
PHYSICAL REVIEW E AUGUST 1998VOLUME 58, NUMBER 2
Testing stationarity in time series

A. Witt,* J. Kurths, and A. Pikovsky
Department of Physics, Nonlinear Dynamics Group, Universita¨t Potsdam, Postfach 601553, D-14415 Potsdam, Germany

~Received 29 October 1997!

We propose a procedure for testing stationarity of time series by combining a test for time independence of
the 1D probability density with one of the spectral density. The potentials and limits of this test procedure are
established by its application to different types of numerically generated time series ranging from simple linear
stochastic processes to high-dimensional transient chaos as well as to observational data from geophysics and
physiology. Problems of practical implementation are discussed, in particular the relation between the lengths
of the time series and its maximal relevant time scales. Furthermore, artifacts and counterexamples are pre-
sented.@S1063-651X~98!14708-6#

PACS number~s!: 05.45.1b, 02.50.2r, 05.40.1j
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I. INTRODUCTION

During the last decade many methods for nonlinear sig
processing have been proposed. These include estimatio
dimensions, entropies, or mutual information, and model
or prediction of data series using local linear models, rad
basis functions, neuronal networks, and nonlinear stocha
processes@1,2#. Most of them assume~implicitly ! stationar-
ity of the time series under study. However, detecting s
tionarity in a time series is not an obvious task. Especia
observations of natural systems are marked by influence
several external processes, which might lead to nonstatio
ity or long-range correlations. Therefore, it is important
have a procedure that allows one to check whether a t
series is stationary or not and that can additionally de
stationary regions in an observational record.

In Fig. 1 we plot three time series to illustrate the pro
lem: ~a! a realization of a first-order autoregressive proce
which is by construction stationary,~b! a realization of a
fractional Brownian motion as an example of a nonstation
process, and~c! a record of heart rate variability of a huma
subject. This is measured as RR intervals, i.e., the dura
between heart beats. Here, the question of stationarit
open. The goal of this paper is to propose a technique
enables one to answer this question.

There already exist quite a number of statistical tests
stationarity. Several attempts grasp the notion of stationa
from the viewpoint of dynamical systems@3–5#. These in-
vestigations have led to improved qualitative descriptions
the data, however, they do not result in quantitative cha
teristics. Some tests for stationarity have been develope
the frame of mathematical statistics@6#. Due to rather strong
assumptions on the time series, which are often difficult
check, they seem to be less suitable for our purposes.
thermore, it has been taken into account that the detectio
stationarity requires an observational length which is large
comparison to the typical time scales of the underlying p
cess. In this sense, the discussion about stationarity is clo
connected with the question of correlation length or lon
range correlation.

*Electronic address: annette@agnld.uni-potsdam.de
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The goal of this paper is to propose a statistical test t
can be applied for a time series consisting of a few thous
elements~Sec. II!. In constructing it, we employ the notio
of stationarity used in both mathematical statistics and
theory of dynamical systems.

The properties of this test procedure are demonstrate
Sec. III A by a comparative application to a broad variety
time series from different physical models, where also su
special cases as fractional Brownian motion and hi
dimensional transient chaos are considered. Thereby it
be pointed out that our procedure enables us to test fo
stronger demand than weak stationarity. In Sec. III B
discuss further properties of this algorithm and especially
prerequisites as well as its limits, artifacts, and counter
amples. Then, in Sec. III C, we apply the procedure to
perimental data from geophysics and physiology, which h
a lot of the unwelcome properties typical for observation
data like trends or measurement noise. Finally, the results
summarized and discussed in Sec. IV.

II. DESCRIPTION OF THE TESTS

In this section mathematical definitions of stationarity a
recapitulated and the notions needed for the derivation of
test statistic are introduced.

A. Definitions of stationarity

Roughly speaking, a time series is called stationary if
essential statistical properties do not depend on time.
mathematical statistics two types of stationarity a
distinguished—strong~or complete! and weak stationarity.
They are defined as follows@7#:

A stochastic process$Xt% with tPN is called strongly
stationaryif for any set of timest1 ,t2 , . . . ,tn and any inte-
ger k the joint probability distributions of$Xt1

,Xt2
, . . . ,Xtn

%
and of $Xt11k ,Xt21k , . . . ,Xtn1k% coincide. In the language
of dynamical systems this means that in each conceiva
embedding space the statistical properties of the phase fl
referring to different pieces of the time series are the sam

A less strict demand isweak stationarity, where only the
first and second moments have to exist and have to be i
pendent of time, i.e.,
1800 © 1998 The American Physical Society
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PRE 58 1801TESTING STATIONARITY IN TIME SERIES
^Xt&5m, ~1!

^~Xt2m!~Xt2m!&5s2, ~2!

where ^•& stands for the ensemble average,m and s are
constants independent oft. In addition, the autocorrelation
function r(t,s)5^(Xt2m)(Xs2m)&/s2 has to depend only
on the relative time delayt5t2s, i.e.,

r~ t,s!5r~ t2s!5r~t!. ~3!

If the process is weakly stationary, the power spectrumP( f )
exists and can be expressed as the Fourier transform ofr:

P~ f !5
1

2p (
r 52`

`

r~r !e2 i2p f r , 2
1

2
< f <

1

2
. ~4!

Obviously, strongly stationary processes are also weakly
tionary.

Examples of strongly stationary processes are Gaus
distributed white noise processes, autoregressive or mo
average processes. Simple counterexamples are white
with nonconstant~time-dependent! standard deviation or au
toregressive processes with varying coefficients. Perio
fluctuations between stationary processes, e.g.,

Zt5H XT/2 T even,

Y~T21!/2 if T odd,
~5!

FIG. 1. ~a! Realization of a first-order autoregressive proce
with a150.99.~b! Realization of a fractional Brownian motion pro
cess with a scaling exponenta51.75.~c! Time series of RR inter-
vals, i.e., the duration between heart beats over 1 h of a healthy
subject.
a-

an
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where Xt and Yt are distinct stationary processes, and a
nonstationary in general as well. The main emphasis of
paper, however, is put on testing long-time nonstationari

From the physical point of view systems are called s
tionary if their main physical properties do not change w
time. The purely deterministic character of many physi
systems does not conflict with the contemplation of th
signals as realizations of stochastic processes. If an obse
tional series is analyzed, it is oftena priori unknown whether
the underlying process has a stochastic or a determin
character or is a mixing of both. In the language of dynam
cal systems the equivalent for~strong! stationarity is the ex-
istence of an invariant ergodic measure@8,9#. Hence, there
are close links between statistical and physical views ab
stationarity.

B. The tests

In this paragraph the test statistics are introduced. An
portant problem in testing stationarity in observations
natural systems is that only realizations of the system un
study are known instead of the system itself. Stationar
however, is a property of the process. Each test assu
implicitly that the time series is typical for the system a
can only give an upper limit for the degree of stationar
violation.

A further difficulty is that usually only asinglerealization
$xt% t51

n of the system under study is available. Subdividi
the sequence$xt% into several parts$x*

i %, we artificially pro-
duce asetof data series that can be compared with statist
tools for correspondence.

It is important to note that it is never possible to tru
establish strong stationarity in experimental data, since ei
the time independence of all central and noncentral mom
Mk

t1t2•••tk(t)5^(Xt1t1
2m)(Xt1t2

2m)•••(Xt1tk
2m)& or the

time independence of the probability density of any proje
tion into lower dimensional spaces (t1 ,t2 , . . . ,tn) had to be
tested. Therefore, we propose to test the following hypo
esis whose requirements include those of weak stationa
but are weaker than strong stationarity:~A! The one dimen-
sional ~1D! probability density is independent of time, an
~B! the power spectral density is independent of time.

1. Test A: Time independence of probability distributions

We take up an idea of Isliker and Kurths@10# who have
proposed to test the time independence of the probab
distribution of a single time series$xt% t51

n as a necessary
assumption for strong stationarity and hence for the e
tence of an invariant ergodic measure:

~1! The time series$xt% t51
n is divided into l parts ~win-

dows! $xt
j % of equal lengthnw :

xt
j 5x~ j 21!nw1t , j 51••• l ,t51•••nw . ~6!

The mean value and the variance of thejth window are de-
noted bym j ands j . The problem of finding an appropriat
choice of the subsequence lengthsl ~window length! is dis-
cussed in Sec. II C.

~2! For the comparison of the probability distribution o
the ith and thejth window a modifiedx2 test is applied. As

s
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1802 PRE 58A. WITT, J. KURTHS, AND A. PIKOVSKY
usual forx2 tests, the elements of both windows are coa
grained with the same binning, say inr bins, such that thekth
bin of the ith window contains the elementsXk

i

5$xr1
,xr2

, . . . ,xrRk
i %. The only condition imposed on th

binning is that the number of elementsRk
i in each bin is

greater than 20. If the time series elements were unco
lated,Rk

i could be understood as a realization of a binom
random variable which has a variances2 that is of the same
magnitude asRk

i and even this property is used in the co
struction of thex2 test variable. In the general case of co
related time series, however, theRk

i ’s are not binomially dis-
tributed. This requires a direct estimation of this varian
from the time series.

In the following we call the variance of the number
occurrencesRk

i of the time series in thekth bin with respect
to theith windows2(Rk

i ). We suggest to estimate this qua

tity s2(Rk
i ) from the variances2@Dk

i (m)
m51
Rk

i
21

# of the index
number distances $Dk

i (1),Dk
i (2) . . .Dk

i (Rk
i 21)%5

$r22r1 ,r32r2 , . . . ,rR
k
i 2rR

k
i 21% with respect to the ele

ments of thekth bin inside theith window as

s2~Rk
i !5c s2@Dk

i ~m!m51
Rk

i
21

#. ~7!

The variablec depends on the window lengthnw and on the
number of elements in the binRk

i . In the case of an uncor
related time series, we can determinec analytically: The
number of trials falling in thekth bin is a realization of the
binomially distributed random numberXR characterized by
the parameters (nw ,p). From a realization this probabilityp
can be estimated byp̂5Rk

i /nw . The variances2(XR) of this
random variable readss2(XR)5nwp(12p). The random
numberXD of the distances of trials ofXR falling in the kth
bin is geometrically distributed with the same paramet
(nw ,p). This leads to a variance ofs2(XD)5(12p)/p2.
Consequently the fraction of variances of both proces
equals

c5
s2~XR!

s2~XD!

5
nwp~12p!

~12p!/p2

5nwp3.

This variablec can be estimated from a realization as

ĉ5~Rk
i !3/nw

2 . ~8!

This equation~8! holds further in the case of simple period

behavior, because both variancess2@Dk
i (m)

m51
Rk

i
21

# and
s2(Rk

i ) vanish. We have empirically checked that Eq.~8! is
valid for several types of correlated time series as well~cf.
Sec. III!. The test statistic includes exclusively means a
variances of index number distances. This restricts its ap
cability to time series whose distributions of the index nu
ber distances can be completely described by their first
e

e-
l

e

s

s

d
li-
-
nd

second moments. This condition is often equivalent with
ther pure linear correlations or a significant influence
noise to the system.

The modifiedx2 test statistic reads

tA,25 (
k51

r
~Rk

i 2Rk
j !2

s2~Rk
i !1s2~Rk

j !
~9!

5nw
2 (

k51

r
~Rk

i 2Rk
j !2

~Rk
i !3s2@Dk

i ~m!m51
Rk

i
21

#1~Rk
j !3s2@Dk

j ~m!m51
Rk

i
21

#
~10!

and is asymptotically (nw→`,r→`) x2 distributed withr
degrees of freedom.

~3! If the probability distribution ofseveral windows
should be compared, then one can employ the test statis

tA,l5 lnw
2 (

k51

r

(
i 51

nw ~Rk
i 2Rk / l i !2

~Rk11!3s2@Dk~m!m51
Rk

i
21

#
. ~11!

Rk denotes the number of elements~of all l windows! in the
kth bin ands2(Dk) is the variance of their index numbe
distances.tA,l is x2 distributed with r (nw21) degrees of
freedom.

By comparing the probability densities of the windows
principle the time independence ofall central statistical mo-
ments is tested. Due to the coarse graining and further fin
size effects, however, it does not do so in practice.

2. Test B: Time independence of power spectra

Now the time independence of the second order nonc
tral moments, which are represented in the spectral distr
tion, is checked. If additionally the mean value is a consta
especially if the series has passed testA, the time series
appears as a realization of a weakly stationary process
definition.

The most important step of this test procedure is to tra
form the data into samples of the spectral distribution den
ties, i.e., with respect to each window to get a set of d
$ f i% i 51

k that are identically and independently distribut
~i.i.d.! with the spectral distribution.

~1! For the subseries obtained for testA, the autocorrela-
tion functions are estimated:

r j~k!5

~nw2k!21 (
t51

nw2r

~xt
j 2m j !~xt1k

j 2m j !

s j

with k50, . . . ,nr . ~12!

To characterize their properties it is transformed into a re
ization of the power spectral density: Taking a set of u
formly distributed uncorrelated random variables$zk%k51

nr the

solutions$ f k
j %k51

nr of

E
0

f k
j

Pj~ f !d f5zk ~13!
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PRE 58 1803TESTING STATIONARITY IN TIME SERIES
are a finite number of random variables.Pj is the Fourier-
transformed autocorrelation functionr j of the jth window
point @see point~4!#:

Pj~ f !5 (
r 52nr

nr

r j~r !cos~2p f r !. ~14!

The choice of uniformly distributed$zk%k51
nr leads to statisti-

cal independence of the$ f k
j %k51, . . . ,nr

. @It seems more obvi-

ous to use a set of equidistantzk , k51, . . . ,nr , instead of
uniformly distributed ones. However, in case ofnr!nw

equidistantzk’s lead to values of$ f k
j % that are near the exac

solution (nr→`), they cannot be regarded as a realization
a continuous random number. By choosing thezk’s uni-
formly distributed exact these effects are suppressed.# Hav-
ing different setsf

*
i and f

*
j for different windowsi andj we

want to check whether they belong to the same power s
tral distributions. By considering these power spectral dis
butions as probability distributions we can interpretf

*
i and

f
*
j as two samples and can compare them by statistical

as ax2 test of homogeneity or a Kolmogorov-Smirnov te
~2! Similar to testA we apply ax2 statistic. If the spectra

density of theith and thejth window are compared, then on
uses the test statistic

tB,25 (
k51

r
~Rk

i 2Rk
j !2

Rk
i 1Rk

j
~15!

with respect to the chosen binning, whereRk
i denotes the

number of f
*
i ’s in the kth bin. This test statistictB,2 is x2

distributed withr 21 degrees of freedom.
~3! If it is hypothesized that$ f j

i % j 51, . . . ,nr
represent the

same distribution for alli ,1< i< l , then the test statistictB,nw

reads

tB,nw
5 l (

i 51

l

(
k51

r
~Rk

i 2Rk / l !2

Rk
, ~16!

which is x2 distributed with (r 21)(l 21) degrees of free-
dom if Rk5( iRk

i .
If the hypothesis is rejected, i.e., the sequence is non

tionary, we can compare mutually the samples$ f i
j% i 51, . . . ,nr

with respect to different windows. In this way we can dete
whether the structure of the data series is generally inho
geneous~as in transient states! or whether there are only
some parts~windows! with a special structure~e.g., due to
bursts!.

3. Combined test

The proceduresA andB explained above can be applie
separately. Sometimes, it might be preferable to have o
one test statistic that contains the results of both procedu
Since thex2 statistic is used, a combined test is obtained
simple addition. Consequently, if two subseries are co
pared the final test statistic is

t25tA,21tB,2 , ~17!

and in the case of comparison ofnw windows one uses
f

c-
i-

sts

a-

t
o-

ly
s.

y
-

t l5tA,l1tB,l . ~18!

The new statistics are againx2 distributed, and the degree
of freedom are the sum of those of the summands. In the n
section it is explained how a minimal number of samp
elements can be determined.

C. Width of the windows

One essential assumption of the tests explained abov
that each of the subseries can be regarded as statio
Therefore, they should be chosen to be long enough so
each of them presents all essential~especially, the long-
range! properties of the time series. On the contrary,
would like to haveat least severalsubseries so that a com
parison between them is possible. Thus a compromise
tween a good representation of the long-frequency share
each window and the largest possible number of windo
has to be attained. In the Appendix, we present a method
semiempirically derives a minimal possible window leng
for a given time series.

Due to strong long-scale influences, it may be impossi
to choose such an acceptable window length~e.g., in case of
fractional Brownian motion!. In some cases one has to a
cept that the time scales of the underlying physical proc
are too large in comparison with the length of the data ser
sometimes, however, this can be diminished by filterin
which is discussed in the next subsection.

D. Filtering

For reducing trends and long-scale influences in data
ries we apply two types of filters@11#: ~i! Locally linear
detrending: This simple manipulation reduces long-ran
properties very effectively. The filter length is chosen on
case by case basis. Butterworth filter: Here all waves that
longer than a fixed wavelength vanish. The result is sim
to the above one, but the changes in the power spectrum
more fundamental.

The resulting series include short- and intermediate-sc
components. It is also possible that they have nonstation
properties. Therefore, it is necessary to check the filte
data for a hidden nonstationarity.

III. APPLICATIONS

To study the potentials and limits of the proposed test,
first apply it to series obtained from known dynamical sy
tems. Later we test observational data series for stationa

A. Numerically generated time series

The validity of the test statistic introduced above
checked by computing the test statistict2 or t l @Eqs.
~17!, ~18!# for 1000 different realizations of the special sy
tem. This way the observed distribution of the test statis
can be compared with the hypothesized one. Further we c
sider different window lengths, bin sizes, etc.

1. Stochastic processes

a. Autoregressive processes. Autoregressive~AR! pro-
cesses are standard examples of~strongly! stationary sto-
chastic processes@6#. An AR process of orderk is defined as
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Xt5(
i 51

k

aiXt2 i1j t , ~19!

wherej t is a Gaussian i.i.d. process. The power spectrumPX
has the form

PX~ f !5~2p!21
1

U11(
j 51

k

aje
2 i j f U2 . ~20!

Note that it is independent oft.
We have simulated the distribution oft2 for several AR

processes as described. If the correlation time is sm
enough, then the test statistic converges to the target d
bution. As simplest models we use first order AR mod
(n52000,nw5500,r 510, comparison of first and last win
dow!. The hypothesized statistics oft2 is a x2 distribution
with 19 degrees of freedom. It is reached forua1u,0.7.
Larger absolute values ofa1 lead to a right shift of the dis-
tribution, i.e., the test hypothesis is rejected with higher th
error probability. This effect is caused by the window leng
of 500 data points, which is too small compared to the c
relation length.

The problem becomes worse for a first order AR proc
with a coefficient near 1. In Fig. 2~a! the estimated autocor
relation function for a first order AR process witha150.99

FIG. 2. ~a! Autocorrelation function of a first order AR proces
with a150.99 ~solid line, special realization; dashed line, theore
cal value! with significance levelf SL ~dotted lines!. ~b! Autocorre-
lation function of the same but filtered record.
ll
ri-
s

n

r-

s

~i.e., the correlation decay is about 100! and a data length o
5000 points is plotted. It is clearly seen that the strong c
relations lead to ar that lays outside the significance lev
SL~5000,700! ~for more details cf. the Appendix!. That
means that for a window length ofnw5700 the test provides
with high probability a negative result, i.e., it rejects statio
arity. This is due to both the short data set and the lo
correlation length. The structure of such a time series c
for a very long window length; the procedure in the Appe
dix recommends a minimal window length ofnw53500 time
steps. Since this is often not realistic, filtering can be
alternative: In Fig. 2~b! the autocorrelation function for the
Butterworth-filtered sequence is given, where all compone
longer than 40 time steps are reduced. This allows a wind
length of 500 points. For these filtered data the test statist
distributed as hypothesized. The correlation time, howev
which is an essential property of that process, is diminish

b. Fractional Brownian motion. Several natural pro-
cesses such as heart rate variability or languages@12,13# are
characterized by an 1/f -like power spectrum

P~ f !; f 2a ~21!

with a scaling exponenta. Osborne and Provenzale@14# pro-
posed a simple procedure to generate signals, called f
tional Brownian motion~FBM!, whose power spectra hav
such a power-law dependence. For such FBM the stand
deviation depends on the window lengthnw :s2(nw);nw

b ,
i.e., FBM is not weakly stationary similar to the behavior
random walks. Furthermore, the FBM has by construct
long-term correlations, which are amplified by an increas
coefficienta.

A realization of FBM witha51.75 is shown in Fig. 1~b!.
The singularity of its power spectrum atv50 is character-
ized by the exponenta. This singularity induces correlation
lengths in the magnitude of sequence length, the resul
time series are nonstationary. So one finds the test statisttA
quite larger than expected: fora51.75, n51000, nw
5500,r 58 the mean value oftA,2 is 50 instead of 8. This is
strengthened by a growing parametera.

It is important to notice that the autocorrelation functio
~normalized to have variance 1! for subseries with different
length coincide~cf. Fig. 3!. In this sense, FBM exhibits a

FIG. 3. Autocorrelation function for FBM witha51.75; full
line: r of the complete series~10 000 data points!, dashed line:r of
the first half series.
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PRE 58 1805TESTING STATIONARITY IN TIME SERIES
self-similar behavior in the linear correlation structure. Co
sequently, the spectral densities of different windows co
cide and the test statistictB is x2 distributed with the ex-
pected degrees of freedom.

This example shows impressively that different propert
of stationarity need to be tested. A geophysical observa
with a similar structure is discussed by Kurthset al. @15#.

2. Low-dimensional nonlinear systems

In this section deterministic systems in rather comp
states are investigated. As mentioned in the Secs. II A
II B, it is useful to test stationarity also in deterministic sy
tems. Especially, in the case of chaotic regimes, the ex
nential growth of the distance between trajectories that
initially nearby can be interpreted as a production of inf
mation, i.e., they have a strong correlation decay.

a. Skew tent map.As a paradigmatic model of discret
chaotic systems we analyze the dynamics of the simple s
tent map:

xn115H xn

a
if xn,a

x

a21
2

1

a21
if xn>a,

~22!

with x0P(0,1) andaP(0,1). It is well known that the natu
ral measure of this system is the uniform distribution on
unit interval and the autocorrelation function decreases
ponentially @16#. If the correlation length is small, e.g., th
control parameter satisfies 0.25,a,0.75, the test statistict2
and t l (nw5500,r 510) are distributed as expected. Oth
values ofa induce stronger correlation, which leads to t
same problems as discussed for AR models.

b. Logistic map and time continuous nonlinear syste
Another popular example of a nonlinear system is the log
tic map

xn115rxn~12xn!. ~23!

Chaotic behavior of thexn occurs for many of the contro
parameters when 3,r ,4. The results of the stationarity te
are completely different from that for the skew tent map. T
simulated distribution oftA,2 does not coincide with the ex
pected distribution~cf. Fig. 4!. The main reason is that th
nonlinear behavior here is caused by a quadratic nonlin
ity, whereas the skew tent map is piecewise linear. Due
this nonlinearity the distribution of index number distanc
for the elements of a bin is structured very complicatedly
can have gaps or singularities. In particular, it cannot
completely described by the mean value and standard de
tion. Therefore, the distribution oftA,2 may be far from the
expected one~cf. Fig. 4!.

The test for the independence of the power spectr
however, works, i.e., the statistictB,2 is distributed as hy-
pothesized.

For typical chaotic time-continuous systems such as
Lorenz or the Duffing oscillator we get analogous results
the nonlinear deterministic character of the system lead
distributions of the test statistictA and consequentlyt, which
differ significantly from the expected ones.
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c. Strange nonchaotic attractors.As an example of a de
terministic process at the border between regularity a
chaos, we analyze the trajectories of strange nonchaotic
tractors@17# of the system

xn115 f ~xn ,un!53~ tanhxn!cos~2pun!, ~24!

un115~un1v!mod 1, ~25!

wherev5(A521)/2 is the inverse golden mean. These t
jectories approach an attractor which is not chaotic~negative
Lyapunov exponents!, but has a fractal geometry. Furthe
more, the spectrum has a fractal structure, i.e., it is sing
continuous@18#. Even for such degenerated spectral distrib
tions the test statistictB attains its expected distribution. Th
results with respect to testA are similar to those of the lo
gistic map in the regime of 2- or 4-band attractors~cf. Fig 4,
r 53.58). The strong periodic component in the behavior
the trajectories is reflected in a left shift of the distribution
tA .

3. Kuramoto-Sivashinsky equation

As an example of high-dimensional systems we inve
gate solutions of the one-dimensional Kuramoto-Sivashin
equation~KS! @19#

]u

]t
14

]4u

]x4
1aS ]2u

]x2
1u

]u

]xD 50 ~26!

subject to periodic boundary conditions 0,x,2p. Here it is
convenient to study the norm~or energy! s(t)5*u2(x)dx of
solutionsu in dependence on~sampled! time. The KS equa-
tion possesses a rich bifurcation scenario; different perio
as well as chaotic branches are known. Moreover, trans
states are typically found.

a. Chaotic regime. For the parameter valuea5134.0, a
chaotic solution of Eq.~26! exists. As in the examples o
low-dimensional chaos, the test statistictB indicates station-
arity, i.e., it is x2 distributed with the correct number o
degrees of freedom. This shows that the procedure is

FIG. 4. Distributions oftA,2 for time series of the logistic map
with r 53.7 ~dashed! and r 53.58 ~dotted!, for windows of 500
points and a coarse graining of 10 bins. The full line represents
target distribution.
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appropriate for analyzing high-dimensional systems if a s
able reduction to a one-dimensional subspace is found, a
norm in this case.

b. Transient chaos. A quite different behavior is ob-
served for the parameter valuea5137.0, where transien
chaos occurs@19#. After a finite chaotic phase, the syste
comes via a transient state into the final periodic regime.
expected, the test indeed finds non-stationarity for the wh
series, as plotted in Fig. 5. Comparing mutually the pow
spectra of the windows with testB, the two different dynami-
cal regimes are identified as stationary subsequences, in
ticular, the periodic regime where stationarity is found ind
pendently of the window length as well as the initi
nonstable chaotic regime, which is recognized if the wind
length is larger than 500 points. For the piece of the se
between both the test rejects stationarity independently of
window length, i.e., instead of suddenly jumping from t
chaotic into the periodic regime a transient state is passe
should be mentioned that this method allows not only
detection but the localization of the different dynamical
gimes. Lyapunov exponents that applied usually lead to m
rough approximations.

4. Examples of nonstationary processes

The transient phase of the Kuramoto-Sivashinsky eq
tion gives an example of a nonstationary time series. N
we study processes that are in general nonstationary.

a. Autoregressive processes with varying coefficients.As
a generalization of autoregressive processes, we con
here such processes of first order with varying coefficien

Xt5a~ t !Xt211j t with 21,a~ t !,1. ~27!

These processes are nonstationary by construction ifa(t) is
nonstationary.

Regarding such processes, wherea linearly depends ont
(n52000, a increases from 0.5 to 0.7, the first 800 da
points compared with the last 800 points!, we have found for
the test statistict2 instead of ax2 distribution with a mean of
15 a distribution with a mean of about 23. This is equivale
to a rate of about 45% finding the series nonstationary. If
parametera changes only between 0.5 and 0.6, then the d

FIG. 5. Norm of a solution of the Kuramoto-Sivashinsky equ
tion Eq. ~26! over time. The three different states~quasichaotic,
transient, periodic! are recognizable.
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tribution of t2 has a mean of 17.4; i.e., the sequence seem
be a realization of a stationary process with high probabil

If longer sequences~e.g.,n54000 as given with the pro
cedure of the Appendix! are used, the distribution oft2 is
more distant from the target distribution, and, therefore,
nonstationarity is detected with higher probability.

This means that only sequences with either a strong n
stationarity or with a sufficient length can be recognized
nonstationary. Or, in other words, the time scales on wh
the process varies have to be small in comparison with p
cess length.

b. Tent maps with varying skewness.As a deterministic
counterpart, tent maps with a growing parametera, 0,a
,0.75, are considered. TestA indicates stationarity, since
the probability density is a uniform-distributed one, i.e., it
independent ofa. Only TestB is sensitive to the structura
changes.

This example proves that the test for the time indep
dence of the probability distributionalone is not sufficient
even for testing weak stationarity.

B. Artifacts and apparent counterexamples

In this section we demonstrate some cases where sp
effects of the test procedures are underlined and their lim
are shown.

The first example is a standard-deviation normalized fi
order AR process with varying coefficients:

Xt5A12a~ t !2 @a~ t !Xt211j t#, ~28!

wherebya depends linearly ont ~cf. Fig. 6!. The probability
density of Xt is by construction Gaussian-normal for allt.
The time invariance of this probability distribution is con
firmed by testA. But testB finds that there are structura
changes in the time series—the power spectrum depend
t. The characteristics ofa(t) and the window length are th
same as for Eq.~27!. Hence it seems to be that this is a
example for a strongly but not weakly stationary process—
contradiction to the definitions. The explanation for this ph
nomenon is that the test for the time independence of
probability density is only a necessary condition for stro
stationarity, but not a sufficient one. Analogous results h
for the above mentioned tent maps with varying skewnes

- FIG. 6. Example of a standard-deviation normalized first or
AR process with moving coefficienta150.6, . . .,0.9
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TABLE I. Overview of the results: The different analyzed processes are given in the first column,
properties with respect to the statistical definitions of stationarity are displayed in the second an
columns, the last two columns contain the results of the test.

Process
Weakly

stationary
Strongly
stationary TestA TestB

AR 1 1 passed passed
FBM - - not passed passed
Skew tent map 1 1 passed passed
Logistic map 1 1 not passed passed
Nonlinear time- 1 1 not passed passed

continuous systems
Strange nonchaotic 1 1 not passed passed

attractors
Kuramoto-Sivashinsky

equation
Chaotic regime 1 1 not passed passed
Transient state - - not passed not passed
AR with varying - - not passed not passed

coefficients
Skew tent map with - - passed not passed

varying skewness
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The opposite behavior occurs if we compose a se
whose first part is Gaussian distributed white noise and
second part is uniformly distributed noise~with the same
mean value and standard deviation!. Here the noncentral sec
ond moments are independent of time~delta functions!,
whereas the probability density is time dependent. Sim
structures are exhibited by a series that is composed
nonlinear trajectory and its phase-randomized surrogate@20#.
Both are examples of weakly but not strongly stationary p
cesses.

Another limit of the test procedure is explained by t
following example: If a concatenation of uniform distribute
white noise and a trajectory of a skew tent map witha
50.5 is considered, the first and second moments as we
the probability density coincide. The tests give rise to s
tionarity. But, the series is only stationary in the weak sen
since the skew tent map is characterized by nonzero hig
noncentral moments as opposed to a white noise proc
This example emphasizes that only the central moments
the noncentral moments of second order are tested. All o
noncentral moments are not taken into consideration.

The results of the test with respect to all processes
cussed above are summarized in Table I. The statem
done there assume a subsequence length as determined
the technique proposed in the Appendix.

C. Observational data

Finally, we apply these techniques to outdoor data, wh
are observations from natural processes. Opposite to ti
series, which are obtained by laboratory experiments, th
observations often cannot be repeated or easily manipula
Furthermore, several~nonstationary! measurement error
have to be diminished by filtering.

1. Geophysical observations

The changes in the atmospheric radiocarbon isotope14C
as given by the decay-correctedD14C activity in tree rings
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provide essential information about long-term solar var
tions @21,22#. The influence of the geomagnetic field to th
14C production leads to a trend in the data series tha
extracted by a local linear underground subtraction~cf. Fig.
7!. The solar cycle of about 200 years is clearly recogniz
in the power spectrum@23#. Stationarity is found in the~fil-
tered! data if windows longer thannw5200– 1000 years are
used. The only exception are the last 150 years~30 data
points!. If these data points are included the power spectr
of the last window is essentially different from all other one
This seems to be in accordance with the industrial revolut
~human impact!.

2. Physiological data

As mentioned in the Introduction, in this section we de
with heart rate variability~HRV!. Such records are extracte
from long-time ECG records~over 60 min at rest and 24 h
during a normal day with a transportable ECG device!. They
describe the time differences between two adjacent h
beats. The underlying dynamical behavior is understood o
partially ~see @24# and references therein!. Moreover, this
dynamical process might be influenced by several exte
perturbations such as exercise, the circadian rhythm,
acoustics.

There have been attempts to characterize the dynamic
HRV quantitatively@24,25#. But only seldomly the problem

FIG. 7. The filteredD14C record.
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of stationarity was taken into account, though this is an
sumption of most techniques. As is well known, the HR
contains strong long-range correlations: So 1/f behavior in
the power spectra was reported in@26# and Biggeret al. @27#
analyzed the power in the frequency band between 0
0.0033 Hz as a signature of some temperature regula
processes. Even such long-range processes pretend lo
mensional behavior.

We were interested in getting the longest parts of such
HRV series, which could be assumed to be stationary.
sleeping phase in the 24 h records seems to be the
promising one.

The trend of the data was subtracted by the Butterwo
filter. In the 24-h records all frequencies,0.0033 Hz and in
the 1-h records all frequencies,0.015 Hz were deleted. Fur
thermore, the standard deviation was locally normalized.
plying the tests we found in the 1-h records stationary p
of 15–45 min, for the 24-h records such parts have a len
of maximal 70 min.

In the analysis of HRV series we meet again the probl
of the relation between the time scales of the signal and
observational length. As described above, records of 1 o
h are definitely nonstationary due to long-range correlatio
If we had, however, a very long HRV sequence, say of
days, there is a good chance of finding stationarity o
longer scales too.

IV. SUMMARY AND DISCUSSION

In this article we have proposed to test stationarity of d
series with a combination of a test for the time independe
of the probability distribution and a test based on the ti
independence of the power spectra. By applying these t
to several types of time series their potentials and limits h
been demonstrated.

Each data series that passes both tests can be regard
least as weakly stationary, because the time independen
the first and all second moments is examined. The analys
several examples demonstrates clearly the necessity of
tests for testing stationarity. Since the tests do not include
time independence of all central and noncentral mome
strong stationarity is not tested.

We have presented an example of a weakly but
strongly stationary process that has passed both tests.
refers to the fact that our hypothesis is the coincidence of
1D probability distribution and the spectral distributio
which both demand less restrictive structural properties t
strong stationarity does. Thus, a limit of the procedure p
posed is obvious. Another limit is that the detection of no
stationarity requires an expressed variation of the struct
as discussed for some autoregressive processes with va
coefficients~cf. Sec. III B!.

It has been shown that the methods cannot be use
black-box algorithms: In particular, the window length mu
be in accordance with the correlation length, i.e., in the c
of data with strong correlations the window length has to
chosen in such a manner that the long-frequency share
sufficiently represented. On the contrary, it might happen
be correct that small parts of a stationary series canno
considered as stationary.

In the case of deterministic systems it is recommende
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use only the test for the coincidence of the spectral distri
tion. The other test statistic may be strongly influenced
the deterministic nonlinearity@28#.

If the data series is a concatenation of different station
subsequences, these could be found again by mutual c
parison of the probability distribution and the spectral den
ties of the windows. So a regime of transient behavior h
been found~cf. Sec. III A 3!. In this way it is already pos-
sible to detect short interruptions in the structure of the da
e.g., if the heart rhythm during the sleeping phase is sho
changed by movements.

Some important consequences for data analysis are as
lows: ~i! A lot of data-analytical methods assume station
ity. If this prerequisite is not checked disastrous artifacts m
occur. ~ii ! Methods that assume stationarity can be appl
only if the main time scales of the process considered
small in comparison with the observational length.~iii ! Fur-
ther, the test can be used for picking out structures as Th
senhusenet al. @29# have done for Saturn’s rings.

We have applied the proposed procedure to geophys
observations as well as to physiological data. In both ca
we have found stationary subseries. Both types of data n
filtering due to long-range influences of the reversals of
Earth’s magnetic field and temperature-regulating proces
If we find stationarity for filtered data this means that t
dynamics of the series that have passed the filter~bands with
higher frequencies! are time independent.

If stationarity is checked for deciding whether an attrac
dimension estimation is possible we recommend the met
of Schreiber@5#, which is especially constructed for thi
problem and possesses a more powerful approach for sol
it.

In this article only 1D observations of systems are co
sidered. It is necessary to extend these tests to multiva
time series. Moreover, it should be emphasized that we
not able to give a strong mathematical proof about the c
rectness of the modifications Eq.~8! and Eq.~13! of the x2

test procedures, but the results of the simulations support
considerations.
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APPENDIX

This section deals with an algorithm that gives a possi
window length for an arbitrary time series. It is obvious th
for characterizing the first and second moments of a ti
series with a large correlation time a longer realization
needed than for an uncorrelated process. The minimal len
of that realization can be determined in the following way

The information about the~linear! memory range of the
time series under consideration is expressed in the auto
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relation functionr. The depth of the memory is given by th
largest value of the lagk for thatr(k) is not vanishing. Due
to the finite length of the data series the autocorrelation fu
tion r( l ) for l .k reaches instead of the exact value ‘‘0
which has to be determined firstly. We introduce this ‘‘n
merical 0,’’ as the significance level@ f SL5 f SL(n,nr)# de-
pending on the sequence lengthn and the length of the au
tocorrelation functionnr . For an uncorrelated time serie
with the same probability distribution as the original da
series we definef SL by the equation

pS max
0,u i u<nr

@ uacf~i!u#, f SL~n,nr! D 50.95. ~A1!

Since this definition requires thateachelement ofr is with
95% probability smaller thanf SL , f SL is bounded from be-
low by confidence limit 1.96/An @6# for a single element of
r.

We have estimatedf SL in the case of Gaussian whit
noise via Monte Carlo experiments and found dependen
on n andnr that show the following scaling laws: For con
stant time series lengthn we got

f SL~nr!5a1b ln~nr! ~A2!

and for constantnr the relation

f SL~n!5c0nc ~A3!

is fulfilled. For varyingn andnr the ansatz

f SL~n,nr!5
a~n!1b~n!ln~nr!

nc
~A4!

is used, whereby

a~n!5a01a1 ln~n!, ~A5!

b~n!5b0nb1 ~A6!

and the free parameters are estimated bya051.25, a1
520.078,b050.340,b1520.157,c50.36. In Fig. 8 this
h.
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ro
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es

significance level is shown in dependence of the time se
length n where the length of the autocorrelation functio
satisfiesnr50.15n.

For applying this level of significance to a time seri
with a non-Gaussian distribution the time series has to
transformed into a Gaussian-distributed one using the fi
of Kaplan @30#.

Coming now to the estimation of the minimal windo
length, we propose to determine it as follows:~1! Transfor-
mation of the data series$xt% into a Gaussian distributed on

$x̃t%; ~2! calculation of the autocorrelation functionr̃ for

$x̃t%; ~3! calculation off SL in according to Eq.~32!; ~4! de-
termination of the lengthness~memory depth! of the essential
part of r̃:

ness5 max
0< i ,nr

@r~ i !> f SL~n,nr!#. ~A7!

~5! We made good experiences with a minimal windo
length ofnw57ness.

If this minimal window lengthnw is larger than half of the
sequence length, either the data series has to be filtered o
application of the test for stationarity is impossible.

FIG. 8. Level of significancef SL(n,nr) over sequence lengthn
whereby the length of the autocorrelation function is chosen asnr

50.15n.
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