PHYSICAL REVIEW E VOLUME 58, NUMBER 2 AUGUST 1998

Mode fluctuation distribution for spectra of superconducting microwave billiards
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High-resolution eigenvalue spectra of several two- and three-dimensional superconducting microwave cavi-
ties have been measured in the frequency range below 20 GHz and analyzed using a statistical measure that is
given by the distribution of the normalized mode fluctuations. For chaotic systems the limit distribution is
conjectured to show a universal Gaussian, whereas integrable systems should exhibit a non-Gaussian limit
distribution. For the investigated Bunimovich stadium and the three-dimensional Sinai billiard we find that the
distribution is in good agreement with this prediction. We study members of the family ofdimiaitliards,
having mixed dynamics. It turns out that in this case the number of approximately 1000 eigenvalues for each
billiard does not allow us to observe significant deviations from a Gaussian, whereas an also measured circular
billiard with regular dynamics shows the expected difference from a Gau$Sia863-651X%98)06008-5

PACS numbds): 05.45+hb, 03.65-w, 41.20.Cv

I. INTRODUCTION should exhibit a non-Gaussian limit distribution. This con-
jecture was tested successfully for several regular and cha-
One of the main research lines in quantum chaos is totic billiard systems ir{9,12,15,16.
investigate the statistics of energy levels of quantum systems By using two-dimensional microwave cavities quantum
whose classical counterpart is chaotic. A very popular clasbilliards can be simulated experimentally7—-20. This is
of systems are Euclidean billiards, which are classicallypossible because of the equivalence of the stationary Schro
given by the free motion inside a domdhC R? with elastic ~ dinger equation for quantum billiards and the corresponding
reflections at the boundawf). The corresponding quantum Helmholtz equation for electromagnetic resonators in two
billiard is described by the stationary Sctinger equation dimensions. In three dimensions the electromagnetic Helm-

(h=2m=1) holtz equation is vectorial and cannot be reduced to an ef-
fective scalar form. Thus it is structurally different from the
Ayn(a) +Kan(@)=0  for ge Q (1)  scalar Schrdinger equation. Nevertheless, the applicability

of the statistical concepts developed in the theory of quantum

with Dirichlet boundary conditions/,,(q)=0 for ge 9(). chaos and random matrix theory is also given for such three-

It has been conjectured that the energy level statistics ofiimensional systemg20-22. Therefore, experiments with
integrable systems can be described by a Poissonian randdidPerconducting microwave resonators provide in general ei-
process[1], whereas classically strongly chaotic systemsgenvalue spectra of very high resolution for which an analy-
should Obey the statistics of random matrix ensembles Sucﬂs of the distribution of the normalized mode fluctuations is
as the Gaussian orthogonal ensemble or the Gaussian unitdRferesting.
ensembld2—4]. This implies, for example, that the nearest- ~ The paper is organized as follows. In Sec. Il the mode
neighbor level spacing distribution is expected to show levefluctuation distribution is introduced. The experimental setup
repulsion for chaotic systems, in contrast to integrable sysand the measurement of the eigenfrequencies using super-
tems, which are expected to show level attraction. SurprisCOﬂdUCting microwave resonators are described in Sec. Ill. In
ingly, this means that the statistics of classically chaotic sysSec. IV the analysis of the mode fluctuation distribution us-
tems are much more rigid than those of integrable systemsing the experimental data is carried out.

These conjectures have been tested successfully for sev-
eral systems. However, there are exceptions for both inte- II. MODE FLUCTUATION DISTRIBUTION
grable and chaotic systems. For example, the so-called arith- ] ] )
metic systems, which are strongly chaotic, are found to have The analysis of the eigenvalue spectrum starts with the
a level spacing distribution showing level attraction similar SPectral staircase function
to the Poissonian distributioib—10]. Therefore, a different
statistics, the distribution of the normalized mode fluctua- N(k)=#{n[k =<k}, @

tions, has been propos¢dll, 12 as a possible signature of ) )
quantum chaos. This statistics was investigated in the inte¥hich counts the number of energy levels below a given

grable case for the eigenvalues of the Laplacian on a toru@Nergyk. The mean behavior df(k) is given by the gener-
[13] and later i 14] the unnormalized fluctuations, possess-alized Weyl law[23], which reads for two-dimensional bil-
ing no limit distribution, have been studied for regular andliards with Dirichlet boundary conditions

chaotic billiards. For chaotic systems the limit distribution of

the normalized mode fluctuations is conjectuféd,127] to N(k)= ikz_ £k+C 3)
show a universal Gaussian, whereas integrable systems A1 A ’
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where A is the area of the billiard( is the length of the Now the basic conjecture ¢f.1,12 reads as follows. If the
boundary, andC takes curvature and corner contributions corresponding classical system is strongly chaotic, having
into account. For three-dimensional electrodynamical bil-only isolated and unstable periodic orbits, tHefW) is uni-

liards we have versally a Gaussian,
N( LAE P(W) L p( 1W2) (10
N k = —k = ——exp — = .
(k) 3.2 2 2
2 do 1 (71— w)(7—5w) In contrast, a classically integrable system leads to a non-
a2 ”R™ J ” k Gaussian densiti?(W). For large classes of integrable sys-
37 12w tems it has been proved that the limit distribution is not

(4) Gaussian; sefl6,28—3(Q and references therein.

For chaotic systems this conjecture has been tested nu-
whereV is the volume of the billiardR is the mean radius of Merically in[9,12,13 and experimentally in31]. A review
the curvature over the surface andw is the dihedral angle and a detailed comparison between chaotic and nonchaotic
along the edgea [24,25. systems is given ifi16]. A Gaussian distribution for chaotic

In order to obtain a spectrum that is independent of theyStems corresponds to maximum randomness for the fluc-
system specific constants, one considers the unfolded speilations, whereas the mode fluctuation distribution for inte-

trum {xn:zﬁ(kn)} [26,27]. Consequently, the unfolded en- grable systems is less randg®].

ergy spectrum has a mean level spacing of uniy. The count e S EEEERTE, SRENEEE B8 Ot T e
ing function for the unfolded spectrum will be denoted for . ymp P

A . . rigidity. In a similar way one can determine the asymptotic
simplicity again byN(x). Thus the fluctuating part of the . o -
spectral staircase function is given by behavior ofD(x). For generic integrable billiards one has

+ const,

— D(x)~constX yX. 11
Npye(X):=N(X) = N(x) =N(X) — . 5 0 x D
For generic classically chaotic systems with antiunitary sym-
In the following we will assume that all spectra have beenmetry (e.g., time-reversal symmeirpne obtains
unfolded and that the systems are completely desymme-

trized. 1
The normalized mode fluctuations are given by D(x)~ o In x+const. (12
a
(x): = Niuc(X) 6) As discussed irf16], one can extend the conjecture to
' D(x) such chaotic systems, for whidit,(k) is modulated by a
long-range oscillatioN,ng(k). In this case one has to in-
whereD(x) is the variance clude the additional term in the unfolding procegs,:

. =N(Kp) + Niong(Kn)}. This procedure has been used, for in-
D(x): = E(c) ICX[N (y)]?d ) stance, in the case of the truncated hyperbola billiard, where
" (c—1)xJy b e y Y a prominent contribution taN(k) is given by families of
closed nonperiodic orbits running into a boundary point
with ¢>1, and= (c) is a correction necessary for integrable Where the curvature is discontinud@s]; see[12,16 for the
systems to obtain fow/(x) a variance of one; seld6] for  result of P(W) for this system.
details. The conjecture put forth jia1,12 can be formulated The same is also necessary for the stadium billiard, where
as follows (see[16]) For bound conservative and scaling & family of marginally stable orbits, the bouncing ball orbits
systems the quantitW(x) [Eq. (6)] possesses a limit distri- (BBOS) gives rise to a strong modulati¢h9,34. Taking the
bution for x—. This distribution is absolutely continuous contribution of the BBOs into account, one observes excel-
with respect to the Lebesgue measure on the real line, with ignt agreement oP(W) with the Gaussian normal distribu-
densityP(W) defined by tion [16].

cT o
lim %f g(W(x))p(x/T)dx=f gOW)P(W)dW, . EXPERIMENT

T DT )7 o For a precise test of the distribution of the normalized
(8 mode fluctuations an accurate measurement of the reso-

. , . . nances of all investigated microwave billiards is necessary.
whereg(x) is a bounded continuous functloncap(t)zo IS Since 1991, we have experimentally studied several two- and
a continuous density of..c] with [1/(c—1)][1p()dt=1.  three-dimensional systems using superconducting micro-
Furthermore, the limit distribution has zero mean and uni{y5ye resonators of niobium. In Fig. 1 the shapes of some

vanance measured billiards with their dimensions are shown. Alto-
gether five desymmetrized two-dimensional systems are in-

fw WP(W)dW=0, fw W2P(W)dw=1. (9) Vestigated, a=1.8 Bunimovich stadium billiar{i19,35,34,
—oo —o a circular billiard (not desymmetrized and three members
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461 mm 458 mm 431 mm Bunimovich stadium billiard. On the left side the distribution with

FIG. 1. Investigated billiard systems. In the upper part on thebouncmg ball orbits is shown, which is asymmetric with bias to

left side a Bunimovich stadium billiardy=1.8) and on the right a positive W. On the right side the distribution without BBOs is dis-
3D Sinai billiard are illustrated. In the lower part three billiards of play:)d Whlc? |ds]1n ver:y gtood a?r?ﬁegme?ltg)v]lth the Gausedashed
the limaon family with different parameters are shown changing urve expected for chaolic systemsq

the chaoticity from nearly regulainE 0.125) to chaotic X=0.3).

IV. APPLICATION TO THE MEASURED

. . L . . EIGENFREQUENCY SPECTRA
of the family of lima®on billiards, which have first been theo- Q

retically studied as billiards if37]. Their boundary is de- In this section we study the mode fluctuation distribution
fined as the quadratic conformal map of the unit disk ontodiscussed in Sec. Il for the experimentally investigated sys-
the complexw plane:w=z+\z?, where\ [0,1/2] controls ~ tems presented in Sec. ll.
the chaoticity of the system. The billiards of the lipac
family are also called Pascalian snails; their shape has al-
ready been mentioned by Brr in 1525[38]. We also ana-
lyzed a desymmetrized three-dimensional Sinai billiard First we discuss the results for the=1.8 stadium bil-
[22,39-41]. liard. As proved in35], the stadium billiard is strongly cha-
The measurements were carried out in a liquid heliunptic (i.e., ergodic, mixing, K systejn Ergodicity, however,
bath cryostat. The billiards were excited up to a frequency ofloes not prevent a system from having a family of margin-
20 GHz, the upper limit of the Hewlett-Packard 8510B vec-ally stable periodic orbits, as long as they are of measure
tor network analyzer used, using four capacitively couplingzero in phase space. In the stadium billiard such a family is
dipole antennas sitting in small holes on the niobium surfacgiven by the BBOs, which have perpendicular reflections at
and penetrating up to a maximum of 1 mm into the cavity tothe straight line segments. Their contribution dominates the
avoid disturbances of the electromagnetic field inside thdluctuating part of the spectral staircase func{id@l. There-
resonators. Using one antenna for the excitation and eithdere, the above-stated conjecture is in its basic form not ap-
another or the same one for the detection of the microwavglicable (see, however, the refinement given[ir6] and the
signal, we were able to measure the transmission or the rgliscussion beloyv After unfolding the spectrum and calcu-
flection spectrum of the resonators. The spectra were taken lating the distribution of the normalized mode fluctuation
10-kHz steps and the measured resonances have quality fad{x) according to Eqs(6) and(7), a densityP(W) results
tors of up toQ~10" and signal-to-noise ratios of up to ap- as shown in the left part of Fig. 2. Obviously it is not a
proximately 70 dB, which made it easy to separate the resdsaussian; the distribution is shifted to positMéx) due to
nances from each other and from the background even in tHée existence of the BBOs. In fact, jn4] it is shown using
higher-frequency range, where the level density strongly inthe results o0f34] that in this cas&V(x) is a bounded func-
creases. Especially in the case of the circular billiard withtion, such that the limit distributiof(W) is not Gaussian.
mainly twofold degenerate resonances, the advantage of us- SinceP(W) is expected to show Gaussian behavior only
ing superconducting cavities is obvious. Due to mechanicalf the corresponding classical system is strongly chaotic ex-
imperfections, the degenerate modes show a very weak splitluding stable or neutrally stable motion, the contribution of
ting, but nevertheless one is able to resolve all resonancethe BBOs has to be taken into account in the unfolding pro-
As a consequence, all the important characteristics such aedure[16]; see Sec. Il. Finally, the predicted Gaussian dis-
eigenfrequencies and widths could be extracted with a veryribution of P(W) is obtained, as can be seen in the right part
high accuracy{42,43. A detailed analysis of the original of Fig. 2. To have a measure how good the distribution
spectra yields a total number of 1000—1200 resonances fd?(W) agrees with a Gaussian we use the Kolmogorov-
the two-dimensional2D) billiards (about 660 resonances for Smirnov test, which gives a significance level computed
the circular billiard and nearly 1900 resonances for the 3Dfrom the maximum value of the absolute difference between
billiard. A detailed comparison with numerical data confirmsthe two cumulative distributions.
that the measured spectra are almost complete. These eigen-For the case with BBOs one obtains a significance level of
value sequence$ky ks, ... Ky} (with k=27/cof andcy,  57.2% and for the case with extracted BBOs 75.2%. The
the speed of lightform the basis of the present test of the influence of the BBOs that are visible in the distributions in
mode fluctuation distribution. Fig. 2 is also reflected in the value of the significance level.

A. 2D Bunimovich stadium billiard
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FIG. 3. Mode fluctuation distributio(W) for the 3D Sinai % s b 1 1 1
billiard. On the left side the distribution with BBOs is shown, where ‘o . . R L

at W=~ — 3 a significant deviation from the Gaussian occurs. On the 4 -2 0 2 -4 -2 0 2 -4 -2 0 2 4

right side the distribution without BBOs is displayed, which shows

the predicted G_aussmn behfawor. Again the dashed curve is the Fi1G. 4. Mode fluctuations distributior®(W) for the three in-

expected Gaussian for chaotic systeag. (10)]. vestigated billiards of the limam family in the upper part. All three

distributions follow the predicted Gaussian for chaotic systems,

To determine the normalized mode fluctuati¢&sy. (6)] which is represented by the dashed cuikzg. (10)]. In the lower

we have calculated the fluctuating p&df,(x) of the un-  Part the differences between the histogram and a Gaussian is plot-

folded experimental spectra according to Ef). For the ted.

variance D(x), [Eq. (7)] we have used the ansafz(x)
guantum mechanical counterpart of these three billiards ex-

- CO”SV x for BBO contribgtion i”C'Pded and(x) hibit the same behavior concerning their chaoti¢4,49;
=1/(27°) In(X)+const after their extraction, see Sec. Il see alsd47].

ThenW(x) was calculated for £0-1¢° randomly distributed Therefore, they are very suitable to study the conjecture.
values ofx in the interval 0Xmax, With Xmay being the upper  note that the classical dynamics of the= 0.3 billiard is not
unfolded eigenenergy. The constant termDifx) was cho-  ompjetely ergodic since small stability islands still exist
sen according to E|9) to give a unit variance for the ob- 50} see “also[51] for analytical results around =0.25.
tained distributiorP(W). These results using the experimen- g ywever, the corresponding islands of stability are so small
tally determined set of energy levels confirm our previousihat they do not affect the energy spectrum in the range un-
analysis using the numerically computed eigenspecfiéh der consideration.
As can be seen in Fig. 4, the billiard with=0.3 shows
B. 3D Sinai billiard indeed the predicted Gaussian distributiBWw). For the
Another investigated system where the bouncing ball orcalculation of P(W) we followed the same procedure de-
bits play an important role is the 3D Sinai billiard, which is scribed for the stadium billiard with an ansatz for the vari-
also proved to be strongly chaofidd). In contrast to the 2D ance D(x)=1/(27?) In(x)+const. On the other hand, the
Bunimovich stadium billiard, the 3D Sinai billiard possessestwo billiards with A =0.125 and 0.15 belong to the class of
families of BBOs of dimensions 2 and 3. In Fig. 3 the modemixed systems. Their classical counterparts possess, aside
fluctuation distributions with and without BBOs are dis- from isolated and unstable periodic orbits, also stable orbits
played. In the distribution with BBOgleft part of Fig. 3  [37,47. From this one would expect that, according to this,
only slight deviations from the Gaussian occur; in particularthe distributionP(W) should show non-Gaussian behavior.
a significant peak aiV~—3 appears. Thus the influence of However, the histograms in Fig. 4, obtained by assuming
the BBOs is less visible in the considered energy range as iR (x) =, which gives a good description f@(x) in the
the case of the distribution for the=1.8 stadium billiard, energy interval considered, allow no significant distinction
which might be due to the superpositions of different BBOs.betweenP(W) and the Gaussian distribution; see also the
This confirms our previous results f22]. Taking into ac- lower part of Fig. 4, where the differenckP between a
count the contribution of the BBO modes, one obtains theGaussian and the calculated distributi®fW) is shown.
right part of Fig. 3. Calculating the significance level for the These characteristics are also expressed in the significance
first case(with BBOs), one obtains a value of 78.5% and for levels obtained from the Kolmogorov-Smirnov test, which
the second cas@vith extracted BBOg75.2%. lie around 85%. Presumably one needs a large number of
energy levels to be able to see significant deviations.

C. Mixed 2D limacon billiards

In this section we test the conjecture stated in Sec. Il for D. 2D circular billiard

the billiards of the limaon family. We have investigated Finally, we have studied the mode fluctuation distribution
three billiards of different chaoticity with parameteks  for the circular billiard. Since this system is integrable, one
=0.125, 0.15, and 0.3. Investigations of the classical Poinwould expect a deviation of the mode fluctuation distribution
caresurface of section for these configurations have showirom a Gaussian due to the existence of neutrally stable pe-
[45—47) that the fraction of the chaotic phase space is 55%iodic orbits. To obtain the distributio?(W) we use the
(A=0.125), 66% §k =0.15), and nearly 1009%\(=0.3). The  ansatz for the variancB(x)=const yx. In Fig. 5 the dis-
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08T T} L5 ey with a A =0.3 billiard of the limaon family. Two other in-
055 g 100 ] vestigated billiards of the liman family, thex=0.125 and

: : 0.15 billiard, belong to the class of mixed systems. The fact
that no visible difference from a Gaussian occurs in the dis-
tribution P(W) might be due to the finite number of eigen-

05 | .

AP/Pgauss
e

E —o5 L ] values in the given energy range we used to calculate the

E t .. ] distribution and the chaoticity of the syste&% and 66%,

4 T Ty e respectively, which are closer to chaotic than to regular dy-
w namics. A variation of the included number of modes

FIG. 5. Mode fluctuation distributioR(W) for the circular bil- ~ (200,600...,1100) in the mode fluctuation distribution
liard on the left side. The histogram shows the expected deviatiogNOWS no significant change in the results. In the case of the
from a Gaussian for chaotic systems, which is represented by theircular billiard we get a clear deviation from the Gaussian,

dashed curvgEq. (10)]. On the right side one can see the difference @ one would expect. This is in contrast to the resulBai,
between the Gaussian and the histogram. where no such difference for a regular system could be

found.

tribution P(W) is shown, which clearly deviates from the Therefore, characterlzmg. the chaoticity using a small
number of energy levels with the help of the conjecture

Gaussian. For the circular billiard one obtains a significance;sta,[ed in[12] is very difficult. For regular and chaotic sys-
level of 67.1%. This result is in contrast to the resul{ ®f], y : 9 y

where no difference between the mode fluctuation dlstrlbu:[e.ms’ respectlve_ly, the reach_able _number of _elgen\{a_lues ob
) . ; . tained by experiments explained in Sec. Ill is sufficient to
tion for the numerical obtained eigenmodes of a regular sys; : . L

. . ave satisfactory results for the mode fluctuation distribu-
tem and a Gaussian for chaotic systems could be found, aj- ) o

X .“Tion. However, for special reguldrectangular billiard$31])
though nearly the same number of eigenfrequencies . .
(~660) is used or mixed systems the needed number of eigenvalues, ap-
' proximately 16—1, can only hardly be achieved experi-

mentally, so that a practical usage of this conjecture to obtain

V. CONCLUSION information about the chaoticity of such systems is limited.

In this paper we have studied the distribution of the nor-
malized mode fluctuations for experimentally obtained high-
resolution eigenvalue spectra of several two- and three-
dimensional superconducting microwave billiards. The We would like to thank H. Lengeler and the mechanical
conjecture for this statistical measure states that the distribworkshop at CERN/Geneva for the precise fabrication of the
tion P(W) of the normalized mode fluctuations for a given niobium resonators. A.B. is grateful to R. Aurich, T. Hesse,
eigenvalue spectrum leads to a Gaussian when the corr&. Schubert, and F. Steiner for useful discussions and com-
sponding classical system is strongly chaotic, having onlynents and A.R. acknowledges advice given by E. Bogo-
unstable and isolated periodic orbits. molny. This work has been supported by the Sonderfors-

This has been successfully tested using the eigenvalues ochungsbereich 185 “Nichtlineare Dynamik” of the Deutsche
a y=1.8 stadium billiard and a 3D Sinai billiard. Both sys- Forschungsgemeinschaft and in part by the Bundesministe-
tems are strongly chaotic, but possess families of bouncingum fur Bildung und Forschung under Contract No.
ball orbits, whose contribution has been subtracted for th@6DA820. A.B. acknowledges support by the Deutsche For-
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