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Nonequilibrium phase transition in the kinetic Ising model: Is the transition point the maximum
lossy point?

Muktish Acharyya*
Institute for Theoretical Physics, University of Cologne, 50923 Cologne, Germany

~Received 20 January 1998!

The nonequilibrium dynamic phase transition, in the kinetic Ising model in presence of an oscillating
magnetic field, has been studied both by Monte Carlo simulation~in two dimensions! and by solving the
mean-field dynamical equation of motion for the average magnetization. The temperature variations of hyster-
etic loss~loop area! and the dynamic correlation have been studied near the transition point. The transition
point has been identified as the minimum-correlation point. The hysteretic loss becomes maximum above the
transition point. An analytical formulation has been developed to analyze the simulation results. A general
relationship among hysteresis loop area, dynamic order parameter, and dynamic correlation has also been
developed.@S1063-651X~98!03807-0#

PACS number~s!: 05.50.1q
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I. INTRODUCTION

The dynamics of magnetization reversal in simple fer
magnetic systems has recently attracted considerable s
tific interest to studynonequilibriumresponses. In this re
gard, the dynamical responses of the Ising system in
presence of an oscillating magnetic field have been stu
extensively@1–6#. The dynamical hysteretic response@1–3#
and the nonequilibrium dynamical phase transition@4–9# are
two main subjects of interest to study the dynamic respon
of the kinetic Ising model in the presence of an oscillati
magnetic field.

Tome and Oliviera@4# first studied the dynamic transitio
by solving the mean-field~MF! dynamic equation of motion
~for the average magnetization! of the kinetic Ising model in
presence of a sinusoidally oscillating magnetic field. By d
fining the order parameter as the time-averaged magne
tion over a full cycle of the oscillating magnetic field, the
showed that the order parameter vanishes, depending
the value of the temperature and the amplitude of the os
lating field. In the field amplitude and temperature plane th
have drawn a phase boundary separating dynamic ord
~nonzero value of the order parameter! and disordered~order
parameter vanishes! phases. They@4# have also observed an
located atricritical point ~TCP! @separating the nature~dis-
continuous or continuous! of the transition# on the phase
boundary line.

Since this transition exists even in the static~zero-
frequency! limit, such a transition, observed@4# from the
solution of a mean-field dynamical equation, cannot be
namic in the true sense. This is because, for a field amplit
less than the coercive field~at a temperature less than th
static ferro-para transition temperature!, the response magne
tization varies periodically but asymmetrically even in t
zero-frequency limit; the system remains locked to one w
of the free energy and cannot go to the other one, in
absence of noise or fluctuation. On the other hand, in
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presence of thermal fluctuations, in the static limit, the s
tem can go from one well to another via the formation
nucleating droplets. A vanishingly small field is required
push the system from one to the other well. Consequen
the dynamic phase boundary collapses, in the presenc
thermal fluctuations.

To study the true dynamic phase transition~which should
disappear in the static limit! one has to consider the effect o
thermal fluctuations. In this regard, Lo and Pelcovits@5# first
attempted to study the dynamic nature of this phase tra
tion ~incorporating the effect of fluctuation! in the kinetic
Ising model by Monte Carlo~MC! simulation. However,
they @5# have not reported any precise phase bounda
Acharyya and Chakrabarti@6# studied the nonequilibrium dy
namic phase transition in the kinetic Ising model in the pr
ence of an oscillating magnetic field by extensive MC sim
lation. They@6# have drawn the phase boundary and loca
a tricritical point~as observed! on the boundary. It has bee
also observed@6# that this dynamic phase transition is ass
ciated with the breaking of the symmetry of the dynam
hysteresis (m-h) loop. In the dynamically disordered~value
of the order parameter vanishes! phase the correspondin
hysteresis loop is symmetric, and loses its symmetry in
ordered phase~giving a nonzero value of the dynamic ord
parameter!. They have@6# also studied the temperature vari
tion of the ac susceptibility components near the dynam
transition point. It has been observed@6# that the imaginary
or lossy~real! part of the ac susceptibility gives a peak~dip!
near the dynamic transition point~where the dynamic orde
parameter vanishes!. It was concluded that this is a possib
indication of the thermodynamic nature of this kind of no
equilibrium dynamical phase transition.

The statistical distribution of the dynamic order parame
has been studied by Sideset al. @7#. The nature of the distri-
bution changes~from bimodal to unimodal! near the dy-
namic transition point. They have also observed@7# that the
fluctuation of the hysteresis loop area grows and beco
considerably large as one approaches the dynamic trans
point.

The relaxation behavior, of the dynamic order parame
near the transition point~in the disordered phase!, has been
179 © 1998 The American Physical Society
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180 PRE 58MUKTISH ACHARYYA
studied @8# recently by MC simulation and by solving th
mean-field dynamic equation. It has been observed that
relaxation is Debye type and the relaxation time diverg
near the transition point. The ‘‘specific heat’’ and the ‘‘su
ceptibility’’ also diverge @9# near the transition point in a
similar manner as that of fluctuations of the order param
and fluctuation of the energy, respectively. These obse
tions @9# ~divergences of fluctuations! indirectly support ear-
lier facts @7# where the distribution of the dynamic orde
parameter becomes wider and the fluctuation of the hys
esis loop area becomes considerably large near the trans
point.

Recently experimental evidence@10# for the dynamic
transition has been found. Dynamical symmetry break
~associated with the dynamic transition! across the transition
point of the hysteresis loop has been observed, in hig
anisotropic~Ising-like! and ultrathin Co/Cu~001! ferromag-
netic films by the surface magneto-optic Kerr effect, as o
passes through the transition point. Dynamical symme
breaking in the hysteresis loops has also been observed@11#
in ultrathin Fe/W~110! films. However, the detailed nature
of the dynamic transition and the phase boundary have
yet been studied experimentally.

In this paper, the dynamic phase transition has been s
ied in the kinetic Ising model in the presence of a sinus
dally oscillating magnetic field by MC simulation and b
solving the mean-field dynamical equation of motion for t
average magnetization. The temperature variations of
hysteresis loss~or loop area!, the dynamic correlation, an
the phase lag are studied near the dynamic transition p
This paper has been organized as follows: In Sec. II sim
analytic forms are given for the loop area, dynamic corre
tion, and dynamic order parameter. In Sec. III a general
lationship has been developed among the various dynam
quantities. In Sec. IV the models are introduced and in S
V the numerical results are given. The paper ends wit
summary of the work in Sec. VI.

II. ANALYTIC FORMS OF THE LOOP AREA
AND THE DYNAMIC CORRELATION

NEAR THE TRANSITION POINT

The form of the oscillating magnetic field is

h~ t !5h0cos~vt !. ~2.1!

The dynamic order parameter is defined as

Q5
v

2p R m~ t !dt, ~2.2!

which is nothing but the time-averaged magnetization ove
full cycle of the oscillating magnetic field. The hysteres
loop area is

A52 R m dh5h0v R m~ t !sin~vt !dt, ~2.3!

which corresponds the energy loss due to the hysteresis.
dynamic correlation is defined as

C5^m~ t !h~ t !&2^m~ t !&^h~ t !&,
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where^ & denotes the time average over the full cycle of t
oscillating magnetic field. Sincêh(t)&50, one can write

C5
v

2p R m~ t !h~ t !dt5
vh0

2p R m~ t !cos~vt !dt.

~2.4!

The dynamic correlation has another physical interpretat
For the cooperatively interacting spin system, this is
negative of the time-averaged spin-field interaction ene
~per spin! @^Ef&52(v/2pL2)r( is i h(t)dt# over a com-
plete cycle of the oscillating field.

In the dynamically disordered (Q50) phase and near th
transition point, the time series of the magnetization@m(t)#
can be approximated as a square wave with a phase lad
with the applied sinusoidal magnetic field:

m~ t !5H 1 for 0,t,t/41d/v,

21 for t/41d/v,t,3t/41d/v,

1 for 3t/41d/v,t,2p/v,

~2.5!

wheret is the time period of the oscillating field andd is the
phase lag between magnetizationm(t) and the magnetic field
h(t)5h0cos(vt). The value of the hysteresis loop area c
easily be calculated as

A54h0sin~d!. ~2.6!

This form of the loop area was also obtained@6# from the
assumption that it is approximately equal to 4 times the pr
uct of coercive field and remanent magnetization~here the
remanent magnetization is equal to unity!, where the coer-
cive field is identified ash0sin(d) ~the change in field during
the phase lag!. Considering the same form of the magnetiz
tion the dynamic correlationC can also be calculated exact
as

C5
2h0

p
cos~d!. ~2.7!

From the above forms ofA andC it can be written as

A2

~4h0!2 1
C2

~2h0 /p!2 51. ~2.8!

The above relation tells us that the loop areaA and the dy-
namic correlationC are elliptically related to each other.
may be noted here that the previously studied ac suscep
ity components@6# obey a circular relationship@x821x92

5(m0 /h0)2#, wherem0 is the amplitude of the magnetiza
tion.

The ordered region (QÞ0) can be approximated by con
sidering the following form of the magnetization:

m~ t !5H 1 for 0,t,t/41d/v,

12mr for t/41d/v,t,3t/41d/v,

1 for 3t/41d/v,t,2p/v.
~2.9!

In the above simplified approximation, it was considered t
the magnetization cannot jump to the other well; howev
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the value of the initial magnetization is reduced by t
amountmr . In a real situation it has been observed that t
well is not fully square@as assumed above in the form
m(t)#; it has a cusplike~or parabolic! shape. Formr52, the
above functional form ofm(t) will take the form of~2.5! and
one can get the disordered (Q50) phase. Taking the abov
form of magnetization the dynamic order parameterQ can be
calculated asQ5(22mr)/2. It may be noted that, in this
simplified approximation, the dynamic order parameterQ is
independent of the phase lagd, which is not observed in the
real situation~the phase lag shows a peak at the transit
point!. However, this simple picture can anticipate the co
vex ~looking from the origin! nature @6# of the dynamic
phase boundary. As the temperature increasesmr increases
and it also increases as the field amplitude increases. In
simplest asumption, one can consider thatmr is proportional
to the product ofh0 and T. Demandingmr52 for the dy-
namic transition (Q50), one can readily obtain (h0)dTd
5const. This equation tells us that the dynamic phase bou
ary will be convex. The convex nature of the phase bound
remains invariant even if one assumes thatmr is any increas-
ing function of bothT and h0 @for example, the power law
mr;Txh0

y ; in this particular case the equation of the d
namic phase boundary becomesTd

x(h0)d
y5const, and it is

easy to see that this gives the convex shape of the dyna
phase boundary#. However, this very simple asumption ca
not describe the entire form of the phase boundary ac
rately, particularly near the end points@(h0)d50 and Td
50#.

III. GENERAL RELATION AMONG THE DYNAMIC
ORDER PARAMETER, HYSTERESIS LOOP AREA,

AND DYNAMIC CORRELATION

From the usual definitions~given in Sec. II! of C andA,
one can write

1

A2p
S 2pC

vh0

2 i
A

vh0
D 5

1

A2p
R m~ t !exp~2 ivt !dt,

wherem(v)5(1/A2p)rm(t)exp(2ivt)dt. So

C5
h0v

A2p
Re@m~v!#

and

A52h0vA2pIm@m~v!#.

The general~complex! form of m(v8) will be

m~v8!5um~v8!uexp~ if!,

m~v8!5
1

A2pS 4p2C2

h0
2 1

A2

h0
2v82D 1/2

expi F2tan21
A

2pCG .
So Q is related toA andC as follows:
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Q5
1

t
R m~ t !dt5

1

A2pt
E dv8 R m~v8!exp~ iv8t !dt

5
1

2pt
E dv8 RAS 4p2C2

h0
2v82

1
A2

h0
2v82D

3ei ~v8t2tan21A/2pC!dt, ~3.1!

where

1

t R ••• dt[ lim
n→`

1

2nt E2`

`

••• dt .

The above equation gives the general relationship amongQ,
A, andC.

It has been observed that the steady responsem(t), to a
sinusoidally oscillating magnetic field@h(t)5h0cos(vt)#, is
periodic ~with phase lagd) and has the same periodicity (t
52p/v) of the field. So one can writem(t) in a Fourier
series as

m~ t !5a01 (
n51

`

ancos~nvt !1 (
n51

`

bnsin~nvt !. ~3.2!

From the usual definitions ofQ, A, andC, it is easy to see
that

a05Q, a152C/h0 , and b15A/~ph0!.

So one can write

m~ t !5Q1
2C

h0
cos~vt !1•••1

A

ph0
sin~vt !1•••.

~3.3!

Keeping only the first harmonic terms~ignoring higher har-
monics! one can easily express the instantaneous magne
tion as

m~ t !5Q1m0cos~vt2d!, ~3.4!

where the amplitude of the magnetization ism0
5$(2C/h0)21@A/(ph0)#2%1/2 and the phase lag isd
5tan21@A/(2pC)#.

IV. MODEL AND THE SIMULATION SCHEME

A. Monte Carlo study

The local field~at timet) at any sitei of a nearest neigh-
bor ferromagnetic Ising model in the presence of a tim
varying external magnetic fieldh(t) with homogeneous and
unit interaction energy can be written as

hi~ t !5(
j

s j~ t !1h~ t !, ~4.1!

where s i(t)561 and j runs over the nearest neighbor
site i . The local field~at sitei ) hi(t) has an external field par
h(t), which is oscillating sinusoidally in time:
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182 PRE 58MUKTISH ACHARYYA
h~ t !5h0sin~2p f t !, ~4.2!

whereh0 and f are the amplitude and frequency of the o
cillating field.

According to heat-bath dynamics, the probabilitypi(t)
that the spins i(t) will be up at timet is given as

pi~ t !5
ehi ~ t !/KBT

ehi ~ t !/KBT1e2hi ~ t !/KBT , ~4.3!

whereKB is the Boltzmann constant which has been tak
equal to unity for simplicity. It may be noted here that t
spin-spin interaction strengthJ has been taken equal to unit
The temperatureT is measured in units ofJ/KB . The field is
measured in units ofJ. The spins i(t) is oriented~at timet)
as

s i~ t11!5sgn@pi~ t !2r i~ t !#, ~4.4!

where r i(t) are independent random fractions drawn fro
the uniform distribution between 0 and 1.

In the simulation, a square lattice (L3L) is considered
under periodic boundary conditions. The initial condition
that all spins are up@i.e., s i(t50)51, for all i #. The multi-
spin coding technique is employed here to store ten spin
a computer word consisting of 32 bits. Ten spins are upda
simultaneously~or parallel! by a single command. All words
~containing ten spins! are updated sequentially and one fu
scan over the entire lattice consists of one Monte Carlo s
per spin~MCSS!. This is the unit of time in the simulation
The instantaneous magnetization@m(t)5(1/L2)( is i(t)# is
calculated easily. Some transient loops were discarde
have a stable loop and all the dynamical quantities were
culated from the stable loop.

This simulation is performed in a SUN workstation clu
ter and the computational speed recorded is 7.143106 up-
dates of spins per second.

B. Mean-field study

The mean-field dynamical equation of an Ising ferroma
net in the presence of a time-varying magnetic field is@4#

dm

dt
52m1tanhS m~ t !1h~ t !

T D , ~4.5!

where the external time-varying fieldh(t) has the previously
described sinusoidal form.T is the temperature measured
units of zJ/KB (z is the coordination number andKB is the
Boltzmann constant!. This equation has been solved form(t)
by the fourth-order Runge-Kutta method by taking the init
condition m(t50)51.0. The value of the time differentia
(dt) was taken to be 1023, so that the error isO(dt5)
;10215. The frequencyv of the oscillating field is kept
fixed (v52p) throughout the study. Some transient loo
were discarded and all the values of the response are c
lated from a stable loop.
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V. RESULTS

A. Monte Carlo results

In the MC simulation, a square lattice of linear sizeL
51000 is considered. The frequencyv of the oscillating
field has been kept fixed (v52p30.01) throughout the
study. From the Monte Carlo simulation technique describ
above, m-h or hysteresis loops were obtained. Som
(;600) initial transient loops were discarded so as to hav
the stable loop. From this one can easily estimate the len
of the simulation. For the above choice of frequency, 1
MCSS are required to form a complete loop~or cycle!, and
600 such loops were discarded. It has been checked care
that the loop gets stabilized~within a reasonably useful erro
bars! for this choice. The dynamic order parameterQ
5(v/2p)rm(t)dt is readily calculated. The loop areaA and
the dynamic correlationC have been calculated from th
usual definitions. The phase lagd ~between field and mag
netization! has been calculated by taking the difference b
tween the positions of the minimum of magnetization and
magnetic field@6#. All values of Q, A, d, andC for a par-
ticular temperature were obtained by averaging over ten
ferent random samples to obtain a smooth variation. Figu
demonstrates the dynamic transition~with dynamic symme-
try breaking! and the related phemomena~e.g., temperature
variations ofA, d, etc.! at a glance. For a fixed field ampli
tudeh050.7 the time variations ofh(t) andm(t) are plotted
for various temperatures in the pictures in the left colum
and the correspondingm-h loops are shown in the right col
umn. For a very low temperature~topmost pictures of Fig.
1!, since no spin flip occurs~within the time period!, the
magnetizationm(t) remains constant~unity! and conse-
quently them-h loop is a straight line having zero loop are
The dynamic order parameter is unity. The concept of ph
lag @betweenm(t) and h(t)# is not applicable here. Obvi
ously the dynamic correlation is zero. After a slight increa
of temperature~pictures in the second row! some small num-
ber of spin flips occurs~within the time period!. For some
time, m(t) decreases from unity and again it becomes eq
to unity. The phase lag is the frequency (v) times the time
difference between the positions of the minimum ofm(t)
and h(t). The m-h loop encloses a finite but small are
giving aQ less than unity. The dynamic correlation starts
grow. As the temperature increase further the phase lagd)
and the loop areaA increases~pictures in the third row! and
the dynamic order parameterQ decreases. In all three case
described so far, the asymmetric shapes of them-h loops are
observed due to asymmetric time variation of the respo
magnetizationm(t). The dynamic correlation decreases. T
temperature is very close to the dynamic transition tempe
ture ~fourth row!, where the time variation of the respons
magnetization is almost symmetric, giving maximum valu
of d. The m-h loop is symmetric and the dynamic orde
parameterQ is almost zero. The dynamic correlationC be-
comes negative and minimal. As one increases the tem
aure further~last row!, the phase lag decreases, and the lo
area decreases. The dynamic correlation starts to grow
ther. It may be noted here that the conventional hysteresi
m-h loop is observed in this region of temperature. As t



t the time
ses

PRE 58 183NONEQUILIBRIUM PHASE TRANSITION IN THE . . .
FIG. 1. A pictorial demonstration of the dynamic transition and associated phemomena. The figures in the left column represen
variation ofh(t) andm(t) for different temperatures and the correspondingm-h loops are shown in the right column. Temperature increa
from top to bottom. Monte Carlo results forL51000,v52p30.01, andh050.7.
w
a
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f

temperature increases further the dynamic correlation gro
shows a maxima or peak, and then decreases. The loop
monotonically decreases.

The dynamical phase transition, via the dynamical sy
metry breaking of the hysteresis loops, has been observe
s,
rea

-
in

highly anisotropic and ultrathin@two-dimensional ~2D!
Ising-like# ferromagnetic films@Co/Cu~001! and Fe/W~110!#
@10,11# by using a surface magneto-optic Kerr effect study
room temperature. In a recent experimental study@11# in
ultrathin Fe/W~110!, the dynamical symmetry breaking o
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the hysteresis loop was nicely depicted in Fig. 1 of Ref.@11#.
The temperature variations ofQ, d, C, and A for two

different values of field amplitudesh0 are shown in Fig. 2. In
sboth cases, it has been observed that, near the dynami
nition point (Q50), the phase lag gives a peak and the d
namic correlationC gives a shallow dip. The dynamic co
relation C gives a smeared peak much above~around T
52.6) the static~ferro-para! transition point (Tc52.269 . . . )
~see Fig. 2!. The hysteresis loop areaA shows a peak abov
the dynamic transition point.

It is possible to explain these observations from the v
simple analytical results described above~Sec. II!. The phase
lag d becomes maximum near the dynamic transition po
So according to the analytical formulation~for C andA) for
a fixed value of the field amplitude as the temperature
creases the loop areaA(54h0sind) starts to increases as th
dynamic order parameterQ starts to decrease and above t
dynamic transition point~complete spin reversal! the loop
area will be maximum and after thatA will start to decrease
Similarly, the dynamic correlationC will remain approxi-
mately equal to zero until a considerable amount of spin
occurs andQ changes appreciably and then starts to increa
Above and near the transition point, where the phase lad
decreases as temperature increases,C5(2h0 /p)cos(d)
should start to increase, which has been observed ind
However, near the transition point it gives a shallow d
where the value of the dynamic correlationC is minimum
and negative. The phase lagd should be less than or at mo
equal top/2. The field@h(t)5h0cos(vt)# crosses zero first a
the phase valuep/2 and it becomes minimum~maximum
negative! at the value of phase (vt) equal top. The re-

FIG. 2. The Monte Carlo results for the temperature variatio
of Q, d, C, andA for two different values of field amplitudes.Q
@solid lines ~I! for h050.9 and ~II ! for h050.7#, d (3 for h0

50.9 andL for h050.7), C (n for h050.9 and1 for h050.7),
andA (! for h050.9 andh for h050.7).
tra-
-

y

t.

-

p
e.

ed.
,

sponse magnetization should change its sign~cross zero!
within this period. This is true for thev→0 limit; however,
for finite but sufficiently high frequency, this will not hap
pen. A phase difference of more thanp/2 would be ob-
served, yielding the unconventional shapes ofm-h or hyster-
esis loops. In practice, it was observed that some asymm
shape of the (m2h) loop gives a value of the phase lagd
slightly higher thanp/2. In this region, cos(d5p/21e)5
2sin(e), which is negative and will show a shallow di
~cusplike shape! at the point whered is maximum. Accord-
ing to the analytical prediction, the loop areaA
@54h0sin(d)# should show a maximum at the transitio
point. However, strictly speaking and in practice it has be
observed that the loop areaA becomes peaked above th
transition temperature, since the loop area is much m
strongly dependent on the actual shape of the magnetiza
~which is not a perfect square wave in the temperature ra
concerned here!. As the field amplitude increases the tran
tion points shift towards the lower temperature. The ma
mum of d also increases and consequently the dip ofC be-
comes deeper and it remains negative over a wider rang
temperature~sinced remains larger thanp/2 over a wider
range!. It may be noted that the dynamic correlationC be-
comes zero~in the disordered orQ 5 0 region! where the
phase lagd5p/251.570 80 . . . . Thedynamic correlationC
shows a smeared peak at quite higher temperature~above the
Onsager value!, which was misinterpreted@12# as a signature
of the stochastic resonance. In the MF study~next section!,
it was shown that this is also present in the absence of fl
tuations~or stochasticity!.

A similar previous study@6# showed that the ac suscept
bility components would give a peak~or dip! near the tran-
sition point. In that case, the susceptibility components w
calculated from the phase lagd. The phase lagd would show
a peak at the transition point. As a consequence the sus
tibility components would show a peak~or dip! reflecting the
behavior of the phase lagd. However, in this case, the thre
measurements of the phase lagd, loop areaA, and dynamic
correlationC are completely independent, and indicate t
transition point separately.

B. Mean-field results

By solving the above mean-field equation them-h or hys-
teresis loops were obtained. The dynamic order param
Q5(v/2p)rm(t)dt is readily calculated. The loop areaA
and the dynamic correlationC have been calculated by usin
the above definitions. The phase lag~between field and mag
netization! has been calculated by taking the difference b
tween the minima positions of the magnetization and
magnetic field@6#. Figure 3 shows the temperature variatio
of Q, d, C, andA for two different values of field amplitude
h0. In both cases, it has been observed that, near the dyn
transition point (Q50), the phase lag gives a peak and t
dynamic correlationC gives a shallow dip. The hystereti
lossA gives a peak above the transition~dynamic! point. The
dynamic correlationC gives a smeared peak much abo
~around T51.3) the static ~ferro-para! transition point
(Tc51.0! ~for a closer view see Fig. 4!.

This high-temperature peak of the dynamic correlat
was misinterpreted as a signature ofstochastic resonance
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@12#. This peak is indeed present in the case where the fl
tuation is absent~MF case!. The appearance of this peak
higher temperature can be explained as follows: for a m
higher temperature the time variation of instantaneous m
netization is no longer square wave like and becomes alm

FIG. 3. The mean-field results for the temperature variations
Q, d, C, andA for two different values of field amplitudes.Q @solid
lines ~I! for h050.3 and~II ! for h050.2#, d (3 for h050.3 andL
for h050.2), C (n for h050.3 and1 for h050.2), andA (! for
h050.3 andh for h050.2).

FIG. 4. A closer view of Fig. 3 for the dynamic correlatio
plotted against the temperature~for fixed field amplitudeh050.2).
c-

h
g-
st

sinusoidal with a phase lagd. In a very simple view, it can be
approximated asm(t)5m0cos(vt2d) @from Eq. ~3.4!; Q 5
0 at very high temperature!. The dynamic correlation be
comesC5(m0h0/2)cos(d), wherem0 is the amplitude of the
magnetization which monotonically decreases as the t
perature increases. The phase lagd also monotonically de-
creases at higher temperature. Consequently cos(d) increases
andm0 decreases as the temperature increases. So one w
obviously expect a peak at a finite temperature~high enough!
where the competition, between the fall ofm0 and rise of
cos(d) with respect to the temperatureT, becomes compa
rable. Amazingly, no stochasticity is involved in it. The loo
areaA also gives a peak above the transition point. Fo
similar reason, given in Sec. V A, the dynamic correlationC
gives a shallow dip near the transition point.

VI. SUMMARY

The dynamical response of the kinetic Ising model in t
presence of a sinusoidally oscillating magnetic field has b
studied both by Monte Carlo simulation~in two dimensions!
and by solving the mean-field dynamical equation of mot
for the average magnetization.

A general relationship among the hysteresis loop areaA,
dynamic order parameterQ, and dynamic correlationC has
been developed@Eq. ~3.1!#. The time series of the magnet
zation can be decomposed in a Fourior series and the
stant term is identifed as the dynamic order parameterQ; the
amplitudes of the first harmonic terms are found to be rela
to the hysteretic loss~for the sine term! and the dynamic
correlation~for the cosine term! @Eq. ~3.3!#.

The dynamic order parameter, the loop area, and the
namic correlation have been calculatedseparately~both from
MC and MF studies! and studied as a function of temper
ture. It was observed~in both cases! that the dynamic corre-
lation shows a shallow~negative! dip near the transition
point. The dynamic transition point has been identified as
minimum-correlation point. The hysteretic lossA becomes
maximum above the dynamic transition point. In this sen
the dynamic transition point is not the maximum lossy poi
It may be noted that an earlier study@6# of the ac suscepti-
bility suggests that the dynamic transition point would be
maximum-lossy point, since the imaginary part~or lossy
part! of the ac or complex susceptibility also shows a pe
near the dynamic transition point. However, there is a
markable distinction from the present study. In the ear
study@6#, the phase lag was calculated from simulations a
the ac susceptibility components were calculated from
phase lag. So it is expected that the temperature variation
the phase lag will be reflected directly in the temperat
variations of the ac susceptibility components. But in t
present study the measurements of the phase lag, dyn
correlation, and loop area are completely independent. T
behavior of the dynamic correlation is explained from
simple square-wave-like time variation of the instantane
response magnetization. This oversimplified assumption
incapable of explaining the peak position~above the transi-
tion point! of the hysteretic lossA. However, this simple
picture can qualitatively describe the nonmonotonic tempe
ture variations ofA andC.

The high-temperature~above the static critical pointTc)
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peak of the dynamic correlation was misinterpreted@12# as a
signature ofstochastic resonance. This was also discusse
and an analytical form of the dynamic correlation was p
posed to show that the high-temperature peak of the dyna
correlation is present even in the absence of fluctuations~or
stochasticity!.

Along with the dynamic correlation, the dynamic trans
tion can be identified by various thermodynamic quantit
like ac susceptibility@6#, relaxation time@8#, specific heat
@8#, susceptibility@9#, and the fluctuations of dynamic orde
parameter and energy@9#. All these quantities indicate th
thermodynamic natures of this kind of nonequilibrium d
namic phase transition by showing the peak, dip, or div
gence near the transition point.

Related phenomena of this kind of nonequilibrium d
namic phase transition in the kinetic Ising model are mos
-
ic

s

r-

y

based on observations and not yet analyzed by using
rigorous theoretical foundations of equilibrium statistic
mechanics available so far. Experimental evidence@10,11# is
still in the primitive stage. Experimentally, only dynam
symmetry breaking of the hysteresis loops is observed n
the transition point. However, a detailed study of the nat
of the transition, the phase boundary, and the associated
nomena~described above! has not yet been done experime
tally.
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