PHYSICAL REVIEW E VOLUME 58, NUMBER 2 AUGUST 1998

Testing stationarity in time series
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We propose a procedure for testing stationarity of time series by combining a test for time independence of
the 1D probability density with one of the spectral density. The potentials and limits of this test procedure are
established by its application to different types of numerically generated time series ranging from simple linear
stochastic processes to high-dimensional transient chaos as well as to observational data from geophysics and
physiology. Problems of practical implementation are discussed, in particular the relation between the lengths
of the time series and its maximal relevant time scales. Furthermore, artifacts and counterexamples are pre-
sented[S1063-651X98)14708-9

PACS numbes): 05.45+b, 02.50-r, 05.40:+]

[. INTRODUCTION The goal of this paper is to propose a statistical test that
can be applied for a time series consisting of a few thousand
During the last decade many methods for nonlinear signaélements(Sec. I). In constructing it, we employ the notion
processing have been proposed. These include estimations @f stationarity used in both mathematical statistics and the
dimensions, entropies, or mutual information, and modelingheory of dynamical systems.
or prediction of data series using local linear models, radial The properties of this test procedure are demonstrated in
basis functions, neuronal networks, and nonlinear stochastieec. lll A by a comparative application to a broad variety of
processe$1,2]. Most of them assumémplicitly) stationar-  time series from different physical models, where also such
ity of the time series under study. However, detecting staspecial cases as fractional Brownian motion and high-
tionarity in a time series is not an obvious task. Especia”y,dimenSional transient chaos are considered. Thereby it will
observations of natural systems are marked by influences & pointed out that our procedure enables us to test for a
several external processes, which might lead to nonstationagironger demand than weak stationarity. In Sec. Ill B we
ity or long-range correlations. Therefore, it is important todiscuss further properties of this algorithm and especially its
have a procedure that allows one to check whether a tim@rerequisites as well as its Iimits, artifacts, and counterex-
series is stationary or not and that can additionally detec@mples. Then, in Sec. Il C, we apply the procedure to ex-
stationary regions in an observational record. perimental data from geophysics and physiology, which have
In Fig. 1 we plot three time series to illustrate the prob-2 lot of the unwelcome properties typical for observational
lem: (a) a realization of a first-order autoregressive processqata like trends or measurement noise. Finally, the results are
which is by construction stationaryb) a realization of a summarized and discussed in Sec. IV.
fractional Brownian motion as an example of a nonstationary
process, andc) a record of heart rate variability of a human Il. DESCRIPTION OF THE TESTS
subject. This is measured as RR intervals, i.e., the duration
between heart beats. Herel the question of Stationarity is In thIS section mathematical definitions of Sta‘fion-arity are
Open_ The goa' Of th|s paper is to propose a technique théﬁcapnulated and the notions needed for the de“VaUOn of the

enables one to answer this question. test statistic are introduced.
There already exist quite a number of statistical tests for
stationarity. Several attempts grasp the notion of stationarity A. Definitions of stationarity

from the viewpoint of dynamical systeni8—5]. These in-

vestigations have led to improved qualitative descriptions of Roughly speqkmg, a t'm? series is called stat|onary if its
the data, however, they do not result in quantitative charac@Ssentlall _statlstlcal_ properties do not depeno! on time. in
' ! athematical statistics two types of stationarity are

teristics. Some tests for stationarity have been developed in. tinquished—st leta and K stati it
the frame of mathematical statisti]. Due to rather strong IStinguished—s rondor complet¢ and weak stationarity.
They are defined as followg]:

assumptions on the time series, which are often difficult to ) . .
check, they seem to be less suitable for our purposes. Fur- A stochastlc proces$xt} with teN is called stror_lgly
thermore, it has been taken into account that the detection (§|tat|onar)_/|f_ for any S(.EF of t_lm(_astl_,tz, - - - otn and any inte-
stationarity requires an observational length which is large irf€" K the joint probability distributions ofX;,, X, ... Xy }
comparison to the typical time scales of the underlying pro@nd of{X; +«.X¢,+k, - .. X +«} coincide. In the language
cess. In this sense, the discussion about stationarity is closetf dynamical systems this means that in each conceivable
connected with the question of correlation length or long-embedding space the statistical properties of the phase flows
range correlation. referring to different pieces of the time series are the same.
A less strict demand isveak stationaritywhere only the
first and second moments have to exist and have to be inde-
*Electronic address: annette@agnld.uni-potsdam.de pendent of time, i.e.,
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20 where X; and Y, are distinct stationary processes, and are

™ nonstationary in general as well. The main emphasis of this
. b”\\ M paper, however, is put on testing long-time nonstationarity.
% O /b From the physical point of view systems are called sta-
| tionary if their main physical properties do not change with
g time. The purely deterministic character of many physical
: e o systems does not conflict with the contemplation of their
0 500 1000 1500 2000 : . . .
(a) Lime L signals as realizations of stochastic processes. If an observa-

tional series is analyzed, it is oftenpriori unknown whether

0.10 . . e
the underlying process has a stochastic or a deterministic
0.05 character or is a mixing of both. In the language of dynami-

S 000 cal systems the equivalent f@strong stationarity is the ex-

" istence of an invariant ergodic measUig9]. Hence, there
-0.05 are close links between statistical and physical views about
_010 stationarity.

0] 500 1000 1500 2000
(b) time t

B. The tests
1.4

- L In this paragraph the test statistics are introduced. An im-
= 12l f [ g I portant problem in testing stationarity in observations of
=1L, LT IR i AR o natural systems is that only realizations of the system under
z im“ | | ‘ ik | 1Mo study are known instead of the system itself. Stationarity,
w0 M however, is a property of the process. Each test assumes
= 08l . ‘ ! implicitly that the time series is typical for the system and

0 50 40 60 can only give an upper limit for the degree of stationarity

(c) time (min) violation.

. i ) A further difficulty is that usually only @inglerealization
FIG. 1. (a) Realization of a first-order autoregressive proces

S n . . C oy
with a;=0.99.(b) Realization of a fractional Brownian motion pro- {Xt}tzl of the sy§tem under study :S avallabl-e.. .Subd|V|d|ng
cess with a scaling exponent=1.75.(c) Time series of RR inter- 1€ sequencexi} into several part$x, }, we artificially pro-
vals, i.e., the duration between heart beatsrdvéh of a healthy duce asetof data series that can be compared with statistical
subject. tools for correspondence.

It is important to note that it is never possible to truly
(X)=p 1) esta'blish. strong stationarity in experimental data, since either
' the time independence of all central and noncentral moments

t t ...t g —_— —_— Y —
<(Xt_,U«)(Xt_,U~)>:0'2: 2 Mklzl k(t)—((Xt+tl M)(Xt+t2 ,U«_). (Xt+tt< M)> or the.
time independence of the probability density of any projec-

where (-) stands for the ensemble averageand o are tion into lower dimensional spaces (t,, . . . t,) had to be

constants independent &f In addition, the autocorrelation tested. Therefore, we propose to test the following hypoth-
function p(t,s) = ((X;— u)(Xs— u) ) o has to depend only €Sis whose requirements include those of weak stationarity

on the relative time delay=t-s, i.e., but are weaker than strong stationarifc) The one dimen-
sional (1D) probability density is independent of time, and
p(t,8)=p(t—s)=p(7). (3)  (B) the power spectral density is independent of time.
If the process is weakly stationary, the power spectR(f) 1. Test A: Time independence of probability distributions
exists and can be expressed as the Fourier transfon of We take up an idea of Isliker and Kurth0] who have

proposed to test the time independence of the probability
distribution of a single time serief}{_,; as a necessary
assumption for strong stationarity and hence for the exis-
tence of an invariant ergodic measure:

Obviously, strongly stationary processes are also weakly sta- (1) The time seriegx}{_, is divided intol parts (win-

N| -
—~

=f<

N| =

1 < A
P(f)zzr;w p(r)e—IZWfr' _

tionary. dows {x'} of equal lengtm,, :
Examples of strongly stationary processes are Gaussian .
distributed white noise processes, autoregressive or moving X =Xi_1n +nj=1--1,7=1---n,,. (6)
T Mj=ny+ 7

average processes. Simple counterexamples are white noise

with nonconstanttime-dependentstandard deviation or au- The mean value and the variance of ftiewindow are de-

toregre;sive processes yvith varying coefficients. Periodi¢,yiaq byw! andol. The problem of finding an appropriate

fluctuations between stationary processes, e.g., choice of the subsequence lengthsvindow length is dis-
cussed in Sec. Il C.

5) (2) For the comparison of the probability distribution of
theith and thejth window a modifiedy? test is applied. As

X1 T even,

Z,= .
Yoy if T odd,
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usual fory? tests, the elements of both windows are coarsesecond moments. This condition is often equivalent with ei-
grained with the same binning, sayritins, such that thkth  ther pure linear correlations or a significant influence of
bin of the ith window contains the elementsX,  noise to the system.

={Xp,Xp, - - - Xoi}. The only condition imposed on the  The modifiedy? test statistic reads
k .
binning is that the number of elemen®, in each bin is r (RL—R)2
greater than 20. If the time series elements were uncorrey, ,= E % (9)
lated, R, could be understood as a realization of a binomial k=1 o*(R)+*(R))
random variable which has a variane that is of the same . ,
magnitude ask} and even this property is used in the con- nzé (R,.—R})?
struction of they? test variable. In the general case of cor- — Wi o Ri-1 I3 20 Ri-1
related time series, however, tRg's are not binomially dis- (R DKM 1+ (R e [Dk(m)mzl(lo)

tributed. This requires a direct estimation of this variance
from the time series. . . o _

: . and is asymptotically r{,,—oo,r —) x~ distributed withr
In the following we call the variance of the number of degrees of freedom.

occurrencg:RL of tk;e tiime series in thith bip with rgspect (3) If the probability distribution ofseveral windows
to theith window o“(R,) . We suggest to estimate this quan- ghoy|d be compared, then one can employ the test statistic

tity o?(RL) from the variancer?[Di(m) '] of the index ‘

- i oy i i L (R,— R /1i)?
number distances | {Dk_(l),Dk_(Z) ...Di(R—1)}= tA,|:|nv2vE D k 1
{p2—pP1.:p3— P2, - - - ,pRL—pRL_l} with respect to the ele- k=111 (R + 1)30'2[Dk(m)§k:711

ments of thekth bin inside thath window as
: Ry denotes the number of elemelits all | windows in the
oX(RY)=c 02[Dik(m)zk=_11 _ (7)  kth bin ando?(Dy) is the variance of their index number
distancesty, is x? distributed withr(n,—1) degrees of

The variablec depends on the window length, and on the ~ freedom. . - N _ _
number of elements in the biRL. In the case of an uncor- ~ BY comparing the probability densities of the windows in
related time series, we can determioeanalytically: The Principle the time independence all central statistical mo--
number of trials falling in thekth bin is a realization of the Ments is tested. Due to the coarse graining and further finite-
binomially distributed random numbéts characterized by ~Size effects, however, it does not do so in practice.
the parametersn(,,p). From a realization this probabilify
can be estimated by=R\/n,,. The variancer?(Xg) of this
random variable reads%(Xg)=n,p(1—p). The random Now the time independence of the second order noncen-
numberXp of the distances of trials oy falling in the kth tral moments, which are represented in the spectral distribu-
bin is geometrica”y distributed with the same parameteréion, is checked. If addltlonally the mean value is a constant,
(ny,p). This leads to a variance af?(Xp)=(1—p)/p2.  especially if the series has passed tastthe time series
Consequently the fraction of variances of both processedPpears as a realization of a weakly stationary process by

2. Test B: Time independence of power spectra

equa's definition.
The most important step of this test procedure is to trans-
o2(Xg) form the data into samples of the spectral distribution densi-
=— ties, i.e., with respect to each window to get a set of data
o*(Xp) {f}¥_, that are identically and independently distributed
(i.i.d.) with the spectral distribution.
B nyp(1—p) (1) For the subseries obtained for téstthe autocorrela-
- (1-p)/p? tion functions are estimated:
=n,,p°. 71nw_r j Y ‘
" (=K 2, (K= ) (= )
This variablec can be estimated from a realization as pl(k)= j
g
c=(R})%/nZ. (8

with  k=0,...)n,. (12

This equation(8) holds further in the case of simple periodic To ch erize thei es itis t . dint |

. . i \R—1 o characterize their properties it is transformed into a real-
b(zhaivlor, because both vellr.|ancesz[Dk(m)mk:1] and ization of the power speciral density: Taking a set of uni-
o“(Ry) vanish. We have empirically checked that B8).is  tormy distributed uncorrelated random variablgg},” , the
valid for several types of correlated time series as W&l luti A of
Sec. Ill). The test statistic includes exclusively means and>° utions{fi},2, o
variances of index number distances. This restricts its appli- .
cability to time series whose distributions of the index num- ff ij(f)df: L (13
ber distances can be completely described by their first and 0
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are a finite number of random variabld®. is the Fourier-
transformed autocorrelation functigsl of the jth window
point [see point(4)]:

Np
Pi(fy= >, pl(r)cog2mfr). (14)
r=-n,
The choice of uniformly distributedgk}g‘;l leads to statisti-
cal independence of thigfi}—; ., n,: [It seems more obvi-

ous to use a set of equidistafit, k=1, ... n,, instead of
uniformly distributed ones. However, in case of<n,
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t|:tA’|+tB’| . (18)

The new statistics are agay? distributed, and the degrees
of freedom are the sum of those of the summands. In the next
section it is explained how a minimal number of sample
elements can be determined.

C. Width of the windows

One essential assumption of the tests explained above is
that each of the subseries can be regarded as stationary.
Therefore, they should be chosen to be long enough so that

equidistantz,’s lead to values of fl} that are near the exact €ach of them presents all essentiabpecially, the long-

solution (n,— <), they cannot be regarded as a realization o

a continuous random number. By choosing #s uni-
formly distributed exact these effects are suppregddayv-
ing different sets!, andf!, for different windowsi andj we

want to check whether they belong to the same power spe
tral distributions. By considering these power spectral distri

butions as probability distributions we can interprt and

fL as two samples and can compare them by statistical te
as ay? test of homogeneity or a Kolmogorov-Smirnov test

(2) Similar to testA we apply ay? statistic. If the spectral

fange properties of the time series. On the contrary, we

would like to haveat least severabubseries so that a com-
parison between them is possible. Thus a compromise be-
tween a good representation of the long-frequency shares in
ach window and the largest possible number of windows
as to be attained. In the Appendix, we present a method that
semiempirically derives a minimal possible window length

for a given time series.

SIS pue to strong long-scale influences, it may be impossible
* to choose such an acceptable window lengtly., in case of

fractional Brownian motiop In some cases one has to ac-

density of theith and thejth window are compared, then one et that the time scales of the underlying physical process

uses the test statistic

" (R,—R}?

tB,2: E A A (15)
R

k=1

with respect to the chosen binning, WhEFR{% denotes the
number off}’s in the kth bin. This test statisti¢g , is x?
distributed withr —1 degrees of freedom.

(3) If it is hypothesized tha{f}}j:1 ..... n, represent the
same distribution for all,1<i<I, then the test statistiq‘g,nw
reads

: (16)

which is x? distributed with ¢ —1)(1—1) degrees of free-
d0m |f szlelk

are too large in comparison with the length of the data series,
sometimes, however, this can be diminished by filtering,
which is discussed in the next subsection.

D. Filtering

For reducing trends and long-scale influences in data se-
ries we apply two types of filter§11]: (i) Locally linear
detrending: This simple manipulation reduces long-range
properties very effectively. The filter length is chosen on a
case by case basis. Butterworth filter: Here all waves that are
longer than a fixed wavelength vanish. The result is similar
to the above one, but the changes in the power spectrum are
more fundamental.

The resulting series include short- and intermediate-scale
components. It is also possible that they have nonstationary
properties. Therefore, it is necessary to check the filtered
data for a hidden nonstationarity.

If the hypothesis is rejected, i.e., the sequence is nonsta-
tionary, we can compare mutually the samplég;_; ..,

whether the structure of the data series is generally inhomgyst apply it to series obtained from known dynamical sys-

geneous(as in transient statgsor whether there are only tems. Later we test observational data series for stationarity.
some part§windows with a special structur¢e.g., due to

bursts.

Ill. APPLICATIONS

A. Numerically generated time series

The validity of the test statistic introduced above is
checked by computing the test statistic or t; [Egs.
i - o (17), (18)] for 1000 different realizations of the special sys-
separately. Sometimes, it might be preferable to have onl em. This way the observed distribution of the test statistic

one test statistic that contains the results of both procedureg, 'y compared with the hypothesized one. Further we con-
Since they? statistic is used, a combined test is obtained bysider different window lengths, bin sizes etc;

simple addition. Consequently, if two subseries are com-
pared the final test statistic is

3. Combined test

The procedure#\ and B explained above can be applied

1. Stochastic processes

a. Autoregressive processe8utoregressive(AR) pro-
cesses are standard examples(sifongly stationary sto-
chastic processég$§]. An AR process of ordek is defined as

17

and in the case of comparison @f, windows one uses

to=taot1ip,
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(a) T lag i
1.0} T 1 FIG. 3. Autocorrelation function for FBM withw=1.75; full
o8l ] line: p of the complete serie@40 000 data poinjsdashed linep of
1 the first half series.
0.6
(i.e., the correlation decay is about 1Ghd a data length of
o4 5000 points is plotted. It is clearly seen that the strong cor-
T 02 relations lead to g that lays outside the significance level
b SL(5000,700 (for more details cf. the Appendix That
0.0p means that for a window length af,= 700 the test provides
ozl with high probability a negative result, i.e., it rejects station-
T 1 arity. This is due to both the short data set and the long
~0.4F . correlation length. The structure of such a time series calls
0 oo 200 m00. 100 00 fqr a very long wmdqvv_ Iength; the procedure in the Appen-
(b) r dix recommends a minimal window length of, = 3500 time

steps. Since this is often not realistic, filtering can be an
alternative: In Fig. &) the autocorrelation function for the

Butterworth-filtered sequence is given, where all components
longer than 40 time steps are reduced. This allows a window
length of 500 points. For these filtered data the test statistic is

FIG. 2. (a) Autocorrelation function of a first order AR process
with a;=0.99 (solid line, special realization; dashed line, theoreti-
cal value with significance levefg, (dotted line$. (b) Autocorre-
lation function of the same but filtered record.

K distributed as hypothesized. The correlation time, however,
_ which is an essential property of that process, is diminished.
xt—i; aiXi—it & (19 b. Fractional Brownian motion. Several natural pro-

cesses such as heart rate variability or languai2d 3 are
where¢, is a Gaussian i.i.d. process. The power spectfym characterized by an fidike power spectrum

has the form
P(f)~f~@ (21

Py(f)=(2m) ! 5. (200  Wwith a scaling exponent. Osborne and Provenzdlg4] pro-
posed a simple procedure to generate signals, called frac-
tional Brownian motion(FBM), whose power spectra have
such a power-law dependence. For such FBM the standard

Note that it is independent df deviation depends on the window lengtt, : o%(n,,)~n?2,

We have simulated the distribution of for several AR i.e., FBM is not weakly stationary similar to the behavior of
processes as described. If the correlation time is smalandom walks. Furthermore, the FBM has by construction
enough, then the test statistic converges to the target distdeng-term correlations, which are amplified by an increasing
bution. As simplest models we use first order AR modelscoefficienta.

(n=2000,n,,=500,r =10, comparison of first and last win- A realization of FBM witha=1.75 is shown in Fig. (b).

dow). The hypothesized statistics of is a y? distribution ~ The singularity of its power spectrum at=0 is character-

with 19 degrees of freedom. It is reached f@|<0.7. ized by the exponent. This singularity induces correlation

Larger absolute values @f; lead to a right shift of the dis- lengths in the magnitude of sequence length, the resulting

tribution, i.e., the test hypothesis is rejected with higher thariime series are nonstationary. So one finds the test stdtjistic

error probability. This effect is caused by the window lengthquite larger than expected: for=1.75, n=1000, n,,

of 500 data points, which is too small compared to the cor=500y =8 the mean value df, , is 50 instead of 8. This is

relation length. strengthened by a growing parameter

The problem becomes worse for a first order AR process It is important to notice that the autocorrelation functions
with a coefficient near 1. In Fig.(d) the estimated autocor- (normalized to have variance for subseries with different
relation function for a first order AR process with=0.99 length coincide(cf. Fig. 3. In this sense, FBM exhibits a

k
—ijf
1+;1 aje
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self-similar behavior in the linear correlation structure. Con- 10001
sequently, the spectral densities of different windows coin- I
cide and the test statistig is y? distributed with the ex- 800
pected degrees of freedom. K

This example shows impressively that different properties
of stationarity need to be tested. A geophysical observation
with a similar structure is discussed by Kurtsisal. [15].

600

arbitrary units

2. Low-dimensional nonlinear systems

In this section deterministic systems in rather complex 200
states are investigated. As mentioned in the Secs. Il A and
II B, it is useful to test stationarity also in deterministic sys- ol
tems. Especially, in the case of chaotic regimes, the expo-
nential growth of the distance between trajectories that are b,z (arb. units)
initially nearby can be interpreted as a production of infor-

mation, i.e., they have a strong correlation decay. with r=23.7 (dashegl and r=3.58 (dotted, for windows of 500

a. _SkeW tent mapAs a paradigmatiq model Of_discrEte points and a coarse graining of 10 bins. The full line represents the
chaotic systems we analyze the dynamics of the simple SkeY&rget distribution.

FIG. 4. Distributions oft, , for time series of the logistic map

tent map:
c. Strange nonchaotic attractorés an example of a de-
Xn if x.<a terministic process at the border between regularity and
" chaos, we analyze the trajectories of strange nonchaotic at-
X< 1 (22 tractors[17] of the system

a1 a—1 if x,=a,

a- a- Xn+1=f(Xp,0,) =3(tanhx,)cog276,), (24
with x5 € (0,1) andae (0,1). It is well known that the natu- 0. 1= (64 w)mod 1 (25

n+1— n ’

ral measure of this system is the uniform distribution on the

unit interval and the autocorrelation function decreases ex- _ . .
ponentially[16]. If the correlation length is small, e.g., the wherew=(y5—1)/2 is the inverse golden mean. These tra-

control parameter satisfies 0:28<0.75, the test statisti, 1SCOri€s approach an attractor which is not chattegative
andt, (n,=500r=10) are distributed as expected. Other Lyapunov exponenjs but has a fractal geometry. Further-

values ofa induce stronger correlation, which leads to theMOre: the spectrum has a fractal structure, i.e., it is singular
same problems as discussed for AR models. continuouq 18]. Even for such degenerated spectral distribu-

b. Logistic map and time continuous nonlinear systems?ions the test statistity attains its expected distribution. The

Another popular example of a nonlinear system is the logis/€Sults with respect to te are similar to those of the lo-
tic map gistic map in the regime of 2- or 4-band attract@s Fig 4,

r=23.58). The strong periodic component in the behavior of
Xps1=Xp(1=Xy). (23) ';he trajectories is reflected in a left shift of the distribution of
A .
Chaotic behavior of the, occurs for many of the control
parameters when<8r <4. The results of the stationarity test
are completely different from that for the skew tent map. The As an example of high-dimensional systems we investi-
simulated distribution of , does not coincide with the ex- gate solutions of the one-dimensional Kuramoto-Sivashinsky
pected distributior(cf. Fig. 4. The main reason is that the equation(KS) [19]
nonlinear behavior here is caused by a quadratic nonlinear-

3. Kuramoto-Sivashinsky equation

ity, whereas the skew tent map is piecewise linear. Due to au  d*u J2u u
this nonlinearity the distribution of index number distances E+4—4+a —2+u5 =0 (26)
for the elements of a bin is structured very complicatedly, it IX

can have gaps or singularities. In particular, it cannot be

completely described by the mean value and standard devigtbject to periodic boundary conditions&<2. Here it is
tion. Therefore, the distribution df, , may be far from the ~Cconvenient to study the nortor energy s(t) = fu(x)dx of

expected onécf. Fig. 4). ’ solutionsu in dependence ofsampled time. The KS equa-

The test for the independence of the power spectrumtion possesses a rich bifurcation scenario; different periodic
however, works, i.e., the statistig , is distributed as hy- as well as chaotic branches are known. Moreover, transient
pothesized. ' states are typically found.

For typical chaotic time-continuous systems such as the @. Chaotic regime. For the parameter value=134.0, a
Lorenz or the Duffing oscillator we get analogous results—chaotic solution of Eq(26) exists. As in the examples of
the nonlinear deterministic character of the system leads tpw-dimensional chaos, the test statidficindicates station-
distributions of the test statistig and consequentliy which  arity, i.e., it is xy? distributed with the correct number of
differ significantly from the expected ones. degrees of freedom. This shows that the procedure is also
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FIG. 5. Norm of a solution of the Kuramoto-Sivashinsky equa- FIG. 6. Example of a standard-deviation normalized first order
tion Eq. (26) over time. The three different statéquasichaotic, AR process with moving coefficiers;=0.6, . . .,0.9
transient, periodicare recognizable.

tribution oft, has a mean of 17.4; i.e., the sequence seems to

appropriate for analyzing high-dimensional systems if a suitbe a realization of a stationary process with high probability.
able reduction to a one-dimensional subspace is found, as the If longer sequenceé.g.,n=4000 as given with the pro-
norm in this case. cedure of the Appendjxare used, the distribution df is

b. Transient chaos. A quite different behavior is ob- more distant from the target distribution, and, therefore, the
served for the parameter value=137.0, where transient nonstationarity is detected with higher probability.
chaos occur§19]. After a finite chaotic phase, the system  This means that only sequences with either a strong non-
comes via a transient state into the final periodic regime. Astationarity or with a sufficient length can be recognized as
expected, the test indeed finds non-stationarity for the whol@onstationary. Or, in other words, the time scales on which
series, as plotted in Fig. 5. Comparing mutually the powethe process varies have to be small in comparison with pro-
spectra of the windows with teB the two different dynami- €SS length. _ _ o
cal regimes are identified as stationary subsequences, in par- °- T€nt maps with varying skewnes#\s a deterministic
ticular, the periodic regime where stationarity is found inde-COUNterpart, tent maps with a growing paramedgi0<a
pendently of the window length as well as the initial <0.75, are .con5|de_req. Testllndlcat_es stationarity, since
nonstable chaotic regime, which is recognized if the windov}he probability density is a unllform—d|§_tr|buted one, i.e., itis
length is larger than 500 points. For the piece of the seriefldependent of. Only TestB is sensitive to the structural
between both the test rejects stationarity independently of thehanges. o
window length, i.e., instead of suddenly jumping from the TNiS example proves that the test for the time indepen-
chaotic into the periodic regime a transient state is passed. #€nce of the probability distributioalone is not sufficient
should be mentioned that this method allows not only thefVen for testing weak stationarity.
detection but the localization of the different dynamical re-

gimes. Lyapunov exponents that applied usually lead to more B. Artifacts and apparent counterexamples
rough approximations. In this section we demonstrate some cases where special
) effects of the test procedures are underlined and their limits
4. Examples of nonstationary processes are shown.

The transient phase of the Kuramoto-Sivashinsky equa- The first example is a standard-deviation normalized first-
tion gives an example of a nonstationary time series. Nowprder AR process with varying coefficients:
we study processes that are in general nonstationary.
a. Autoregressive processes with varying coefficiers. Xi=v1-a(t)® [a(t) X1+ &], (28)
a generalization of autoregressive processes, we consider . ) .
here such processes of first order with varying coefficients:\’\’herfabya depends linearly on (cf. Fig. 6) The probability
density of X; is by construction Gaussian-normal for &ll

Xi=a(t)X_;+& with —1<a(t)<1. (27)  The time invariance of this probability distribution is con-
firmed by testA. But testB finds that there are structural
These processes are nonstationary by constructiaft)fis  changes in the time series—the power spectrum depends on
nonstationary. t. The characteristics ad(t) and the window length are the
Regarding such processes, wharknearly depends om  same as for Eq(27). Hence it seems to be that this is an
(n=2000, a increases from 0.5 to 0.7, the first 800 dataexample for a strongly but not weakly stationary process—in
points compared with the last 800 poiptae have found for  contradiction to the definitions. The explanation for this phe-
the test statistit, instead of gy? distribution with a mean of nomenon is that the test for the time independence of the
15 a distribution with a mean of about 23. This is equivalentprobability density is only a necessary condition for strong
to a rate of about 45% finding the series nonstationary. If thestationarity, but not a sufficient one. Analogous results hold
parameter changes only between 0.5 and 0.6, then the disfor the above mentioned tent maps with varying skewness.
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TABLE I. Overview of the results: The different analyzed processes are given in the first column, their
properties with respect to the statistical definitions of stationarity are displayed in the second and third
columns, the last two columns contain the results of the test.

Weakly Strongly
Process stationary stationary TesA TestB
AR + + passed passed
FBM - - not passed passed
Skew tent map + + passed passed
Logistic map + + not passed passed
Nonlinear time- + + not passed passed
continuous systems
Strange nonchaotic + + not passed passed
attractors
Kuramoto-Sivashinsky
equation
Chaotic regime + + not passed passed
Transient state - - not passed not passed
AR with varying - - not passed not passed
coefficients
Skew tent map with - - passed not passed

varying skewness

The opposite behavior occurs if we compose a serieprovide essential information about long-term solar varia-
whose first part is Gaussian distributed white noise and théons[21,22. The influence of the geomagnetic field to the
second part is uniformly distributed noigwith the same  !4C production leads to a trend in the data series that is
mean value and standard deviadiddere the noncentral sec- extracted by a local linear underground subtractich Fig.
ond moments are independent of tinf@elta functiony 7). The solar cycle of about 200 years is clearly recognized
whereas the probability density is time dependent. Similagy the power spectrurf23]. Stationarity is found in théfil-

structures are exhibited by a series that is composed of @req data if windows longer than,,= 200— 1000 years are
nonlinear trajectory and its phase-randomized sur_rd@}e used. The only exception are the last 150 ye@@ data
Both are examples of weakly but not strongly stationary pro'points. If these data points are included the power spectrum

Ccesses. of the last window is essentially different from all other ones.

Anqther limit OT the test procedure IS gxplamgd _by theThis seems to be in accordance with the industrial revolution
following example: If a concatenation of uniform distributed (human impact

white noise and a trajectory of a skew tent map with
=0.5 is considered, the first and second moments as well as
the probability density coincide. The tests give rise to sta-
tionarity. But, the series is only stationary in the weak sense, As mentioned in the Introduction, in this section we deal
Since the SkeW tent map is Characterized by nonzero h|ghé¥|th heart rate Var|ab|l|t}(HRV) Such records are extracted
noncentral moments as opposed to a white noise proces§0m long-time ECG record¢over 60 min at rest and 24 h
This example emphasizes that only the central moments arféHring a normal day with a transportable ECG deyidéey
the noncentral moments of second order are tested. All othélescribe the time differences between two adjacent heart
noncentral moments are not taken into consideration. beats. The underlying dynamical behavior is understood only
The results of the test with respect to all processes disPartially (see[24] and references therginMoreover, this
cussed above are summarized in Table I. The statemengéynamical process might be influenced by several external
done there assume a subsequence length as determined wigjturbations such as exercise, the circadian rhythm, or

2. Physiological data

the technique proposed in the Appendix. acoustics. _ _
There have been attempts to characterize the dynamics of
C. Observational data HRV quantitatively[24,25. But only seldomly the problem
Finally, we apply these techniques to outdoor data, which 20F

are observations from natural processes. Opposite to times 3
series, which are obtained by laboratory experiments, these & A 1
observations often cannot be repeated or easily manipulated.= o gl W

Furthermore, severalnonstationary measurement errors < * | | HE
have to be diminished by filtering. < C1op E
—20E . E

1. Geophysical observations —6000 —4000 —2000 0 2000

time (years)

The changes in the atmospheric radiocarbon isottife
as given by the decay-correctéd“C activity in tree rings FIG. 7. The filteredA*'C record.
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of stationarity was taken into account, though this is an asuse only the test for the coincidence of the spectral distribu-

sumption of most techniques. As is well known, the HRV tion. The other test statistic may be strongly influenced by

contains strong long-range correlations: Sé fiéhavior in  the deterministic nonlinearit}28].

the power spectra was reported 6] and Biggeret al.[27] If the data series is a concatenation of different stationary

analyzed the power in the frequency band between 0 ansubsequences, these could be found again by mutual com-
0.0033 Hz as a signature of some temperature regulatingarison of the probability distribution and the spectral densi-

processes. Even such long-range processes pretend low ties of the windows. So a regime of transient behavior has

mensional behavior. been found(cf. Sec. Il A 3. In this way it is already pos-

We were interested in getting the longest parts of such asible to detect short interruptions in the structure of the data,
HRV series, which could be assumed to be stationary. The.g., if the heart rhythm during the sleeping phase is shortly
sleeping phase in the 24 h records seems to be the moshanged by movements.
promising one. Some important consequences for data analysis are as fol-

The trend of the data was subtracted by the Butterworthows: (i) A lot of data-analytical methods assume stationar-
filter. In the 24-h records all frequencies0.0033 Hz and in ity. If this prerequisite is not checked disastrous artifacts may
the 1-h records all frequencies0.015 Hz were deleted. Fur- occur. (i) Methods that assume stationarity can be applied
thermore, the standard deviation was locally normalized. Aponly if the main time scales of the process considered are
plying the tests we found in the 1-h records stationary partsmall in comparison with the observational lendih,) Fur-
of 15—-45 min, for the 24-h records such parts have a lengtkher, the test can be used for picking out structures as Thies-
of maximal 70 min. senhuseret al. [29] have done for Saturn’s rings.

In the analysis of HRV series we meet again the problem We have applied the proposed procedure to geophysical
of the relation between the time scales of the signal and thebservations as well as to physiological data. In both cases
observational length. As described above, records of 1 or 2we have found stationary subseries. Both types of data need
h are definitely nonstationary due to long-range correlationdiltering due to long-range influences of the reversals of the
If we had, however, a very long HRV sequence, say of 5CEarth’s magnetic field and temperature-regulating processes.
days, there is a good chance of finding stationarity ovelf we find stationarity for filtered data this means that the
longer scales too. dynamics of the series that have passed the fittends with

higher frequencigsare time independent.
If stationarity is checked for deciding whether an attractor
IV. SUMMARY AND DISCUSSION dimension estimation is possible we recommend the method

In this article we have proposed to test stationarity of dataOf Schreiber[5], which is especially constructed for th's.
series with a combination of a test for the time independenc roblem and possesses a more powerful approach for solving
of the probability distribution and a test based on the time" . . .
independence of the power spectra. By applying these tests In this a_rtlcle only 1D observations of systems areé con-
to several types of time series their potentials and limits hav |dered._|t IS necessary to extend these tests to multivariate
been demonstrated. ime series. Moreover, it should be _emphaS|zed that we are

Each data series that passes both tests can be regardetpg{ able to give a st_rpng_ mathematical proof about th§ cor-
least as weakly stationary, because the time independence Igetness of the modifications E(g) and .Eq.(13.) of the x
the first and all second moments is examined. The analysis dgst procedures, but the results of the simulations support our
several examples demonstrates clearly the necessity of boc[‘.r(?n&deratlons.
tests for testing stationarity. Since the tests do not include the
time independence of all central and noncentral moments, ACKNOWLEDGMENTS
strong stationarity is not tested. ) o

We have presented an example of a weakly but not The_ data series of heart rate varla_k_)|llty have been put at
strongly stationary process that has passed both tests. TH§r disposal by A. Voss(Max-Delbrick-Center, Berlin
refers to the fact that our hypothesis is the coincidence of thBuch. For helpful hints and explanations we are indebted to
1D probability distribution and the spectral distribution, OUr colleagues U. Feudéstrange nonchaotic attractiys-.
which both demand less restrictive structural properties thaffeudel (Kuramoto-Sivashinsky equatignand U. Schwarz
strong stationarity does. Thus, a limit of the procedure pro{geophysical dataWe thank D. Kaplan, H. R. Kusch, M.
posed is obvious. Another limit is that the detection of non-Muldoon, L. Smith, J. Timmer, and H. Voss for detailed
stationarity requires an expressed variation of the structuréliscussions.
as discussed for some autoregressive processes with varying
coefficients(cf. Sec. Il B).

It has been shown that the methods cannot be used as
black-box algorithms: In particular, the window length must  This section deals with an algorithm that gives a possible
be in accordance with the correlation length, i.e., in the caswindow length for an arbitrary time series. It is obvious that
of data with strong correlations the window length has to befor characterizing the first and second moments of a time
chosen in such a manner that the long-frequency shares aseries with a large correlation time a longer realization is
sufficiently represented. On the contrary, it might happen toeeded than for an uncorrelated process. The minimal length
be correct that small parts of a stationary series cannot bef that realization can be determined in the following way:
considered as stationary. The information about thélinea) memory range of the

In the case of deterministic systems it is recommended ttime series under consideration is expressed in the autocor-

APPENDIX
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relation functionp. The depth of the memory is given by the
largest value of the lag for that p(k) is not vanishing. Due

to the finite length of the data series the autocorrelation func-

tion p(l) for I>k reaches instead of the exact value “0”

which has to be determined firstly. We introduce this “nu-

merical 0,” as the significance levé¢fg =fg (n,n,)] de-
pending on the sequence lengttand the length of the au-
tocorrelation functionn,. For an uncorrelated time series

with the same probability distribution as the original data “

series we definég, by the equation

p| max [|acfi)[]<fg(n,n,) |=0.95. (A1)

o<lil=n,

Since this definition requires thaachelement ofp is with
95% probability smaller tharig, , fs is bounded from be-
low by confidence limit 1.96/n [6] for a single element of

p.
We have estimatedg, in the case of Gaussian white
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FIG. 8. Level of significancég (n,n,) over sequence length
whereby the length of the autocorrelation function is chosen,as
=0.15.

significance level is shown in dependence of the time series

noise via Monte Carlo experiments and found dependencd§ngth n where the length of the autocorrelation function

onnandn, that show the following scaling laws: For con-
stant time series length we got

fsu(n,)=a+b In(n,) (A2)
and for constann,, the relation
fsu(n)=con® (A3)
is fulfilled. For varyingn andn, the ansatz
a(n)+b(n)In(n,)
fs(n.n,)= S (A4)
is used, whereby
a(n)=agp+a; In(n), (A5)
b(n)=bgn": (AB)

and the free parameters are estimated dyy=1.25, a;
—0.078,by=0.340,b;=—0.157,c=0.36. In Fig. 8 this

satisfiesn,=0.15.

For applying this level of significance to a time series
with a non-Gaussian distribution the time series has to be
transformed into a Gaussian-distributed one using the filter
of Kaplan[30].

Coming now to the estimation of the minimal window
length, we propose to determine it as follow) Transfor-
mation of the data serid;} into a Gaussian distributed one
{X}; (2) calculation of the autocorrelation function for
{it}; (3) calculation offg, in according to Eq(32); (4) de-
termination of the length.c(memory depthof the essential
part of p:

Ness= mMax [p(i)=fg(n,ny)]. (A7)

<i
0 i<n,

(5) We made good experiences with a minimal window
length ofny,= 7ngge

If this minimal window lengtn,, is larger than half of the
sequence length, either the data series has to be filtered or the
application of the test for stationarity is impossible.
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