attracted by a sim
model of the passive advection of a scalar quantity by
Gaussian velocity field, introduced by Obukhov@26# and
Kraichnan@27#; see@28–40# and references therein. It turn
out that the structure functions of the scalar field in th
model exhibit anomalous scaling behavior analogous to E
~1.3!, ~1.4!, and the corresponding anomalous exponents
be calculated explicitly within expansions in certain sm
parameters@31–34#.

The advection of a passive scalar fieldu(x)[u(t,x) is
described by the stochastic equation

¹ tu5n0Du1 f , ¹ t[] t1v i] i , ~1.7!

where ] t[]/]t, ] i[]/]xi , n0 is the molecular diffusivity
coefficient,D is the Laplace operator,v(x) is the transverse
~owing to the incompressibility! velocity field, andf [ f (x)
is a Gaussian scalar noise with zero mean and correlato

^ f ~x! f ~x8!&5d~ t2t8!C~Mr !, r[ux2x8u. ~1.8!

The parameterL[M 21 is an integral scale related to th
scalar noise, andC(Mr ) is some function finite asL→`.
Without loss of generality, we takeC(0)51 @the dimen-
sional coefficient in~1.8! can be absorbed by appropria
rescaling of the fieldu and noisef #.

In a more realistic formulation, the fieldv(x) satisfies the
stochastic Navier-Stokes equation; see, e.g.,@41#. Following
@26–34#, we shall consider a simplified model in whichv(x)
obeys a Gaussian distribution with zero average and
relator

^v i~x!v j~x8!&5D0

d~ t2t8!

~2p!d E dkPi j ~k!

3~k21m2!2d/22«/2exp@ ik•~x2x8!#, ~1.9!
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where Pi j (k)5d i j 2kikj /k2 is the transverse projector,k
[uku, D0 is an amplitude factor, 1/m is another integral
scale, andd is the dimensionality of thex space; 0,«,2 is
a parameter with the real~‘‘Kolmogorov’’ ! value«54/3; «
522g in the notation of@31,32#, «5k in the notation of
@33#, and«5x in the notation of@34#. The relations

g0[D0 /n0[L« ~1.10!

define the coupling constantg0 ~expansion parameter in th
perturbation theory, see Sec. II! and the characteristic UV
momentum scaleL (L.1/r d in the notation of@31,32#!.

In the model~1.7!–~1.9!, the odd multipoint correlation
functions of the scalar field vanish, while the even sing
time functions satisfy linear partial differential equation
The solution for the pair correlator is obtained explicitly;
shows that the structure functionS2 is finite for M ,m50
@27#. The higher-order correlators are not found explicit
but their asymptotic behavior forM→0 can be extracted
from the analysis of the nontrivial zero modes of the cor
sponding differential operators in the limit 1/d→0 @31,32# or
«→0 @33,34#. It was shown that the structure functions a
finite for m50, and in the convective rangeL@1/r @M they
have the form~up to the notation!

S2n~r ![^@u~x!2u~x8!#2n&}D0
2nr n~22«!~Mr !Dn,

~1.11!

with negative anomalous exponentsDn , whose first terms of
the expansion in 1/d @31,32# and« @33,34# have the form
a
o

th

st

e
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Dn522n~n21!«/~d12!1O~«2!

522n~n21!«/d1O~1/d2!. ~1.12!

We note thatDn52r2n in the notation of@33#, D252D in
the notation of@31#, andDn52D2n in @32#.

Another quantity of interest is the local dissipation ra
E(x)5n0@] iu(x)] iu(x)#. The single-time correlation func
tions of its powers in the convective range have the fo
@32,34#

^En~x!Em~x8!&}~Lr !2Dn2Dm~Mr !Dn1m, ~1.13!

whereL is defined in Eq.~1.10! and the exponentsDn are
the same as in Eq.~1.11!.

In this paper, we apply the RG and OPE approach de
oped in @12–17,19–21,41# to the model ~1.7!–~1.9!. We
show that the RG explains the origin of anomalous scal
and allows the anomalous exponents to be calculated in
form of a series in the parameter« entering into the cor-
relator ~1.8!. Therefore, this parameter plays in the RG a
proach a role analogous to that played by the paramete«
542d in the RG theory of critical phenomena, and the r
sults obtained in@33,34# can be interpreted as the first term
of the corresponding« expansions.

We have calculated the exponentsDn in the second order
of the« expansion for an arbitrary value of the space dime
sionalityd ~they are given in Sec. III!. In particular, we have
obtained
Dn52
n~n21!«

2
1

n~n21!«2

16
$2n@19266ln~4/3!#15224ln~4/3!%1O~«3!

52n~n21!«/21«2n~n21!@0.00162n20.11902#1O~«3! ~1.14!

for d52 and

Dn52
2n~n21!«

5
1

2n~n21!«2

875
@2n~255pA321384!1345pA321884#1O~«3!

522n~n21!«/51«2n~n21!@0.01626n20.01535#1O~«3! ~1.15!
s
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Representations like Eqs.~1.11!, ~1.13! can also be de-

rived using the RG and OPE for any correlation function;
an additional example, we consider the single-time pair c
relators involving second-rank irreducible tensors of
form

] iu] ju@]su]su#n222d i j @]su]su#n/d;

the special casen52 was considered previously in@32#.
From the RG viewpoints, the model~1.7!–~1.9! is simpler

than the ‘‘true’’ SNS model in at least two respects. Fir
dangerous operators in the model~1.7!–~1.9! exist even for
asymptotically small values of« and therefore they can b
identified within the« expansion. These are the local dis
s
r-
e

,

pation rateE(x) and all its powers, their critical dimension
being Dn . Second, only a finite number of these operat
contribute to the operator product expansion~1.6! for any
given correlation function, and the additional resummat
of the series~1.6!, discussed above, is not required here:
leading term of the asymptotic behavior of the functi
f (Mr ) for Mr→0 is simply given by the contribution of the
‘‘most dangerous’’ operator, i.e., that having the small
value ofDn .

It was suggested in@33# that the anomalous exponen
describing the asymptotic behavior forMr !1 can be related
to certain IR relevant interactions in a hypothetical RG a
proach, see also discussion in@32#. This is not exactly so: in
fact, these exponents in the model~1.7!–~1.9! are related to
the critical dimensions of certain ‘‘dangerous’’ compos
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1826 PRE 58ADZHEMYAN, ANTONOV, AND VASIL’EV
operators in the operator product expansions for corresp
ing Green functions. It should be stressed that in the S
model the behavior atMr→0 will probably be determined
by additional resummations of the operator product exp
sions, which can lead to more exotic behavior than
simple powerlike one in Eqs.~1.11!, ~1.13!.

The plan of our paper is the following. In Sec. II, w
discuss the field theoretical formulation and UV renormali
tion of the model~1.7!–~1.9! and derive the correspondin
RG equations with exactly known RG functions~theb func-
tion and the anomalous dimension!. These equations have a
IR stable fixed point, which establishes the existense of
scaling with exactly known critical dimensions of the bas
fields and parameters of the model. In Sec. III, we discuss
renormalization of various composite operators in the mo
~1.7!–~1.9!. In particular, we present the second-order res
for the « expansion of the quantityDn , the critical dimen-
sion associated with the operatorEn(x). In Sec. IV, it is
explained using the OPE that, at the same time,Dn play the
part of the anomalous exponents in relations like Eqs.~1.11!,
~1.13!. The results obtained are discussed in Sec. V. We
briefly mention there one of the possible modifications of
model ~1.7!–~1.9!, that of a ‘‘slow’’velocity field, in which
the correlator~1.9! contains nod function in time. The RG
analysis shows that the Green functions in this model exh
an anomalous scaling behavior, and the correspond
anomalous exponents are calculated in the form of serie
«12.

II. FIELD THEORETICAL FORMULATION, UV
RENORMALIZATION, AND RG EQUATIONS

The stochastic problem~1.7!–~1.9! is equivalent to the
field theoretical model of the set of three fieldsF
[$u,u8,v% with action functional

S~F!5u8Duu8/21u8@2] tu2~v­!u1n0nu#2vDv
21v/2.

~2.1!

The first four terms in Eq.~2.1! represent the Martin-Siggia
Rose-type action@42–45# for the stochastic problem~1.7!,
~1.8! at fixed v, and the last term represents the Gauss
averaging overv. HereDu and Dv are the correlators~1.8!
and ~1.9!, respectively, the required integrations overx
5(t,x) and summations over the vector indices are und
stood.

The formulation~2.1! means that statistical averages
random quantities in stochastic problem~1.7!–~1.9! coincide
with functional averages with the weight expS(F), therefore
generating functionals of total@G(A)# and connected
@W(A)# Green functions of the problem are represented
the functional integral

G~A!5exp W~A!5E DF exp@S~F!1AF# ~2.2!

with arbitrary sourcesA[Au,Au8,Av in the linear form

AF[E dx@Au~x!u~x!1Au8~x!u8~x!1Ai
v~x!v i~x!#.
d-
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The model~2.1! corresponds to a standard Feynman d
grammatic technique with the triple vertex2u8(v­)u and
bare propagators~in the momentum-frequency represent
tion!

^uu8&05^u8u&0* 5~2 iv1n0k2!21,

^uu&05C~k!~v21n0
2k4!21,

^u8u8&050, ~2.3!

whereC(k) is the Fourier transform of the functionC(Mr )
in Eq. ~1.8! and the bare propagator^vv&0 is given by Eq.
~1.9!. The role of the coupling constant in the perturbati
theory is played by the parameterg0 defined in Eq.~1.10!.

It is well known that the analysis of UV divergences
based on the analysis of canonical dimensions. Dynam
models of the type~2.1!, in contrast to static models, are tw
scale, i.e., to each quantityF ~a field or a parameter in the
action functional! one can assign two independent canoni
dimensions, the momentum dimensiondF

k and the frequency
dimensiondF

v , determined from the natural normalizatio
conditions

dk
k52dx

k51, dk
v5dx

v50,dv
k 5dt

k50, dv
v52dt

v51,

and from the requirement that each term of the action fu
tional be dimensionless~with respect to the momentum an
frequency dimensions separately!, see@12,20#. Then, based
on dF

k anddF
v , one can introduce the ‘‘summed’’~total! ca-

nonical dimensiondF5dF
k 12dF

v ~in the free theory,] t}D).
The dimensions for the model~2.1! are given in Table I,

including renormalized parameters, which will be conside
later on.

From Table I it follows that the model is logarithmic~the
coupling constantg0 is dimensionless! at «50, and the UV
divergences have the form of the poles in« in the Green
functions.

The total dimensiondF plays in the theory of renormal
ization of dynamical models the same role as does the c
ventional~momentum! dimension in static problems. The ca
nonical dimensions of an arbitrary 1-irreducible Gre
function G5^F•••F&1-ir are given by the relations

dG
k 5d2NFdF ,

dG
v512NFdF

v ,

dG5dG
k 12dG

v5d122NFdF , ~2.4!

whereNF5$Nu ,Nu8,Nv% are the numbers of correspondin
fields entering into the functionG, and the summation ove

TABLE I. Canonical dimensions of the fields and parameters
the model~2.1!.

F u u8 v n,n0 m,M ,m g0 g

dF
k 0 d 21 22 1 « 0

dF
v 21/2 1/2 1 1 0 0 0

dF 21 d11 1 0 1 « 0
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all types of the fields is implied. The total dimensiondG is
the formal index of the UV divergence. Superficial UV d
vergences, whose removal requires counterterms, can
present only in those functionsG for which dG is a non-
negative integer; see, e.g.,@8,9#.

Analysis of divergences should be based on the follow
auxiliary considerations:

~1! From the explicit form of the vertex and bare prop
gators in the model~2.1! it follows that Nu82Nu52N0 for
any 1-irreducible Green function, whereN0>0 is the total
number of the bare propagators^uu&0 entering into the func-
tion ~obviously, no diagrams withN0,0 can be con-
structed!. Therefore, the differenceNu82Nu is an even non-
negative integer for any nonvanishing function.

~2! If for some reason a number of external mome
occur as an overall factor in all the diagrams of a giv
Green function, the real index of divergencedG8 is smaller
than dG by the corresponding number of unities~the Green
function requires counterterms only ifdG8 is a non-negative
integer!.

In the model~2.1!, the derivative] at the vertexu8(v­)u
can be moved onto the fieldu8 by virtue of the transversality
of the field v. Therefore, in any 1-irreducible diagram it
always possible to move the derivative onto any of the
ternal ‘‘tails’’ u or u8, which decreases the real index
divergence:dG85dG2Nu2Nu8. The fieldsu, u8 enter into
the counterterms only in the form of derivatives]u, ]u8.

From the dimensions in Table I we finddG5d122Nv
1Nu2(d11)Nu8 and dG85(d12)(12Nu8)2Nv . From
these expressions it follows that for anyd, superficial diver-
gences can exist only in the 1-irreducible functio
^u8u•••u& with Nu851 and arbitrary value ofNu , for
which dG52, dG850. However, all the functions withNu

.Nu8 vanish~see above! and obviously do not require coun
terterms. We are left with the only superficially diverge
function ^u8u&; the corresponding counterterm must conta
two symbols] and is therefore reduced tou8Du. Inclusion
of this counterterm is reproduced by the multiplicative ren
malization of the parametersg0 ,n0 in the action functional
~2.1! with the only independent renormalization constantZn :

n05nZn , g05gm«Zg , Zg5Zn
21 . ~2.5!

Herem is the renormalization mass in the minimal subtra
tion scheme~MS!, which we always use in what follows,g
and n are renormalized analogs of the bare parametersg0
andn0, andZ5Z(g,«,d) are the renormalization constant
Their relation in Eq.~2.5! results from the absence of reno
malization of the contribution withD0 in Eq. ~2.1!, so that
D0[g0n05gm«n; see Eq.~1.10!. No renormalization of the
fields and ‘‘masses’’ is required, i.e.,ZF51 for all F and
m05m, M05M , Zm5ZM51.

Since the fields are not renormalized, their renormaliz
Green functionsWR coincide with the corresponding un
renormalized functionsW5^F•••F& ~for definiteness, we
discuss the connected functions!; the only difference is in the
choice of variables and in the form of perturbation theory~in
g instead ofg0):

WR~g,n,m, . . . !5W~g0 ,n0 , . . . ! ~2.6!
be

g

a

-

t

-

-

d

~the dots stand for other arguments like coordinates and
menta!. We useD̃m to denote the differential operatorm]m
for fixed bare parametersg0 ,n0 and operate on both sides o
Eq. ~2.6! with it. This gives the basic differential RG equa
tion:

DRGWR~g,n,m, . . . !50,

DRG[Dm1b~g!]g2gn~g!Dn , ~2.7!

where we have writtenDs[s]s for any variables, and the
RG functions~the b function and the anomalous dimensio
g) are defined as

gn~g![D̃mlnZn , b~g![D̃mg5g@2«1gn#. ~2.8!

The relation betweenb and g results from the definitions
and the last relation in Eq.~2.5!. In general, if some quantity
G is renormalized multiplicatively,G5ZGGR, it satisfies the
RG equation of the form

@DRG1gG~g!#GR50, gG~g![D̃mlnZG ~2.9!

with the operatorDRG from Eq. ~2.7!.
Explicit calculation of the constantZn in the model~2.1!

in the one-loop approximation gives

Zn512
g~d21!Cd

2d«
, ~2.10!

where we have written Cd[Sd /(2p)d and Sd
[2pd/2/G(d/2) is the surface area of the unit sphere
d-dimensional space.

The one-loop approximation~2.10! for the constantZn is
in fact exact, i.e., it has no corrections of orderg2, g3, and so
on. Indeed, from the explicit form of the vertex and the ba
propagators~1.9!, ~2.3! it follows that any multiloop diagram
of the 1-irreducible function̂ u8u& contains effectively a
closed circuit of retarded propagators^uu8&0 and therefore
vanishes@it is also important here that the propagator^vv&0
in Eq. ~1.9! is proportional to thed function in time#.

From the definitions~2.8! using Eq.~2.10! we find exact
expressions for the basic RG functions:

gn~g!5
g~d21!Cd

2d
, b~g!5gF2«1

g~d21!Cd

2d G .
~2.11!

From Eq.~2.11! it follows that an IR-attractive fixed point

g* 5
2d«

Cd~d21!
~2.12!

of the RG equations@b(g* )50, b8(g* )5«.0# exists in
the physical regiong.0 for all «.0. The value ofgn(g) at
the fixed point is also found exactly:

gn* [gn~g* !5«, ~2.13!

without corrections of order«2, «3, and so on.
It is well known that the leading term of the IR

asymptotic expression of any renormalized quantityGR, for
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which the RG equation of the form~2.9! is valid, satisfies the
same equation with the substitutiong→g* , whereg* is the
IR stable fixed point:

@Dm2gn*Dn1gG* #GR50, gG* [gG* ~g* !. ~2.14!

Canonical scale invariance is expressed by the relations

F(
a

da
kDa2dG

k GGR50, F(
a

da
vDa2dG

v GGR50,

~2.15!

in which a[$t,x,m,n,m,M ,g% is the set of all arguments o
GR (t,x is the set of all times and coordinates!, anddk and
dv are the canonical dimensions ofGR and a. Substituting
the needed dimensions from Table I into Eq.~2.15!, we ob-
tain

@Dm1Dm1DM22Dn2Dx2dG
k #GR50,

@Dn2Dt2dG
v#GR50. ~2.16!

Each of the equations~2.14!–~2.16! describes scaling
with dilatation of all variables, the derivatives with respect
which enter into the differential operator. We are interes
in scaling with dilatation oft,x, and ‘‘masses’’M ,m for
fixed m,n, and g, and it is necessary to exclude the corr
sponding derivativesDa by a combination of the availabl
equations. After eliminatingDm andDn from Eqs.~2.14! and
~2.16! we obtain the desired equation of critical IR scali
for the model~2.1!:

@2Dx1D tDt1DmDm1DMDM2DG#GR50 ~2.17!

with the coefficients

D t52Dv5221gn* 5221«, Dm5DM51
~2.18!

and

D@G#[DG5dG
k 1DvdG

v1gG* , ~2.19!

which are the corresponding critical dimensions. In parti
lar, for any correlation functionGR5WR5^F•••F& of the
fields F we haveDG5NFDF , with the summation over al
fields F entering intoGR, and forDF using the data from
Table I and the exact value ofgn* 5« we obtain from Eq.
~2.19! the following exact expressions:

Dv512«, Du5211«/2, Du85d112«/2
~2.20!

@we recall that the fields in the model~2.1! are not renormal-
ized and thereforegF50 for all F#.

To avoid misunderstandings, we again emphasize the
that the RG equation~2.17! describes IR scaling, i.e., th
statement that is equivalent to the critical scaling in
theory of critical phenomena; see also discussion in@12,13#.
In this scaling the variablesM , m are also IR relevant, i.e.
they are dilated in scale transformations. In other words,
expression~2.17! describes the asymptotic behavior asLr
@1 for any fixed values ofMr andmr, with the UV scaleL
defined in Eq.~1.10!. The solution of the set of equation
d

-

-

ct

e

e

~2.16!, ~2.17! can be found only up to some unknown fun
tion of all the first integrals, including those of the form
mr,Mr , where r 5uxi2xj u is some coordinate difference
The anomalous exponents in the expressions~1.11!, ~1.13!
describe the behavior of the corresponding correlation fu
tions for Mr→0, and therefore arenot related to the their
critical dimensions~2.19!.

In terms of unrenormalized variables, the solution of t
set of equations~2.15!, ~2.17! for the example of a single
time pair correlation function can be found, apart from n
merical factor, in the form~for more details, see, e.g.,@12#!

G}GR.D
0
dG

v

L2gG* r 2DGf ~Mr ,mr!, ~2.21!

with certain, as yet unknown, scaling functionf .
In what follows we limit ourselves to the correlation fun

tions of the form~1.11!, ~1.13!, which are finite form50;
see@31–34#. We shall always setm50 and study the depen
dence of the scaling functionsf (Mr )[ f (Mr ,mr50) on the
only remaining argumentMr in the asymptotic regionMr
!1. This can be performed within the framework of th
general solution~2.21! of the RG equations with the aid o
additional methods; see Sec. IV.

III. RENORMALIZATION AND CRITICAL DIMENSIONS
OF COMPOSITE OPERATORS

The quantities entering into the left hand sides of E
~1.11!, ~1.13! are two-point correlation functions of compo
ite fields~composite operators in quantum-field terminolog!
rather than multipoint correlators of the primary fields.
what follows, we use the term ‘‘composite operator’’ for an
local ~unless stated to be otherwise! monomial or polynomial
constructed from primary fields and their derivatives a
single pointx[(t,x). Examples areun(x), @] iu(x)] iu(x)#n,
] iu(x)] ju(x), u8(x)¹ tu(x), and so on.

Since the arguments of the fields coincide, correlat
functions with these operators contain additional UV div
gences, which are removed by additional renormalizat
procedure, see, e.g.,@9#. For the renormalized correlatio
functions standard RG equations are obtained, which
scribe IR scaling with definite critical dimensionsDF
[D@F# of certain ‘‘basis’’ operatorsF. Owing to the renor-
malization,D@F# does not coincide in general with the naiv
sum of critical dimensions of the fields and derivatives e
tering intoF.

Detailed exposition of the renormalization of compos
operators for the stochastic Navier-Stokes equation is gi
in the review paper@12# ~see also@13–17,19–21#!. Below
we confine ourselves to only the necessary information.

In general, composite operators are mixed in renormal
tion, i.e., an UV finite renormalized operatorFR has the form
FR5F1 counterterms, where the contribution of the cou
terterms is a linear combination ofF itself and, possibly,
other unrenormalized operators that ‘‘admix’’ toF in renor-
malization.

Let F[$Fa% be a closed set, all of whose monomials m
only with each other in renormalization. The renormalizati
matrix ZF[$Zab% and the matrix of anomalous dimension
gF[$gab% for this set are given by
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Fa5(
b

ZabFb
R , gF5ZF

21D̃mZF , ~3.1!

and the corresponding matrix of critical dimensionsDF

[$Dab% is given by Eq.~2.19!, in whichdF
k , dF

v , anddF are
understood as the diagonal matrices of canonical dimens
of the operators in question~with the diagonal element
equal to sums of corresponding dimensions of all fields
derivatives constitutingF) and g* [g(g* ) is the matrix
~3.1! at the fixed point.

Critical dimensions of the setF[$Fa% are given by the
eigenvalues of the matrixDF . The ‘‘basis’’ operators that
possess definite critical dimensions have the form

F̄a
R5(

b
UabFb

R , ~3.2!

where the matrixUF5$Uab% is such thatDF85UFDFUF
21 is

diagonal.
In general, counterterms to a given operatorF are deter-

mined by all possible 1-irreducible Green functions with o
operator F and arbitrary number of primary fields,G
5^F(x)F(x1)•••F(x2)&. The total canonical dimensio
~formal index of divergence! for such functions is given by

dG5dF2NFdF , ~3.3!

with the summation over all types of fields entering into t
function. For superficially divergent diagrams,dG is a non-
negative integer; cf. Sec. II.

Let us consider operators of the formun(x) with the ca-
nonical dimensiondF52n, entering into the structure func
tions ~1.11!. From Table I in Sec. II and Eq.~3.3! we obtain
dG52n1Nu2Nv2(d11)Nu8, and from the analysis of the
diagrams it follows that the total number of fieldsu entering
into the functionG can never exceed the number of the fie
u in the operatorun itself, i.e.,Nu<n. Therefore, the diver-
gence can only exist in the functions withNv50, Nu850,
and arbitrary value ofn5Nu , for which the formal index
vanishes,dG50. However, at least one ofNu external
‘‘tails’’ of the field u is attached to a vertexu8(v­)u ~it is
impossible to construct nontrivial, superficially diverge
diagram of the desired type with all the external tails
tached to the vertexF), at least one derivative] appears as
ns

d

t
-

an extra factor in the diagram, and, consequently, the
index of divergence is necessarily negative; see Sec. II.

This means that the operatorun requires no counterterm
at all, i.e., it is in fact UV finite,un5Z@un#R with Z51. It
then follows that the critical dimension ofun(x) is simply
given by the expression~2.19! with no correction fromgF*
and is therefore reduced to the sum of the critical dimensi
of the factors:

D@un#5nD@u#5n~211«/2!. ~3.4!

We note that this relation was not cleara priori and it is a
specific feature of the model~2.1!. For example, in the stan
dard modelf4 of the theory of critical phenomena, the crit
cal dimensions of the fieldf and the composite operatorsf2

and f4 are completely independent, and they determine
dependent critical exponentsh, n, and v; see, e.g.,@10#.
The relation analogous to Eq.~3.4! is valid for the powers of
the velocity field of the stochastic Navier-Stokes equati
where it is a consequence of the Galilean symmetry of
model; see, e.g.,@12,13,15#.

Now let us turn to the operatorsFn[@] iu] iu#n with dF

50, dF
v52n. They enter into the left-hand sides of Eq

~1.13! and, as we shall see in Sec. IV, it is their critic
dimensions that determine the anomalous exponents in
~1.11! and ~1.13!.

In this case, from Table I in Sec. II and Eq.~3.3! we have
dG5Nu2Nv2(d11)Nu8, with the necessary conditionNu
<2n, which follows from the structure of the diagrams. It
also obvious from the analysis of the diagrams that the co
terterms to these operators can involve the fieldsu, u8 only
in the form of derivatives,]u, ]u8, and so the real index o
divergence has the formdG85dG2Nu2Nu852Nv2(d
12)Nu8. It then follows that superficial divergences exi
only in the Green functions withNv5Nu850 and anyNu
<2n, and the corresponding operator counterterms are
duced to the formFk with k<n. Therefore, the operatorsFn
can mix only with each other in renormalization, the corr
sponding infinite renormalization matrixZF5$Znk% is in fact
triangular,Znk50 for k.n, and the critical dimensions as
sociated with the operatorsFn are determined by the diago
nal elementsZn[Znn ~in contradistinction with the case o
operatorsun, they are not equal to unity here!.

Explicit calculation of the constantsZn in the MS scheme
in the two-loop approximation gives
Zn
21512

u

2«

n~d21!~d12n!

d~d12!
1

u2

8«2

n~n21!~d21!2~d12n!~d12n12!

d2~d12!2
1

u2

2«

n~n21!~d21!

d2~d12!2~d14!
F2~d14!~d11!

~d12!

13~d21!~d12n!h1~d!/42
~d11!~d13n22!

~d14!
h2~d!G1O~u3!, ~3.5!

where we have writtenu[gCd with the coefficientCd from Eq. ~2.10!, and

h1~d![F~1,1,d/212,1/4!,

h2~d![F~1,1,d/213,1/4!5h1~d12!, ~3.6!

whereF(•••) is the hypergeometric series~see, e.g.,@46#!:
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F~a,b,c,z![11
ab

c
z1

a~a11!b~b11!

c~c11!

z2

2!
1•••. ~3.7!

From Eqs.~3.6! and ~3.7! it follows that

h1~d!5 (
k50

`
k!G~d/212!

4kG~d/2121k!
, h2~d!5h1~d12!. ~3.8!

Representations~3.8! are convenient for numerical computations of the functionsh1,2(d).
From Eq.~3.5! for the anomalous dimensiongn[D̃mlnZn in the two-loop order we obtain

gn~g!52
un~d21!~d12n!

2d~d12!
1

u2n~n21!

d~d12!~d14!

3F ~d14!~12d2!

d~d12!2
1

3~d21!2~d12n!

4d~d12!
h1~d!2

~d221!~d13n22!

d~d12!~d14!
h2~d!G1O~u3!, ~3.9!

and for the corresponding critical dimensionDn at the fixed point~2.12! using~2.19! anddF@Fn#50, dF
v@Fn#52n ~see Table

I! we have

Dn5n«1gn* 52
2n~n21!«

d12
1

«2n~n21!

~d21!~d12!3~d14!2
@24~d11!~d14!213~d21!~d12!~d14!~d12n!h1~d!

24~d11!~d12!~d13n22!h2~d!#1O~«3!. ~3.10!
o
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Expression~3.10! is simplified for any integer value ofd
owing to the fact that the series in Eq.~3.7! reduce to finite
sums; see@46#:

h1~d!52~d12!F ~23!d/2ln~4/3!1 (
k52

d/211
~23!k22

d/22k12G
~3.11!

for any even value ofd and

h1~d!52~d12!F ~21!~d11!/23d/221p

12 (
k51

~d11!/2
~23!~d11!/22k

2k21 G ~3.12!

for any odd value ofd, which for d52 andd53 gives the
results announced in Eqs.~1.14!, ~1.15!.

We explain in Sec. IV that the critical dimensionsDn
from Eq. ~3.10! are nothing else than the anomalous exp
nents entering into relations~1.11!, ~1.13!, and here we only
note that the first order in« of the expression~3.10! coin-
cides~up to the notation! with the result obtained in@33# for
n52 and in@34# for arbitraryn, and that the first term of the
expansion in 1/d of the expression~3.10! coincides with the
result ~1.12! obtained in@31,32#. We also note that the«2

term of the expression~3.10! behaves as 1/d2 for 1/d→0 and
therefore gives no contribution to the first order of the 1d
expansion@this follows from the relationh2(d)5h1(d12)
511O(1/d), which is obvious from Eq.~3.8!#. This fact
suggests that the« expansion for the dimensionDn in the
model ~2.1! is ‘‘better’’ than the 1/d expansion in the sens
-

that a given order of the 1/d expansion is contained com
pletely in the corresponding order of the« expansion, but not
the reverse. We also note that then dependence of the quan
tity Dn in the second order of the« expansion is no longe
reduced to the simple factorn(n21).

The resultD150 in Eq. ~3.10! is in fact exact, in agree-
ment with the exact solution for the two-point structure fun
tion obtained in@27#. Within the RG approach this can b
demonstrated using the Schwinger equation of the form

E DFd@u~x!exp SR~F!1AF#/du8~x!50 ~3.13!

~in the general sense of the term, Schwinger equations
any relations stating that any functional integral of a to
variational derivative is equal to zero; see, e.g., Sec. 7
@47#!. In Eq. ~3.13!, SR is the renormalized analog of th
action ~2.1!, and the notation introduced in~2.2! is used.
Equation~3.13! can be rewritten in the form

Š^u8Duu2¹ t@u2/2#1nZnn@u2/2#2nZnF1&‹A

52Au8dWR~A!/dAu . ~3.14!

HereDu is the correlator~1.8!, Š^•••&‹A denotes the averag
ing with the weight exp@SR(F)1AF#, WR is determined by
Eq. ~2.2! with the replacementS→SR , and the argumentx
common to all the quantities in Eq.~3.14! is omitted.

The quantityŠ^F&‹A is the generating functional of th
correlation functions with one operatorF and any number of
fields F, therefore the UV finiteness of the operatorF is
equivalent to the finiteness of the functionalŠ^F&‹A . The
quantity in the right hand side of Eq.~3.14! is finite ~a de-
rivative of the renormalized functional with respect to fini
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argument!, and so is the operator in the left-hand side. O
operatorF1 does not admix in renormalization to the oper
tor u8Duu (F1 contains too many fieldsu), and to the op-
erators¹ t@u2/2# and D@u2/2# ~they have the form of tota
derivatives, andF1 is not reduced to this form!. On the other
hand, the operatoru8Duu does not admix toF1 ~it is nonlo-
cal, and F1 is local!, while the derivatives¹ t@u2/2# and
D@u2/2# do not admix toF1 owing to the fact that each field
u enters in the counterterms of the operatorsFn only in the
form of derivative]u ~see above!. Therefore, all three type
of operators entering into the left-hand side of Eq.~3.14! are
independent, and they must be UV finite separately.

Since the operatornZnF1 is UV finite, it coincides with
its finite part, i.e.,nZnF15nF1

R , which along with the rela-
tion F15Z1F1

R givesZ15Zn
21 and thereforeg152gn . For

the critical exponentD15«1g1* we then obtainD150 ex-
actly ~we recall thatgn* 5«, see Sec. II!.

In the SNS model, critical dimensions of certain compo
ite operators can sometimes be obtained exactly using v
ous Schwinger equations and Ward identities for Galile
transformations; see@12–17# and @19–21#. In particular, ex-
act critical dimension of the energy dissipation rateE(x) was
found in @20#, see also@21#. The simple relationD@En#
y

o

si

l

r
-

-
ri-
n

5nD@E# for the powers of the dissipation rate was propos
in @48#. It was explained later in@17#, that this relation can-
not be considered reliable, and here we only note that e
for the simple Obukhov-Kraichnan model, the critical d
mension ofEn is not a linear function inn, see Eq.~3.10!, in
contradistinction with the powers of the field itself, see~3.4!
and @12,13,15# for the case of the SNS model.

Critical dimensions of various tensor operators of t
form ] i 1

u(x)•••] i n
u(x) can also be calculated in the seco

order of the« expansion from the same two-loop diagram
which determine the constants~3.5!; only the symmetry co-
efficients differ from those for scalar operators. We sh
confine ourselves to the second-rank irreducible trace
tensors of the form

Fi j
n [] iu] juFn212d i j Fn /d, ~3.15!

whereFn are the scalar operators discussed above. The
erators~3.15! mix only with each other in renormalization
the corresponding renormalization matrix is triangular and
diagonal elements determine the corresponding critical
mensionsDn8 . In the second order of the« expansion we
have obtained
Dn85
«@d~d11!22n~n21!~d21!#

~d21!~d12!
1

«2n~n21!

~d21!~d12!3~d14!2
@24~d11!~d14!2P013~d21!~d12!~d14!

3~d12n!h1~d!P124~d11!~d12!~d13n22!h2~d!P2#1O~«3!, ~3.16!
s a

-
in

c

where we have written

P0511
d

2n~n21!~d21!
,

P1512
d~d11!

n~d21!~d12n!
,

P2512
d~2d21!

2n~d21!~d13n22!
, ~3.17!

and the functionsh1,2(d) are defined in Eq.~3.6!.
We note that the expression~3.16! for n51 coincides

with the first two terms of the expansion in« of the exact
result obtained in@31# ~we explain below that the quantit
D18 corresponds tod2g in the notation of@31#!. For the case
of the SNS model, critical dimensions of irreducible tens
operators are studied, for example, in@16#.

Since the critical dimensions of the operatorsun and
(]u)n have been found, we can use the general expres
~2.21! in the case of the structure functions~1.11! and pair
correlators~1.13!.

The structure functionS2n(r )5^@u(x)2u(x8)#2n& is rep-
resented as a sum of pair correlators^u(x)ku(x8)m& with
fixed value ofk1m52n and equal canonical and critica
r

on

dimensionsdF
v52ndu

v52n, DF52nDu5n(221«). Then
from Eq. ~2.21! with m50 it follows that

S2n~r !.D0
2nr n~22«! f n~Mr !, ~3.18!

with certain, as yet unknown, scaling functionsf n(Mr ).
The nth power of the dissipation rate is represented a

finite linear combination of basis operators~3.2! with definite
critical dimensionsDk5k«1gk* given in Eq. ~3.10!, with
the necessary conditionk<n. Therefore, for the pair correla
tors ~1.13! of the powers of the dissipation rate we obta
from ~2.21!:

^En~x!Em~x8!&5n0
n1m^Fn~x!Fm~x8!&

. (
k50

n

(
l 50

m

~Lr !2Dk2D l f k,l~Mr !,

~3.19!

with certain scaling functionsf k,l(Mr ) and the UV scaleL
defined in Eq.~1.10!. The leading term of the asymptoti
behavior of the expression~3.19! in the IR regionLr @1 is
given by the contribution with minimalDk1D l , i.e.,

^En~x!Em~x8!&.~Lr !2Dn2Dmf n,m~Mr !. ~3.20!
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We note that the structure functions~3.18! and the cor-
relator~3.20! for n5m51 are independent of the diffusivit
coefficient, or, equivalently, of the UV scaleL ~we recall
that D150). This statement is an analog of the second K
mogorov hypothesis~independence of the viscosity coeffi
cient in the inertial and energy-containing ranges! for the real
fully developed turbulence; see, e.g.,@1# and@2#. Within the
RG approach to the SNS model, the second Kolmogo
hypothesis was established in@13#, see also@12,14#.

Expressions like~3.18!, ~3.20! can easily be written down
for any single-time pair correlator, provided its canonical a
critical dimensions are known. Let us give two more e
amples. For the second-rank irreducible tensorsEn85n0Fn8
with the operatorsFn8 given in Eq.~3.15! we obtain~drop-
ping the vector indices!

^En8~x!Em8 ~x8!&5n0
n1m^Fn8~x!Fm8 ~x8!&

.~Lr !2Dn82Dm8 f n,m9 ~Mr !, ~3.21!

and for the mixed correlator of the scalarEn and the tensor
En8 we have

^En~x!Em8 ~x8!&5n0
n1m^Fn~x!Fm8 ~x8!&

.~Lr !2Dn2Dm8 f n,m8 ~Mr !, ~3.22!

with the dimensionsDn , Dn8 given in Eqs.~3.10!, ~3.16! and
certain scaling functionsf n,m8 (Mr ), f n,m9 (Mr ) ~the prime is
not a derivative here!.

IV. OPERATOR PRODUCT EXPANSION
AND ANOMALOUS SCALING

From the viewpoint of the renormalization group, the e
pressions~2.21! and ~3.18!–~3.22! for any functionsf (Mr )
correspond to IR scaling in the regionL[M21, r @ l[L21

for an arbitrary fixed value ofMr , with definite critical di-
mensionsDF . The inertial rangel !r !L corresponds to the
additional conditionMr !1, and representations like~1.11!
and ~1.13! should be understood as certain additional sta
ments about the explicit form of the leading terms of t
asymptotic behavior forMr→0.

In the theory of critical phenomena, the asymptotic fo
of scaling functions forM→0 is studied using the well
known Wilson operator product expansion~OPE!; see, e.g.,
@9,10#. The analog ofL[M 21 is there the correlation lengt
r c . This technique is also applied to the theory of turbulen
see, e.g.,@12,13#.

According to the OPE, the single-time produ
F1(x1)F2(x2) of two renormalized operators atx[(x1
1x2)/25const , andr[x12x2→0 has the representation

F1~x1!F2~x2!5(
a

Ca~r !F̄a
R~x,t!, ~4.1!

in which the functionsCa are the Wilson coefficients regula
in M2 and F̄a

R are all possible renormalized local compos
operators of the type~3.2! allowed by symmetry, with defi-
nite critical dimensionsDa .
l-

v

d
-

-

-

;

The renormalized correlator̂F1(x1)F2(x2)& is obtained
by averaging Eq.~4.1! with the weight expSR, the quantities

^F̄a
R&5Mdanda

v
aa(g,M /m) involving dimensionless func-

tions aa(g,M /m) appear on the right-hand side. The
asymptotic behavior forM /m→0 is found from the corre-
sponding RG equations and has the form

^F̄a
R&}MDa. ~4.2!

From the operator product expansion~4.1! we therefore find
the following expression for the scaling functionf (Mr ) in
the representation~2.21! for the correlator̂ F1(x1)F2(x2)&:

f ~u!5(
a

Aa~u!uDa, u[Mr , ~4.3!

with coefficientsAa , which are regular inu2, generated by
the Wilson coefficientsCa in ~4.1!, which are regular inM2.

The leading contributions foru→0 are those with the
smallest dimensionDa and in the« expansions they are
those with the smallestda[d@Fa# for «50. We shall term
the operators withDa,0, if they exist, dangerous@12,13#, as
they correspond to contributions to Eq.~4.3! that diverge for
u→0.

In the standard modelf4 of the theory of critical behavior
@10#, there are no problem of dangerous operators within
« expansions, because in that modelDa5na1O(«), where
na>0 is the total number of fields and derivatives inFa

R .
The operatorF51 has the smallest valuena50, but it gives
a contribution to Eq.~4.3! that is regular inu2 and has a
finite limit as u→0. The first nontrivial contribution is gen
erated by the operatorf2 with na52, it has the form
u21O(«) and only determines correction to the leading te
generated by the operatorF51, which vanishes atu→0.

We note that for a Galilean invariant produ
F1(x1)F2(x2), the right-hand side of Eq.~4.1! can involve
any Galilean invariant operator, including tensor operato
whose indices would be contracted with the analogous in
ces of the coefficientsCa . Without loss of generality, it can
be assumed that the expansion is made in irreducible ten
~see Sec. III for examples!, so that only scalars contribute t
the correlator̂ F1F2& because the averages^F̄a

R& for nonsca-
lar irreducible tensors are zero. For the same reason,
contributions to the correlator from all operators of the fo
]F with external derivatives vanish owing to translation
invariance.

In our case, contributions from the operators likeun with
negativedF are also forbidden by the invariance of the co
relators~3.18!–~3.22! with respect to the shiftu(x)→u(x)
1const of the fieldu.

The leading terms of the asymptotic behavior of the sc
ing functions in Eq.~3.18!–~3.22! for Mr→0 are therefore
determined by the scalar operatorsFn5@] iu] iu#n with the
minimal canonical dimensiondF50; see Sec. III. From the
analysis of the diagrams it follows that the number of t
fields u in the operatorFn entering into the right-hand side
of the expansions~4.1! can never exceed the total number
the fieldsu in their left-hand sides. Therefore, only a fini
number of operatorsFn contributes to each operator produ
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expansion in the model~2.1!, and the asymptotic form of the
scaling functions in Eqs.~3.18!–~3.22! for u→0 is given by
the expression

f ~u!5 (
n50

N

CnuDn1•••, ~4.4!

whereN is the total number of the fieldsu in the left-hand
sides,Cn5Cn(«,d) are numerical coefficients, and the do
stand for corrections of orderu21O(«) vanishing asu→0.
The leading term foru→0 is determined by the operato
with minimal Dn , i.e., with maximaln @owing to the fact
that the dimensionDn within the « expansion decrease
monotonically withn, see Eq.~3.10!#. As a result, for the
scaling functionf n in the representation~3.18! for the struc-
ture functionS2n we obtain

f n.const3uDn for u→0, ~4.5!

and for the correlators~3.20!–~3.22! we have

f n,m , f n,m8 , f n,m9 .const3uDn1m for u→0,
~4.6!

with the critical dimensionsDn given in Eq.~3.10!.
Therefore, we have derived expressions~1.11!, ~1.13!,

and relate the corresponding anomalous exponents to
critical dimensions of the composite operatorsEn(x).

V. DISCUSSION AND CONCLUSION

We have shown that the renormalization group combin
with the operator product expansion establishes the exist
of anomalous scaling in the model~1.7!–~1.9! for the advec-
tion of a passive scalar by a Gaussian velocity field a
allows the corresponding anomalous exponents to be ca
lated in the form of series in«.

The distinguishing feature of the model~1.7!–~1.9! that
explains the origin of the anomalous scaling is the existe
of dangerous composite operators withnegativecritical di-
mensions. They dominate the asymptotic behavior of
scaling functions and lead to singular dependence of the
relation functions on the IR scaleM for M→0, in contrast to
the standard models of critical phenomena, in which all
nontrivial operators have positive critical dimensions a
only determine vanishing corrections to the leading fin
contribution from the simplest operatorF51; see, e.g.,@10#.
In contradistinction with the SNS model, the dangerous
erators in the model~1.7!–~1.9! occur already for asymptoti
cally small values of« and only a finite number of thes
operators contribute to operator product expansion for
given correlation function.

The set of expressions~3.18!–~3.22!, ~4.4!–~4.6! gives
the complete description of the IR asymptotic behavior of
Green functions in the model~1.7!–~1.9!: Equations~3.18!–
~3.22! describe the asymptotic form of the structure functio
and pair correlators in the IR regionL,r @ l[L and deter-
mine their dependence on the UV scaleL, while Eqs.~4.4!–
~4.6! give the asymptotic form of the corresponding scali
functions upon additional restrictionMr !1 and determine
the dependence on the IR scaleL[M21. All the critical
he

d
ce

d
u-

e

e
r-

e
d

-

y

e

s

dimensionsDn , Dn8 entering into Eqs.~3.18!–~3.22!, ~4.4!–
~4.6! have been calculated in the second order of the« ex-
pansion@see Eqs.~3.10!, ~3.16!#, while the critical dimen-
sions of the model parameters, primary fields, and th
powers have been found exactly; see Eqs.~2.18!, ~2.19!,
~2.20!, and~3.4!.

It should be stressed that the asymptotic expressions~4.5!,
~4.6! result from the fact that the critical dimensionsDn are
negative and thatuDnu increases monotonically withn. This
is obviously so within the« expansion, in which the sign an
the n dependence of the dimensions are determined by
first-order terms, while the higher-order terms are treated
small corrections. However, for finite values of« the higher-
order terms can, in principle, change these features of
dimensions. Indeed, then3 contribution in the second-orde
approximation forDn is positive @see, e.g., Eqs.~1.14!,
~1.15!#, and soDn becomes positive providedn is large
enough. Of course, this conclusion is based on the sec
order approximation of the« expansion and is therefore no
reliable: higher-order terms of the« expansion contain addi
tional powers ofn, and the correct analysis of the largen
behavior of the dimensionsDn requires resummation of the«
series with the additional condition thatn«.1, but we know
of no model in which such a resummation has been p
formed.

The comparison of Eqs.~3.18!–~3.22!, ~4.5!, ~4.6! with
the corresponding expressions in@31–34# shows that
Dn52r2n in the notation of@33#, D252D, D185g2d in
the notation of@31#, andDn52D2n in the notation of@32#;
our results forDn , Dn8 are in agreement with the resul
obtained in@31–34# for the structure functionsS2n(r ) and
the pair correlators~3.20!, and in @31# for the correlators
~3.21!, ~3.22! with n5m51 within the first order of the
expansions in« and 1/d.

It is noteworthy that the set of scalar operatorsFn
5@] iu] iu#n is ‘‘closed with respect to the fusion’’ in the
sense that the leading term in the OPE for the pair correl
^FnFm& is given by the operatorFn1m from the same family
with the summed indexn1m; see Eqs.~3.20!, ~4.6!. This
fact along with the inequalityDn1Dm.Dn1m , which is ob-
vious from the explicit expressions forDn , can be inter-
preted as the statement that the correlations of the local
sipation rate in the model~1.7!–~1.9! exhibit multifractal
behavior; see@49# and @50#. We note that the same relatio
ensures the fulfillment of the Ho¨lder inequality for the struc-
ture functions~1.11!.

An important question is that of the universality o
anomalous exponents, see e.g.@35#. It is clear from the RG
analysis, that the exponentsDn do not depend on the choic
of the correlator~1.9! ~this correlator does not enter at a
into the UV divergent diagrams which determine renorm
ization constants!, and that they are insensitive to the speci
form of the IR regularization in the correlator~1.8! ~renor-
malization constants do not depend on the choice of the
regularization; see, e.g.,@9#!. However, the anomalous expo
nents can change if the functiond(t2t8) in the correlator of
the velocity field is replaced by some function with fini
width, i.e., the velocity field has small but finite correlatio
time @36#. The RG approach to this problem will be pre
sented elsewhere, and here we only mention another pos
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modification of the model~1.7!–~1.9!, that of a ‘‘slow’’ ve-
locity field. In this case, the functiond(t2t8) in Eq. ~1.9! is
replaced by the unity, so that the velocity correlator is tim
independent.

The RG analysis can be directly extended to this mode
prove that its Green functions also exhibit anomalous sca
behavior and the corresponding anomalous exponents ca
calculated in the form of series in«̃[«12. The critical di-
mensionsDv522 «̃/2, Du5211 «̃/4 are found exactly, and
for the structure functions defined in Eq.~1.11! we have
obtained

S2n.D0
2n/2r n~22 «̃/2!~Mr !D̃n, ~5.1!

where

D̃n52 «̃n~n21!/~d12!1O~ «̃2!. ~5.2!
e

, J

J

,

a

.

.

r.

r.

r.

r.

,

e

o
g
be

The expressions~1.13! remain valid with the replacemen

Dn→D̃n . We note that the velocity field with the dimensio

D@v#512 «̃/2 becomes dangerous for«̃.2 @which corre-
sponds to the IR divergence of the integral in Eq.~1.9! with
m50], and so become all its powers. However, these ope
tors are not Galilean invariant and therefore give no con
bution to the operator product expansions of the struct
functions and correlators~1.13!.
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