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Nonequilibrium phase transition in the kinetic Ising model: Is the transition point the maximum
lossy point?
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The nonequilibrium dynamic phase transition, in the kinetic Ising model in presence of an oscillating
magnetic field, has been studied both by Monte Carlo simulaiioriwo dimensions and by solving the
mean-field dynamical equation of motion for the average magnetization. The temperature variations of hyster-
etic loss(loop area and the dynamic correlation have been studied near the transition point. The transition
point has been identified as the minimum-correlation point. The hysteretic loss becomes maximum above the
transition point. An analytical formulation has been developed to analyze the simulation results. A general
relationship among hysteresis loop area, dynamic order parameter, and dynamic correlation has also been
developed[S1063-651X98)03807-Q

PACS numbsdis): 05.50+q

I. INTRODUCTION presence of thermal fluctuations, in the static limit, the sys-
tem can go from one well to another via the formation of
The dynamics of magnetization reversal in simple ferro-nucleating droplets. A vanishingly small field is required to
magnetic systems has recently attracted considerable sciepush the system from one to the other well. Consequently,
tific interest to studynonequilibriumresponses. In this re- the dynamic phase boundary collapses, in the presence of
gard, the dynamical responses of the Ising system in théermal fluctuations. _ o
presence of an oscillating magnetic field have been studied TO study the true dynamic phase transitiahich should
extensively[1—6]. The dynamical hysteretic responge-3] disappear in thg static Ilrr).l'one has to consider the eff_ect of
and the nonequilibrium dynamical phase transifiéa9] are thermal fluctuations. In this regard, Lo and Pelcojkfirst

two main subjects of interest to study the dynamic response%ttem.pted to S,E.Udy tthhe d%natmirf: fr|1atl£|retpf .thitshphl?.se ftransi-
of the kinetic Ising model in the presence of an oscillating lon (incorporating the effect o uctua |()r_1n € Kinetic
magnetic field Ising model by Monte CarldMC) S|m_ulat|0n. However,

Tome and (5Iiviere{4] first studied the dynamic transition they [5] have not reported any precise phase boundary.
by solving the mean-fieldVIF) dynamic equation of motion Acharyya and Chakrabalfif] studied the nonequilibrium dy-

for th ) £ the kinetic Isi del | namic phase transition in the kinetic Ising model in the pres-
(for the average magnetizatipaf the kinetic Ising model in o \co of an oscillating magnetic field by extensive MC simu-

presence of a sinusoidally osciIIatin.g magnetic field. By d.e1ation. They[6] have drawn the phase boundary and located
fining the order parameter as the time-averaged magnetizg: yricritical point(as observedon the boundary. It has been
tion over a full cycle of the oscillating magnetic field, they 550 observed6] that this dynamic phase transition is asso-
showed that the order parameter vanishes, depending upefhted with the breaking of the symmetry of the dynamic
the value of the temperature and the amplitude of the OSC"hysteresis ih-h) loop. In the dynamically disordere@alue
lating field. In the field amplitude and temperature plane theyof the order parameter vanisheghase the corresponding
have drawn a phase boundary separating dynamic orderggsteresis loop is symmetric, and loses its symmetry in the
(nonzero value of the order paramgtand disorderedorder  ordered phaségiving a nonzero value of the dynamic order
parameter vanishgphases. Thej4] have also observed and parameter They have 6] also studied the temperature varia-
located atricritical point (TCP) [separating the natur@is-  tion of the ac susceptibility components near the dynamic
continuous or continuoyisof the transition on the phase transition point. It has been observgg] that the imaginary
boundary line. or lossy(real) part of the ac susceptibility gives a pe@kp)
Since this transition exists even in the stafero- near the dynamic transition poitivhere the dynamic order
frequency limit, such a transition, observefdl] from the parameter vanishgslt was concluded that this is a possible
solution of a mean-field dynamical equation, cannot be dyindication of the thermodynamic nature of this kind of non-
namic in the true sense. This is because, for a field amplitudequilibrium dynamical phase transition.
less than the coercive fieltht a temperature less than the  The statistical distribution of the dynamic order parameter
static ferro-para transition temperatyréhe response magne- has been studied by Sidesal.[7]. The nature of the distri-
tization varies periodically but asymmetrically even in thebution changegfrom bimodal to unimodal near the dy-
zero-frequency limit; the system remains locked to one welhamic transition point. They have also obsery@fthat the
of the free energy and cannot go to the other one, in théluctuation of the hysteresis loop area grows and becomes
absence of noise or fluctuation. On the other hand, in theonsiderably large as one approaches the dynamic transition
point.
The relaxation behavior, of the dynamic order parameter,
*Electronic address: muktish@thp.uni-koeln.de near the transition poin(in the disordered phagehas been
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studied[8] recently by MC simulation and by solving the where( ) denotes the time average over the full cycle of the
mean-field dynamic equation. It has been observed that thescillating magnetic field. Sincgh(t))=0, one can write
relaxation is Debye type and the relaxation time diverges o
near the transition point. The “specific heat” and the “sus- o _whg

ceptibility” also diverge[9] near the transition point in a C=2 J) m(th(t)dt= 27 % m(t)cogwt)dt.

similar manner as that of fluctuations of the order parameter (2.9

and fluctuation of the energy, respectively. These observa- ) ) o )
tions [9] (divergences of fluctuatiopsndirectly support ear- The dynamic correlation has another physical interpretation.
lier facts [7] where the distribution of the dynamic order For the cooperatively interacting spin system, this is the
parameter becomes wider and the fluctuation of the hystefi€gative of the time-averaged spin-field interaction energy
esis loop area becomes considerably large near the transitiéBer spin [(Eq)=—(w/27L?)$=;0; h(t)dt] over a com-
point. plete cycle of the oscillating field.

Recently experimental evidendd0] for the dynamic In the dynamically disordered)=0) phase and near the
transition has been found. Dynamical symmetry breakingransition point, the time series of the magnetizafior(t) ]
(associated with the dynamic transitjaacross the transition can be approximated as a square wave with a phasé lag
point of the hysteresis loop has been observed, in highlyvith the applied sinusoidal magnetic field:
anisotropic(lsing-like) and ultrathin Co/C(D01) ferromag-
netic films by the surface magneto-optic Kerr effect, as one 1 for 0<t<7/4+élw,
passes through the transition point. Dynamical symmetry m(t)={ —1 for 7/4+6/w<t<37/4+6lw, (2.5
breaking in the hysteresis loops has also been obsé¢ivddd
in ultrathin Fe/W110) films. However, the detailed natures ! for 3r/a+ dlw<t<2mlo,

of the dynamic transition and the phase boundary have nGfnerer is the time period of the oscillating field artis the
yet been studied experimentally. phase lag between magnetizatiogt) and the magnetic field

In this paper, the dynamic phase transition has been stugy() = h,cosgt). The value of the hysteresis loop area can
ied in the kinetic Ising model in the presence of a sinusOi-gasily be calculated as

dally oscillating magnetic field by MC simulation and by

solving the mean-field dynamical equation of motion for the A=4hsin( ). (2.6)
average magnetization. The temperature variations of the

hysteresis lossgor loop ared the dynamic correlation, and This form of the loop area was also obtaind from the
the phase lag are studied near the dynamic transition poinassumption that it is approximately equal to 4 times the prod-
This paper has been organized as follows: In Sec. Il simpleict of coercive field and remanent magnetizatibere the
analytic forms are given for the loop area, dynamic correlaremanent magnetization is equal to upitwhere the coer-
tion, and dynamic order parameter. In Sec. Il a general reeive field is identified a$ysin(5) (the change in field during
lationship has been developed among the various dynamic#tie phase lag Considering the same form of the magnetiza-
guantities. In Sec. IV the models are introduced and in Sedion the dynamic correlatio® can also be calculated exactly
V the numerical results are given. The paper ends with as

summary of the work in Sec. VI.
2hg

C=——=co0g9). 2.7
II. ANALYTIC FORMS OF THE LOOP AREA T
AND THE DYNAMIC CORRELATION ) .
NEAR THE TRANSITION POINT From the above forms oA andC it can be written as
The form of the oscillating magnetic field is A? c?
ah )2+ h /W)Z:L (2.8
h(t)=hycog wt). (2.1 0 0

The above relation tells us that the loop afeand the dy-
namic correlationC are elliptically related to each other. It
may be noted here that the previously studied ac susceptibil-
fﬁ m(t)dt, (2.2 ity componentg6] obey a circular relationshipy'?+ x"?
=(my/hg)?], wheremy is the amplitude of the magnetiza-

The dynamic order parameter is defined as

w

Q= 2n

L . . o tio
which is nothing but the time-averaged magnetization over a

n.
full cycle of the oscillating magnetic field. The hysteresis The ordered regionQ+#0) can be approximated by con-

sidering the following form of the magnetization:

loop area is
1 for 0<t<7/4+ 6w,
A=— é m dh=hyw § m(t)sin( wt)dt, (2.3 m(t)=4 1-m, for 7/4+6lw<t<37/4+6lw,
1 for 37/4+ 6l w<t<27lw.
which corresponds the energy loss due to the hysteresis. The (2.9

dynamic correlation is defined as
In the above simplified approximation, it was considered that

C=(m(t)h(t))—(m(t)){h(t)), the magnetization cannot jump to the other well; however,



PRE 58 NONEQUILIBRIUM PHASE TRANSITION IN THE ... 181

the value of the initial magnetization is reduced by the 1

amountm;, . In a real situation it has been observed that this Q= — fﬁ m(t)dt=
well is not fully square[as assumed above in the form of T

m(t)]; it has a cusplikéor paraboli¢ shape. Fom,=2, the > 5
above functional form om(t) will take the form of(2.5) and B 1 do’ \/ 4m°C A

one can get the disordere@ &0) phase. Taking the above N 27”] @ % hgw/z + h(Z)wrz

form of magnetization the dynamic order param&ezan be

calculated a€Q=(2—m,)/2. It may be noted that, in this xé(w’“tan’lA/Zﬂth, (3.
simplified approximation, the dynamic order paramégeis

independent of the phase I&ywhich is not observed in the where

real situation(the phase lag shows a peak at the transition

point). However, this simple picture can anticipate the con- 1 3g
vex (looking from the origin nature[6] of the dynamic T
phase boundary. As the temperature increaseicreases

and it also increases as the field amplitude increases. In thegne above equation gives the general relationship an@ng
simplest asumption, one can consider timatis proportional A andcC.

to the product othy and T. Demandingm,=2 for the dy- It has been observed that the steady respomdg, to a
namic transition Q=0), one can readily obtainht)qTq  sinusoidally oscillating magnetic fielth(t) = hocost)], is

= const. This equation tells us that the dynamic phase boungseriodic (with phase lags) and has the same periodicity (
ary will be convex. The convex nature of the phase boundary-2 /) of the field. So one can writen(t) in a Fourier

remains invariant even if one assumes thais any increas-  series as

ing function of bothT and h, [for example, the power law

m,~T*hY; in this particular case the equation of the dy- * ~ .

namic phase boundary becom&(hy)%=const, and it is m(t)=ao+ 21 ancos(nwt)+nZl bysin(nwt). (3.2)
easy to see that this gives the convex shape of the dynamic " -

phase boundaiy However, this very simple asumption can- From the usual definitions @, A, andC, it is easy to see
not describe the entire form of the phase boundary accupat

rately, particularly near the end poinfghy)4=0 and T

=0]. a,=Q, a;=2C/hy, and b;=A/(why).

1

jdw’ %m(w’)exp{iw’t)dt

27T

]

dt=li ! d
... dt= |mm 706... t.

n—oo

IIl. GENERAL RELATION AMONG THE DYNAMIC So one can write

ORDER PARAMETER, HYSTERESIS LOOP AREA, 2C A
AND DYNAMIC CORRELATION m(t)=Q+ h_cogwtﬂ_ et —hsin(wt)+ .
0 o

From the usual definitionggiven in Sec. I] of C andA, (3.3
one can write
Keeping only the first harmonic terniggnoring higher har-

monic9 one can easily express the instantaneous magnetiza-
m(t)exp( —iwt)dt, tion as

V2r

wherem(w) = (1\27)$m(t)exp(—iwt)dt. So

=9
why who)_ 2

1(2’7TC A

m(t) =Q+mycog wt— 6), (3.9

where the amplitude of the magnetization iy
={(2C/hy)?+[Al(mhy)1?}¥2 and the phase lag iss

ho(l) — —1
C— REM(w)] tan [A/(27C)].
V2
IV. MODEL AND THE SIMULATION SCHEME
and A. Monte Carlo study
The local field(at timet) at any sitel of a nearest neigh-
A=—how\2mIm[m(w)]. bor ferromagnetic Ising model in the presence of a time-
varying external magnetic field(t) with homogeneous and
The generalcomplex form of m(w") will be unit interaction energy can be written as
m(w")=[m(e’)|expi¢),
hi() =2 oj(t)+h(t), (4.2)
1 [4m’C? A% |12 A :
m(w’)=—(—2+2—,2) exp —tan‘l—}. . .
v2m\ hg  hpo 2mwC where ;(t)=+1 andj runs over the nearest neighbor of

sitei. The local field(at sitei) h;(t) has an external field part
SoQ is related toA andC as follows: h(t), which is oscillating sinusoidally in time:
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h(t) =hosin(2aft), 4.2 V. RESULTS

A. Monte Carlo results
whereh, and f are the amplitude and frequency of the os-
cillating field.

According to heat-bath dynamics, the probabilfiy(t)
that the spino;(t) will be up at timet is given as

In the MC simulation, a square lattice of linear size
=1000 is considered. The frequenay of the oscillating
field has been kept fixedw(=277X0.01) throughout the
study. From the Monte Carlo simulation technique described
SN (/KT above, m-h or hysteresis loops were obtained. Some
(~600) initial transient loops were discarded so as to have a
the stable loop. From this one can easily estimate the length
. ] of the simulation. For the above choice of frequency, 100
whereKg is the BoI_tzmar]n constant which has been taken,css are required to form a complete lo@p cycle, and
equal to unity for simplicity. It may be noted here that the gng sy ch loops were discarded. It has been checked carefully
spin-spin interaction strengthhas been taken equal to unity. a4 the Joop gets stabilizeghithin a reasonably useful error
The temperatur@ is measured in units af/Kg . The field is barg for this choice. The dynamic order paramet@r
measured in units af. The sping;(t) is oriented(at timet) = (w/27)$m(t)dt is readily calculated. The loop ardaand
as the dynamic correlatiorC have been calculated from the
usual definitions. The phase laf(between field and mag-
netization) has been calculated by taking the difference be-
tween the positions of the minimum of magnetization and the
magnetic field 6]. All values of Q, A, &, andC for a par-
wherer;(t) are independent random fractions drawn fromticular temperature were obtained by averaging over ten dif-
the uniform distribution between 0 and 1. ferent random samples to obtain a smooth variation. Figure 1

In the simulation, a square latticé XL) is considered demonstrates the dynamic transitiwith dynamic symme-
under periodic boundary conditions. The initial condition istry breaking and the related phemomereLg., temperature
that all spins are upi.e., oi(t=0)=1, for alli]. The multi-  variations ofA, 5, etc) at a glance. For a fixed field ampli-
spin coding technique is employed here to store ten spins ifgeh,=0.7 the time variations di(t) andm(t) are plotted
a computer word consisting of 32 bits. Ten spins are updateg; yarious temperatures in the pictures in the left column
simultaneouslyor paralle) by a single command. All words and the corresponding-h loops are shown in the right col-

(contalmngt;en S{).")Slart?. updatec_j tseq;Jennall\l/ly atnd gn? futII umn. For a very low temperatur¢opmost pictures of Fig.
scan over the entire 1atlice consists of one ionte L.ario s eR), since no spin flip occurgwithin the time periogl the

per spin(MCSS. This is the unit of time in the simulation. o . .
The instantaneous magnetizatipm(t) = (1/L%)%, o (t)] is magnetizationm(t) remains constanfunity) and conse-
L uently them-h loop is a straight line having zero loop area.

calculated easily. Some transient loops were discarded he dvnamic order parameter is unitv. The concent of phase
have a stable loop and all the dynamical quantities were call— y P - Y- | pt ot pr
ag [betweenm(t) and h(t)] is not applicable here. Obvi-

culated from the stable loop. ] 4 o
This simulation is performed in a SUN workstation clus- ously the dynamic correlation is zero. After a slight increase

ter and the computational speed recorded is X1 up-  Of temperaturepictures in the second rgugome small num-
dates of spins per second. ber of spin flips occurgwithin the time periogl For some

time, m(t) decreases from unity and again it becomes equal
to unity. The phase lag is the frequenay)(times the time
difference between the positions of the minimum roft)

The mean-field dynamical equation of an Ising ferromag-gnd h(t). The m-h loop encloses a finite but small area,

pi(t)= S O/KET o P (D/KgT (4.3

oi(t+1)=sgripi(t)—ri(t)], (4.4)

B. Mean-field study

net in the presence of a time-varying magnetic fielg4ls giving aQ less than unity. The dynamic correlation starts to
grow. As the temperature increase further the phase dag (
and the loop ared increasegpictures in the third royvand
dm m(t)+h(t) .
i m T , (4.5  the dynamic order paramet€ decreases. In all three cases,

described so far, the asymmetric shapes ofntHe loops are
observed due to asymmetric time variation of the response
where the external time-varying fiel(t) has the previously magnetizatiorm(t). The dynamic correlation decreases. The
described sinusoidal fornT. is the temperature measured in temperature is very close to the dynamic transition tempera-
units of zJ/Kg (z is the coordination number ari€; is the  ture (fourth row), where the time variation of the response
Boltzmann constant This equation has been solved foft) magnetization is almost symmetric, giving maximum values
by the fourth-order Runge-Kutta method by taking the initialof 6. The m-h loop is symmetric and the dynamic order
condition m(t=0)=1.0. The value of the time differential parameteQ is almost zero. The dynamic correlati@hbe-

(dt) was taken to be IC°, so that the error i9O(dt®) comes negative and minimal. As one increases the temper-
~1071. The frequencyw of the oscillating field is kept aure further(last row), the phase lag decreases, and the loop
fixed (w=2w) throughout the study. Some transient loopsarea decreases. The dynamic correlation starts to grow fur-
were discarded and all the values of the response are calcther. It may be noted here that the conventional hysteresis or
lated from a stable loop. m-h loop is observed in this region of temperature. As the
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FIG. 1. A pictorial demonstration of the dynamic transition and associated phemomena. The figures in the left column represent the time
variation ofh(t) andm(t) for different temperatures and the correspondiry loops are shown in the right column. Temperature increases
from top to bottom. Monte Carlo results far=1000, w=27x0.01, andhy=0.7.

temperature increases further the dynamic correlation grow$ighly anisotropic and ultrathin[two-dimensional (2D)
shows a maxima or peak, and then decreases. The loop arksing-like] ferromagnetic flmgCo/Cu001) and Fe/W110)]
monotonically decreases. [10,17] by using a surface magneto-optic Kerr effect study at
The dynamical phase transition, via the dynamical sym+oom temperature. In a recent experimental st{ily] in
metry breaking of the hysteresis loops, has been observed intrathin Fe/W110), the dynamical symmetry breaking of
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a5 [ T T T T ] sponse magnetization should change its sigross zerd
;?'e"’s& MG Results within this period. This is true for the—0 limit; however,

*x* for finite but sufficiently high frequency, this will not hap-
s X X L=1000 . pen. A phase difference of more thar2 would be ob-

served, yielding the unconventional shapesnel or hyster-

esis loops. In practice, it was observed that some asymmetric
shape of the ih—h) loop gives a value of the phase |&)
slightly higher thanz/2. In this region, cost=n/2+ €)=
—sin(e), which is negative and will show a shallow dip
(cusplike shapeat the point whereS is maximum. Accord-

ing to the analytical prediction, the loop area
[=4hgsin(s)] should show a maximum at the transition
point. However, strictly speaking and in practice it has been
observed that the loop are& becomes peaked above the
transition temperature, since the loop area is much more
strongly dependent on the actual shape of the magnetization
(which is not a perfect square wave in the temperature range
concerned hejeAs the field amplitude increases the transi-
tion points shift towards the lower temperature. The maxi-
mum of § also increases and consequently the difCdbe-
comes deeper and it remains negative over a wider range of
temperaturgsince § remains larger thanr/2 over a wider
range. It may be noted that the dynamic correlatiGnbe-

FIG. 2. The Monte Carlo results for the temperature variations<COMes zerdin the disordered oQ = 0 region where the
of Q, &, C, andA for two different values of field amplitude ~ Phase lagh=7/2=1.5708... . Thedynamic correlatiorC
[solid lines (1) for hy=0.9 and(ll) for hy=0.7], & (X for h,  Shows a smeared peak at quite higher temperatimeve the
=0.9 and¢ for hy=0.7),C (A for hy=0.9 and+ for h,=0.7),  Onsager value which was misinterpretefd 2] as a signature
andA (* for hy=0.9 andd for hy=0.7). of the stochastic resonancén the MF study(next sectiof,
it was shown that this is also present in the absence of fluc-
tuations(or stochasticity.
The temperature variations @, 6, C, and A for two b'I'A similar previous ngd%] showeg tzat the achsuscepti-
different values of field amplitudds, are shown in Fig. 2. In flity components would give a ped ! .'p) near the tran-
sboth cases, it has been observed that, near the dynamic trsallt-lon point. In that case, the susceptibility components were

, X calculated from the phase laiy The phase lag would show

nhition point (Q=0), the phase lag gives a peak and.the dy'a peak at the transition point. As a consequence the suscep-
namic correlatiorC gives a shallow dip. The dynamic cor-

. . tibility components would show a pear dip) reflecting the
relation C gives a smeared peak much abojaound T . L
—2.6) the statiqferro-para transition point T,=2.269....) behavior of the phase laf§ However, in this case, the three

. ; measurements of the phase l@gloop areaA, and dynamic
t(ﬁge d)lf:]% rf?;-icTtr;gn?iﬁct)irT)%isn:oop argtishows a peak above correlationC are completely independent, and indicate the

. . ) . ransition poin rately.
It is possible to explain these observations from the ver);[ ansition point separately

simple analytical results described abd®ec. I). The phase
lag 6 becomes maximum near the dynamic transition point.
So according to the analytical formulatigior C andA) for By solving the above mean-field equation theh or hys-

a fixed value of the field amplitude as the temperature interesis loops were obtained. The dynamic order parameter
creases the loop aree(=4hgsind) starts to increases as the Q= (w/27)$m(t)dt is readily calculated. The loop areea
dynamic order paramet€) starts to decrease and above theand the dynamic correlatid@ have been calculated by using
dynamic transition poinfcomplete spin reversathe loop the above definitions. The phase lgtween field and mag-
area will be maximum and after thAtwill start to decrease. netization has been calculated by taking the difference be-
Similarly, the dynamic correlatio© will remain approxi- tween the minima positions of the magnetization and the
mately equal to zero until a considerable amount of spin flipmagnetic field 6]. Figure 3 shows the temperature variations
occurs and) changes appreciably and then starts to increasef Q, 6, C, andA for two different values of field amplitudes
Above and near the transition point, where the phaseslag hg. In both cases, it has been observed that, near the dynamic
decreases as temperature increas€s;(2hy/m7)cos()  transition point Q=0), the phase lag gives a peak and the
should start to increase, which has been observed indeedynamic correlationrC gives a shallow dip. The hysteretic
However, near the transition point it gives a shallow dip,lossA gives a peak above the transiti@dynamig point. The
where the value of the dynamic correlati@his minimum  dynamic correlationC gives a smeared peak much above
and negative. The phase lagshould be less than or at most (around T=1.3) the static (ferro-para transition point
equal towr/2. The field[h(t) = hgcost)] crosses zero firstat (T.=1.0) (for a closer view see Fig.)4

the phase valuer/2 and it becomes minimunimaximum This high-temperature peak of the dynamic correlation
negative at the value of phaseat) equal tow. The re- was misinterpreted as a signature sibchastic resonance

the hysteresis loop was nicely depicted in Fig. 1 of Ref].

B. Mean-field results
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' ™ ! T T T T T sinusoidal with a phase lag In a very simple view, it can be
approximated am(t) =mycost— ) [from Eq.(3.4); Q =

0 at very high temperature The dynamic correlation be-
comesC = (mghy/2)cose), wheremg is the amplitude of the
magnetization which monotonically decreases as the tem-
perature increases. The phase taglso monotonically de-
creases at higher temperature. Consequentlystas{reases
andm, decreases as the temperature increases. So one would
obviously expect a peak at a finite temperafinigh enough
where the competition, between the fall wf, and rise of
cos(®) with respect to the temperatuiig becomes compa-
rable. Amazingly, no stochasticity is involved in it. The loop
areaA also gives a peak above the transition point. For a
similar reason, given in Sec. V A, the dynamic correlati®n
gives a shallow dip near the transition point.

MF Results

VI. SUMMARY

The dynamical response of the kinetic Ising model in the
presence of a sinusoidally oscillating magnetic field has been
studied both by Monte Carlo simulatigim two dimensions
and by solving the mean-field dynamical equation of motion
for the average magnetization.

A general relationship among the hysteresis loop dgea

FIG. 3. The mean-field results for the temperature variations odynamic order paramet&)p, and dynamic correlatio® has
Q, 4, C, andA for two different values of field amplitude® [solid been developefEg. (3.1)]. The time series of the magneti-
lines (1) for hy=0.3 and(ll) for hy=0.2], 5 (X for hy=0.3 and®  zation can be decomposed in a Fourior series and the con-
for hp=0.2), C (A for hy=0.3 and+ for hy=0.2), andA (x for  stant term is identifed as the dynamic order param®@tehe
ho=0.3 andd for ho=0.2). amplitudes of the first harmonic terms are found to be related

to the hysteretic lossfor the sine term and the dynamic
[12]. This peak is indeed present in the case where the ﬂ“(‘t'orrelatign(for the coiine term[Eq. (323]' y

tuation is absentMF casg. The appearance of this peak at 114 dynamic order parameter, the loop area, and the dy-

higher temperature can be explained as follows: for a muchymic correlation have been calculagparately(both from
higher temperature the time variation of instantaneous magyc and MF studiesand studied as a function of tempera-
netization is no longer square wave like and becomes almosg ;e |t was observedn both casesthat the dynamic corre-

lation shows a shallowinegative dip near the transition
point. The dynamic transition point has been identified as the
MF Results minimume-correlation point. The hysteretic lodsbecomes
maximum above the dynamic transition point. In this sense,
the dynamic transition point is not the maximum lossy point.
It may be noted that an earlier stuf§] of the ac suscepti-
bility suggests that the dynamic transition point would be the
maximum-lossy point, since the imaginary pdadr lossy
par) of the ac or complex susceptibility also shows a peak
near the dynamic transition point. However, there is a re-
markable distinction from the present study. In the earlier
c study[6], the phase lag was calculated from simulations and
the ac susceptibility components were calculated from the
phase lag. So it is expected that the temperature variations of
the phase lag will be reflected directly in the temperature
variations of the ac susceptibility components. But in the
present study the measurements of the phase lag, dynamic
correlation, and loop area are completely independent. This
behavior of the dynamic correlation is explained from a
simple square-wave-like time variation of the instantaneous
response magnetization. This oversimplified assumption is
-0.01 . . . . . . . . incapable of explaining the peak positiabove the transi-
02 04 06 08 A . 12 14 16 18 2 tion poind of the hysteretic los#. However, this simple
picture can qualitatively describe the nonmonotonic tempera-
FIG. 4. A closer view of Fig. 3 for the dynamic correlation ture variations ofA andC.
plotted against the temperatuffer fixed field amplitudeny=0.2). The high-temperaturébove the static critical point,)
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peak of the dynamic correlation was misinterprdte?] as a based on observations and not yet analyzed by using the
signature ofstochastic resonancerhis was also discussed rigorous theoretical foundations of equilibrium statistical
and an analytical form of the dynamic correlation was pro-mechanics available so far. Experimental evideridg11] is
posed to show that the high-temperature peak of the dynamigtill in the primitive stage. Experimentally, only dynamic
correlation is present even in the absence of fluctuations symmetry breaking of the hysteresis loops is observed near
stochasticity. the transition point. However, a detailed study of the nature
Along with the dynamic correlation, the dynamic transi- of the transition, the phase boundary, and the associated phe-

tion can be identified by various thermodynamic quantitie%omenddescribed abo\)d’]as not yet been done experimen_
like ac susceptibility{ 6], relaxation time[8], specific heat tgjly.

[8], susceptibility[9], and the fluctuations of dynamic order
parameter and enerd®@]. All these quantities indicate the

therr_nodynamic na@qres of this I§ind of nonequi!ibrium .dy— ACKNOWLEDGMENTS
namic phase transition by showing the peak, dip, or diver-
gence near the transition point. This work is financially supported by Sonderforschungs-
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