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Disorder-induced critical behavior in driven diffusive systems
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Using a dynamic renormalization group, we study the transport in driven diffusive systems in the presence
of a quenched, random drift velocity with long-range correlations along the transport direction. In dimensions
d < 4 we find fixed points representing different universality classes of disorder-dominated self-organized
criticality and a continuous phase transition at a critical variance of disorder. Numerical values of the scaling
exponents characterizing the distributions of relaxation clusters are in good agreement with the exponents
measured in natural river networf$1063-651X98)02707-X

PACS numbdis): 64.60.Lx, 05.60+w, 64.60.Ak, 92.40.Fb

I. INTRODUCTION )\ﬂnhz and introduce quenched disorder via a tgy(w)dh,
which locally breaks the joint inversion symmetny— —h,
Various interacting driven systems self-organize into criti-x;— —X;. The symmetry is globally restored by assuming
cal steady states, optimizing in that way their response as the distribution of disorder with zero mean, which thus ex-
single functional unif1]. An important feature of these sys- cludes the global current through the system. We also con-
tems is their response in the presence of disorder. The effecséder long-range correlations of disorder along the direction
of disorder on critical properties in steady states have beeff transport varying with distance asyx; **° and a weak
investigated[2,3] in cellular automata and coarse-grained (@ntjcorrelation in the perpendicular directiéeee below
continuum models. It has been recognized that disordeln our modelp(x) represents the spatially varying local ve-
changes local relaxation rules and breaks some symmetrié@city of profile fluctuations, which is motivated by mass
of the dynamics, which may result in a qualitatively different trgnsport in real'lstlc granular and river flow with a preferred
global dynamic state. A distinct class of physical phenomengiréction of drainage. It should be stressed that our model
in driven systems exhibits the scale-free behauidly in the differs from continuum models of SOC studied so far both in

presence of disorder. Examples include energy transport iffs symmetry properties and in qorre!atmns of defec_ts.. Mean-
the integrate-and-fire oscillators with diversify] and while, in models of randomly driven interfacgk3] a similar

L . . disorder term appears in a physically different context.
Barkhaqsen NOISE in §pat|ally d|§ordered ferromagfigls . Using a dyngraic renormgliiationygroup in the hydrody-
Fluctuations of the optlmal path in heterogeneous mater'alﬁamic(HD) limit, we show that this type of disorder repre-
[6] and landscape e_volutlon due to river networks flowmg Nsents a relevant perturbation in dimensials4, leading to
naturally f_ractal environmeri7 -9 also belong to this class a different disorder-induced scaling behavior. We calculate
of dynamical systems.

. . s the critical exponents at fixed points in tkes4—d and &
Most stud|e§ of self-organ!zed (;r|t|ca||($OC) havg been expansions to leading ordgt4]. It is interesting to note that
done on sandpile automata, in which the nonlinearity respon:

sible for SOC is due to threshold condition of toppling. In In the absence of disorder theexpansion to leading order

. . . . ’ yields the exact critical exponents in the HD limit, as dis-
the continuum equation of motion for the dynamic varlableCussed in detail in Reff12]. Using scaling arguments eli-

heighth(x,t), this leads to an infinite series of relevant op- gipje for directed dynamic processes that generate self-affine

eratorsu,¢°h" [10]. Recent numerical simulations of sto- stryctures, we also determine the avalanche exponents in
chastic automata with a “soft” threshold reveal different \orms of the anisotropy exponent.

universality classes of SOC and a phase transition when the Tpe organization of the paper is as follows. In Sec. Il we
probability of toppling is varied11]. Complementary to nu-  introduce the stochastic differential equation with disorder
merical simulations, the renormalization group studies ofyng discuss our motivation for the long-range disorder cor-
continuum equations are aimed at characterizing the criticgl|ations. In Sec. 11l the details of the dynamic renormaliza-
behavior at large distances and long times. Hwa and Kardafon group analysis are given. In Sec. IV we discuss the
[12] introduced a transport equation that is compatible withgritical behavior at disorder-induced fixed points for various
all symmetries of anisotropic flow in open diffusive system, physical values of the parameters and their relevance for the
with the leading nonlinearity. 4 ,h* generated by nonlinear proplems of river networks and strongly disordered dynami-

friction. _ _cal systems. A short summary of the results is given in Sec.
In this work we study the transport equation of open dif-y,

fusive systems in the presence of quenched random drift ve-
locity. We adopt an anisotropit-dimensional model for the

heighth(x,t) transport with Hwa-KardatHK) nonlinearity Il. STOCHASTIC EQUATION OF

DISORDER-DOMINATED NETWORKS

We start with the anisotropic diffusion equation for the
*Electronic address: Bosiljka.Tadic@ijs.si height transporf12] with nonlinear friction
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(c)

and a time-dependenbnconservind-angevin force

Y
(n(x,) (X' 1))=2D8D(x=x)s(t-t"). (2 ’
A
The random term proportional tp(x) locally breaks joint X < o
inversion symmetry, which is obeyed by the remaining terms
[12]. We assume the distribution @i(x) as O
(P(x))a=0, (P(X)p(x"))q= yf(x=x), () . " - x@
q . Gk, ® s
with f(x)=x; x{ . For consistency of the perturbation ex- %q K57 v X

pansion(see belowwe choosea=2- § andc~0(2-2). In ik, A 2 ik, )p(@ 2D vay' af

Eqg. (1) anisotropy signals the existence of a preferred direc-

tion of mass flow, which is the subject of two nonlinear FIG. 1. One-loop diagrams with nonzero contributions(ap
terms (\/2)(9jh?) and yf(x)(djh)% The motivation for and (b) the renormalized propagatofs) dynamic noiseD, and
long-range disorder correlations is as follows. We assumeertices(d) and(e) \/2 and(f) y. The symbols are defined in the
that Eqgs.(1)—(3) describe the evolution of heights.g., of a  bottom line.

granular pile or landscapewhich eventually leads to a self-

organized structured landscape with a network of channelglisorder correlations in the direction of transport. The trans-
along which the material is being eroded. It is important toverse correlations are then determined self-consistently by
keep in mind that these channels appear dynamically as the fluctuations in the critical steady stdte7]. Notice that
result of diffusion, which is influenced by an interplay of the the difference 2-z is a measure of the strength of critical
above two nonlinear terms. Therefore, an initial configurafluctuations(see Sec. I

tion that is based mainly on the configuration of disorder

helps to imprint the channels by setting locally most prob- .\ Avic RENORMALIZATION GROUP ANALYSIS

able drift paths. However, since the system is open and re-
peatedly perturbed by the nonconserving naisehe once The dynamic renormalization group consists of eliminat-
established network of channels is likely to evolve undering fast modes with subsequent rescalitg:bt, x;—bx;,
further perturbations, reaching a new stationary configurax, —b¢x, , andh—b*h, wherez, ¢, andy are the dynamic,
tion, in which effects of disorder are altered. An example ofanisotropy, and roughness exponents, respectively. Naive di-
dynamically modified disorder effects can be found in themensions of the coupling constants in Ef) are then ob-
field-driven random Ising model, in which pinning by local tained from the scaled equation

random fields appears weakened by sweeping an avalanche

of flipped spins over certain pinning centers. The size of an

! . L ) A
avalanche is the subject of the dynamics itself. Another in-  gh/gt=b*"2pjoth+ bZ_2§VL[')lJZ_h_bZ+X_1§&”h2
teresting example is represented by erosion of natural land-
scapes due to water flow. In the course of evolution, the +b2 T Hop(x) dyh+ b2 X g,

originally preferred local drift directions become uneffective
at sites that are found inside the correlated area that alread . 1
drains to a different direction. Observations in natural rivervyhere‘ according 1t0 Eq¢2) and (3), we hﬁveﬂp: —2(
basins reved|15,16] a persistent correlation between the av- —¢¢) and u,=—3[1+{(d—1)+z]. In (k,w) space the
erage soil slope at a siteand areas(x) that drains to that €duation of motion becomes
point asVh(x)~[s(x)]~ Y2 Here the drainage are#Xx) is
not fixed but is determined self-consistently by the dynamics = - .
itself. A nice example of this relation at work is shown in h(k,0)=Go(k,)
Ref. [16], where a procedure numerically iterated delf-
consistencyields a self-similar river network. In the station-
ary critical state we have(x)~x|'|3”¢(xl/xﬁ), whereD is
the fractal dimension with respect to parallel length gnd
the anisotropy exponerisee below. It is reasonable to as- Xp(Qh(k—q,0—o')
sume that forx—co the scaling functionp(r) behaves as a
power ofr, i.e., ¢(r)~r". Therefore, for thentermittent
dynamic regiméwhere eroded material from the argx) is  with the propagatorGo(IZ,w)= y”kﬁ+ Viki_iw' Iterating
accumulated at point building up a shear stress(x) and  Eq. (4) and eliminating fast modes leads to a diagramatic
erupting when the stress exceeds a critical valyg the  expansion(see Fig. 1 In the HD limit k, »0, w—0, K
leading nonlinear term is proportional fo(Vh)lel?”ﬂ’gxf. <1, keeping the lowest respective orderspf we calculate

In order to mimic the above processes in which the effectshe one-loop contributions to the recursion relatign$
of disorder are being dynamically modified, we only fix the = In b, Sy=2'"97~%2/T"(d/2)]:

R N[ dg do’ . |
n(k,w)—lknzjwﬁh(q,w )

I . ( d% de’
xh(k—q,0— )—|J'—d(277) ﬁ(kll_qll)

: 4
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TABLE |. Scaling exponents at fixed points R and M to leading order inetlamd 6 expansions. Also
listed are the mean-field exponents at fixed point G and the exact HK results at fixed point P.

Fixed
point z 4 -X a T
G 2 1 1 2 3/2
= 6 3 d-1 10-d 13—d
7—d 7-d 7—d 7—d 10-d
36+2¢ 36+2¢ 2e 36+2¢ 3 96+6e
M 2— 1- 1- — 2— ——
9 18 3 18 2 216
) 26 1) 5 € ) 1) 3 46
R 3 =3 =272 3 2 1
dy 37 On approaching a fixed point, we have from Ef) x
a7 V|72t g5 Saut2mSyw), (5 =[z(3—d)—2+7Syw]/4. From Eqgs(7) and(8) we find
9 b2y (d-1r-1+Tsw 6) du 9. 97
d/ X 2247 a7 - u f_anU_TSdW ; 9
dA INE: 7—d 3 377'8 .
ar MNam 97z s “ dw 3m ]
; as=w 65— Esdu—:g?TSdW_, (10
5= 22-2-a+ oL+ mSyw). ®

where the small expansion parameters ere4—d and 6
Here the effective couplings and w are found to beu =2—a and we have chosesr (2—z)/2=1—¢. Notice that
=(\2D/v}) (v /v,) D2 andw=(y/vf) (v /v,) "2 A this choice ofc is selected by the structure of the true ex-
few comments are in ordefa) As usual in systems with pansion parameters andw, so thate and 6 appear as their
guenched randomness, the perturbation expansion is madeaatomalous dimensions, respectively. Also, the disorder cor-

fixed random noisep(q) and subsequently the graphs arerelationsf(x;,x, ) become isotropic whefi=1, correspond-

averaged over the distribution @{(q) leading to a dashed ing to the_ isc_)tropic transport. It should't.)e stressed that for
“a anisotropic disorder correlations no additional parameters are

line with a cross, which carriegq “q; . All graphs must be _ .
connectedbefore this step is taken, thus leading at most togenerate_d to Ie*adlyg order. Equatlc(_B}s and(10) have four
E ed points (*,w*): G for Gaussian (0,0), P for pure

one cross-dashed line per loop. Due to the quenched natu .
: ; ] 4e/97rSy,0), R for random (Q3/37Sy), and M for mixed
of the random noisgcf. Eq. (3)], a loop with a cross-dashed (32(36- 20)/97Sy . (4e— 35)/97Sy).

line involvesno frequency integration. However, averaging . . :

over the dynamic noise according to Ef) leads to a circle- From Eqg.(5) the dynamic exponent is obtained as
solid line with two propagators and a factob2and an inte-

gration over the internal frequencip) According to Eq.(4),

the wiggly line associated with the vertex2 carriesik, z=2

with K being the momentum of the incoming line, whereas

the wiggly line associated with the vertgXq) carries the

momentumi(k;—q) of the outgoing line. Hence both Using Eq.(11) and the above scaling relations betweed,
graphs in Figs. (a) and b) for the renormalized propagator and x, we find the exponents in the and 5 expansions,
are proportional td(k;—q)ik; and thus do not contribute to Wwhich are shown in Table I. Also shown are the exponents
the vertexv, . Therefore, we havalv, /d/=v, [z—2¢], andr for the probability distribution of duratiof(t)~t™“
leading to/=z/2. This argument is valid to all orders in the and size of relaxation clustef(s)~s™ ", which can be ex-
HD limit. (c) The additional three graphs far2 andy (not  pressed in terms of using the following scaling arguments
shown), which are obtained by replacing the cross-dashedsee also Re{8]). Forstrictly directionaldiffusion, the clus-
line in Figs. 1d) and Xf) with a circle-solid line(there are ters can be visualized as effectively planar structures with the
three such graphs for/2 and three fory, corresponding to a fractal dimensionD=1+{. The average size of clusters
circle-solid line along one of the three sides of the triangle scales ags)~L%, whereL is the linear system size and
however, give a null contributioisame as in Ref[12]). d, =1 for the self-affine cluster§or which { < 1). On the
Similarly, a contribution of the graph for dynamic noie  other hand,(s)~LPI*"7 and the scaling relatiorD(~
which is obtained by replacing the cross-dashed line in Fig—1)=a—1 holds in the steady state. Using these relations,
1(c) by a circle-solid line, vanishes. we find 7=(1+20)/(1+¢) anda=1+¢.

37 . R
—Esdu —27Sgw*. (11
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0.40 TABLE Il. Numerical values of the critical exponents at various
fixed points for6=1 ande=1 (first three rows and §=1 ande
=2 (last three rowps

0.30
Fixed

W 020 point z 14 X o T €
P 1.5 0.75 -0.5 1.75 1.428 1
M 1.44 072 -0.33 1.72 1.418 1

0.10 R 133 066 -025 166 140 1
P 1.2 0.6 -0.2 1.6 1.375 2

0.00 b ‘ ‘ ‘ M 1.22  0.62 0.33 162 1371 2

0.00 0.10 0.20 0.30 R 133 066 0.25 1.66 1.40 2
u
0.8 which are listed in Table Il. Heré=1 was taken as gypical
example of long-range correlations. Notice that in contrast to
€, which is restricted to integer values, the paramétenay
0.6 1 vary continuously in the range<05<2. It is noteworthy that
the exponents at all three fixed pointsdis 2+ 1 are close to
W o4 | valu_es measured in natural river netwoi&Ns). For river
basins around the world the exponents are folifidto be
1 7=1.41-1.45, a=1.67-1.92, {=0.67-0.92, and Hack’s
0.2 J exponenth=0.54-0.6 satisfying the scaling relatiom
=1/a. The roughness exponent for large length schl€s
e was found in the rangg=0.3—0.55. Variations in the val-
0.0 — ‘ s e ues of the exponents depend on geographical location where
0.4 -0.2 0.0 0.2 0.4 0.6

they have been measured and can be related to locally domi-
nated erosion mechanisif20]. With regard to the results in
FIG. 2. Flow diagrams fos=1 and(top) e=1 and (bottom) Table Il, we would like to point out the followindi) In the
e=2. Large circles represent fixed points described in the text. absence of disordey=0, corresponding to the limit studied
by Hwa and Kardar in Ref12], the exponents are within the
IV. UNIVERSALITY CLASSES OF DISORDER-INDUCED range of the above RN exponents, indicating that the HK
CRITICALITY model of flowing granular piles captures the basic features of
landscape evolution. It should be stressed that in this case
As seen from Table I, the fixed point G represents mean¢y=0) the values of the exponents are exact and are not a
field SOC, which becomes unstable for dimensidns: 4 subject of higher-order corrections in the perturbation expan-
with respect to both nonlinearity and disorder. The relativesion (see Ref[12] for detailg. (ii) For finite disordery+0
stability of the other three fixed points in the,(v) plane two more fixed points are accessible, depending on the initial
depends on the parameterand § and on the initial value of values ofy and\. Therefore, variations of numerical values
the ratiow/u. In Fig. 2 we show the flow diagrams of Egs. of the exponents can be attributed to different universality
(9) and(10) for =1 ande=1 and 2.(For convenience we classes, which are accessible for varying initial strengths of
use reduced couplindd=7S4u/32 andW==wSyw.) In the  disorder. In particulare decreases from 1.75 at the HK limit
casee=1, the competition between disorder and théeerm  to 1.72 at fixed point M and eventually to 1.66 at fixed point
leads to two different types of behavior, which are separate® by increasing disordey at fixed A (see Fig. 2, top In
by the lineW/U=1. The fixed point M, whose domain of addition, the exponents at fixed points M and R vary with the
attraction is the lineV/U=1, is unstable in the direction range of disorder correlation$ (values ofé in the interval
perpendicular to the critical lin@/U=1, representing a 0<§<2 correspond to long-range correlatipng-or in-
phase transition from pure HK to disorder-controlled SOCstance, for6=1/3, e=1 we have at fixed point M'=0.83,
with increasing variance of disorder. We find qualitatively =1.83, andr=1.45. It is interesting to note that the same
the same behavior for short-range correlatioAs-2) in d values for cluster exponents are obtained by the numerical
=2. In the case of long-range correlated defecis{) in  procedure in Ref[16]. According to the discussion in Sec.
two dimensiongcf. Fig. 2 the fixed point M moves to the Il, we have that for{=0.83 the exponent in the leading
negativet region and becomes spirally attractive. The entirenonlinear term become3— {(1—{)=1.69, which is close
first quadrant flows towards the pure HK fixed point P. Theto 2— §=1.67. On the other hand, for shorter disorder cor-
flow lines are first attracted to a section of the curve connectrelations, e.g., fo6=3/2, we finda=1.64 andr=1.39. The
ing the fixed points R and P approaching the fixed point Amportance of disorder for river networks has been also
under a nonzero angle. pointed out by Caldarelkt al.in Ref.[21], where numerical
Taking the analytic continuation t8—1 ande— 1 or 2,  simulations of a cellular automaton model of randomly
corresponding to physical= 2+1 or 1+1 dimension$18], pinned landscape evolution yields the exponents very close
respectively, we obtain numerical values of the exponentdp those at fixed point Msee Table ). Moreover, in the
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absence of pinning, the same authfi?4] found the expo-  relation holds:8/v=a'. Here v is the parallel correlation

nents close to HK fixed point P givenin Table Il. ~  |ength exponent and’=a—1 is the exponent of the sur-
At fixed point R, representing the universality class in theyjyal probability distribution. At fixed point M fors=1 and

strong disorder limit { =0), the exponents are in very good e=1 we find 8=0.78 and7=1.08. A similar value 8

agreementcf. Table Il) with the results of numerical simu- —0.86 was found in the stochastic cellular automafisee
lations of Ref[9], suggesting small higher-order corrections Ref. [113)]]

(d,=0.98+0.02, {=0.66+0.02, and r=1.40=0.02) for

self-affine networks with disorder-dominated basins in two

dimensions. It has been argued in the literaf@;8] that the V. CONCLUSIONS

problem of optimal path in strongly disordered medium and ) ]
Eden growth processes also belong to this universality class. We have demonstrated that our transport equation with
In these systems the disorder effects are dynamically modduenched disorder in the drift velocity wieinisotropiclong-

fied. Eden growth is not defined as a disordered pr0b|emr;ang_e_correlatlons c_lescrlbes _two _d|fferent unlversal!ty clas_ses
however, an effective quenched disorder with Iong—rangé)f critical t_)ehawor in open diffusive sygtems. For.flnlte dis-
correlations is self-generated by the blocking effects of preorder we find SOC relevant for the scaling properties of frac-
viously occupied site§see Ref.[6(b)]]. Similarly, in the tal river .network_s. For low disorder a crossover to the
above-mentioned example of disorder-dominated basins igSymptotic behavior controlled by the HK fixed point occurs
two dimensions sites that are already connected at time [;_2]. At critical variance ofd|sor_der a continuous phase tran-
influence the course of the process at later time steps. [gition occurs between the two d_|fferent types of steady states:
numerical simulations of cellular automata models, such a§hannel-type flow for strong disorder and low friction and
done in Refs[9,21,11, for instance, a particular range of surfacehke flow for onv disorder and high friction. The com-
disorder correlations isot specifiedThe exponents are mea- Parison of the numerical values of the avalanche exponents
sured in the emergent stationary critical state, which is ob&t fixed points in 2-1 dimensions with the exponents mea-
tained after many successive updates. To our knowledge, $ired in natural river networks] is quite satisfactory. Our
stochastic differential equation for dynamically varying dis- &nalysis suggests that natural river networks may result from
order effects in these systems has not been considered so i€ interplay between quenched disorder and an effective

Here we argue that Eq1) with disorder correlations of the no_nlinear friction. Variations in th_e range of (_jisorder corre-
1-¢ might capture the critical properties of lations 0< <2 appear as a possible underlying mechanism

type f(x)~xj x] _ >IoIe
that explains the observed variations in the exponents of

these dynamical systems. o . . X
Following the general scaling arguments of Ra2], we natural networks. Adistinct universality class of disorder-

estimate the behavior of the order parameter, defined in andf?duced self-organized criticality is represented by the fixed

ogy to cellular automata by the average outflow current ~ POInt R of our model, whera =0. Evidence collected by
numerical simulations in Ref$6,9] suggests that a number

dt of other disordered dynamical systems should have the same
<J(W)>=f?f d?Ix, (L., L W). (12)  critical behavior described by the fixed point R. In the
present work we pointed out the importance of long-range
In the steady stat¢J(W))=1, and exhibiting fluctuations correlations in this class of self-organizing disordered sys-
near the transition, hence we ha{®W))~W?. For small ~ tems.
disorder the local current isj~h?, thus we have

JLy X, LW~ bZXj(b’lLH b7, b7 %, b #wW) or
(L x LW) ~ X g(tx 74 Wix, 9%). Inserting the last ACKNOWLEDGMENTS
expression into Eq12) and after extracting formally the/ This work was supported by the Ministry of Science and

dependence, we find=[2x+ {(d—1)]/6. The directed dif- Technology of the Republic of Slovenia. | am grateful to Al
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