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Dynamics of nonlinear oscillators with random interactions
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We develop a mean field theory for a system of coupled oscillators with random interactions with variable
symmetry. Numerical simulations of the resulting one-dimensional dynamics are in accordance with simula-
tions of theN-oscillator dynamics. We find a transition in dependence on interaction strémgith symmetry
parametery from a dynamically disordered phase to a phase with static disorder, where all oscillators are
frozen in random positions. This transition between the “paramagnetic” phase and the spin glass phase
appears to be of first order and is dynamically characterized by dipasgive Lyapunov exponentin the
former case and regular motiduanishing Lyapunov exponents the latter case. The Lyapunov spectrum
shows an interesting symmetry for antisymmetric interactigre —1). [S1063-651X98)14608-1

PACS numbgs): 05.45+b, 05.70.Fh, 64.60.Ht, 64.60.Cn

. INTRODUCTION tion” m=(1/N)S{L exp(¢) according to a power law in
time. Our simulations with identical system size, smaller
Oscillations and interacting oscillating systems are omnitime discretization, and a numerical procedure of higher or-
present in nature as well as in technical systems. Thereforgier do not confirm this result. We find a power law only for
systems of coupled oscillators have received much interest ig critical interaction strength, ; for J>J,; andJ<J, we do
the last years. Synchronization and desynchronization wergnd systematic deviations from a power law. At, how-
investigated for populations of firefli¢s,2], pacemaker cells  ever, the system shows a discontinuous transition from a
of the heart, and pulsating las€i3,39]. Oscillations in the  dynamically disordered state to a spin glass state with frozen
nervous systeni5], which control periodical processes as disorder, in contrast to the case of uniform and Van
running, breathing, and CheWing, received particular interes‘Hemmen_typd:ZO] interactions where the transition is con-
Recently it was conjectured that synchronization of oscillatinyous. In a wider perspective the considered model belongs
tions plays a fundamental role in the mammalian brain. Theg the large class of systems characterized by the interplay
binding of related features and the separation of unrelategletween frozen disorder and chd@s,30,31.
features(binding-problem could be achieved by synchroni-  The paper is organized as follows: In Sec. II, we describe
zation and desynchronization of oscillating groups of neuthe model in detail. A one-dimensional dynamics, which de-
rons[6-8. scribes the interacting oscillators in the thermodynamic limit
In the presence of dissipation, stable oscillations can onlyy—,« exactly, is derived with the method of generating
be generated by active systems, which have a limit cycle agnctionals[21,4] in Sec. Ill. Following the approach of
attractor. Based on the idea of a phase descripl®in  Ejssfeller and Oppef22] we performed numerical simula-
“phase models” of coupled oscillators have been developediigns of the one-dimensional dynamig., with N=o) for
Kuramoto [10] showed that any system of coupled limit asymmetric interactiong7=0), which we compare with
cycle oscillators can be described in the limit of weak inter-sjmulations of theN-oscillator dynamicgSec. V). In Sec.
action by a set of first order differential equations of they e show that the above mentioned transition is character-
oscillator phasesp;. These models have been investigatedizeq by the dynamical EA order parameters asXof spin
mostly for uniform all-to-all interaction$10-17,35,42but  glasseq23]. The different phases exist also for other sym-
also for other connectivitigsl9,26. To address the problem metry parameters#1. The part of parameter space, ),
of interactions of oscillations in the brain, we consider theyhich shows spin-glass-like behavior corresponds dynami-
most natural choice of interactions, if apart from high con-ca|ly to regular motion, while it is chaotigmaximal
nectivity no specific information about the interaction Lyapunov exponenh ,,>0) in the “paramagnetic”’ case
strengths is present: Ga_ussian random interactions with Var{Sec. V). The Lyapunov spectrum shows an interesting
able symmetry described by a symmetry parametesymmetry for antisymmetric interactiorig=—1). Its origin
ne[—1,1]. For symmetric interactions this kind of system jg gjfferent from the one found in recently investigated sys-

was introduced by Daidpl8], who found, for a sufficiently  tems[24]. In Sec. VII, we summarize our results.
large average interaction strengtha decay of “magnetiza-

Il. MODEL

*Present address: Frauenhofer-InstitutRuoduktionstechnik and Kuramoto[10] showed that any system of coupled limit
Automatisierung(FhG-IPA), Nobel Strasse 12, D-70569 Stuttgart, cycle oscillators can be described, in the limit of weak inter-
Germany. action, by a set of differential equations:
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()= o+ Fi(ba(t), . .. bu(D)), (1) $=w+AJ SiNAP), )
where¢;(t) e[0,2m) is the phase of thigh oscillator andv;
its natural frequency. The coupling functidf) is 27 peri- Ap=Aw—2T SiNA ). %)

odic in all arguments. Assuming that the interaction can be
written as pair interactiorf;; can be expanded into a Fourier _ _ _ _
series[10]. Keeping only the first terms, one obtains the The solution of Eq(4) shows different behavior depending

simple model equation on the parameters. For sufficiently strong interaction, i.e.,
N |A w/2J< 1], both oscillators move with a common frequency
bi(t)= wj+i21 Jijsin(¢i(t) — ¢;(1)). ) and constant phase difference:
This model has mostly been investigated for uniform all-to- lim ¢p»— 1= limA ¢=0. ®)
all interactionsJ;;=K/N [11-17. In this case, for small toe t—e

interaction strength K, all oscillators are complete-
ly incoherent, the order parameterm=(exp(¢®))
:=(1/N)E}\':lequ¢j) (denotedZ in the papers mentioned
above vanishes. Above a critical interaction strengghthe
system becomes partly coherefin{>0). At the critical in-
teraction strengttK. the order parameter behaves |ag
~J(K=Ky)/K.. It has recently been shown that this behav-
ior occurs only for odd interaction functiorise., truncation YN N A

after the first term of the Fourier expansionfgf) [27-29. (d2n=(dn=(a¢n#0. ©
For non-odd interaction functiodm| scales as|m|~ (K

—Ky)/K.. Also, the case of Van Hemmen-type interactionsThis behavior is easily understood:¢f; and ¢,, and hence
Jij=KIN+CIN(& 7+ & m), with & and 7 independent alsoA¢, are defined orf—=,), Eq. (4) can be regarded as
identically distributed random variables that take valaels  gradient descent in a potentd(A ¢):

and —1 with probabilty 3 has been investi-

gated[20]. Depending on the interaction strengtisand C, dV(A &)

the system is in an incoherent, a partly coherent, a spin- Ap=———"-, 7)
glass-like, or a mixed state. The appropriate order parameters dA¢

g, :=(£;€'%) and q,:=(¢&;€'%), which measure correlation

with the interaction disorder, show up to a constant factor %Nith

the same dependence on the interaction strefyts |m|

This is calledphase locking A similar phenomenon also
occurs forN>2 coupled oscillators. This is investigated for
N—co in the next sections. FQIA w/2J|>1 both oscillators
move with different averaged frequencies:

does onk.
In the_ followi.ng we will analyze the case of Ggussian V(Ap)=—Aw Ap—2J] cogA ). (8)
random interaction strengthly; and random frequencias;
with
The potential functio’V(A ¢) has the form of a tilted cosine
[Ji1=0. function. For| Aw|<2[J] the potential function/(A ¢) has a
[3i: 1= (84 8y + 8, 8, m) IZIN local minimum(modulo 2r). As it is quadratic, the conver-
) e ’ gence to equilibrium is exponentially fast. Aaxw|>2|J],
[wi]= wq, in contrast,V(A ¢) does not have local minima, anil¢
) ) grows infinitely.
[wjwj]=un 8+ wg.
[-] d_enotes _the guenched average over ra_ndo_m frequencies IIl. MEAN FIELD LIMIT
and interaction strengths. Fgr=1 the interaction is symmet-
ric, for »=—1 it is antisymmetric, and for=0 the random Due to the all-to-all interaction in E@2), the dynamics is

variablesJ;; andJ;; are uncorrelated. Without loss of gener- governed by a set of one-dimensional equations in the mean

ality one can assume,=0, which corresponds to the intro- field limit N—o. Following the usual approach of a dy-

duction of a rotating framep;— ¢; — wot. namic mean field theorf21,22,30,31,4,3R first a Gaussian
white noise¢;(t) is introduced, which transforms E@) to a

Interaction of two oscillators Langevin equation:

To obtain a first understanding of the dynamics, one can N
investigate the behavior of two coupled oscillators. In this . )
case Eq.(2) can be solved by introducing new variables d’J(t):wiJriZl Jijsingi(t) — gD ]+ &(), (9

Ap= o~ 1, g:(¢2+¢1_): AJ=31-3y, I=(Jp
+Jo)/2, Aw=wy,— w1, andw=(w,+ w1)/2. The equations R R
of motion then read (& &D)Y=8(t—1) &y o2 (10)
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Averaged dynamical quantities can be obtained from the 10° o0se

generating functional:

[Z]J,w:

fD¢<t>D<§s<t>
0'2 ~ 2

X ex —721_: fdt ?;i(t)
-> fdti&s,-a)ébj(t)

]

]
+2 Ji,jf dt ig;(t)

J,I

XSir{d’i(t)_(ﬁj(t)]H , 11

J,w
where fDqS(t):IimHOHiN:lHIj J(2m)~Yd¢(t;) denotes
functional integration over all phase variables. Sidgeand

w; are Gaussian random variables, the average in(Ep.
can be calculatetsee the Appendix The averaged genera

ing functional[ Z]; , factorizes. Hence the dynamics of os-
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FIG. 1. Comparison of the magnetizatiom(t) of the simula-
tion of the N-particle system(symbolg and the effective one-
particle systenilines for J=5, 15, 25, and 35. For short times

t- the agreement is very good; for larger times the fluctuations due to

the finite size becomes apparent in the direct simulation.

cillators at different sites is independent. Therefore we can

omit the site index, and write

de(tde(t .
jm%e—&wwxm

N
[2]5,,=([Z1} )N=

(12

Ry(t1) = (i p(T)e 14140y, 15

Ry(t,1)=(i c?)(~t)e*i</>(t)ei</>(~t)>’

with (-) denoting the average over the noise variables. The
Gaussian noise&,(t) originates from the different undis-

The one-dimensional averaged generating functionalurbed frequencies of the oscillators.
[Z]}w corresponds to a dynamics, which obeys the follow-

ing (generalizedl Langevin equation, as can be seen by cal-
culating the dynamical generating functional of a generalized

IV. NUMERICAL INTEGRATION OF THE
ONE-DIMENSIONAL DYNAMICS

Langevin equation with multidimensional Gaussian noise

(see e.g., Ref432] and[33]):

d(1)=J Re(e V(1)) + oéa(t) + méy(t)
2 ~
+ n%ftht Re(e' VR, (t,1)e! v

0

+el bR, (1 T)e 1 ¢1) (13)

with the Gaussian noise variablég, &, R and{ e C with
zero mean and the correlations

(D)) =K, (1,1):= (el ¢Vl sV,
(D)D) =K_(tT)=(e 1¢0ei ¢y,
(&0 &(D) =487,

(&40 E(D)=1,
(&30 4Dy =(Ea(n(D)=(e4(tn(D))=0,

and the complex response functions

(14

The one-dimensional dynami€$3), which describes the
system of coupled oscillators in the thermodynamic liit
—oo, is integrated numerically following an approach devel-
oped in Ref.[22]. The procedure consists of simulating a
large numbeM of one-dimensional trajectories in order to
calculate the averagd44). Since the individual trajectories
are statistically independent, the statistical error is expected
to be of ordeM ~ Y2 in contrast to aN-particle simulation of
Eg. (9) which may show finite-size effects of unpredictable
size[22].

For »=0 and =0 we investigate the decay of the
magnetization my=(cos¢), my=(sin¢) and the corre-
lation functions K (t,t)=(cos¢(t)cosg(t)), Kedst)
=(sin ¢(t)sin ¢(t)), andK ¢.= (sin H(t)cos ¢(t)) from the de-
terministic initial condition¢=0 (i.e. m=1). The complex
order parametem=m,+im,, the magnetization foxXyY
spins, is equivalent to the order parameter calldsly Kura-
moto [10]. These initial conditions implyn,(t)=K..(0,t).
Since in both cases the integrations are carried out numeri-
cally, the results correspond to very small noise rather than
zero noise. Thus we cannot observe unstable dynamical be-
havior, which may be present far exactly zero. Corre-
spondingly, simulations with very smait=10"12<1/M do
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Ihe average angular velocity and hence the average angle
¢:=(1IN)Z;¢; is ind_ependent of the dynamics of the other

degrees of freedomp— wt is aconstant of motion
This constant of motion suggests the introduction of quan-

tities in a rotating frame, i.ep— ¢= — wt. A freezing of
oscillators in random position can be described by the order

parameters

q*=lim lim (cog(¢;(to))cosi(to+1)))

t—o N—ow

=1lim lim (co(¢;(to) — wto)cod¢i(to+1) — w(to+1))),

t—o N—-ow

(17)
q'=1im lim (sin(¢;(to))sin(i(to+1))

t—oo N—ow

N =lim lim (sin(¢;(to) — wto)sin(ei(to+1) — w(ty+1)))

\ t—o N—o
3 R | \

10

000 010 020 030 040 050 t (18)
FIG. 2. Magnetizatioom,(t) depending ort for different inter- - - _
action strengths) and for =0, obtained from the effective one- m,=(cog¢;(1)))=(cod¢i(t) — wt)), (19
particle system and fitted exponential functions. The coincidence ~ L~ . —
with the exponential fits is very good for about two orders of mag- my=(sin(¢;(1))) = (sin(¢;(t) — wt)). (20)
nitude.

Here(-) denotes the average over all oscillators. The order

parametersy, anday are equivalent to the dynamical Ed-
wards Anderson order parameters ¥ spins (see, e.g.,
Ref. [37)).

The order parameter

not show significant deviations from simulations witts0.
As an example, in Fig. 1 the results fdt=10° and time
discretization=0.005 are compared to results obtained by
direct simulation of Eq.(9) with N=500 oscillators. For
short times we find very good agreement; for larger times the
fluctuations due to the finite size becomes apparent in the -y~
direct simulation. q:=q*+, (21

For short times the frequency term is dominant since the
interaction terms vanish fon=1. ForJ=0 m(t) is the Fou- s invariant under rotation of all oscillatorg=0 implies the
rier transform of the frequency distributigi{w), and hence absence of spin glass order. This quantity can be calculated
a Gaussian. Fod>0 the decay ofn obeys an exponential djrectly from the correlation function
law after the short intermediate period, as is shown in Fig. 2
for different interaction strengthk The coincidence with the ~ - . = i
exponential fits is very goodgfor about two orders of magni- K_(t,1) = (e 1A 7eDel(?timen) (22)
tude. We measured the exponendf the exponential decay
for J=5-50. For large interaction strengthshows the ex- as
pected dependenae~-J. In the case ofl—« the different
frequencies are negligible, and a transformationJefsJ
corresponds to a time scaling-t/s, hence the exponeatis
proportional toJ. The slope of the extrapolating line &.  The order parameteqe[0,1] vanishes, if all correlations
=0.478+0.02. In the case of—« the magnetization de- between different oscillators decay, it equals 1 if the phase
cays agm(t)~e 04783, differences between different oscillators are constant. The

absolute value of the order parametes m, +im, vanishes

if there is no remanent magnetization, i.e., all phases are

equally frequent. It is 1 if the phases of all oscillators are

In the casep=1, we can identify a constant of motion: ~ €qual. As the calculation of the response functions is numeri-
cally very expensive and phase locking only occurs for very

g=lim lim ReK_(ty,to+1). (23)

t—o0o N—oo

V. PHASE LOCKING FOR SYMMETRIC INTERACTION

o ' A large times inaccessible to a numerical integration of the
Z ¢i = Zw' + Z Jijsin(; — ¢1) one-dimensional dynamics, we directly simulate £).with
' ' w7 _ the Heun methodsee, e.g., Ref.34]).
=2 wit > (Ji = Jii)sin (9 — 6) We calculateK _(T,t+T) for N=100, 200, and 400
1 1,7<1t . . _
=0 oscillators over a time of=1000 after the system has re-
= Z""i =: Nw. 16 laxed. Figure 3 showsy depending on the interaction
i (16) strengthd for N=100, 200, and 400. The transition from
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FIG. 3. Order parametey depending on the interaction strength
J for N=100, 200, and 400 oscillators. The transition fram
~0 for J<J, to q~1 for J>J, becomes sharper with growing

system sizeN. BetweenJ=24 and 24.3, the order parameigr

h f 0.046 to 0.982. N —
changes from ° FIG. 5. Doubly logarithmic plot of the magnetization, for J

~ ~ ) =0, 10, 15, 24, 30, and 40. Only far=J. does the magneti-
q~0 for J<J; to g~1 for J>J. becomes sharper with zationm, obey a power lawn,(t)~t.

growing system sizé&\l. BetweenJ=24 and 24.3( changes
from 0.046 to 0.982. This calculation was carried out with 15_steps yields that the Euler integration scheme wih

different interaction matrices; the results are the same as in , —» . . S
Fig. 3, but the critical interaction strength varied slightly. 10"~ as used by Daido shows strong discretization effects

(see Fig. 4 Our results are shown in Fig. 5. Only fdr
o =J. does the magnetizatiom, obey a power lawm,(t)
A. Decay of magnetization ~t®, The exponent is determined from a fit in the log-log

The numerical calculation shows no remanent magnetizaplot asa=1.01+0.02. While forJ<J. we can confirm the
tion m. There is no significant difference between simula-exponential decay of the magnetization as found in Ref],
tions started with initial conditiom(0)=1 and random ini- the behavior forJ>J; appears to be more complex. In this
tial phasesp;(0) [magnetizatiorm(0)=0]. region we find strong fluctuations around a pure power law.

We investigate the decay ofi(t) =(cosp(t)) for an ini-  Although this result is not in contradiction to the existence of
tial conditionm,(0)=1. For this case, Daidpl8] found an a glassy phase, a definite answer to the question of the
exponential decay of the magnetization for @m,<0.07  asymptotic behavior of the magnetization would require
and for interaction strength<J.=6.5 (for N=1000), while  simulations with much larger system sizes.
for J>J. it obeyed a power law.

Our simulations, with identical system size, smaller time
discretization (102 vs 10 2), and a numerical procedure of o T o )
higher order, do not confirm this result. An evaluation of Numerical investigations for almost symmetric interaction

integration procedures of different order and different timematrices show that phase locking can also occur7fei0
above a critical interaction strengfy( ). In numerical ex-

B. Almost symmetric interaction matrix

2 periments, one has to work with a finite time discretization
‘ ‘ ‘ We observe an intermittency phenomenon, which does not
121 ] occur for =0 and strongly depends anAfter a timet,egyar
10 1] the regular motion breaks down, but after a short time it
recovers agaifsee Fig. 6. Note tha K_(T,T+t)| grows to
08 i 1 again, hence the oscillators approdbth same configura-
0.6 q
04 ] 1.0 . | :
0.0
0.2 4 '
-1.0 ‘
00 | 100 100 200 300 400 500
10" 10° 102 10" At 0.0

FIG. 4. Dependence of the largest Lyapunov exponeon the -1.0 '
time step At for Euler (dashed curje and Heun integration FIG. 6. Re K_(T,T+t) for T=1000 andAt=0.01 (top) or
schemes. The Euler integration scheme with=10"2 as used by  0.005(bottom) andJ=30 and»=0.9. The intermittency phenom-
Daido shows strong discretization effects. enon is strongly dependent on the time discretization
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0.000

0.000 0005 0010 0015 0020 A

FIG. 7. The dependence of the duration of regular motiQg)ar -10.0 | n=0 1
on the time discretizatioAt suggests that,qq 4 diverges to infin-
ity for At—0. Plotted is { egua) - @gainstAt.

tion as before the breakdowifhis gives rise to the specula- 200 | i
tion, that the system fop=1 finds a minimum of the energy
landscape. n=1

The strong dependence of the intervals between break-
downst,eg,iar Of the regular motion orr is shown in Fig. 7.

We conjecture that,qq, diverges forr—0.

The critical interaction strength,(») is strongly depen-
dent onz. With the growth of the asymmetric portion of the
interaction matrixJ.(»n) becomes larger. Fap<0.8, freez-
ing of oscillators does not occur. This result corresponds to 400 100 200 20,0 200 50.0
numerical results of Kinzel and Spitzng86], who found i
spin glass order in the SK model with Ising spins #p¢0.83 FIG. 9. Symmetry valuess=\ypsi—Anp iy for i
+0.02. =0, ... ,49calculated from the ordered spectrum of Lyapunov ex-

Our results are summarized in Fig. 8. Abodg77) the  ponents\; of N=100 oscillators §=10). Only for »=—1 is the
oscillators are frozen in random positions like spins in a spin_yapunov spectrum symmetric.

glass. This part of phase space is denoted by SG. The order
vanish. The motion of the oscillators is completely incoher-
parameterq is 1, and the magnetizatiom vanishes. For

~ ent.
J=<J.(7) (denoted “paramagnetic” in Fig.)8bothq andm

-30.0 -

VI. DYNAMIC PROPERTIES

To investigate the dynamic properties, the Lyapunov
spectra are calculated for different interaction strengttusd
symmetry parameters. These numerical results suggest that
the Lyapunov exponents are dense in the liNit-. There
SG is no hint of a discrete component, as was reported by for a
system of coupled oscillators with phase and amplitude vari-
1 ables[37].

Our numerical investigations show that fe=—1 the
Lyapunov spectrum is symmetric. This is not only valid in
. the thermodynamic limiN—c, but also for smalN, e.g.,
“paramagnetic* N=4. The symmetry can be quantified by symmetry values
Si =Anp+i—ANp—i—1, ([(=0,... N/2—1 Neven) calcu-

1% lated from the ordered spectrum of Lyapunov exponants
Only for antisymmetric interaction matrikp=—1) do we
find s;=0 (up to numerical inaccuracigsThe symmetry also
holds for oddN, but with one unpaired zero Lyapunov ex-
1.0 05 0.0 0.5 1.0 ponent. For symmetry parametet# —1 we do find system-
n atic deviations froms;=const. This is shown for three ex-

FIG. 8. Value of the largest Lyapunov exponant,, depending  amples in Fig. 9.
on the symmetry parameterand interaction strengthrepresented One can easily understand that the sum of all Lyapunov
by contour lines at levela ,,=5, 10, 20, 30, 40, 50, 60, and 70 exponents must vanish faj=—1, since the local contraction
(N=100). This graph is obtained for one fixed disorder realizationrate of the phase space volume, the divergence, vanishes:
of the frequencies and couplings by varyihgnd » [see Eq(A7)].

In order to suppress th@ather sma)l sample to sample fluctua-

tions, we averaged over three disorder realizations. The part of the divF ()=
parameter spacern(J) aboveJ.(#) (bold line), where the oscilla-

tors freeze in random positions, is denoted by “SG.” In this regime

Amax=0. For <<0.8 there is no spin glass order. The largest

Lyapunov exponent decreases monotonically witnd, for»<0.8

grows monotonically with.

100.0

J

80.0

60.0

40.0

20.0

N N
7’ E E Jijjcod ¢;— )
j=11i=1

HMZ

N j—1
2, 2 (Jyt+Jycos - p)=0. (29
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In contrast to the conservation of volume in phase space, ACKNOWLEDGMENTS
we find the symmetry of the spectrum is no short time prop- We thank H. G. Schuster and L. Molgedey for helpful
erty. Differing from Hamiltonian systems, where the Symme- jiscussions.
try is a short time property, the Jacobi matrix does not have
a symplectic structure. In recent publications other systems aAppPENDIX: DERIVATION OF THE MEAN FIELD
were described which show symmetric Lyapunov spectra DYNAMICS
[38,39,40,41 A criterion developed in Ref24] for the oc- ] ] ] )
currence of a symmetric Lyapunov spectrum, which is a gen- The effec_t|ve one-dimensional dynamics can be deduced
eralization of the infinitesimal symplectic condition for the In the fOHOW'n.g way. : .
Jacobian, is not fulfilled here, since the short time approxi- (i) Calculation of the generating functioral

mation of the Lyapunov spectrum is not symmetric, which (i) Ca_lculatlon of the qgencheq averageZajver random
. frequencies and random interactions.
would be required.

(i) Writing the exponenfZ],, ; in a form with squares of
sums oflocal quantities.

(iv) Linearization of the exponent ¢¥],, ; in these sums
of local quantities with a functional Hubbard-Stratonovich

We developed a mean field theory for a system of coupledfansformationHST). .
oscillators with Gaussian random interactions with variable (V) Coordinate transformation iQ.(t).
symmetry. With the method of generating functiond@s,4], (vi) Performing the integrations ove,(t,t) with the
we derived a one-dimensional dynamics which describes theethod of steepest descent.
interacting oscillators in the thermodynamic linNt—o ex- (vii) Gathering the one-dimensional dynamics from fac-
actly. The numerical simulations of the one-dimensional dytorizing [Z],, ;.
namics corresponding td— < and for asymmetric interac- As the effective one-dimensional dynamics will be solved
tions conform with simulations of thi-oscillator dynamics. humerically, and the equation in the Ito interpretation can be
The exponential decrease of the correlation functions can bétegrated much more easily, we start with a discretized
verified for almost two orders of magnitude, as the fluctua-€quation in the Ito interpretation. The generalization to the
tions due to a finite number of simulated paths are muctptratonovich interpretation and the continuous time limit is
smaller than for a simulation of thN-oscillator dynamics straightforward. The discretized Langevin equation reads:
(for the same amount of computer memory ysed bi(tsr1)=j(t) + w7

For symmetric interaction we find a transition from an

VIl. CONCLUSION

incoherent state to a state where all oscillators are frozen in

random positions like spins in a spin glass depending on the + TZ Ji jsin(i(ts) = ¢j(ts))+ €(tsi ),
interaction strengthl. It is discontinuous, in contrast to the

case of uniform interactiondKuramoto model where there (A1)
is a continuous transition from an incoherent to a partly cowith Gaussian nois¢é;(ts)&;(ts))=Jss & ; a?r. The gen-
herent stat¢10]. erating functionalZ is

. R o
Z:f HSHKMGXP{_%; T;bjz(ts)_SEj 7i ;ﬁj(ts)M

2

+2 Tidilt)ot 2 midi(t 2 Jk,jsin«ﬁk(ts_n—¢,~(ts_1>>]. (A2)

FirstZ is averaged over the random frequencies, which qifey) = (1/\27 ) e~ 249, We find

exp(E dt T¢j(t)w,-)
]

=H,f dwjp(wj)exp( w,Es 7i %(t))

2

1 [OF LA
Zij da)j—z—ﬂ-’ueX[{ _2_M2+wjzs 7l d)l(t))
2 A 2
:Hjexp(?@ Ti¢j(t)} ) (A3)

2
=exp{ —% ] ES T T (%j(ts)(?’j(rs)]- (A4)
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A non-Gaussian distribution functiop( ;) would lead to higher powers ciij in the exponent:

dy(ty)ddy(ts
[Z1.= f HSHKM p[ Sot 2 72 (1) IS Ai(ts-1) ~ Bi(ts-1)) (A5)
with the J,;-independent term
- 2 . . (te)— i (ts_ 2
$=3 53 )+ 3 s ¢,—<ts>w+%2 2Bi(te) (5. (A6)

§0 is a sum of one particle terms. The interaction malfjpcan be written as sum of a symmetric matrix and an antisymmetric
matrix:

Jij=

Ty T
2 2

with (A7)
JP=3 and J{9= -0

Hence[Z], can be written as

J“)(ms(tS) | pi(ts))SiN(y(ts—1) — dj(ts—1))

_ depi(ts)deby(ts) e Vi+g
[Z]w_stHkTeXF{ Sﬁz rj’qu %

+<u¢,<ts>+|¢k<ts)>‘ f J<as>sln<¢k<ts )~ (s 1»] (A8)

The average ovely; can now be carried out &8(N—1) Gaussian integrations:

E 72 (1) —i Pr(ts) (i (1) — i Bi(2)

dp(ts)ddy(ts 5 J?
[Z]M:f .11, o z)wd)k( )exp{— -

1- ~ n “ ~
X siN(y(ts—1) — Pj(ts—1))siN(P(ts—1) — dj(ts- 1))+ % TnZ 72(i dj(ts) +i dhyl(ts)) (i j(t3) +i dy(t3))

X siN(y(ts—1) — Pj(ts—1))SiN(dy(ts—1) — dj(ts-1))

] (A9)

| AL

. J? . R . N
= exp’ -5+ WSES 72% (i pj(ts)i Pj(ts) +iy(ts)i y(t3)

— 7 10(ts)i hi(td) — 7 1 (1)1 d;(1))SIN(i(ts—1) — B;(ts—1))SIN(y(tz_1) — Bj(ts-1)) } - (A10)

With the definitions B 1
Koclts )= 125 sineby(ts-1)c0s ¢;(t5-1), (A13)
Keelts ) = E cos¢h;(ts_1)C0S (s 1), (A11) :

. 1, _ ﬁcc(tSvtE):%Z i ¢j(t)cOS ¢j(ts_1)cOS Bj(t5 1),
Kedts )= g2 sindt(ts-)sing(t5-), (A12) ' (A1)



PRE 58

~ 1o .5 . ,
Redts 1= 20 144(19)sing; (ts-1)sing(t5-),

(A15)
~ 1o 5 .
Redts t5)= 2 1y()sings(ts-1)c0s ¢(t5-1).

(A16)
~ 1o .5 .
Res(ts.15)= 2 19(t5)008 ¢(ts-1)sings(t5-),

(A17)

- 1w - .
Ucelts 1) = 12 181(191 (8508 ¢ (t5-1)c0S ¢(t5-1),
(A18)

~ 1o .5 o , .
Usdts )= 52 144(t)i dy(B)sing(ts-y)sin(t5-a),
(A19)

J2

2NTS

d(ts)ddy(ts) -
(210 | Hsnk(bk(z%exp[—sw
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~ 1o -~ A .

Uedlts )= 2 11(t91 $j(E)cos ¢ (ts-1)sinedj(t5-0),
(A20)

one can write the generating functional as

depi(ts)di(ts)

(21,0= [ 1 S

. J? - ~
XeXp{ _SO+ m - TZUcc(tsatE)Kss(tsatg)
s,S

+ Dss(ts vtE)Rcc(ts Ié) - 2E’Jcs(ts -t’é)'k,sc(ts ,t'é)

_Znﬁcc(ts atg)ﬁss(ts 13)+2 77’|‘ésc(ts atg)ﬁcs(ts ).

(A21)

These terms can be written as squares usiabg=4(a-+b)?
—(a—b)Z

1 ~ ~ ~
TZZ(Ucc(ts 15+ Redts at"é))z_ (Ucc(ts 15 —Redts vtg))z

+ (D ss(ts vt;.) + Rcc(ts vtg))z_ (D ss(ts ,tg) - Rcc(ts atg))z_ 2(0 cs(ts atNS) + Rsc(ts vt;.))z

+ 2(0 es(ts,t3) — Rsc(ts ,tg))Z_ 2 77(\Rcc(ts 1) ‘Hiss(ts vtg))2+ 2 77(\Rcc(ts 1)

—Redts,19))?+27(0co(ts, 1) + Kl ts ,t;))z—2n(ch(ts,tg>—"Ksc<ts,t~s>)2} :

Linearization of the exponents with a functional HST yields

depi(ts)dbi(ts)
TJ DQ,(ts,t3)

(21,0 [ 1,

><exp| S+ 7 JtNZ Qi(ts,13)

+Q1(ts, 1) Ued(ts 1) + Redts, 7))

—\27Qq(ts,15) Uyl ts, 1) — Kedlts, 1)) | -

(A23)

(A22)

A linear coordinate transformation @, is carried out

60:=Qa+iQa+l
6a+1:=Qa_iQa+1 for @=1359,
(A24)
é‘?/::i(26¥—+_(gz)(-%—l
for a=7.

éa+1::iQa_Qa+l
[Z],,; can be written as

d¢k(ts)d;bk(ts)

(Z1,0- [ S

xf Déa(ts7tg)e_s[{¢j}v{(%‘j}véa] (A25)

with
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2

S i}A431.Qd] Q1,19 = 3 Vel 1),
_2N ~ J?
SR R DORC= Y R MPE e Qe )= 7 (Reclts. ),
S,S J (1’6{1,3,5,9

- J2
+ 04t 1)U ts 1) + Qalte, ) Kot 1) Qu(ts 1= 5 (Usdts, 1)),

2
+ Qs(ts atg)Uss(ts !t~s) + 64(ts -E)Rcc(ts ,t’;) bg(ts ,tg) = ﬁ?(Rsc(ts -t§)>y

~ T ~ 1 - 2
+2Qs(ts, 1) Uyt 1) + V2Qe(ts ) Kl s, 15) Bt~ — ﬁ% (Uoto.t2),
+27Qs(ts B)Rec(ts 1) + V2 7Qg(ts 1) Redts 1) y 2
Qg(ts t)=- \/Zl?“?ss(ts 1),

+V27Qq(ts ) Res(ts 1) + V27 Quolts ) Rse( s, 15) 1 ~ 2
Qg(ts 1B)=— \/37?<Rcc(ts 1t2)>,

(A26) ~ J2 -
Qg(ts )= \/575<Rsc(ts ,t§)>,

The integrals oveQ, are evaluated by the method of )

steepest descent. In the linfit—c one obtains the exact 50 - ) =
saddle point equations Quolts 15) 27y (Ree(ts,13))-
2

Qﬁ(ts,tg) _ %(Rss(ts,t"s)% (A27) The averages on the right-hand side of E&R7) are defined

as

depi(ts)dei(ts)
n sl 2
(f(¢,9))= - . (A28)
f HSHk—d¢k(t52)d¢k(ts) e SR
n

f(p, p)e~SUSiHi1Q]

The exponenS[{¢j},{fbj},(~3a] now contains the stationary values®f,. It factorizes into a single sum of local quantities:

S[{(ﬁj}v{a)]}iéa]:; Sl[¢j 1‘%] 1651]:[2]11),.] (Azg)
can be written as
[Z],,,=T0L 4205 5= ([Z15 )N (A30)

As[Z],.;is a power of[Z]lluyJ, it describes a system &f identical, noninteracting particles. Therefore the aveagean be
considered as one-particle average. From now on we drop the site index:

Me—sw&xﬂw, (A31)
aw

[215= f n—

with
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P(ts) — d(ts—1)
T

(TZ ~ ~ 2 ~ ~
-S43 KRUI= 53 r¢2(ts)+§ i dit) + 53 7 Hd)

+E 7 |¢(t )i ¢(t5)[C0S p(ts 1)c0S h(ty 1)Kot tz)SiNb(ts 1)SiNB(t5 1)Kol ts, )
—2c0sd(ts_1)sine(ts—1)Ks(ts,15) ]

+2, 7 9dPid(te) X [ —cos (s 1)c0S Ptz 1)Red ts, 1) —SiN(ts_1)SiNB(t- 1) Rec(ts, 1)
+C0S p(ts_1)SiNd(t3_1)Rs(ts,t3) +SiNd(ts_1)C0S d(tz_1)Reg(ts,t3)]

2
+2 TZJ?[COSd’(tsfl)COS(ﬁ(thfl)Uss(tsatfc,)+Sin¢(tsfl)5in¢(t§71)ucc(ts,th)

-2 COS¢(ts—1)sm¢(t§—1)usc(tsatg)]l (A32)
where the correlation functions and response functions are
Ksots 1) =(Ksd(ts, 1)) = (sineb(ts_1)sin (15 1)) (A33)

and analogical. The response functions oBY,,t;)=0 for t;<t3. Ugs, U, andU. vanish, because, for all andt;,
either tg or tg is larger thants_; and t_;. A nonvanishingU would violate causality. The one-dimensional averaged
generating functionaﬂZ]jw corresponds to a dynamics, which obeys the generalized Langevin eq(Ejorith multidi-
mensional Gaussian nois&4).
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