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Nonequilibrium phase transition in the kinetic Ising model: Dynamical symmetry breaking
by randomly varying magnetic field

Muktish Acharyyd
Institute for Theoretical Physics, University of Cologne, 50923 Cologne, Germany
(Received 20 August 1997; revised manuscript received 22 January 1998

The nonequilibrium dynamic phase transition, in the two-dimensional kinetic Ising model in the presence of
a randomly varying(in time but uniform in spagemagnetic field, has been studied both by Monte Carlo
simulation and by solving the mean-field dynamic equation of motion for the average magnetization. In both
the cases, the time-averaged magnetization vanishes from a nonzero value depending upon the values of the
width of randomly varying field and the temperature. The phase boundary lines are drawn in the plane formed
by the width of the random field and the temperat(i841063-651X98)03207-3

PACS numbes): 05.50+q

[. INTRODUCTION mains locked to one well of the free energy and cannot go to
the other one, in the absence of noise or fluctuation.

The problem of the random field Ising model having a Lo and Pelcovitd8] attempted to study the dynamic na-
quenchedandom field has been investigated both theoretiture of this phase transitiofincorporating the effect of fluc-
cally [1-4] and experimentally5] in the past few years be- tuation in the kinetic Ising model by a Monte Cari®1C)
cause it helps to simulate many interesting but Comp|icate§imulation._In.this case, the transition disappeqrs in the zero-
problems. The effects of a randomiyenchednagnetic field frequency limit; due to the presence of fluctuations, the mag-

on the critical behavior near the ferromagnetic phase transf2€tization flips to the direction of the magnetic field and the
tion is the special focus of the modern research. The recefffynamic order parameteftime-averaged magnetization

developments in this field can be found in a review articleV@nishes. However, thef8] have not reported any precise

[6]. However, the dynamical aspects of the Ising system irphase P?”Udafy- Achgryya and Ch*’?"ﬁra@ii stut_jied_ the.
the presence of a randomly varying field has not yet bee'qonequmbnum dynamic phase transition in the kinetic Ising

' . . ) .~model in presence of oscillating magnetic field by extensive
studied thoroughly. It WOUId. .be mterestmg to know if there is MC simulation. They9] have successfully drawn the phase
any Qynamlcal pha_se transition in the presence of a randomlPfoundary for the dynamic transition and observed or located
varying magnetic field. o _a tricritical point on it. It was also noticed by the@] that

For completeness and continuity, it would be convenienyis 4ynamic phase transition is associated with the breaking
to review briefly the previous studies on the dynamic transiyt e symmetry of the dynamic hysteresis-f) loop. In
tion in the kinetic Ising model. Tome and Oliviefd] ob-  {he dynamically disorderedhe value of the order parameter
Served and Studied the dynamiC transition in the kinetiC Isinglanishe$ phase the Corresponding hysteresis |00p is Sym_
model in the presence of a sinusoidally oscillating magnetignetric and loses its symmetry in the ordered phabeng a
field. They solved the mean-fieldlF) dynamic equation of nonzero value of the dynamic order paramgtdtey [9]
motion (for the average magnetizationf the kinetic Ising  have also studied the temperature variation of the ac suscep-
model in the presence of a sinusoidally oscillating magneticibility components near the dynamic transition point. They
field. By defining the order parameter as the time-averagedbserved that the imaginafyeal part of the ac susceptibil-
magnetization over a full cycle of the oscillating magneticity gives a peak(dip) near the dynamic transition point
field they showed that the order parameter vanishes depen@iwhere the dynamic order parameter vanigh&hey [9]
ing upon the value of the temperature and the amplitude ofiave the following conclusionsi) This is a distinct signal of
the oscillating field. Precisely, in the field amplitude anda phase transition and) this is an indication of the thermo-
temperature plane they have drawn a phase boundary segdmnamic nature of the phase transition.
rating dynamic ordere@nhonzero value of the order param-  Recently, the relaxation behavior of the dynamic order
etep and disorderedorder parameter vanishgshases. They parameter near the transition point has been stydi@fdboth
[7] have also observed and locatedriaritical point [sepa- by MC simulation and by solving the mean-field dynamic
rating the naturédiscontinuous or continuousf the transi-  equation. It has been observed that the relaxation is Debye
tion] on the phase boundary line. However, such a transitiontype and the relaxation time diverges near the transition
observed 7] from the solution of the mean-field dynamical point, showing ecritical slowing down The “specific heat”
equation, is not dynamic in a true sense. This is because, f@and the “susceptibility” also diverggl1] near the transition
the field amplitude less than the coercive figtla tempera- point in a manner similar to that of fluctuations of the dy-
ture less than the transition temperature without any )ield namic order parameter and energy, respectively.
the response magnetization varies periodically but asym- The statistical distribution of the dynamic order param-
metrically even in the zero-frequency limit; the system re-eter, near the dynamic transition point, has been studied by
Sideset al.[12]. They observed that the distribution widens
(to a double hump from a single hump types one crosses
*Electronic address: muktish@thp.uni-koeln.de the dynamic transition phase boundary. Since the fluctuation
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—8% C strength, andh(t) is the randomly varyingin time but uni-
04 - form in spacg magnetic field. The time variation &i(t) can
0.5 be expressed as
1 hor(t) for to<t<ty+r
0.98 hty={ ° o 2.2
0.96 0 otherwise,
83421 - Symmetry broken phase
m(t) 008.3 B wherer(t) is a random variable distributed uniformly be-
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084 | | | | | —hg/2 to hy/2 and
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—J h(t)dt=0. 2.3
15 Tt
1r (b) The system is in contact with an isothermal heat bath at
0.5 temperatureTl. For simplicity the values of all;; are taken
h(t) 0 to be equal to unity. The periodic boundary condition is used
051 here.
-1 A square lattice of linear size(=100) has been consid-
-15 ered. Initially all spins are taken to be directed upward and
h(t)=0. At any finite temperatur@, the dynamics of this
0% - ; : : : system has been studied here by Monte Carlo simulation
06 - using Metropolis single spin-flip dynamics. The transition
8;‘21 C rate (§'— —s/) is specified as
m(t) 0 -
-0.2 | Symmetric phase , , )
:8.%1 C0=0 W(s{— —s{)=min[1,exg —AH/kgT)], (2.9
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0 500 1000 1500 2000 2500 3000 yvhereAH is the change in energy due to the spin flip &ad .
¢ is the Boltzmann constant, which has been taken to be unity
here for simplicity. Each lattice site is updated here sequen-
FIG. 1. Monte Carlo results of the tintevariations of randomly  tjglly and one such full scan over the lattice is defined as the
varying field h(t) and the response magnetization(t) for T time unit [Monte Carlo step per spiiMCSS] here. The
=1.7 and(@ hy=1.0 and(b) hy=3.0. The symmetryabout the  aqgnitude of the fieldi(t) changes after every MCSS obey-
zero ling breaking is clear from the figure. ing Eqg. (2.2. The instantaneous magnetizatidper sitg

increases as the width of a distribution increases, this obsef(t)=(1/L?)2;s{ has been calculated. After bringing the
vation is consistent with the independent observafid) of  system to a steady staten(t) becomes stablized with some
critical fluctuations of a dynamic order parameter. Theg]  fluctuationg, the switch of the randomly varying magnetic
have also observed that the fluctuation of the hysteresis loojeld h(t) has been turned ofat timet, MCSS and the
area becomes considerably large near the dynamic transitianstanteneous magnetization has been calculdths been
point. taken to be equal to:210° and even more (3.261C°) near

In this paper the dynamic phase transition has been studhe static ferro-para transition temperatureZ,2@ . . . ). By
ied in the two-dimensional kinetic Ising model in the pres-inspecting the data and the time variation, it is observed that
ence of a randomly varyingn time but uniform in spade  m(t) becomes stabilized for this choice of the valuetgf
magnetic field, both by MC simulation and by solving the The time-averagedover the active period of the magnetic

mean-field dynamical equation. This paper is organized afeld) magnetizationQ=(1/r)ft°+7m(t)dt has been calcu-
follows. In Sec. Il the model and the MC simulation scheme to

with the results are given. In Sec. Il the mean-field dynami-/ated over a sufficiently large time(1.75x 10°). By chang-
cal equation and its solution with the numerical results ardnd the values ofr the stabilization ofQ has been checked

given. The paper ends with a summary of the work in secquite carefully. It is observed th&® does not change much
V. (apart from the small fluctuationsand this choice of the

value ofr is considered to be good enough to believe that the
Il. MONTE CARLO STUDY value of Q becomes stable. Her® plays the role of the
dynamic order parameter. It may be noted that one measures
the value of the order parameter, i.e., spontaneous magneti-
The Hamiltonian of an Ising modédivith ferromagnetic  zation, in the same way as in the case of a normal ferro-para
nearest neighbor interactiprin the presence of a time- transition. However, there is a remarkable difference. In the
varying magnetic field can be written as latter (or normal ferro-pargcase, the system reaches a steady

A. Model and simulation scheme
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FIG. 2. Monte Carlo results of the temperatdrevariations of FIG. 3. Phase boundary for the dynamic transition obtained
the dynamic order paramet€ for two different values ohg: hg from MC simulations. The data points represented@yare ob-
=2.4(®) andhy=0.8 (). tained by using random updating and those representett are

obtained by sequential updating.
equilibrium state; however, in the forméor present case
the state lies in aonequilibrium(time-dependentstate. This  to the equilibrium(zero field ferro-para transition point. In
dynamic order paramet&) is observed to be a function of Fig. 3, the overestimatedfrom the Onsager valuel,
width hy of the randomly varying magnetic field and the =2.2@...) value of the transition temperature in thg
temperaturel of the system, i.e.Q=Q(hg,T). Each value —0 limit may be due to the small size of the system. It
of Q has been calculated by averaging over at least 25 difshould be mentioned here that all the results are obtained by
ferent random samples. using sequential updating scheme. Although there is some
study [13] regarding the updating scheme to simulate the
5. Results dynamic processes, in the present study no significant devia-
' tion was found for these two differeisequential and ran-
Taking all spins to be ups{=+1) as the initial condi- dom) updating techniques. Few data points of the phase
tion, the simulation was performed using the above form ofooundary(marked by bullets in Fig.)3are obtained by using
the time-varying fielch(t). It has been observed numerically the random updating scheme and no significant deviation
that, for a fixed values ohg, if T increasesQ decreases Wwas observed.
continuously and ultimately vanishes at a fixed valueT of

Similarly, for a fixed temperature, Hg, increases, the value Ill. MEAN-FIELD STUDY
of Q decreases and finally vanishes at a particular value of A Mean-field dvnamical equation and solution
hy. Figure 1 shows the time variation of magnetizatioft) ' y q

at a particular temperatufe and for two different values of The mean-field dynamical equation of motion for the av-
field width hy. For a small value offiy, the system remains in erage magnetizatiom [7] is

a dynamically symmetry broken phadég. 1(a)] where the

magnetization oscillates asymmetrically about the zero line. d_m: _ ’_(m(t)+ h(t))
As a result, the dynamical order paramet@r(the time- dt T ’
averaged magnetizatipiis nonzero. As the field increases,

the system gets sufficient energy to flip dynamically in such . . L
a way that the magnetization oscillates symmetrichig. whereh(t) is the randomly varying external magnetic field

(3.9

1(b)] about the zero line and as a resQltvanishes. satisfying the condition
It is possible to leQQ vanish by either increasing the tem-
peratureT for a fixed field widthhg or vice versa. It has been 1 (totr
observed that for any fixed value bf the transition is con- _ﬁ h(t)dt=0, 3.2

tinuous. Two such transitior§or two different values oh) 0

are depicted in Fig. 2. So, in the plane formed by the tem-

peratureT and the field widthh,, one can think of a bound- with the same distributiof?(h) discussed earlier. E¢3.1)

ary line, below whichQ is nonzero and above which it van- has been solved by employing the fourth-order Runge-Kutta
ishes. Figure 3 displays such a phase boundary ihgf€  method subjected to the above condition. The initial magne-
plane obtained numerically by Monte Carlo simulation. Thetization is set equal to unity, which serves as a boundary
transition observed here is continuous irrespective of the valeondition. First, the magnetizatian(t) has been calculated
ues ofhy andT, i.e., unlike the earlier cas¢9,7], no tric- for h(t)=0, bringing the system into an equilibrium state.
ritical point has been observed. It may be noted here that théfter that the switch of the randomly varying magnetic field
transition temperature, for field width going to zero, reduceshas been turned on. The dynamic order paraméer
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2 — e reducing the value of field width and temperature one can
185 o MF Results _ bring the system in a dynamically symmetry broken phase
. (Q#0). The time-averaged magnetization, i.e., the dynamic
16 - o 7 order parameter, vanishes continuously depending upon the
14 | * i value of width of the randomly varying field and the tem-
] perature. The nature of the transition observed here is always
121 *. 7 continuous and the phase boundaries are drawn. It may be
ho 1 ° Q=0 mentioned here that the dynamic responses of the Glauber
0s L . . | kinetic Ising model are studief®] for a quasiperiodic time
: Q#£0 . variation of the magnetic field.
0.6 . - There is some experimental evidence of the dynamic tran-
04 | ‘. | sition. Recently, Jianet al.[14] observed indications of the
° dynamic transition, associated with the dynamical symmetry
0.2 - N breaking, in the ultrathin Co/@001) sample put in a sinu-
0 R R S S R soidally oscillating magnetic field by the magneto-optic Kerr
0 0.1 0203 04 05 06 0.7 0.8 09 1 effect. For small values of the amplitude of the oscillating
T field the m-h loop lies asymmetricallydynamic ordered

Ophase in the upper half plane and becomes symme(lig-
namic disordered phaséor higher values of the field ampli-
tude. Very recently, the dynamical symmetry breaking has
been observed experimentally in highly anisotrof&ing-
like) ultrathin ferromagnetic Fe/\210 films and is nicely
depicted in Fig. 1 of Ref[15]. However, the detailed quan-
titative study to draw the phase boundary has not yet been
done experimentally.

B. Results Very recently, the stationary properties of the Ising ferro-

Observations similar to the MC case are made in thidn@gnet in the presence of a randomly varyihgving a bi-
case. For quite small values o§ and T the systems remains Mdal distribution magnetic field have been studiftb] in

in a dynamically asymmetric phas@¢0) and get into a the mean-field approximation. The transition observed from
dynamically symmetric @=0) phase for higher values of the distribution of stationary magnetization is discontinuous.
hy and T. It is observed that one can for@@ to vanish Hoyvever, thg present study deal§ with tygnamicalprop-
continuously by tunindyy andT. A phase boundary line for erties(dynamical symmetry breakipgf the system and the
the dynamic transitionois shown in Fig. 4. Here also thenonequilibrium transitions in the Ising ferromagnet in the
limiting (hy—0) transition temperature reduces to the MF Presence of a randomly varyirigniformly d_|§tr|buted mag-
equilibrium (zero-field transition point U_Mp_l) It mav be netic field. In the former case the transition was observed
ngted here that the coordinatiorF: numk;e(; 4 .in twoydi- from the distribution of stationary magnetization. However,
mension has been absorbed in the interaction strerbth in the present study, this was observed from the temperature

culati heTMF(— 4 th h h variation of the dynamic order parameter associated with a
calcu atmg theTc™ (= 1,) anc the temperaturshown here dynamical symmetry breaking and the transition observed is
in Fig. 4) is measured in units ofz.

continuous. An extensive numerical effort is required to
characterize and to know the details of this dynamical phase
IV. SUMMARY transition. It would also be important to see whether the dif-

The nonequilibrium dynamic phase transition in the tWO_ferent k@nds _of distributions of the randomly varying field
would give different results.

dimensional kinetic Ising model in the presence of a ran-
domly varying(in time but uniform over the spageagnetic
field is studied both by Monte Carlo simulation and by solv-
ing the mean-field dynamical equation of motion. In both the  Sonderforschungsbereich 341 is gratefully acknowledged
cases, it is observed that the system remains in a dynamicalfgr financial support. The author would like to thank D.
symmetric phase@=0) for large values of the width of the Stauffer and B. K. Chakrabarti for a careful reading of the
randomly varying magnetic field and the temperature. Bymanuscript.

FIG. 4. Phase boundary for the dynamic transition obtaine
from the solution of the MF dynamic equati¢®.1).

=(1/7)[om(t')dt’ has been calculated from the solution

m(t) of Eq. (3.1). TheQ is averaged over 25 different ran-
dom samples.
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