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Chaos in trapped particle orbits

R. B. White
Plasma Physics Laboratory, Princeton University, P.O. Box 451, Princeton, New Jersey 08543

~Received 9 January 1998; revised manuscript received 25 March 1998!

An analytic expression is obtained for the threshold for stochastic transport of high energy trapped particles
in a tokamak due to toroidal field ripple. The result permits a rapid evaluation of energetic particle loss in
general equilibria. The approach to chaos has two limiting cases: island overlap from neighboring precession
resonances, and the overlap of bounce resonance webs extending from resonant surfaces. In both cases the
physical resonance consists of motion through a distance which is an integer multiple of the field coil separa-
tion in one bounce.@S1063-651X~98!13608-5#

PACS number~s!: 05.45.1b, 52.55.Dy, 52.20.Dq
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I. INTRODUCTION

In magnetic fusion devices, the long time confinement
high energy particles, whether 3.5 MeV alpha particle fus
products or other ions introduced for heating purposes
essential to the attainment of a self sustaining nuclear bur
has been well established that the motion of such partic
with energies much higher than the typical 10-keV ba
ground plasma, is neoclassical@1#. That is, small scale fluc
tuations present in plasmas, and thought to be responsibl
the anomalous thermal flux to the plasma edge, do not in
ence the orbits. Thus their motion is that of charged t
particles in a given magnetic field. Nevertheless, predict
the degree of alpha particle confinement in a given dev
with high accuracy requires many hours of computing tim
even using algorithms in which the rapid gyro motion h
been eliminated. This is because there are vastly diffe
time scales for the three major contributing loss proces
The slower loss processes correspond to the nonconserv
of an integral of the motion, and thus of a broken symme
of the underlying Hamiltonian describing the dynamics. T
simplest description is given by a toroidally symmetric eq
librium, with neglect of particle-particle interactions.

Any axisymmetric equilibrium field can be expressed
contravariant and covariant forms@2,3#

BW 05¹W z3¹W Cp1q~Cp!¹W Cp3¹W u, ~1!

BW 05g~Cp!¹W z1I ~Cp!¹W u1h~Cp ,u!¹W Cp , ~2!

with Cp the poloidal flux,u the poloidal angle, andz a
toroidal angle. The coordinate system is a straight field l
one, i.e.,q(Cp) ~the safety factor! gives the local helicity of
a field line q5dz/du, and also relates the toroidal fluxC
and the poloidal fluxCp , throughq5dC/dCp . The vari-
able z is related to the geometric toroidal anglef through
z5f1n, with n a function ofCp andu, periodic inu. The
magnetic field strengthB0(Cp ,u) is independent of the co
ordinatez. It is important to use general magnetic coord
nates so that results will be applicable to any equilibrium,
for purposes of visualizationCp may simply be regarded a
the minor radius of the torus.

Guiding center motion in a fieldB is given by a Hamil-
tonian formalism@3–5#
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dPz
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52]zH,

dz

dt
5]Pz

H , ~3!

dPu

dt
52]uH,

du

dt
5]Pu

H , ~4!

whereP05Ir i1C andPz5gr i2Cp are the canonical mo
menta withr i5v i /B, and

H5
1

2 S Pz1Cp

g D 2

B21mB ~5!

is the Hamiltonian. Here and in the following we use un
given by the on-axis gyro frequency~time! and the major
radius~distance!. In these unitsr5A2E is the gyro radius,
which is the small parameter in the guiding center appro
mation. A very important feature of these equations is t
motion is given byB(Cp ,u), the field magnitude only, and
real space~metric! quantities such as the Jacobian do n
enter.

Toroidal symmetry implies thatPz is a constant of the
motion, and henceH5E implies that all orbits are closed
curves in theCp ,u plane. By conservation of energy, orbi
are restricted to connected regions of space in whichE
>mB. Normally the magnetic field decreases outwardly a
thus there are orbits which are trapped poloidally and
ecute banana-shaped orbits. Although orbits close in
Cp ,u plane they do not close in space, but precess to
dally. Because of the toroidal precession the banana tips
scribe constant Kolmogorov-Arnold-Moser~KAM ! surfaces
@6# in the Cp ,f plane.

It is easy to perform a Monte Carlo calculation to dete
mine the prompt, or first, orbit loss, due to orbits whic
intersect the outer boundary, the only loss process pre
with an axisymmetric equilibrium, typically occurring on
time scale of microseconds.

The most important symmetry breaking term to include
the Hamiltonian is due to the perturbation of the magne
field strength due to theN toroidal field coils. It can be rep-
resented by a modulation of the field amplitude

B~Cp ,u,f!5B0~Cp ,u!@11d cos~Nf!#, ~6!

with the ripple strengthd a function of position, determined
by the coil geometry, and in all devicesN@1.
1774 © 1998 The American Physical Society
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PRE 58 1775CHAOS IN TRAPPED PARTICLE ORBITS
These small modulations of the field amplitude have
significant effect only on poloidally trapped particles, a
only near the banana tips. Premature or late bounce ca
the banana tip to be shifted inCp , u, andf while conserv-
ing both E and m. When the toroidal precession in on
bounce is equal to an integer number of coil spacings
period-1 resonance occurs, and the KAM surfaces descri
the banana tips exhibit resonance islands. Growth of th
islands, and that of smaller higher order islands, can lea
stochastic motion and particle loss. Loss of alpha particle
other high energy particles due to field ripple caused by
discrete toroidal field coils is an important consideration
the design of magnetic fusion tokamaks. It is also much m
difficult to predict than prompt orbit loss. The time scale
typically on the order of milliseconds, so a full scale sim
lation requires significant computing.

The final symmetry breaking is due to particle-partic
interaction, including pitch angle scattering, primarily fro
other ions, and drag, primarily from small angle scatter
off electrons. If the system consists of high energy ions on
it is no longer even Hamiltonian, since the drag is dissi
tive. The time scale for this process is on the order of s
onds. Since there are many orders of magnitude separa
the orbital motion and the scattering, the scattering could
artificially enhanced, greatly reducing the computing, b
such an enhancement interferes with the simulation of
chastic ripple induced loss. Thus an analytic evaluation
ripple loss can allow greatly improved simulations. Th
work extends previous approximate analyses@7,8# to obtain a
complete expression for stochastic threshold.

II. BANANA TIP MAP

Axisymmetry, d50, makes the toroidal canonical mo
mentumPz an integral of the motion, and this along wit
energy conservation means that all orbits are closed curve
the Cp ,u plane. The banana tips describe constant KA
surfaces@6# in theCp ,f plane. The KAM theory guarantee
that for small ripple this phase space changes topologic
only in small regions where resonances produce islands.
chastic threshold occurs in the manner described by Chiri
@6#, with the destruction of the last remaining KAM surfac
allowing diffusion of an orbit leading to loss. To understa
this process it is necessary to investigate resonances in
banana tip motion.

Consider the discrete map generated by a trapped par
each step of the map corresponding to the banana tip pos
~Cp ,f!. Each half bounce the particle moves toroida
along the field, and in addition drifts across the field lin
The successive bounce points are given by the banan
map @7,9–16#.

Cp,t115Cp,t1lD sin~Nf t!, ~7!

Nf t115Nf t1Nfb,t111Nfp,t11 , ~8!

Cp,t125Cp,t111D sin~Nf t11!, ~9!

Nf t125Nf t112Nfb,t121Nfp,t12 , ~10!

where l is a measure of up-down asymmetry; andfb
5qub11qub2 , with ub6 the magnitudes of the poloida
bounce angles at the lower and upper banana tips,Cp,t , f t
the initial position of the bounce point at the lower bana
a
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tip, andfp is the toroidal precession of the banana tip duri
one half bounce. The first equation describes the chang
flux surface due to ripple at the lower bounce point, t
second equation the toroidal motion between the lower
upper bounce points, etc. The displacement amplitude
@17–19,5#

D5
grdApNq

B~]uB/B!1/2. ~11!

These expressions are the result of integrating the drift eq
tions in general magnetic coordinates, so of course incl
the effects of equilibrium shape. The only essential appro
mation made is that the dominant contribution of the ripp
occurs near the banana tips.

The total precession during one half bounce in the stra
field line variablez is easily seen to be the same as prec
sion in the toroidal variablef, and is given @5# by
fp5rP(Cp), with P a geometry-dependent integral ind
pendent of gyro radius,

P~Cp!5E
2ub2

ub1

duFgr iq8

r
1

r i~ I 81qg8!

r

2
~m1r i

2B!~ I 1gq!]Cp
B

rr iB2 G , ~12!

where r i5A2E22mB/B, and primes refer to derivative
with respect toCp .

For reference only, in a large aspect ratio circu
equilibrium this expression simplifies to fp
.2&(r/R)q2(R/r )3/2@2E(k)2K(k)# with k5sin(ub/2),
whereE andK are elliptic integrals, anddCp5rdr /q.

The map thus depends on the functions of positionfp ,
fb , D, and l, which contain all the essential informatio
about the particle precession and bounce motion, the equ
rium and the field ripple. Note that with up-down symmet
(l51) this map isalmosta composition of two steps of th
standard map@6#. Only the sign change offb in Eq. ~10!
makes this not so, but this simple sign change has profo
consequences for the way in which stochastic threshol
approached. In Fig. 1, is shown the trajectory of a trapp
particle in the space ofu andf. The precession motionfp
and the bounce motionfb are indicated. The two crosse
boxes on the left indicate magnetic field coils, and a prec
sion resonance is shown consisting of precession of one
spacing in one bounce.

III. FIXED POINTS

Now we search the banana tip map for fixed points, wh
are thex ando points of resonances. Approximatefb andfp
as linear functions inCp , a simplification certainly valid
over the scale of the resonance spacing. Conservatio
energyE and magnetic momentm makes the bounce angl
in the unperturbed orbit a function ofCp through
E5mB(Cp ,ub), and thus fb85q8ub11q8ub2

2q]Cp
B/]uB12q]Cp

B/]uB2 . The derivative offp must
be evaluated using Eq.~12!. We wish to identify all fixed
points, calculate island widths at the resonant flux surfac
and identify conditions for stochastic threshold. The to



n

or

s

e

ed
f
n

ces-

one
the

onal

is

ny
n

di-
ul-
an

Of
red

t-
.
but

nd.
ger
ain

ance
ar on
from
is
-

to

n
the

ngle
e

n

so

1776 PRE 58R. B. WHITE
change in the position of the upper banana tip in one bou
is given by

dCp5lD sin~Nf!1D sin~z! ~13!

and

df52fp12fp8lD sin~Nf!1~fp82fb8!D sin~z!,
~14!

where z5Nf12w12w8lD sin(Nf), and w5Nfb/2
1Nfp/2.

The fixed points of the map are qualitatively different f
different values offp8 and fb8 . Refer to the flux surfaces
fp5kp/N as precession resonance surfaces. These are
faces at which the trapped particles considered~fixed values
of Cp , E, andub! precess an integer number of coil spac
in one bounce. LetCp5Cp,k1c, with Cp,k a precession
resonance surface, the neighboring surfaces being locat
c56p/(Nfp8). This spacing is typically a small fraction o
the minor radius, there can be as many as 100 resona
across the plasma. Period-1 fixed points are given by

l sin~Nf!1sin~z!50, ~15!

Nfp8c2w8D sin~z!50, ~16!

with w5wk1w8c, and the subscriptk indicating evaluation
at the precession resonance surfacec50.

Expanding Eqs.~13! and~14! around fixed pointsc0 and
f0 , we find, for one bounce,

S dc
df D5S M11 M12

M21 M22
D S c2c0

f2f0
D , ~17!

with the matrix elementsM1152w8D cosz0,

M125lD cosNf01D cosz012lD2w8cosz0 cosNf0 ,

M2152fp812w8D~fp82fb8!cosz0 ,

M2252fp8lD cosNf01~fp82fb8!D cosz0

12w8lD2~fp82fb8!cosNf0 cosz0 .

FIG. 1. Trapped particle trajectory showing precession re
nance.
ce
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The determinant ofM is positive at an elliptic fixed point,
and negative at a hyperbolic fixed point.

If the term in D is negligible in Eq.~16! and in z, only
c.0 is a solution, i.e., the only resonances are the pre
sion resonances, andNf and Nf2p are both solutions to
Eq. ~15!; the x and o points are separated byp, and detM
.22fp8D@l cosNf1cos(Nf12wk)#. Physically the particle
precesses through an integer number of field coils in
bounce, with the forward and backward movement due to
bounce motion cancelling out.

Increasing the term inD initially simply modifies the po-
sition of the precession resonances, but there are additi
solutions to Eqs.~15! and ~16! if this term is sufficiently
large. Eliminatingc we find a transcendental equation forz,

2~z2Nf22wk!

Nfp8D@12~fb8/fp8!2#
1sin z50. ~18!

A sufficient condition for the existence of extra solutions
readily found by regardingNf and wk as unknown con-
stants. There are multiple solutions to this equation for a
values ofNf andwk when the slope of the line is less tha
2/(3p), or Nfp8Du12(fb8/fp8)

2u.3p. Similarly a transcen-
dental equation forf can be found:

2~Nf2z12wk!

Nfp8Dl@12~fb8/fp8!2#
1sin Nf50. ~19!

Regardingz andwk as unknown constants, a second con
tion for the existence of extra solutions is found. Again m
tiple solutions exist when the slope of the line is less th
2/(3p), or Nfp8Dlu12(fb8/fp8)

2u.3p. The value ofl de-
termines which of these equations is least restrictive.
course the extra solutions are identical, whether conside
in f or z, and if one sufficient condition for solution is sa
isfied then extra solutions exist also in the other variable

The exact locations can only be obtained numerically,
treatingNf, z as random variables in Eqs.~15! and~16!, two
upper bounds on the extent of the solutions can be fou
Since each condition is a strict upper bound the stron
condition determines the extent. The envelope of the dom
of additional solutions is given byucu<cw , with

cw5u12fb8/fp8uD min~1,l!/2 ~20!

with the solution spacing given bydc5p/(Nfp81Nfb8). As
fb8 increases the spacing approaches the bounce reson
spacing, and more and more bounce resonances appe
each side of each precession resonance. Also, as is clear
Eqs.~18! and~19!, when many solutions exist, their extent
accurately given bycw , with an error of one solution spac
ing.

Physically, note that the change in toroidal position due
the bounce motion in one bounce isfb(c t11)2fb(c t12)
.2fb8D sin(Nft11). For smallD this can have no signifi-
cant effect, but whenfb8D is large enough this term ca
correct the resonance mismatch caused by distance from
precession resonance surfacec50. Away from c50 the
precession resonance is mismatched by a toroidal a
fp8c, and thus whenfb8D.fp8c the bounce term can caus
a new resonance to occur at a locationc.fb8D/fp8 , in
agreement with Eq.~20!. Farther away from the precessio

-
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PRE 58 1777CHAOS IN TRAPPED PARTICLE ORBITS
resonance surface the bounce term is incapable of repa
the precession resonance mismatch. These additional
nances could thus be called ‘‘bounce variation assisted
cession resonances.’’ However, all period-1 resonances
sist of particle motion through an integer number of fie
coils in one bounce, whether achieved simply through p
cession or with the assistance of the gradient of the bou
term.

These are all the period-1 fixed points of the map. N
we turn to a discussion of the islands appearing around th

IV. PRECESSION ISLANDS

To estimate stochastic threshold, it is necessary to ca
late island widths and compare them to separation. The C
ikov overlap condition typically gives an amplitude too lar
for stochastic threshold@20#, as actual threshold occurs whe
the island width is approximately a fraction 2/p of the reso-
nance spacing. The resulting correction is sometimes refe
to as the 2/3 rule@21#, although more accurately it is the 2/p
rule. It is due to the effects of higher order islands and
distortion of the KAM surfaces by the low order islands.

In the vicinity of a resonance, Eqs.~13! and ~14! can be
used to calculate the island width. If the distance from
resonance surface is small, andD is small enough so that th
map is very far from stochastic threshold, then the stepsc
andf are very small, and the slope of the local KAM surfa
traced out by the map is approximately given bydc/df
treated as differentials. It is readily verified numerically th
integrating the resulting differential equation forc as a func-
tion of f correctly reproduces the island structure of t
map. The solution to the differential equation is of course
chaotic, and only valid in the vicinity of the particular res
nance where the integration is made. This technique wo
on all maps, and can be successfully used to calculate is
widths for the purpose of estimating stochastic threshold.
fb8D,fp8D!1, and assuming a small variation inw, this dif-
ferential equation can be integrated to give a description
precession resonance

~Nfp8c!25Nfp8@c2lD cos~Nf!2D cos~Nf12wk!#,
~21!

from which the valuec5lD cos(Nfx)1D cos(Nfx12wk),
with fx thex point, gives the separatrix. Using Eq.~15! and
Nfo5Nfx1p, the island extent at theo point fo is given
by Nfp8c56A2Nfp8D@11l212l cos(2w)#1/4. Using the
2/p rule to estimate the threshold, we find for threshold d
to precession motion

Dp5
2

Nfp8
F 1

Dk
1/41Dk11

1/4 G2

, ~22!

with Dk511l212l cos(2wk), wk115wk1p(11fb8/
fp8)/2. This reduces approximately to Eq.~22! of Whiteet al.
@8# for l51, and only in this case there is an infinity
fb8/fp8561 andwk5p/2. Although largeD is not within
the spirit of the analysis, this result is correct; the map can
easily seen to possess no islands for these parameter v
for any value ofD. Note thatl2Dk(1/l)5Dk(l) makes the
result symmetric in the two bounce tips.
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V. BOUNCE RESONANCE WEB

However, if the extent of the bounce resonances is co
parable to the precession resonance spacing, the results
very different, and the approach to stochastic threshold
dominated by the generation of bounce resonance islands
the limit ufb8/fp8u@1 the map can again be analytically inte
grated. In this limitw85Nfb8/2, cw5`, and Eqs.~13! and
~14! become dc5@lD sin(nf)1D sin(Nf12w)# and
df52fb8D sin(Nf12w). Again consider continuous
curves with slopedc/df given by the ratio of these smal
steps. The resulting differential equation is integrable w
solution

cos~Nf12w!1l cos~Nf!5K. ~23!

This equation describes a web with internal structure det
mined by the bounce resonance spacing, independen
ripple. This is a multi-island structure which does not po
sess good KAM surfaces prohibiting motion inc. For finite
cw the structure is well described by Eq.~23! only nearc
50, but the first good KAM surface is forc.cw . In this
respect it can be treated as an island structure, and use
calculate the stochastic threshold. Again we use the 2/p rule
to determine threshold. We then find, from web overlap, t
stochastic threshold due to bounce motion

Db5
2

uNfb82Nfp8umin~l,1!
. ~24!

Previously@8#, the threshold in the limit of largefb8 andl
51 was numerically determined to be 2/(Nfb8), in agree-
ment with this estimate. Notice that the extent of the web
linear in D, as opposed to the square root dependence
precession island width.

VI. DEVELOPMENT OF THE WEB

The transition region from precession islands to web
best observed for smallD, so that precession islands ar
small and well separated and higher order islands are v
small. In Fig. 2 is shown the maximum extent of the fixe
points as a function ofl andfb8 for D50.01,Nfp851, and

FIG. 2. Maximum extent of fixed points:D50.01 andwk50.
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1778 PRE 58R. B. WHITE
wk50, which is bounded by the valuecw . In Figs. 3–7 are
shown Poincare´ maps for the same parameters withl51,
with increasing values offb8 . We have chosenl51 because
Eq. ~15! can then be solved analytically. Figures 3 and
show the primary islands for smallfb8 . Although Eqs.~13!
and ~14! cannot be used to find all fixed points analytical
the initial modification of the precession islands asfb8 in-
creases can be derived. Equation~15! has two solutions. Firs
z52Nf12p l , 1 integer, for which Eq.~16! becomes
f l(f)50 with

f l~f!5Nf1@12~fb8/fp8!2#~Nfp8D/4!sin~Nf!2p l .
~25!

For small fb8 there is a single solution tof 050, but for
Nfp8Du12(fb8/fp8)

2u54 there is a bifurcation atf50, with

FIG. 4. Poincare´ plot: D50.01, Nfp851, wk50, and Nfb8
50.5.

FIG. 3. Poincare´ plot: D50.01, Nfp851, wk50, and Nfb8
50.5.
f 05 f 085 f 0950, and for larger values offb8 there are three
real roots to the equation. Also at this value~Nfb8.20 for
these parameter values! the determinant of the matrixM
changes from negative to positive atf50, and thex point at
0,0 becomes ano point surrounded by twox points. In Fig. 5
(Nfb8520.5), a narrow island at the originalx point
~c50, f50! is just visible, and newx points have formed a
c560.06. This bounce resonance phenomenon was pr
ously mistakenly interpreted as a nonlinear period doubl
@8#.

Second, we can observe the threshold for the formation
the first bounce resonance away fromc50. The second so-
lution of Eq. ~15! is z5Nf1p12p l . Equation~16! then
givesgl(f)50, with

FIG. 6. Poincare´ plot: D50.01, Nfp851, wk50, and Nfb8
526.

FIG. 5. Poincare´ plot: D50.01, Nfp851, wk50, and Nfb8
520.5.
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PRE 58 1779CHAOS IN TRAPPED PARTICLE ORBITS
gl~f!5Nfp8~p12p l !/w81~2w822Nfp8!D sin~Nf!.
~26!

At Nf52p/2, for Nfp8Du12(fb8/fp8)
2u52p, (Nfb8

525.07) there is a triple root formed byf 0 , g0 , and
g0850. At this confluence thef 0 root becomes ano point. In
Fig. 6 (Nfb8526), theo point is just visible atc50.135,
Nf521.6, and the twox points fromg0 are atc50.122
and Nf521.1 and21.9. The island at~0,0! has grown
significantly. In Fig. 7 (Nfb8560), the precession island ha

FIG. 7. Poincare´ plot: D50.01, Nfp851, wk50, and Nfb8
560.
v

s

d
.

an
e,
shrunk almost to the bounce resonance scale, and the
includes three layers of bounce resonance islands, exten
to cw50.3. Nearc50 the web is very well formed, and
given by Eq.~23!. It is also interesting to note that in thi
limit the domain without good KAM surfaces is proportion
to D, not AD as is usually the case.

VII. CONCLUSION

Examination of the fixed points and islands in the bana
tip map results in a complete understanding of the appro
to chaos. Chaotic orbits are produced either by the overla
precession islands, or by the growth of a bounce resona
web. All resonances are due to particle precession throug
integer number of field coils. An expression for stochas
threshold is then given by the smaller ofDp andDb provided
Nfp8max(l,1)Du12(fb8/fp8)

2u.3p, otherwise byDp . The
transition from one expression to the other occurs when
extent of the bounce resonance web equals the preces
island width. As has been shown previously, a good und
standing of stochastic threshold allows the developmen
an algorithm for prompt axisymmetric orbit loss, ripple tra
ping, convective banana flow, and stochastic ripple lo
which can be extended to include the effects of collisio
and drag, allowing rapid estimation of particle loss in tok
maks@8#.
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