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Chaos in trapped particle orbits
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An analytic expression is obtained for the threshold for stochastic transport of high energy trapped particles
in a tokamak due to toroidal field ripple. The result permits a rapid evaluation of energetic particle loss in
general equilibria. The approach to chaos has two limiting cases: island overlap from neighboring precession
resonances, and the overlap of bounce resonance webs extending from resonant surfaces. In both cases the
physical resonance consists of motion through a distance which is an integer multiple of the field coil separa-
tion in one bouncelS1063-651X98)13608-3

PACS numbes): 05.45+b, 52.55.Dy, 52.20.Dq

. INTRODUCTION dP, d¢
W: _(9{7'(, a:ap{H, (3)
In magnetic fusion devices, the long time confinement of
high energy particles, whether 3.5 MeV alpha particle fusion dpP, de
products or other ions introduced for heating purposes, is at —dgH, azdpﬂy 4

essential to the attainment of a self sustaining nuclear burn. It
has been well established that the motion of such particle§N
with energies much higher than the typical 10-keV back-
ground plasma, is neoclassid¢all. That is, small scale fluc-

tuations present in plasmas, and thought to be responsible for ” 1

herePy=1p,+¥ andP,=gp,— ¥, are the canonical mo-
menta W|thp||: (2 /B, and
PA+W\2

———P) B+ uB (5)

the anomalous thermal flux to the plasma edge, do not influ- 2
ence the orbits. Thus their motion is that of charged test

particles in a given magnetic field. Nevertheless, predictingg the Hamiltonian. Here and in the following we use units
the degree of alpha particle confinement in a given deViC%iven by the on-axis gyro frequend§ime) and the major
with high accuracy requires many hours of computing time . 4j s (distance. In these unit= y2E is the gyro radius,
even using algonthms n which the rapid gyro mouop h‘T"S‘which is the small parameter in the guiding center approxi-
t_)een eliminated. This is bec.ause thgre are vastly dlfferlmi’nation. A very important feature of these equations is that
time scales for the three major contributing loss processes, tion is given byB(¥,.6), the field magnitude only, and

The slower loss processes correspond to the nonconservatip@a| space(metrid quantities such as the Jacobian do not

of an integral of the motion, and thus of a broken symmetry, .o

O.f the underlying.Hamiltpnian describi.ng the dynami_cs. Th.e Toroidal symmetry implies thaP, is a constant of the
ﬁgﬂﬂlr?ftv\ﬂ?hs%gpﬁ'ggt lz‘fgl\é?tri]clbg aatr?ir(g'edﬁ:lérsa{:?gg“c equl'motion, and hencé{=E implies that all orbits are closed
Any’axisymn?etric eqpuilibriurrr1J field can be expréssed jn CUrVes in' thel,, 6 plane. By con;ervation of eneray, orbits
contravariant and covariant forni, 3] are restricted to connecteql regions of space in wtich
' = uB. Normally the magnetic field decreases outwardly and
. = - - thus there are orbits which are trapped poloidally and ex-
Bo=V{XVW,+q(Vy) V¥, XV, (1) ecute banana-shaped orbits. Although orbits close in the
R R R R WV, ,6 plane they do not close in space, but precess toroi-
Bo=g(¥p)VI+I(¥p)VO+h(¥,,0)VY¥,, (2)  dally. Because of the toroidal precession the banana tips de-
scribe constant Kolmogorov-Arnold-MoséKAM ) surfaces
[6] in the ¥, ¢ plane.
It is easy to perform a Monte Carlo calculation to deter-
ne the prompt, or first, orbit loss, due to orbits which
intersect the outer boundary, the only loss process present
with an axisymmetric equilibrium, typically occurring on a
time scale of microseconds.

with ¥, the poloidal flux, 6 the poloidal angle, and a
toroidal angle. The coordinate system is a straight field ling.;
one, i.e..q(V,) (the safety factgrgives the local helicity of
a field line g=d¢/d#, and also relates the toroidal fluk

and the poloidal flux¥,, throughq=dW¥/d¥,. The vari-
able { is related to the geometric toroidal anglethrough The most important symmetry breaking term to include in
{=¢+v, with v a function of ¥, and §, periodic in6. The o Hamiltonian is due to the perturbation of the magnetic
magnetic field strengtBo(V, 6) is independent of the co- - fie|q strength due to thil toroidal field coils. It can be rep-

ordinate. It is important to use general magnetic coordi- (agented by a modulation of the field amplitude
nates so that results will be applicable to any equilibrium, but

for purposes of visualizatio, may simply be regarded as B(V,,0,¢)=Bo(V,,0)[1+ 6 cogNg)], (6)
the minor radius of the torus.

Guiding center motion in a fiel® is given by a Hamil-  with the ripple strength$ a function of position, determined
tonian formalism[3-5] by the coil geometry, and in all devicés>1.
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These small modulations of the field amplitude have aip, andé, is the toroidal precession of the banana tip during
significant effect only on poloidally trapped particles, andone half bounce. The first equation describes the change of
only near the banana tips. Premature or late bounce causfigx surface due to ripple at the lower bounce point, the
the banana tip to be shifted #,, 6, and ¢ while conserv-  second equation the toroidal motion between the lower and
ing both E and u. When the toroidal precession in one upper bounce points, etc. The displacement amplitude is
bounce is equal to an integer number of coil spacings, §17-19,5

period-1 resonance occurs, and the KAM surfaces describing PN
the banana tips exhibit resonance islands. Growth of these A= gp—ﬁﬁ_ (11)
islands, and that of smaller higher order islands, can lead to B(,B/B)

stochastic motion and particle loss. Loss of alpha particles or ) ) ) )

other high energy particles due to field ripple caused by thé’hesg expressions are the result_ of integrating the drnft equa-
discrete toroidal field coils is an important consideration intions in general magnetic coordinates, so of course include
the design of magnetic fusion tokamaks. It is also much moréhe effects of equilibrium shape. The only essential approxi-

difficult to predict than prompt orbit loss. The time scale is Mation made is that the dominant contribution of the ripple

typically on the order of milliseconds, so a full scale simu- 0CCurs near the banana tips. _ _
lation requires significant computing. The total precession during one half bounce in the straight

The final symmetry breaking is due to particle-particleﬁ?ld Ii_ne variableg is easily seen to be the same as preces-
interaction, including pitch angle scattering, primarily from Sion in the toroidal variable¢, and is given[5] by
other ions, and drag, primarily from small angle scattering®p=prP(¥p), with P a geometry-dependent integral inde-
off electrons. If the system consists of high energy ions onlyPendent of gyro radius,
it is no longer even Hamiltonian, since the drag is dissipa- Os
tive. The time scale for this process is on the order of sec- P(\Pp)=J deo
onds. Since there are many orders of magnitude separating 0y
the orbital motion and the scattering, the scattering could be 2
artificially enhanced, greatly reducing the computing, but _ (’LLJFP”B)(ng)ﬁ“'pB
such an enhancement interferes with the simulation of sto- pp,B?
chastic ripple induced loss. Thus an analytic evaluation of
ripple loss can allow greatly improved simulations. Thiswhere py=+y2E—2uB/B, and primes refer to derivatives
work extends previous approximate analy{sg8] to obtaina  with respect to¥ ;.

gpq’ + p(1"+0ag")
p p

, (12

complete expression for stochastic threshold. For reference only, in a large aspect ratio circular
equilibrium  this expression  simplifies  to ¢,
II. BANANA TIP MAP =2v2(p/R)G*(RIT)¥2E(k) =K (K)] with k=sin(6,/2),

) ) ) whereE andK are elliptic integrals, and¥ ,=rdr/q.
mentumP, an integral of the motion, and this along with ¢ = A and X, which contain all the essential information
energy conservation means that all orbits are closed curves ghout the particle precession and bounce motion, the equilib-
the ¥, 6 plane. The banana tips describe constant KAMriym and the field ripple. Note that with up-down symmetry
surfaceg 6] in the' W, ¢ plane. The KAM theory guarantees (\ =1) this map isalmosta composition of two steps of the
that for small ripple this phase space changes topologicallgtandard may6]. Only the sign change oy, in Eq. (10)
only in small regions where resonances produce islands. Stenakes this not so, but this simple sign change has profound
allowing diffusion of an orbit leading to loss. To understandparticle in the space of and ¢. The precession motioth,
this process it is necessary to investigate resonances in thq the bounce motiogp, are indicated. The two crossed
banana tip motion. _ boxes on the left indicate magnetic field coils, and a preces-

Consider the discrete map generated by a trapped partilgion resonance is shown consisting of precession of one coil
each step of the map corresponding to the banana tip positiaghacing in one bounce.
(¥,,¢). Each half bounce the particle moves toroidally
along the field, and in addition drifts across the field lines.

The successive bounce points are given by the banana tip lll. FIXED POINTS
map[7,9-18. Now we search the banana tip map for fixed points, which
Wy ie1=Yp+NA sSin(Ngy), (7)  are thexando points of resonances. Approximatg and ¢,

as linear functions iV, a simplification certainly valid
= p
Nber1=Neet N1t Nebp, s, ®) over the scale of the resonance spacing. Conservation of
Woir2=Vpii1tA SI(Ne, 1), 9 energyE and magnetic moment makes the bounce angle
_ in the unperturbed orbit a function of¥; through
N =N -N +N , 10 p
Ht+2=Nrs 1= Ny 10+ Ny 145 (10 E=uB(V,.6,), and  thus  L=q' Ons+0' 6y
where \ is a measure of up-down asymmetry; agg 49w B/94B,—qdy B/9,B_. The derivative of¢, must
=Q6y. +96,_, with 6,. the magnitudes of the poloidal be evaluated using Eq12). We wish to identify all fixed
bounce angles at the lower and upper banana ¥Rs,, ¢; points, calculate island widths at the resonant flux surfaces,
the initial position of the bounce point at the lower bananaand identify conditions for stochastic threshold. The total
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The determinant oM is positive at an elliptic fixed point,
and negative at a hyperbolic fixed point.

If the term in A is negligible in Eq.(16) and inz only
=0 is a solution, i.e., the only resonances are the preces-
sion resonances, ard¢ andN¢— 7 are both solutions to
Eqg. (15); the x and o points are separated hy, and detM
z—2¢r’,A[)\ cosNg+cosNg+2wy)]. Physically the particle
precesses through an integer number of field coils in one
bounce, with the forward and backward movement due to the
bounce motion cancelling out.

Increasing the term id initially simply modifies the po-
sition of the precession resonances, but there are additional
solutions to Eqs(15) and (16) if this term is sufficiently
large. Eliminatingys we find a transcendental equation for

22-Ng—2w) -
P R B L ; — 57725 Tsinz=0.
o, 2 o 2 g, N A[L1— by hp)°]
0 A sufficient condition for the existence of extra solutions is

) . ) ) readily found by regardindN¢ and w, as unknown con-
nanFCIeG' 1. Trapped particle trajectory showing precession "®SO%tants. There are multiple solutions to this equation for any
' values ofN¢ andw, when the slope of the line is less than
’ _ ! "2 .
change in the position of the upper banana tip in one bounc®/(37). Of Né,A[1—(y/ $y)*|>3. Similarly a transcen-
dental equation forp can be found:

is given by
dV¥,=\A sin(N¢)+ A sin(z) (13 2(Np—z+ 2w,
P ,(A ¢ ’ k), ~+sinNg=0. (19)
dp=2¢,+ 2¢,’3)\A sin(N¢)+(¢,’J—¢{))A sin(z), Regardingz andw,. as unknown constants, a second condi-

(14 tion for the existence of extra solutions is found. Again mul-

, _ tiple solutions exist when the slope of the line is less than
where z=N¢+2w+2whA sinMNe), - and W=Néw/2  3/(37), or Ng,AN|L— (B} $7)2|>3. The value ofi de-
+N¢P/2.' . L . termines which of these equations is least restrictive. Of

, The fixed points O,f the mzi\p are qualitatively different for ;,, se the extra solutions are identical, whether considered
different values of¢, and ¢y, . Refer to the flux surfaces jn 4 or 7 and if one sufficient condition for solution is sat-
¢p=km/N as precession resonance surfaces. These are Si&fied then extra solutions exist also in the other variable.
faces at which the trapped particles considefecd values The exact locations can only be obtained numerically, but
of W, E, and6,) precess an integer number of coil spacesyeatingN ¢, z as random variables in Eq4L5) and(16), two
in one bounce. LeW =W, +¢, with W, a precession pner hounds on the extent of the solutions can be found.
resonance surface., the ne_zlgh.borln_g surfaces being Ipcated &ince each condition is a strict upper bound the stronger
== m/(N¢y). This spacing is typically a small fraction of condition determines the extent. The envelope of the domain
the minor radius, there can be as many as 100 resonancggadditional solutions is given bjy|< i, with
across the plasma. Period-1 fixed points are given by

Pw=|1— pp/ Pyl A Min(1N)/2 (20
A sin(N¢)+sin(z) =0, (15
with the solution spacing given = 7/(N$,+Ngy). As
N¢>£,¢—W’A sin(z) =0, (16 ¢y, increases the spacing approaches the bounce resonance
spacing, and more and more bounce resonances appear on
with w=w,+w’ ¢, and the subscrigk indicating evaluation  each side of each precession resonance. Also, as is clear from

at the precession resonance surfgee0. _ Egs.(18) and(19), when many solutions exist, their extent is
Expanding Eqgs(13) and(14) around fixed pointsyo and  accurately given by, , with an error of one solution spac-
¢, we find, for one bounce, ing.
dy Mir M\ y— iy Physically, note that the change in toroidal position due to
(de = My Moy (d’_d’o)' (170 the bounce motion in one bounce d8,(¥+1) — dp(Pis2)
=—¢{A sinN¢y,1). For smallA this can have no signifi-
with the matrix element$l;;=2w’A cosz,, cant effect, but whenp A is large enough this term can
M= \A cosN¢o+A coszo+2NA2W' cosz, cosN gy, correct 'Fhe resonance mismatch caused by distance from the
, ) L, precession resonance surfage=0. Away from =0 the
M21=2¢p+2W"A( b, — bp)COSZ0, precession resonance is mismatched by a toroidal angle
Mao=24/NA cosNgo+ (), — di)A coszg ¢p, and thus wherpy A= ¢,y the bounce term can cause

T a new resonance to occur at a locatign=¢pA/ by, in
+2W'NA(dp— ¢p)COSNehg COSZg. agreement with Eq(20). Farther away from the precession
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resonance surface the bounce term is incapable of repairir
the precession resonance mismatch. These additional res
nances could thus be called “bounce variation assisted pre

cession resonances.” However, all period-1 resonances col 03¢ Qs i H“\““““ ‘
sist of particle motion through an integer number of field "\\"\“\\\“‘“‘ \““‘“
coils in one bounce, whether achieved simply through pre “ ,‘\“\\\\\\\\\‘ ,“\“\
cession or with the assistance of the gradient of the bounc 0.2 '/‘1/1 i “\\“\
term. 14 ,}'/‘ " “\“\ ‘ _____
These are all the period-1 fixed points of the map. Now //’/"/ / ‘. \
we turn to a discussion of the islands appearing around then o0l ‘ ",'/,"‘W \‘\\“ L =
57 ‘ % ““““ “““““\\\ “““
IV. PRECESSION ISLANDS ///,{,{‘!/!,!,,,,L,;,,g""’"‘ ‘\‘\“ ““\““\‘{ “‘\\\\\“‘\‘\\\\\\\
To estimate stochastic threshold, it is necessary to calct o /// /" m“ “‘ “ \\‘“\ \‘“‘“ \‘“““

. . . . "wmu“ t‘
late island widths and compare them to separation. The Chil Sl

ikov overlap condition typically gives an amplitude too large b/¢ p™
for stochastic threshol®0], as actual threshold occurs when
the island width is approximately a fractioni26f the reso-

. . L . FIG. 2. Maximum extent of fixed point&t=0.01 andw,=0
nance spacing. The resulting correction is sometimes referred

to as thg 2/3 rul¢21], although more accurately it is ther2/ V. BOUNCE RESONANCE WEB
rule. It is due to the effects of higher order islands and to
distortion of the KAM surfaces by the low order islands. However, if the extent of the bounce resonances is com-

In the vicinity of a resonance, Eq6l3) and(14) can be parable to the precession resonance spacing, the results are
used to calculate the island width. If the distance from thevery different, and the approach to stochastic threshold is
resonance surface is small, atds small enough so that the dominated by the generation of bounce resonance islands. In
map is very far from stochastic threshold, then the stepg in the limit |¢b/¢ |>1 the map can again be analytically inte-
and¢ are very small, and the slope of the local KAM surfacegrated. In this Ilmltw’ Ney/2, ¢, =, and Eqs(13) and
traced out by the map is approximately given &y/d¢ (14 become dyg=[\A sin(ng)+A sm(Nq'>+2w)] and
treated as differentials. It is readily verified numerically thatgg=— 4/ A sin(N¢+2w). Again consider continuous
integrating the resulting differential equation fgras a func-  cyrves with slopedy/d¢ given by the ratio of these small

tion of ¢ correctly reproduces the island structure of thesteps. The resulting differential equation is integrable with
map. The solution to the differential equation is of course nogg|ytion

chaotic, and only valid in the vicinity of the particular reso-
nance where the integration is made. This technique works
on all maps, and can be successfully used to calculate |slanﬂ1
widths for the purpose of estimating stochastic threshold. For
DA, ¢;3A<1 and assuming a small variationwn this dif-
ferential equation can be integrated to give a description of
precession resonance

coSNgp+2w)+\ cogN¢o)=K. (23

is equation describes a web with internal structure deter-
mined by the bounce resonance spacing, independent of
ripple. This is a multi-island structure which does not pos-
dess good KAM surfaces prohibiting motion ¢n For finite
i, the structure is well described by E@3) only near
(N¢Ff)¢)2:N¢l’)[C_)\A cogN¢)—A cogNg+2w,)], =0, but_the first good KAM surface is fap> i, . In this
(21) respect it can be treated as an island structure, and used to
calculate the stochastic threshold. Again we use ther@le

from which the valuec=\A cos(Ng,)+A cosNg+2wy), Lo determine threshold. We then find, from web overlap, the
with ¢, the x point, gives the separatrix. Using EG5) and  Stochastic threshold due to bounce motion

N¢,=No¢,+ m, the island extent at the point ¢, is given 2

roy 7 2 14 ; A= - . 24
by Neppyr==\2NGA[1+\2+2\ cos(@)]!“ Using the >~ NG —Ngy min(x. D) (24
2/ rule to estimate the threshold, we find for threshold due
to precession motion Previously[8], the threshold in the limit of largey, and \

2 1 2 =1 was numerically determined to be Ri$;), in agree-
Ap= N¢’ | DI+ D77, | - (220 ment with this estimate. Notice that the extent of the web is
p k+1

linear in A, as opposed to the square root dependence of
_ precession island width.

with Dy =1+\24+2\ cos(@V), Wy 1=W,+ 7(1+ ¢/
¢p)/2. This reduces approximately to Hg2) of White et al.
[8] for A=1, and only in this case there is an infinity at
¢b/¢ +1 andw,= /2. Although largeA is not within The transition region from precession islands to web is
the sp|r|t of the analysis, this result is correct; the map can bbéest observed for smalh, so that precession islands are
easily seen to possess no islands for these parameter valug®gall and well separated and higher order islands are very
for any value ofA. Note that\?D,(1/\)=D,(\) makes the small. In Fig. 2 is shown the maximum extent of the fixed
result symmetric in the two bounce tips. points as a function ok and ¢;, for A=0.01,N¢,=1, and

VI. DEVELOPMENT OF THE WEB
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FIG. 3. Poincareplot: A=0.01, N¢,=1, w,=0, and N¢;, FIG. 5. Poincareplot: A=0.01, N¢,=1, w,=0, and N¢y,
=0.5. =20.5.

w, =0, which is bounded by the valug, . In Figs. 3—7 are
shown Poincaranaps for the same parameters withk= 1,
with increasing values ap;, . We have chosen=1 because
Eqg. (15 can then be solved analytically. Figures 3 and 4
show the primary islands for smafl;,. Although Egs.(13)
and(14) cannot be used to find all fixed points analytically,
the initial modification of the precession islands é§ in-
creases can be derived. Equat{@b) has two solutions. First
z=—Ng¢+2xl, 1 integer, for which Eq.(16) becomes
fi(¢)=0 with

fo=fy="f5=0, and for larger values of, there are three
real roots to the equation. Also at this val(M¢, =20 for
these parameter valyethe determinant of the matrii
changes from negative to positiveat 0, and thex point at
0,0 becomes aa point surrounded by tw& points. In Fig. 5
(N¢,=20.5), a narrow island at the originat point
(=0, ¢=0) is just visible, and new points have formed at
= *0.06. This bounce resonance phenomenon was previ-
ously mistakenly interpreted as a nonlinear period doubling
[8].

- Y / ; Second, we can observe the threshold for the formation of
() =N+ [1=(o/ dp)"1(NPpA/ASINNG) — ml i25) the first bounce resonance away frams 0. The second so-

lution of Eq. (15) is z=N¢+ 7+ 27l. Equation(16) then
For small ¢;, there is a single solution té,=0, but for givesg,($) =0, with

NpAl1— ¢yl bp)?|=4 there is a bifurcation ap=0, with

0.4

0.2 —

0.2 |- =

04

FIG. 4. Poincareplot: A=0.01, N¢py=1, w,,=0, and Ny, FIG. 6. Poincareplot: A=0.01, N¢,=1, w,=0, and Néy,
=0.5. =26.
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FIG. 7. Poincareplot: A=0.01, N¢gp=1, w,=0, and N¢y,
=60.

9i( ) =Nej(m+27l)/w' + (2w’ —2N$))A sin(N¢h).
(26)

At N¢=—m/2, for Ng,All—(dp/¢y)?|=2m, (N,
=25.07) there is a triple root formed b¥,, g,, and
go=0. At this confluence thé, root becomes an point. In
Fig. 6 (N¢,=26), theo point is just visible aty=0.135,
N¢=—1.6, and the twa points fromg, are atyy=0.122
and N¢=-1.1 and—1.9. The island a{0,0) has grown
significantly. In Fig. 7 N¢,=60), the precession island has
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shrunk almost to the bounce resonance scale, and the web
includes three layers of bounce resonance islands, extending
to ¥,=0.3. Nearyy=0 the web is very well formed, and
given by Eq.(23). It is also interesting to note that in this
limit the domain without good KAM surfaces is proportional

to A, not A as is usually the case.

VIl. CONCLUSION

Examination of the fixed points and islands in the banana
tip map results in a complete understanding of the approach
to chaos. Chaotic orbits are produced either by the overlap of
precession islands, or by the growth of a bounce resonance
web. All resonances are due to particle precession through an
integer number of field coils. An expression for stochastic
threshold is then given by the smaller®f andAy, provided
Ngpmax(,1)A[1— (¢l ¢p)?|>37, otherwise byA,. The
transition from one expression to the other occurs when the
extent of the bounce resonance web equals the precession
island width. As has been shown previously, a good under-
standing of stochastic threshold allows the development of
an algorithm for prompt axisymmetric orbit loss, ripple trap-
ping, convective banana flow, and stochastic ripple loss,
which can be extended to include the effects of collisions
and drag, allowing rapid estimation of particle loss in toka-
maks|[8].
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