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Mode fluctuation distribution for spectra of superconducting microwave billiards

H. Alt,1 A. Bäcker,2 C. Dembowski,1 H.-D. Gräf,1 R. Hofferbert,1 H. Rehfeld,1 and A. Richter1
1Institut für Kernphysik, Technische Universita¨t Darmstadt, D-64289 Darmstadt, Germany

2Abteilung Theoretische Physik, Universita¨t Ulm, D-89069 Ulm, Germany
~Received 20 October 1997; revised manuscript received 15 January 1998!

High-resolution eigenvalue spectra of several two- and three-dimensional superconducting microwave cavi-
ties have been measured in the frequency range below 20 GHz and analyzed using a statistical measure that is
given by the distribution of the normalized mode fluctuations. For chaotic systems the limit distribution is
conjectured to show a universal Gaussian, whereas integrable systems should exhibit a non-Gaussian limit
distribution. For the investigated Bunimovich stadium and the three-dimensional Sinai billiard we find that the
distribution is in good agreement with this prediction. We study members of the family of limac¸on billiards,
having mixed dynamics. It turns out that in this case the number of approximately 1000 eigenvalues for each
billiard does not allow us to observe significant deviations from a Gaussian, whereas an also measured circular
billiard with regular dynamics shows the expected difference from a Gaussian.@S1063-651X~98!06008-5#

PACS number~s!: 05.45.1b, 03.65.2w, 41.20.Cv
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I. INTRODUCTION

One of the main research lines in quantum chaos is
investigate the statistics of energy levels of quantum syst
whose classical counterpart is chaotic. A very popular cl
of systems are Euclidean billiards, which are classica
given by the free motion inside a domainV,R2 with elastic
reflections at the boundary]V. The corresponding quantum
billiard is described by the stationary Schro¨dinger equation
(\52m51)

Dcn~q!1kn
2cn~q!50 for qPV ~1!

with Dirichlet boundary conditionscn(q)50 for qP]V.
It has been conjectured that the energy level statistic

integrable systems can be described by a Poissonian ran
process@1#, whereas classically strongly chaotic syste
should obey the statistics of random matrix ensembles s
as the Gaussian orthogonal ensemble or the Gaussian un
ensemble@2–4#. This implies, for example, that the neares
neighbor level spacing distribution is expected to show le
repulsion for chaotic systems, in contrast to integrable s
tems, which are expected to show level attraction. Surp
ingly, this means that the statistics of classically chaotic s
tems are much more rigid than those of integrable syste

These conjectures have been tested successfully for
eral systems. However, there are exceptions for both i
grable and chaotic systems. For example, the so-called a
metic systems, which are strongly chaotic, are found to h
a level spacing distribution showing level attraction simi
to the Poissonian distribution@5–10#. Therefore, a different
statistics, the distribution of the normalized mode fluctu
tions, has been proposed@11,12# as a possible signature o
quantum chaos. This statistics was investigated in the i
grable case for the eigenvalues of the Laplacian on a to
@13# and later in@14# the unnormalized fluctuations, posses
ing no limit distribution, have been studied for regular a
chaotic billiards. For chaotic systems the limit distribution
the normalized mode fluctuations is conjectured@11,12# to
show a universal Gaussian, whereas integrable syst
PRE 581063-651X/98/58~2!/1737~6!/$15.00
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should exhibit a non-Gaussian limit distribution. This co
jecture was tested successfully for several regular and
otic billiard systems in@9,12,15,16#.

By using two-dimensional microwave cavities quantu
billiards can be simulated experimentally@17–20#. This is
possible because of the equivalence of the stationary Sc¨-
dinger equation for quantum billiards and the correspond
Helmholtz equation for electromagnetic resonators in t
dimensions. In three dimensions the electromagnetic He
holtz equation is vectorial and cannot be reduced to an
fective scalar form. Thus it is structurally different from th
scalar Schro¨dinger equation. Nevertheless, the applicabil
of the statistical concepts developed in the theory of quan
chaos and random matrix theory is also given for such thr
dimensional systems@20–22#. Therefore, experiments with
superconducting microwave resonators provide in genera
genvalue spectra of very high resolution for which an ana
sis of the distribution of the normalized mode fluctuations
interesting.

The paper is organized as follows. In Sec. II the mo
fluctuation distribution is introduced. The experimental se
and the measurement of the eigenfrequencies using su
conducting microwave resonators are described in Sec. II
Sec. IV the analysis of the mode fluctuation distribution u
ing the experimental data is carried out.

II. MODE FLUCTUATION DISTRIBUTION

The analysis of the eigenvalue spectrum starts with
spectral staircase function

N~k!5#$nukn<k%, ~2!

which counts the number of energy levels below a giv
energyk. The mean behavior ofN(k) is given by the gener-
alized Weyl law@23#, which reads for two-dimensional bil
liards with Dirichlet boundary conditions

N̄~k!5
A
4p

k22
L

4p
k1C, ~3!
1737 © 1998 The American Physical Society
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1738 PRE 58H. ALT et al.
whereA is the area of the billiard,L is the length of the
boundary, andC takes curvature and corner contributio
into account. For three-dimensional electrodynamical
liards we have

N̄~k!5
V

3p2
k3

2S 2

3p2E ds

R 2
1

12p2E da
~p2v!~p25v!

v D k

1const, ~4!

whereV is the volume of the billiard,R is the mean radius o
the curvature over the surfaces, andv is the dihedral angle
along the edgesa @24,25#.

In order to obtain a spectrum that is independent of
system specific constants, one considers the unfolded s
trum $xn :5N̄(kn)% @26,27#. Consequently, the unfolded en
ergy spectrum has a mean level spacing of unity. The co
ing function for the unfolded spectrum will be denoted f
simplicity again byN(x). Thus the fluctuating part of the
spectral staircase function is given by

Nfluc~x!:5N~x!2N̄~x!5N~x!2x. ~5!

In the following we will assume that all spectra have be
unfolded and that the systems are completely desym
trized.

The normalized mode fluctuations are given by

W~x!:5
Nfluc~x!

AD~x!
, ~6!

whereD(x) is the variance

D~x!:5
J~c!

~c21!xEx

cx

@Nfluc~y!#2dy, ~7!

with c.1, andJ(c) is a correction necessary for integrab
systems to obtain forW(x) a variance of one; see@16# for
details. The conjecture put forth in@11,12# can be formulated
as follows ~see @16#! For bound conservative and scalin
systems the quantityW(x) @Eq. ~6!# possesses a limit distri
bution for x→`. This distribution is absolutely continuou
with respect to the Lebesgue measure on the real line, w
densityP(W) defined by

lim
T→`

1

~c21!TET

cT

g„W~x!…r~x/T!dx5E
2`

`

g~W!P~W!dW,

~8!

whereg(x) is a bounded continuous function andr(t)>0 is
a continuous density on@1,c# with @1/(c21)#*1

cr(t)dt51.
Furthermore, the limit distribution has zero mean and u

variance

E
2`

`

WP~W!dW50, E
2`

`

W2P~W!dW51. ~9!
l-

e
ec-

t-

n
e-

a
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Now the basic conjecture of@11,12# reads as follows. If the
corresponding classical system is strongly chaotic, hav
only isolated and unstable periodic orbits, thenP(W) is uni-
versally a Gaussian,

P~W!5
1

A2p
expS 2

1

2
W2D . ~10!

In contrast, a classically integrable system leads to a n
Gaussian densityP(W). For large classes of integrable sy
tems it has been proved that the limit distribution is n
Gaussian; see@16,28–30# and references therein.

For chaotic systems this conjecture has been tested
merically in @9,12,15# and experimentally in@31#. A review
and a detailed comparison between chaotic and noncha
systems is given in@16#. A Gaussian distribution for chaotic
systems corresponds to maximum randomness for the
tuations, whereas the mode fluctuation distribution for in
grable systems is less random@12#.

Berry’s semiclassical analysis@32# gives results for the
asymptotic behavior of the saturation behavior of the spec
rigidity. In a similar way one can determine the asympto
behavior ofD(x). For generic integrable billiards one has

D~x!;const3Ax. ~11!

For generic classically chaotic systems with antiunitary sy
metry ~e.g., time-reversal symmetry! one obtains

D~x!;
1

2p2
ln x1const. ~12!

As discussed in@16#, one can extend the conjecture
such chaotic systems, for whichNfluc(k) is modulated by a
long-range oscillationNlong(k). In this case one has to in
clude the additional term in the unfolding process$xn :
5N̄(kn)1Nlong(kn)%. This procedure has been used, for i
stance, in the case of the truncated hyperbola billiard, wh
a prominent contribution toN(k) is given by families of
closed nonperiodic orbits running into a boundary po
where the curvature is discontinuous@33#; see@12,16# for the
result ofP(W) for this system.

The same is also necessary for the stadium billiard, wh
a family of marginally stable orbits, the bouncing ball orb
~BBOs! gives rise to a strong modulation@19,34#. Taking the
contribution of the BBOs into account, one observes exc
lent agreement ofP(W) with the Gaussian normal distribu
tion @16#.

III. EXPERIMENT

For a precise test of the distribution of the normaliz
mode fluctuations an accurate measurement of the r
nances of all investigated microwave billiards is necessa
Since 1991, we have experimentally studied several two-
three-dimensional systems using superconducting mi
wave resonators of niobium. In Fig. 1 the shapes of so
measured billiards with their dimensions are shown. Al
gether five desymmetrized two-dimensional systems are
vestigated, ag51.8 Bunimovich stadium billiard@19,35,36#,
a circular billiard ~not desymmetrized!, and three members
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of the family of limaçon billiards, which have first been theo
retically studied as billiards in@37#. Their boundary is de-
fined as the quadratic conformal map of the unit disk o
the complexw plane:w5z1lz2, wherelP@0,1/2# controls
the chaoticity of the system. The billiards of the limac¸on
family are also called Pascalian snails; their shape has
ready been mentioned by Du¨rer in 1525@38#. We also ana-
lyzed a desymmetrized three-dimensional Sinai billia
@22,39–41#.

The measurements were carried out in a liquid heli
bath cryostat. The billiards were excited up to a frequency
20 GHz, the upper limit of the Hewlett-Packard 8510B ve
tor network analyzer used, using four capacitively coupl
dipole antennas sitting in small holes on the niobium surf
and penetrating up to a maximum of 1 mm into the cavity
avoid disturbances of the electromagnetic field inside
resonators. Using one antenna for the excitation and ei
another or the same one for the detection of the microw
signal, we were able to measure the transmission or the
flection spectrum of the resonators. The spectra were take
10-kHz steps and the measured resonances have quality
tors of up toQ'107 and signal-to-noise ratios of up to ap
proximately 70 dB, which made it easy to separate the re
nances from each other and from the background even in
higher-frequency range, where the level density strongly
creases. Especially in the case of the circular billiard w
mainly twofold degenerate resonances, the advantage o
ing superconducting cavities is obvious. Due to mechan
imperfections, the degenerate modes show a very weak s
ting, but nevertheless one is able to resolve all resonan
As a consequence, all the important characteristics suc
eigenfrequencies and widths could be extracted with a v
high accuracy@42,43#. A detailed analysis of the origina
spectra yields a total number of 1000–1200 resonances
the two-dimensional~2D! billiards ~about 660 resonances fo
the circular billiard! and nearly 1900 resonances for the 3
billiard. A detailed comparison with numerical data confirm
that the measured spectra are almost complete. These e
value sequences$k1 ,k2 , . . . ,kn% ~with k52p/c0f and c0
the speed of light! form the basis of the present test of th
mode fluctuation distribution.

FIG. 1. Investigated billiard systems. In the upper part on
left side a Bunimovich stadium billiard (g51.8) and on the right a
3D Sinai billiard are illustrated. In the lower part three billiards
the limaçon family with different parametersl are shown changing
the chaoticity from nearly regular (l50.125) to chaotic (l50.3).
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IV. APPLICATION TO THE MEASURED
EIGENFREQUENCY SPECTRA

In this section we study the mode fluctuation distributio
discussed in Sec. II for the experimentally investigated sy
tems presented in Sec. III.

A. 2D Bunimovich stadium billiard

First we discuss the results for theg51.8 stadium bil-
liard. As proved in@35#, the stadium billiard is strongly cha-
otic ~i.e., ergodic, mixing, K system!. Ergodicity, however,
does not prevent a system from having a family of margi
ally stable periodic orbits, as long as they are of measu
zero in phase space. In the stadium billiard such a family
given by the BBOs, which have perpendicular reflections
the straight line segments. Their contribution dominates t
fluctuating part of the spectral staircase function@19#. There-
fore, the above-stated conjecture is in its basic form not a
plicable ~see, however, the refinement given in@16# and the
discussion below!. After unfolding the spectrum and calcu-
lating the distribution of the normalized mode fluctuatio
W(x) according to Eqs.~6! and ~7!, a densityP(W) results
as shown in the left part of Fig. 2. Obviously it is not a
Gaussian; the distribution is shifted to positiveW(x) due to
the existence of the BBOs. In fact, in@44# it is shown using
the results of@34# that in this caseW(x) is a bounded func-
tion, such that the limit distributionP(W) is not Gaussian.

SinceP(W) is expected to show Gaussian behavior on
if the corresponding classical system is strongly chaotic e
cluding stable or neutrally stable motion, the contribution o
the BBOs has to be taken into account in the unfolding pr
cedure@16#; see Sec. II. Finally, the predicted Gaussian di
tribution of P(W) is obtained, as can be seen in the right pa
of Fig. 2. To have a measure how good the distributio
P(W) agrees with a Gaussian we use the Kolmogoro
Smirnov test, which gives a significance level compute
from the maximum value of the absolute difference betwe
the two cumulative distributions.

For the case with BBOs one obtains a significance level
57.2% and for the case with extracted BBOs 75.2%. T
influence of the BBOs that are visible in the distributions i
Fig. 2 is also reflected in the value of the significance leve

e

FIG. 2. Mode fluctuation distributionP(W) for the g51.8
Bunimovich stadium billiard. On the left side the distribution with
bouncing ball orbits is shown, which is asymmetric with bias t
positiveW. On the right side the distribution without BBOs is dis
played, which is in very good agreement with the Gaussian~dashed
curve! expected for chaotic systems@Eq. ~10!#.
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To determine the normalized mode fluctuations@Eq. ~6!#
we have calculated the fluctuating partNfluc(x) of the un-
folded experimental spectra according to Eq.~5!. For the
variance D(x), @Eq. ~7!# we have used the ansatzD(x)

5Aconst3Ax for BBO contribution included andD(x)
51/(2p2) ln(x)1const after their extraction, see Sec. I
ThenW(x) was calculated for 105–106 randomly distributed
values ofx in the interval@0,xmax#, with xmax being the upper
unfolded eigenenergy. The constant term inD(x) was cho-
sen according to Eq.~9! to give a unit variance for the ob-
tained distributionP(W). These results using the experimen
tally determined set of energy levels confirm our previou
analysis using the numerically computed eigenspectrum@16#.

B. 3D Sinai billiard

Another investigated system where the bouncing ball o
bits play an important role is the 3D Sinai billiard, which i
also proved to be strongly chaotic@39#. In contrast to the 2D
Bunimovich stadium billiard, the 3D Sinai billiard possesse
families of BBOs of dimensions 2 and 3. In Fig. 3 the mod
fluctuation distributions with and without BBOs are dis
played. In the distribution with BBOs~left part of Fig. 3!
only slight deviations from the Gaussian occur; in particula
a significant peak atW'23 appears. Thus the influence o
the BBOs is less visible in the considered energy range as
the case of the distribution for theg51.8 stadium billiard,
which might be due to the superpositions of different BBO
This confirms our previous results of@22#. Taking into ac-
count the contribution of the BBO modes, one obtains t
right part of Fig. 3. Calculating the significance level for th
first case~with BBOs!, one obtains a value of 78.5% and fo
the second case~with extracted BBOs! 75.2%.

C. Mixed 2D limaçon billiards

In this section we test the conjecture stated in Sec. II f
the billiards of the limac¸on family. We have investigated
three billiards of different chaoticity with parametersl
50.125, 0.15, and 0.3. Investigations of the classical Po
carésurface of section for these configurations have sho
@45–47# that the fraction of the chaotic phase space is 55
(l50.125), 66% (l50.15), and nearly 100% (l50.3). The

FIG. 3. Mode fluctuation distributionP(W) for the 3D Sinai
billiard. On the left side the distribution with BBOs is shown, wher
at W'23 a significant deviation from the Gaussian occurs. On t
right side the distribution without BBOs is displayed, which show
the predicted Gaussian behavior. Again the dashed curve is
expected Gaussian for chaotic systems@Eq. ~10!#.
s

r-

s

,

in

.

e

r

-
n

quantum mechanical counterpart of these three billiards
hibit the same behavior concerning their chaoticity@48,49#;
see also@47#.

Therefore, they are very suitable to study the conjectu
Note that the classical dynamics of thel50.3 billiard is not
completely ergodic since small stability islands still exi
@50#; see also@51# for analytical results aroundl50.25.
However, the corresponding islands of stability are so sm
that they do not affect the energy spectrum in the range
der consideration.

As can be seen in Fig. 4, the billiard withl50.3 shows
indeed the predicted Gaussian distributionP(W). For the
calculation of P(W) we followed the same procedure de
scribed for the stadium billiard with an ansatz for the va
ance D(x)51/(2p2) ln(x)1const. On the other hand, th
two billiards with l50.125 and 0.15 belong to the class
mixed systems. Their classical counterparts possess, a
from isolated and unstable periodic orbits, also stable orb
@37,47#. From this one would expect that, according to th
the distributionP(W) should show non-Gaussian behavio
However, the histograms in Fig. 4, obtained by assum
D(x)}Ax, which gives a good description forD(x) in the
energy interval considered, allow no significant distinctio
betweenP(W) and the Gaussian distribution; see also t
lower part of Fig. 4, where the differenceDP between a
Gaussian and the calculated distributionP(W) is shown.
These characteristics are also expressed in the significa
levels obtained from the Kolmogorov-Smirnov test, whic
lie around 85%. Presumably one needs a large numbe
energy levels to be able to see significant deviations.

D. 2D circular billiard

Finally, we have studied the mode fluctuation distributio
for the circular billiard. Since this system is integrable, o
would expect a deviation of the mode fluctuation distributi
from a Gaussian due to the existence of neutrally stable
riodic orbits. To obtain the distributionP(W) we use the
ansatz for the varianceD(x)5const3Ax. In Fig. 5 the dis-

e

he FIG. 4. Mode fluctuations distributionsP(W) for the three in-
vestigated billiards of the limac¸on family in the upper part. All three
distributions follow the predicted Gaussian for chaotic system
which is represented by the dashed curve@Eq. ~10!#. In the lower
part the differences between the histogram and a Gaussian is
ted.



e
nc

bu
y
,
ie

or
h
e
he
ib
n

or
n

s
s-
in
th
ed

act
is-
-
the

y-
es
n
the
n,

be

all
re
-
ob-
to
u-

ap-
i-
tain
d.

al
the
e,

om-
go-
rs-
e

iste-
o.
or-
-2.

tio
t

ce

PRE 58 1741MODE FLUCTUATION DISTRIBUTION FOR SPECTRA . . .
tribution P(W) is shown, which clearly deviates from th
Gaussian. For the circular billiard one obtains a significa
level of 67.1%. This result is in contrast to the result of@31#,
where no difference between the mode fluctuation distri
tion for the numerical obtained eigenmodes of a regular s
tem and a Gaussian for chaotic systems could be found
though nearly the same number of eigenfrequenc
('660) is used.

V. CONCLUSION

In this paper we have studied the distribution of the n
malized mode fluctuations for experimentally obtained hig
resolution eigenvalue spectra of several two- and thr
dimensional superconducting microwave billiards. T
conjecture for this statistical measure states that the distr
tion P(W) of the normalized mode fluctuations for a give
eigenvalue spectrum leads to a Gaussian when the c
sponding classical system is strongly chaotic, having o
unstable and isolated periodic orbits.

This has been successfully tested using the eigenvalue
a g51.8 stadium billiard and a 3D Sinai billiard. Both sy
tems are strongly chaotic, but possess families of bounc
ball orbits, whose contribution has been subtracted for
determination ofP(W). The same result has been obtain

FIG. 5. Mode fluctuation distributionP(W) for the circular bil-
liard on the left side. The histogram shows the expected devia
from a Gaussian for chaotic systems, which is represented by
dashed curve@Eq. ~10!#. On the right side one can see the differen
between the Gaussian and the histogram.
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with a l50.3 billiard of the limac¸on family. Two other in-
vestigated billiards of the limac¸on family, thel50.125 and
0.15 billiard, belong to the class of mixed systems. The f
that no visible difference from a Gaussian occurs in the d
tribution P(W) might be due to the finite number of eigen
values in the given energy range we used to calculate
distribution and the chaoticity of the systems~55% and 66%,
respectively!, which are closer to chaotic than to regular d
namics. A variation of the included number of mod
(500,600, . . .,1100) in the mode fluctuation distributio
shows no significant change in the results. In the case of
circular billiard we get a clear deviation from the Gaussia
as one would expect. This is in contrast to the result of@31#,
where no such difference for a regular system could
found.

Therefore, characterizing the chaoticity using a sm
number of energy levels with the help of the conjectu
stated in@12# is very difficult. For regular and chaotic sys
tems, respectively, the reachable number of eigenvalues
tained by experiments explained in Sec. III is sufficient
have satisfactory results for the mode fluctuation distrib
tion. However, for special regular~rectangular billiards@31#!
or mixed systems the needed number of eigenvalues,
proximately 104–106, can only hardly be achieved exper
mentally, so that a practical usage of this conjecture to ob
information about the chaoticity of such systems is limite
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@19# H.-D. Gräf, H.L. Harney, H. Lengeler, C.H. Lewenkopf, C



n

-

r,

-
,
ol

ett

h.

y
,
.

J.

,

un

s-

6

y

,

1742 PRE 58H. ALT et al.
Rangacharyulu, A. Richter, P. Schardt, and H.A. Weide
müller, Phys. Rev. Lett.69, 1296~1992;!.

@20# S. Deus, P.M. Koch, and L. Sirko, Phys. Rev. E52, 1146
~1995!.
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ed. ~Uhl, Nördlingen, 1983!.

@39# Ya.G. Sinai, Russ. Math. Surveys25, 137 ~1970!.
@40# H. Primack and U. Smilansky, Phys. Rev. Lett.74, 4831

~1995!.
@41# H. Primack, Ph.D. thesis, The Weizman Insitute, 1997~unpub-

lished!.
@42# H. Alt, P.v. Brentano, H.-D. Gra¨f, R.-D. Herzberg, M. Phillip,

A. Richter, and P. Schardt, Nucl. Phys. A560, 293 ~1993!.
@43# H. Alt, P.v. Brentano, H.-D. Gra¨f, R. Hofferbert, M. Phillip, H.

Rehfeld, A. Richter, and P. Schardt, Phys. Lett. B366, 7
~1996!.

@44# J. Bolte, Ulm Report No. ULM-TP/97-2, 1997~unpublished!.
@45# H. Rehfeld, Diploma thesis, Technische Hochschule Darm

tadt, 1996~unpublished!.
@46# H. Rehfeld, H. Alt, C. Dembowski, H.-D. Gra¨f, R. Hofferbert,

H. Lengeler, and A. Richter, Report No. IKDA 96/40, 199
~unpublished!.

@47# A. Richter, in Emerging Applications of Number Theor
~Ref. @30#!, p. 479.

@48# M.V. Berry and M. Robnik, J. Phys. A17, 2413~1984!.
@49# T. Prosen and M. Robnik, J. Phys. A26, 2371~1993!.
@50# H.R. Dullin and A. Bäcker ~unpublished!.
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