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Anomalous transport in external fields: Continuous time random walks
and fractional diffusion equations extended
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School of Chemistry, Tel Aviv University, 69978 Tel Aviv, Israel
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The continuous time random walk~CTRW! in a homogeneous velocity field and in arbitrary force fields is
studied. Within the extended CTRW scheme, anomalous transport properties due to long-tailed waiting time or
jump length distributions are consistently introduced. The connections with generalised diffusion equations in
a potential field are discussed, these equations being of fractional order. In particular, the problems of a
constant and a Hookean~linear! force, i.e., of a linear and a parabolic potential, are worked out.
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I. INTRODUCTION

In connection with the growing interest in the physics
complex systems, anomalous transport properties and
description have received considerable interest. They
application in a wide field ranging from physics and che
istry to biology and medicine@1–4#. Among others, two
powerful schemes have been established to account fo
typical features of transport in complex systems: Le´vy statis-
tics, and non-Gaussian propagators, i.e., processes w
Fick’s second law is no longer valid. On the one hand, dat
back to the 1960s, there is the continuous time random w
~CTRW! theory, which allows one to extend classic
Brownian random walks to variable jump lengths and wa
ing times between successive jumps, both drawn from ap
priate probability density functions~PDF’s!, that may belong
to Lévy stable laws and therefore do not possess a fi
variance or even a first moment@5–8#. The CTRW with
long-tailed waiting timePDF’s had originally been launche
for the description of anomalous charge carrier transpor
semiconductors@6,9#. On the other hand, there have be
generalizations of the diffusion equation including deriv
tives of arbitrary order, so-called fractional diffusion equ
tions @10#. In particular, the careful study of fractional rela
ation equations@11# was a considerable initiator in th
promotion of fractional equations. Whereas the CTR
theory has the clear advantage of being based directly
physically motivated random walk schemes, the fractio
equation is often introducedad hocand is thus of a phenom
enological character. Fractional equations can often
solved analytically in a closed form, thus also enabling o
to calculate the spectral functions@12,13# which are, e.g.,
important in NMR or dynamic scattering. Here we will in
vestigate the interrelation between CTRW processes
generalized fractional equations in a comparative sense
meaning of which will be explained below.

Anomalous diffusion is characterized by a mean squa
displacement~MSD!

^~Dx!2&~ t ![^x2&~ t !2^x&2~ t !;Dtg, ~1!
PRE 581063-651X/98/58~2!/1621~13!/$15.00
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with gÞ1, deviating from the linear FickeanMSD. Note that
we use^(Dx)2& instead of̂ x2&, as we will encounter case
where the first moment does not vanish.D is a generalized
diffusion coefficient of the dimension length2/timeg. Such a
scaling of^(Dx)2& as given in Eq.~1! can be found in a rich
variety of physical cases@1–3#. Here we restrict ourselves t
one dimension. Similar considerations, however, can ea
be used to generalize our approach to higher dimension

The CTRW scheme is characterised by a jumpPDF for a
random walker on a regular lattice. This jumpPDF c(x,t) is
the probability density that the walker makes a jump af
some waiting timet of the lengthx. Here we mainly consider
the case where the jump length and the waiting timePDF are
decoupled,c(x,t)5c(t)l(x). The coupled casec(x,t)
5l(x)p(tux) is applied in Sec. II. For a detailed discussio
of both cases, see Refs.@8,14,15#. Herec(t) is the waiting
time PDF and l(x) is referred to as the jump lengthPDF.
p(tux) denotes a conditional probability relating the jum
length and waiting time. One can then show that, in Four
Laplace space, thePDF %(x,t), to find the walker at a given
placex at time t, is given by@8#

%~k,u!5
12c~u!

u

1

12c~k,u!
, ~2!

where here and in the following we indicate transforms
their explicit dependence on the appropriate variables, th
beingk for the wave variable in Fourier space, andu for the
Laplace variable corresponding to the time. The simpl
choice of a Poissonian waiting time and a Gaussian ju
length distribution leads directly back to Fick’s second la
the standard diffusion equation. In Eq.~2!, the term @1
2c(u)#/u is the Laplace transformed sticking probability

F~ t !512E
0

t

dt8c~ t8!, ~3!

the probability of not having made a jump until timet.
CTRW processes are characterized by the existence, or
existence, of a characteristic time
1621 © 1998 The American Physical Society
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1622 PRE 58RALF METZLER, JOSEPH KLAFTER, AND IGOR M. SOKOLOV
^t&5E dt tc~ t !, ~4!

and the second moment

s25E dtE dx x2c~x,t !. ~5!

Diverging ^t& or s2 comes about due to the introduction
broad distributions of either the waiting time or the jum
length distributions. Especially the divergence of^t&, inti-
mately related to the asymptotic behaviorc(t)
;(t/t)212g, 0,g,1 @2,3,8,9#, leads to memory effects in
time, characterized through the temporal fractional differ
tial operator in the corresponding generalized diffusion eq
tions. The notion of memory effects is widespread in co
plex systems; see, e.g., Refs.@3,16,17# and references
therein.

The CTRW theory was developed for regular lattice
sometimes augmented with a boundary condition@6–8#.
There has been little attempt to generalize it to the c
where the random walk takes place under the influence o
external potential. Here we develop an extended CTR
scheme and investigate several special cases, these be
homogeneous velocity field, a constant force, and a Hook
force ~harmonic potential!. The consequences of the occu
ring biases are discussed through the shape of the dist
tion function in Fourier-Laplace space,%(k,u), and the mo-
ments^x& and^x2&. We find interesting dependencies of th
moments on time. Especially in the harmonic potential ca
the results elucidate the competition of the diffusive spre
ing and the restoring force, trying to confine the motion.

There has also been a recent effort to investigate the
lationship between the CTRW and the fractional diffusi
equation approaches@18–21,50#. Here we use the CTRW
scheme, in order to establish fractional order diffusion eq
tions consistently in a potential field. The equations we fi
are unique, as via the derivation the Riemann Liouville c
culus in the integral form is determined. Also, each term
the equations has a fixed fractional order. In this sense
fractional equations may be viewed as extensions of
CTRW approach for smallx and t @18#.

The paper is organized as follows. In Sec. II we disc
the CTRW process in a homogeneous and uniform velo
field. The case of a constant force acting upon the rand
walk is shown to differ from this case in the anomalo
regimes. Here we also introduce the concepts of differ
weights moving to the left or to the right, which we will us
in Sec. IV to introduce nonconstant forces. The Fouri
Laplace representation turns out to be operator valued
Sec. V we deal with the special and physically importa
case of an harmonic potential field, i.e., a linear Hooke
force. Finally, we draw our conclusions, and summarize fr
tional calculus and the estimation of a summation, in
Appendices.

II. CONSTANT VELOCITY:
DIFFUSION-ADVECTION PROBLEM

A modified CTRW scheme in a velocity fieldv(x) was
introduced in Ref.@22#, and applied to an extended Taylo
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flow picture in Ref.@23#. In this modified version, the par
ticles get stuck while they await the next jump. This may
reasonable in a flow through a porous medium where
particles can be trapped in pores. However, in the phys
problem of a freely moving fluid, one would expect that t
particles should be dragged along the velocity field wh
they wait. In this section, we present an exact model wit
the framework of the CTRW, and also discuss two differe
cases of partial sticking in a laboratory matrix.

For a uniform homogeneous velocity fieldv, we intro-
duce the similarity variablej5x2vt for the moving frame.
This reduces the problem to the standard CTRW prob
which simply has to be transformed to the laboratory fram

In the rest frame of the fluid, the frame moving with v
locity v relative to the laboratory frame, the jumpPDF is
given by the standard CTRW expressionc(x,t). Therefore,
following the Galilei transformation to the laboratory fram
the jumpPDF there,f(x,t), can be expressed as

f~x,t !5c~x2vt,t !. ~6!

To see the consequences to the CTRW process in the l
ratory frame, we need to calculate the Fourier-Laplace tra
form of Eq.~6!. Employing the standard theorems of Fouri
and Laplace transforms@24#, one finds

f~k,t !5e2 ivtkc~k,t ! ~7!

in Fourier time space, and

f~k,u!5c~k,u1 ivk! ~8!

in Fourier-Laplace space. Here we note the difference w
compared to the approach in Refs.@22,23#. There, due to the
choice of f(k,u), the variables (k,u) remain uncoupled,
whereas, in our approach,u and k are coupled viav. The
meaning of the Galilei transformation in Eq.~6! within the
CTRW framework is the following. After a waiting timet,
drawn from the waiting timePDF c(t), the jump length of
the particle is corrected by the distance covered by the m
ing environment during that time. That is, the particle
effectively dragged along with the fluid.

A. Brownian motion in a constant velocity field

First, consider the case where we find a finite charac
istic time t and a finite variances2. In the (k,u)→(0,0)
limit, we have

f~k,m!5
1

11~u1 ivk!t
e2s2k2

;12~u1 ivk!t2s2k2 ~9!

for the jump PDF, where we assumed a Gaussian jum
length, and a Poissonian waiting time distribution. From E
~2! andf(k,u), we obtain

%~k,u!5
1

u1 ivk1s2t21k2
, ~10!

which leads to

u%2152 ivk%2Dk2%, ~11!
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with D5s2/t. Assuming the initial condition%(x,0)
5d(x), the following partial differential equation is derived

%̇~x,t !1v%85D%9 ~12!

in (x,t) space, which is the diffusion-advection equati
@25,26#. The moments of thePDF %(x,t) can be calculated
directly from %(k,u) via the relation

^xn&~u!5 i n lim
k→0

dn%

dkn ~13!

and a Laplace inversion. One thus arrives at the well-kno
results

^x&~ t !5vt, ~14a!

^x2&~ t !52Dt1v2t2, ~14b!

^~Dx!2&~ t !52Dt ~14c!

with a linearMSD. In Eq. ~14b! we recognize the sum of th
‘‘molecular’’ diffusion and the contribution of the velocity
field. In his notation, Le´vy calls the equivalent toD the ve-
locity of spreading~vitesse de dispersion!, and the equivalen
to v the probable velocity~vitesse probable! ~Ref. @25#, p.
66!.

B. Dispersive motion in a constant velocity field

Next let us consider the case of a diverging characteri
time ^t&→` and a finite variances2,`. This case can be
modeled via a waiting time distributionc(u)51/@1
1(ut)g# in Laplace space and a Gaussian jump lengthPDF,
as before. We encounter a situation where the Laplace tr
form of the sticking probability,@Eq. ~3!# is

F~u!5
12c~u!

u
;t~ut!g21 ~15!

in the rest frame, which is explicitly dependent onu. To
preserve the Galilei invariance

%~k,u!→%~k,u1 ikv ! ~16!

of the propagator which is defined through Eqs.~2! and ~3!,
we now have to choose

F~u!→F~u1 ivk!;tg ug21

3S 11 i ~g21!vu21k2
~g21!~g22!

2
v2u22k2D

~17!

for the sticking probability in the laboratory frame, expan
ing up to second order ink. This means that we have t
assume that the particle is dragged along with the velo
field while it awaits a jump. The choice ofF(u)
5f(k,u)uk50 , in accordance withc(u)5c(k,u)uk50 in
standard CTRW theory, would violate the Galilei invarian
of the problem, leading to a partial sticking in the laborato
matrix, as we will discuss in Sec. II D.

We combine Eq.~17! with
n

ic

s-

-

ty

f~k,u!5
1

11~ut1 ivtk!g e2s2k2
;12~ut!g

3S 11 igvu21k2
g~g21!

2
v2u22k2D2s2k2,

~18!

and thus arrive at the Fourier-Laplace propagator

%~k,u!5
1

u1 ivk

1

11Dk2u2g ;
1

u1 ivk1Dk2u12g

~19!

in the k→0 andu→0 limits.
We again compute the moments, and find

^x&~ t !5vt, ~20a!

^x2&~ t !5
2D

G~11g!
tg1v2t2, ~20b!

^~Dx!2&~ t !5
2D

G~11g!
tg. ~20c!

That is, we have the simple result that the particle mo
dispersively in the rest frame and the distribution is shift
by the dragging. We will see below~Sec. II D! that this case
is significantly different from the case of partial sticking
the laboratory matrix. Of course, for the limitg→1, we
come back to the standard diffusion-advection problem.

The corresponding generalized diffusion equation to
result in Eq.~19! can easily be established@18,20#, the result
being

%̇~x,t !1v%85D
]12g%9

]t12g . ~21!

Here, on the right-hand side, we find a fractional different
tion of order (12g), whereas the left-hand side preserv
the shape of the standard diffusion-advection equation. In
dispersive case underlying Eq.~21!, this fractional differen-
tial equation, together with the initial condition%0(x)
5d(x), and assuming natural boundary conditions, conta
the same information as the CTRW formalism, leading
Eq. ~19!. For both approaches we find a stretched Gauss
solution in the asymptotic limit. Note that Eq.~21! can be
recast in the form@27#

]g%

]tg 2
t2gd~x!

G~12g!
1

]g21v%8

]tg21 5D%9, ~22!

where now the initial condition is directly incorporated. Bo
Eqs.~21! and ~22! reduce to Eq.~12! for g→1.

C. Enhanced motion in a constant velocity field

Let us now come to the case of finitet,` and diverging
s25`. Here we take a Poissonian waiting time and Le´vy
jump length distribution which we write in Fourier space
the forml(k)5e2sbukub. In the same spirit as before, we a
led to the result
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%~k,u!5
1

u1 ivk1Dukub
, ~23!

with the generalized diffusion constantsb/t. The diver-
gence of the second moment underlying Eq.~23! is due to
the possible occurrence of very long jumps which are
characteristic forLévy flights. In (x,t) space, the fractiona
diffusion equation@18#

%̇1v%85DRb%, ~24!

is found corresponding to Eq.~23!, whereRb is the Riesz
derivative defined via

F@Rb f ~x!;k#5 i @b#11ukub f ~k!, ~25!

see Ref.@28#. Here, we choose thei @b#11 prefactor to pre-
serve the standard differentiation theorem of the Fou
transform.@•#[ int(•) denotes the Landau bracket taking t
integer value of its argument.

Dealing with these kinds of stable distributions, one oft
calculates the fractional~lower order! moments@29#. Re-
stricting ourselves, for example, to the range 1,b,2, how-
ever we can calculate the mean

^x&~ t !5vt, ~26!

which turns out to be the same as in the normal diffus
advection case. Thuŝx&(t) describes the dragging alongv.
The random motion is symmetric and thus cannot affect
first moment. Again, choosingb→2, the normal diffusion-
advection equation is recovered.

The divergingMSD, as seen from Eq.~23!, makes the
calculation of transport properties problematic. This can
overcome by introducing finite velocities of the walke
@8,30#. To account for a finite speed of propagation, o
often introduces theLévy walk model with a coupling of
waiting time and jump lengthPDF leading to a time ‘‘cost’’
of long jumps. A usual choice is@8#

c~x,t !5Cuxu2md~ uxu2tn!. ~27!

Three interesting cases that stem from the choice of Eq.~27!
can be distinguished.

The first case involves a finitêt& caused by the inequality
nm.2. Assuming furthern(m22),1, one arrives at the
jump PDF

c~k,u!;12tu2s2k2un~m22!21. ~28!

Following the above procedure, we calculate the propag

%~k,u!5
1

u1 ivk1Dk2un~m22!21
, ~29!

which is to be compared with Eq.~38! in Ref. @8#. From Eq.
~29!, we deduce the moments

^x&~ t !5vt, ~30a!

^x2&~ t !52D
t21n~22m!

G~31n@22m#!
1v2t2, ~30b!
o

r

n

n

e

e

or

^~Dx!2&~ t !52D
t21n~22m!

G~31n@22m#!
~30c!

describing enhanced transport between the linear and ba
tic cases. The corresponding fractional equation takes on
form

%̇1v%85D
]2@12n~m22!#%9

]t2@12n~m22!#
, ~31!

where the fractional operator on the right-hand side rep
sents an integral operation; see Appendix A. The fractio
diffusion equation~31! leads to a modified GaussianPDF in
the long distance long time limit@19,20#. The CTRW
scheme, however, leads to a power law behavior, and
peaks atuxu5tn @31–33#.

The second and third cases refer to an infinite charac
istic time, i.e., 1,nm,2. The first possible choicen(m
22).1 leads to the dispersive case

c~k,u!512~ut!nm212s2k2, ~32!

matching the problem already discussed in Eqs.~19!ff. The
third and last case follows fromn(m22),1. This choice
leads to the jumpPDF

c~k,u!512~ut!nm212Dk2~ut!n~m22!21, ~33!

and consequently to the propagator in Fourier-Laplace sp

%5
1

u1 ivk

1

11Dk2u22n ;
1

u1 ivk1Dk2u122n , ~34!

which is to be compared with Eq.~43! in Ref. @8#. For the
moments we end up with

^x&~ t !5vt, ~35a!

^x2&~ t !5
2Dt2n

G~112n!
1v2t2, ~35b!

^~Dx!2&~ t !5
2Dt2n

G~112n!
, ~35c!

so that in this case we again have a part ballistic for theMSD

as in the dispersive case~19!ff. Now, however, 2n can be
larger or smaller than 1, describing enhanced or disper
motion, respectively. Finally, the corresponding fraction
equation is of the form

%̇~x,t !1v%85D
]122n%9

]t122n
, ~36!

similar to Eq.~21!, where now the right-hand side can eith
be a fractional integration or differentiation, according to t
value ofn.

D. Partial sticking in the dispersive case

In the above discussion we have seen that, for diverg
^t&, we have to be careful preserving the Galilei invarian
when we write down the sticking probabilityF(u) in the



as
th
th

ile
n
ry

t

o

E

w

p
ar

q

e
a
on
n
he

fs.
n

nt

ed
-

ob-
r

-

the
-
es

ion
in

me,
Via

ous
ve-
e

ex-

s

e
,
in

in
ob-

stant
ady
lts

nly

, so

PRE 58 1625ANOMALOUS TRANSPORT IN EXTERNAL FIELDS: . . .
laboratory frame. On the other hand, if we consider a c
where the diffusing particle becomes temporarily stuck in
laboratory matrix, we should observe deviations from
moments in Eqs.~20a!–~20c!.

We can model partial sticking in such a way that, wh
the particle awaits its next jump, it is not to be moved alo
with the velocityv, but instead is trapped in the laborato
matrix. This means that, unlike Eq.~17!, we have to choose
F(u) according to Eq.~15!, which leads to a Galilei varian
propagator

%~k,u!5u21
1

11g ivku212
g~g21!

2
v2u22k21Du2gk2

.

~37!

The results for the moments are now

^x&~ t !5gvt, ~38a!

^x2&~ t !5
2D

G~11g!
tg1

g~g11!

2
v2t2, ~38b!

^~Dx!2&~ t !5
2D

G~11g!
tg1

g~12g!

2
v2t2. ~38c!

In this case, the velocity dependence does not cancel
quite similar to the results in Ref.@23#. Here, a ballistic be-
havior is found, in contrast to the result}t2g in @23#. How-
ever, the velocity is scaled by the factor 0,g,1.

Regarding the generalized equation corresponding to
~37!,

%̇1v%85
g~12g!

2
v2

]21%9

]t21 1D
]12g%9

]t12g , ~39!

we recognize the division of the transport process into t
different mechanisms: a dispersive part characterized byD,
and a ‘‘ballistic’’ part. In this process, the particles that jum
often are separated more efficiently from those which
stuck.

The consequences of a comparison of the results in E
~20a! and ~20c! with Eqs. ~38a! and ~38c! is interesting in
respect to experimental measurements. Consider, for
ample, the measurement of the moments in a ground w
flow or the flow through a porous system. Our calculati
shows explicitly that a distinction between free dragging a
partial sticking is, at least in principle, easily possible by t
measurement of theMSD of the quantity of interest.

Similarly, corresponding to the model of Eq.~33!, we
calculate the moments

^x&~ t !5~nm21!vt, ~40a!

^x2&~ t !5
2Dt2n

G~112n!
1

nm~nm21!

2
v2t2, ~40b!

^~Dx!2&~ t !5
2Dt2n

G~112n!
1

3mn2~mn!222

2
v2t2,

~40c!
e
e
e

g

ut,

q.

o

e

s.

x-
ter

d

again reducing to the standard case formn→2.
Let us discuss the differences to the model in Re

@22, 23##. Starting off from the diffusion-advection equatio
~12!, an extended jump lengthPDF of the form l(k)51
2 i tkv2tDk2, k→0 is assumed, which takes into accou
the shift due to the velocityv in an effective way, via the
mean timet of the Brownian process. For the generaliz
model, a finite ‘‘advection time scale’’ta is assumed, lead
ing to a modified jumpPDF f(x,t)5c(x2vta ,t), which
clearly differs from our approach@Eq. ~6!#. In the Brownian
case both models lead back to the diffusion-advection pr
lem. For a case with diverginĝt&, however, we encounte
the temporal evolution of the moments according to

^x&~ t !5
Avtg

G~11g!
, ~41a!

^x2&~ t !5
2Dtg

G~11g!
1

2A2v2t2g

G~112g!
, ~41b!

^~Dx!2&~ t !5
2Dtg

G~11g!
1A2v2t2gS 2

G~112g!
2

1

G~11g!2D ,

~41c!

with A5ta /tg. The introduction of the microscopic advec
tion time scaleta in Refs. @22,23#, the physical mechanism
of which is unclear, causes a sublinear dependence of
mean^x& on t. This might imply some kind of countermo
tion, which might be of relevance for molecular machin
moving actively against the velocity.

In this section we have shown that the diffusion-advect
problem with a homogeneous velocity field can be treated
the same way as a standard CTRW problem in the rest fra
and can be exactly mapped back to the laboratory frame.
this method, a straightforward generalization to anomal
transport is possible. The walkers are dragged along the
locity field while awaiting their next jump, and thus we hav
found a more direct generalization in comparison to the
tension presented in Refs.@22,23#.

III. CONSTANT FORCE PROBLEM

Here we start off from a different point of view. Let u
regard the master equation approach@7,8# in a biased envi-
ronment. By this we mean that for each step w
have a different probability to go left or right, that is
a constant force. Similar considerations may be found
Refs.@26,29,30,34#. We will see that this approach leads,
general, to a different result than the constant velocity pr
lem in Sec. II, as we expect. In the constantv case the
system is already in a stationary state, whereas, for a con
force, the particle is accelerated before reaching a ste
state. This difference will in the fractional case lead to resu
where memory effects are important, and stationarity is o
reached for very long times.

Let us assume a process with a nondiverging variance
that we can write the jumpPDF in the form

c~x,t !5c~ t !l6~x!, ~42!

with
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l65@l1~x!Q~x!1l2~x!Q~2x!#, ~43!

where Q(x) is Heaviside’s jump function. For a consta
bias, let us choosel15Aa/p exp$2ax2% and l2

5Ab/p exp$2bx2%. The choice of Eq.~43! becomes clear
when we regard the master equation in its integral form

%~x,t !5E dx8E
0

t

dt%~x8,t!c~x2x8,t2t!1f~ t !d~x!,

~44!

the continuum version of Eq.~19! in Ref. @7#. If x8, the
starting point of the jump leading tox, lies to the left ofx,
then of coursex2x8.0; thus l1 determines the jump
length for a jump to the right, and vice versa.l1 and l2

have different widths. This means that the probability
jump to the left is weighted differently from that to jump t
the right, and so each jump is biased.

To calculate the Fourier-Laplace transformc(k,u), we
have to compute the Fourier transforms ofl6. Due to the
Heaviside functions, this becomes

l6~k!5@lC
1~k!1lC

2~k!#1 i @lS
1~k!2lS

2~k!#, ~45!

the indicesC/S denoting the Fourier cosine and sine tran
forms @24#.

In the above case, we calculate

c~k,u!5@12~ut!g1O~u2!#

3S F1

2
2

k2

8a
1

1

2
2

k2

8b
1O~k4!G

1 i F k

2Aap
2

k

2Abp
1O~k3!G D

;@12~ut!g#S F12
k2

8 S a1b

ab D G
1 i F k

2Ap

Ab2Aa

Aab
G D

;12~ut!g2
k2

8

a1b

ab
2 i

k

2Ap

Aa2Ab

Aab
. ~46!

Thus we end up with

%5
~ut!g

u

1

~ut!g1 i
k

2Ap

Aa2Ab

Aab
1

k2

8

a1b

ab

~47!

for the PDF, from which we can calculate the moments

^x&~ t !5
Aa2Ab

2ApAab

~ t/t!g

G~11g!
~48a!

^x2&~ t !5
a1b

4ab

~ t/t!g

G~11g!
1

~Aa2Ab!2

2pab

~ t/t!2g

G~112g!
,

~48b!
-

^~Dx!2&~ t !5
~Aa2Ab!2

4pab

2G2~11g!2G~112g!

G~112g!G2~11g! S t

t D 2g

1
a1b

4ab

~ t/t!g

G~11g!
. ~48c!

Note the transition from the anomalous behavior prop
tional tg to the t2g régime. This result differs from Eqs
~20a!–~20c!, but is very similar to Eqs.~41a!–~41c!.
Whereas we find some kind of stationary problem in t
constant velocity model, here we have an accelerating fo
In the standard caseg51, both results become the same.
the fractional case, however, the memory effects in the fo
term do not allow us to reach a truly stationary velocity ca
also see the discussions in Refs.@35,36#. This may also be
seen in the corresponding fractional diffusion equation in
field:

]g%

]tg 2
t2gd~x!

G~12g!
1

]F%

]x
5

]2D%

]x2 , ~49!

with the force term

F5
Aa2Ab

2tgApAab
, ~50!

and the generalized diffusion constant

D5
a1b

8tgab
. ~51!

Compare this result to Eq.~21!. Here there is no fractiona
integral operator acting upon the advection term. This cau
the first moment to scale liketg instead linearly in time, as in
Eq. ~21!. Clearly, for the symmetric walk, i.e.,a5b, we are
led back to the fractional diffusion equation, or Fick’s se
ond law (g51), respectively.

Let us now regard a generalization for a finite charact
istic time ^t&, but a Lévy-type jump lengthPDF. We choose

l1~x!5
Na

11axa11 , ~52!

l2~x!5
Nb

11bxa11 , ~53!

with aP(0,2), and where

Na5

~11a!sin
p

11a

2p
a1/~11a!, ~54!

and an analogous expression forNb , are the normalization
constants. In the following we give the results of the inte
mediate steps only in terms ofl1. The Fourier sine and
cosine transforms ofl6 can be calculated exactly in terms o
Fox functions@37–39#:
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lC
15

Nap

11a
k21H2,3

2,1F k

a1/~11a!U~1,1/@11a#!,~1,1
2 !

~1,1!,~1,1/@11a#!,~1,1
2 !

G ~55!

~56!

where the expansion is valid in the smallk limit, and

lS
15

Nap

11a
k21H2,3

2,1F k

a1/~11a!U~1,1/@11a#!,~ 1
2 , 1

2 !

~1,1!,~1,1/@11a#!,~ 1
2 , 1

2 !
G ~57!

~58!
-

e

e
e
in

er
n

o
r

r-

to
w

Let

en-
ent

ace

tart
g

ith
Thus, we end up with thePDF in Fourier-Laplace space
~assuming a Poissonian waiting timePDF!,

%5
1

u2 iFk2Dka , ~59!

with the force term

F5V2~a21/~11a!2b21/~11a!! ~60!

and the diffusion constant

D5V1~a1/~11a!211b1/~11a!21!. ~61!

Equation~59! refers again to a Le´vy flight. With the Riesz
fractional operatorRa @28#, the corresponding fractional dif
fusion equation can be written as follows:

%̇1
]F%

]x
5DRa% ~62!

where we find that only the diffusive part of the spatial d
rivatives is affected by the procedure of introducing a Le´vy-
type jump lengthPDF, and thus we end up with the sam
equation as in Sec. II, Eq.~24!. The reason stems from th
difference of Fourier sine and cosine transforms. The s
transformation turns the evenPDF into an odd function where
the smallk expansion starts with a powerk1; under the co-
sine transformation it stays even, and the lowest order t
in k is constant. As in both cases, the zeroth term does
show a dependence of the power ofk on the Lévy index a;
there is no influence of it on the Fourier sine transform. F
a discussion of the coupled CTRW mechanism, we refe
Sec. II.

IV. NONCONSTANT FORCE

Problems involving external force fields are usually fo
mulated in terms of a Fokker-Planck approach@40,41#.
Within this framework, however, the generalization
anomalous transport properties remains equivocal. Here
-

e

m
ot

r
to

e

develop a generalized picture within the CTRW scheme.
us recall the diffusion equation in a potentialV(x) @40#,

%̇5
]V8~x!%

]x
1

]2D~x!%

]x2 , ~63!

which leads back to our previous problem for a linear pot
tial, i.e., a constant force and a constant diffusion coeffici
D. It can be seen, expanding the forceF(x)52V8(x) in a
Taylor series@and similarly forD(x)#,

F~x!5 (
n50

`
1

n!
f nxn:., f n5F ~n!~0!, ~64!

that the corresponding equation in Fourier-Laplace sp
takes on the form

u%2152 ikF̂~k!%2k2D̂~k!% ~65!

52 ik (
n50

`
~ i !n

n!
f n%

~n!

2k2(
n50

`
~ i !n

n!
dn%

~n!. ~66!

Thus the Fourier transform of the jumpPDF becomes an op-
erator valued function.

To see a possible generalization of this problem, we s
by introducing a waiting time distribution, and avoid goin
to Fourier space. In the same spirit as in Weiss’ treatise@29#,
we start off from the master equation~19! introduced in Ref.
@8#, and restrict ourselves to nearest neighbor jumps, but w
a waiting time distributionc(t):
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pj~ t !5E
0

t

dt@Aj 21pj 21~t!1Bj 11pj 11~t!#

3c~ t2t!1dx,0F~ t !, ~67!

where Aj 21 (Bj 11) is the probability to jump from sitej
21 ( j 11) to sitej, andF(t)512*0

t dt8c(t8) is the stick-
ing probability @Eq. ~3!#. A and B fulfill the local condition
A( j )512B( j ). Introducing the expansions

Aj 21pj 21~ t !;A~x!p~x,t !2Dx
]A~x!p~x,t !

]x

1
~Dx!2

2

]2A~x!p~x,t !

]x2 ~68!

and Laplace transforming Eq.~67!, we arrive at

1

c~u! S p~x,u!2dx,0

12c~u!

u D
5p~x,u!2Dx

]@A~x!2B~x!#p~x,u!

]x

1
~Dx!2

2

]2@A~x!1B~x!#p~x,u!

]x2 , ~69!

which can be recast to give

12c~u!

c~u!
p~x,u!2d~x!

12c~u!

uc~u!

52tg
]F~x!p~x,u!

]x
1tg

]2D~x!p~x,u!

]x2 ~70!

in the continuum limit. We have assumed a waiting tim
distribution of the formc(u);12(ut)g for u→0. For the
limit we have considered the expressionsDx/tg and
(Dx)2/tg @29#. Thus

F~x!5 lim
Dx→0

Dx

tg @A~x!2B~x!# ~71!

and

D~x!5 lim
Dx→0

~Dx!2

2tg @A~x!1B~x!#. ~72!

Returning to time space, after choosing an appropriate w
ing time distribution, results in a generalized diffusion equ
tion in a potential field. Especially for the choice of a lon
tailed distribution forc, c(u);12(ut)g for u→0, we find,
the fractional generalized diffusion equation,

]g%

]tg 2
t2gd~x!

G~12g!
52

]F~x!%

]x
1

]2D~x!%

]x2 , ~73!

which reduces to the result in Ref.@29# for g→1. Actually,
the forceF is normalized in such a way that it has the d
mension of a generalized velocity, length/timeg, similar to
the introduction of mass forces in hydrodynamics.
it-
-

Of course, we could also have used the direct general
tion of our procedure in Sec. III. That is, the direct assum
tion of a continuousl6(x) as in Eq.~43!, and knowing that
the Fourier sine transformation will always deliver a fir
order term proportional tok. The result is the same, an
therefore we do not explicitly give the derivation. We al
note in passing that with higher order terms ink, we would
end up with higher order derivatives in the correspond
generalised diffusion equation, thus reaching some kind
Kramers-Moyal expansion@40,41#.

V. SPECIAL CASE: HARMONIC POTENTIAL

In this section we consider the potentialV(x)5V0x2/2,
leading to a linear force fieldF(x)52V0x directed at the
origin. We would thus expect to find aMSD growing in time
very slowly. Especially interesting will be to see the chang
due to generalized transport mechanisms, i.e.,^t&→` or
s2→`. A schematic picture is drawn in Fig. 1. The mod
developed herein is not only of relevance in random w
theory. It is closely related to the problem of a molecu
trapped in the cul-de-sac-like structure of a large prot
molecule, where an escape is only possible through a flu
ating bottleneck@42#. There is also an intimate relation to
problem where the movement is confined by reflecting wa
and a trap is centered in between these walls@43#. It may
also be interesting for reaction kinetics.

The paralleling diffusion equation

%̇5
]V0x%

]x
1D%9 ~74!

shows that the underlying process corresponds to a com
tion between a part responsible for the spreading of an in
population, characterized by the diffusion constantD, and a
part of strengthV0 which tends to confine it. For very sma
D, the equation can be viewed as an inhomogeneous re
ation equation with a parametric dependence onx. Loosely
speaking, this energy-entropy competition, characterized
the relationD/V0 , can also be thought of as a temperatu
controlled process. It is here where we profit from our d
cussion involving the connections of the CTRW scheme a
fractional equations, as the operator-valued express

FIG. 1. Sketch of the random walk problem in a harmonic p
tential V(x)5V0/2x2 ~dashed line!. The peak is approximately a
Gaussian, whereas the flat curve is the stationary solution fo
Brownian random walk in the potentialV.
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l6(k) makes the treatment in Fourier-Laplace space in
cate. Let us therefore start with the diffusion equation in
harmonic potential@Eq. ~74!#. The fractional generalization
of Eq. ~74! is, in analogy to the preceding cases,

]g%

]tg 2
t2gd~x!

G~12g!
5

]V0x%

]x
1D%9. ~75!

The solution is obtained via a separation ansatz@44# ~a dif-
ferent method is shown in Ref.@26#!, i.e., %(x,t)
5T(t)X(x). Introducing the rescaled timet̃5V0t and coor-
dinate x̃5AV0 /Dx, this gives the two ordinary differentia
equations~for simplicity, we drop the tildes!

]gT

]tg 2
t2g

G~12g!
1lT50, ~76!

X91xX81~l11!X50 ~77!

as %(x,0)5X(x)T(0)5X(x) for T(0)51. The solution of
Eq. ~76! is well known, and given by the Mittag-Leffle
function @24#:

T~ t !5Eg~2ltg!, ~78!

which reduces to the exponential forg→1, E1(2lt)
5exp(2lt), as it should. The asymptotic properties are

Eg~2ltg!; H1, t!l1/g

l21t2g, t@l1/g, ~79!

and the series expansion reads@24#

Eg~z!5 (
k50

`
zk

G~gk11!
. ~80!

For the solution of Eq.~77! we introduce the ansatz

X~x!5e2x2/4Y~x!, ~81!

which is well known from the harmonic oscillator problem
quantum mechanics. This leads to an equation forY(x) as
follows:

Y91S l1
1

2
2

x2

4 DY50. ~82!

Here we find the differential equation defining the Herm
polynomials@45#

Yn~x!5e2x2/4HnS x

&
D , ~83!

with the corresponding eigenvaluesln5n. Thus we end up
with the solution for the spatial part,

X~x!5e2x2/2HnS x

&
D , ~84!

so that the general solution of Eq.~75! is given via the sum-
mation of independent solutions@44#:
i-
n %5

1

A2p
(
n50

`
1

2nn!
Eg~2ntg!Hn~0!HnS x

&
D e2x2/2.

~85!

The factorHn(0) refers to the initial condition of starting in
the origin @44#. In the case ofg51, it is possible to rewrite
Eq. ~85! using Mehler’s summation formula@46#:

%5A2p~12e22t!
21

expS 2
x2

4
~11coth t ! D . ~86!

For very short times we would expect the potential
influence the diffusion process weakly, as it has a zero
rivative at the origin. This can be seen directly from Eq.~86!,
from which we find

%;
1

A4pt
expS 2

x2

4t D , t!1, ~87!

the standard Gaussian. At long times, the potential sho
dominate, trying to confine the random motion. To see th
let us calculate the moments. From the symmetry of
problem it is clear that this time there is no first moment.
closed expression can be found for the caseg51:

^x2&~ t !5
2

11coth t
; H2t, t!1

1, t@1, ~88!

which states that the variance cannot grow larger tha
given threshold. Note that the result is still written in th
reduced variables. In the original variables this result rea

^x2&~ t !; H2Dt, t!V0

D/V0 , t@V0 . ~89!

The steeper the potential in comparison to the diffusivity,
more hindered the random walk process becomes.

In the case of 0,g,1 the sum cannot be expressed in
closed form. The convergence makes it possible to excha
integration and summation, so that we can calculate a s
mation representation for^x2& in this case@24,47#. For short
times we have to use a trick to evaluate the summation
we cannot simply take the expansionEg(2t);1, t!1, due
to the occurrence of the summation indexn in the argument
of the Mittag-Leffler function. With a small error, howeve
we evaluateEg(2t);e2t in the initial region. On the other
hand, for long times, we have to take care that the first su
mand (n50) is independent of time. The remaining summ
tion can then be approximated numerically, and reveal
negative term, so that we end up with the limiting cases
the MSD:

^x2&~ t !; H2tg, t!1
12dt2g, t@1, ~90!

where the constantd5u2Ap(n52
`

„nG(@12n#/2)…21u is
positive ~see Appendix B!. Again, we find that in the frac-
tional case the limit is only reached asymptotically via
power law. In the original variables, we find the limitin
behavior
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^x2&~ t !;H 2DV0
g21tg, t!V0

1/g

D/V0 @12d~V0t !2g#, t@V0
1/g .

~91!

The propagators for the standard and dispersive cases
displayed in Fig. 2. Figure 3 shows the normally diffusi
(g51) and dispersive (g5 1

2 ) results, including the
asymptotic behaviors.

Finally, let us make some remarks on the nonsymme
case, when the initial distribution of the random walk pr
cess is concentrated at some coordinatex0 off the origin.
This asymmetry in respect to the origin leads to a drift v
ible in a nonvanishing first moment, and driving the diffu
ing particle toward the origin. This situation is graphed
Fig. 4. The general solution becomes

%5
1

A2p
(
n50

`
1

2nn!
HnS x0

&
D HnS x

&
D Eg~2ntg!e2x2/2.

~92!

For the standard caseg→1, one finds, with Mehler’s for-
mula @29,46#,

FIG. 2. Probability density function%(x,t) for the times t
52(—) andt54( – – – ). The upper line in both cases correspon
to the dispersive random walker, withg5

1
2 . Note that for the

Brownian walker we are almost in the stationary regime.

FIG. 3. Graph of the second moment~variance! of the Brownian
and dispersive (g5

1
2 ) case in a decadic log-log scale. The dash

lines indicate the asymptotes 2t and 2tg. The left-hand side asymp
tote was interpolated by 1 minus a small power oft.
are

ic
-

-

%5
1

A2p~12e22t!
expH 2

~xet/22x0e2t/2!2

2~et2e2t! J , ~93!

which is, for short timest!1 equivalent to the translate
Gaussian

%5
1

A4pt
e~x2x0!2/~4t ! ~94!

without a field. Calculating the moments for the solution
Eq. ~93!, one arrives at

^x&~ t !5x0e2t, ~95a!

^x2&~ t !5
2

11coth t
1x0

2e22t, ~95b!

^~Dx!2&~ t !5
2

11coth t
. ~95c!

Thus the Hookean force field restores the equilibrium sit
tion, pushing thePDF of the random walk back to the cente
where energy and entropy are balanced. For small times
can calculate the moments for the anomalous case, resu
in

^x&~ t !5x0 , ~96a!

^x2&~ t !52tg1x0
2, ~96b!

^~Dx!2&~ t !52tg ~96c!

for t!1. For larger times, the integration*dx %x2 cannot be
evaluated analytically. TheMSD should, however, reach th
same asymptotic fractal behavior as given in Eq.~91!.

VI. CONCLUSIONS

We have considered an extension of the continuous t
random walk scheme to random walks in external fields, a
studied the effects upon the corresponding generalized d
sion equation. For the case of transport in a homogene

s

d

FIG. 4. Nonsymmetric case where the walker is released s
distancex0 away from the origin. The dashed line is again t
potentialV(x)5V0x2/2. The full lines correspond to the propagat
for increasing times. The last curve is the steady state solu
coinciding with the centered case.
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uniform velocity field, we showed a direct generalizati
employing the similarity variable of the wave variable typ
As a consequence of the Galilei invariance condition i
posed upon the propagator, the CTRW could be consiste
extended. The resulting motion is a sum of an anomal
‘‘molecular’’ diffusion and a usual drift. Two different par
tial sticking mechanisms were discussed in detail, offer
interesting consequences for possible experimental rea
tions. Physically speaking, the difference between the pa
sticking and the situation, where the particles are consta
dragged along the velocity field, lies in the dismissal of t
Galilei invariance. This may be encountered in those sit
tions, where the transported particles can become trappe
pores, cul-de-sac’s off the main transport direction, on s
faces, or in vortices.

The problem of transport in a constant force has b
calculated using the persistent random walk model. T
model allows for a direct generalization in terms of a lon
tailed distribution in either the waiting time or the jum
lengthPDF. As a consequence, the probabilities to go to
left or right are different, causing a bias in the random wa
The results of the constant velocity and constant force pr
lems do not coincide in the general case of anomalous tr
port. Only for the Brownian case do both models turn out
be the same.

In the same spirit as above, assuming an asymmetric ju
picture, the problem of a nonconstant force has been in
duced. In this generalization, the algebraic equation for% in
Fourier-Laplace space becomes a differential equation of
same order, as the force is expanded in powers ofx. There-
fore, the solution within the CTRW scheme becomes m
intricate, and for certain cases the parallel approach via g
eralized diffusion-type equations becomes helpful, as it
ables one to employ certain techniques established for
solution of partial differential equations.

The special case of a harmonic potential has been stu
in some detail. It is here where we find stationary solutio
The restoring Hookean force confines the random motion
that for long times an equilibrium between the ‘‘entropic
diffusive spreading and the ‘‘energetic’’ potential term is o
tained. In the dispersive case, however, this stationarity
havior is reached only for very large times. TheMSD conse-
quently shows a transition from a purely diffusive regime
a constant value.
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APPENDIX A: FRACTIONAL INTEGRATION AND
DIFFERENTIATION

There exists a number of definitions of fractional calcu
e.g., Riemann, Erde´lyi-Kobler, or the Riemann-Liouville and
Riesz fractional operators we encounter in the main part.
overview over fractional calculus is the famous book by O
ham and Spanier@27#, or the more mathematically oriente
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volume by Miller and Ross@48#. The whole entity of defini-
tions, including applications, is collected in the compendiu
by Samko, Kilbas, and Marichev@28#. Here we give a short
derivation of the Riemann-Liouville calculus; the basic pro
erty of the Riesz derivative was already given in Eq.~25!,
and we do not go into more detail here. A briefing of app
cations was given in Ref.@49#.

The most common definition, the Riemann-Liouville de
nition, goes back to Cauchy’s multiple integral

t0
Dt

2nf ~ t !5E
t0

t

dtn21E
t0

tn21
dtn22¯E

t0

t1
dt0f ~ t0!

5
1

~n21!! Et0

t

dt8~ t2t8!n21f ~ t8!, ~A1!

replacing the factorial by a gamma function

t0
Dt

2pf ~ t !5
1

G~p!
E

t0

t

dt
f ~t!

~ t2t!12p ~A2!

for arbitrary complexp with Re(p).0, and witht050,

0Dt
2pf ~ t !5

1

G~p!
E

0

t

dt
f ~t!

~ t2t!12p . ~A3!

A derivative of orderq, q.0, is consequently established v
the definition

dq

dtq
f ~ t ![0Dt

qf ~ t !5
dn

dtn 0Dt
q2nf ~ t !, ~A4!

wheren>q is a natural number. Here, also, we introduce t
short-hand notationdq/dtq used in the text which we use fo
both q,0 andq.0, in the above spirit.

The Laplace transform of a fractional integral express
is very convenient,

E
0

`

dt e2ut
d2q

dt2q f ~ t !5u2qf ~u!, ~A5!

where f (u) is the Laplace transform off (t) @27#. Note that
we deal with initial value problems, according to the gen
alization of the differentiation theorem of the Laplace tran
formation.

APPENDIX B: APPROXIMATION OF A SUM

In Eq. ~90! we introduced the constantd.0 Here we
show, that it is indeed positive. To this end, we have
evaluate the sum~note that due to the Gamma function in th
denominator only even terms remain!

~B1!

We know, on the other hand, that



um-
ve
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s85(
0

`
1

G~@12n#/2!
5e@12erf~1!#'0.428 ~B2!

and

r 85(
4

`
1

G~@12n#/2!
5e@12erf~1!#

2
1

G~1/2!
2

1

G~21/2!
'0.145. ~B3!
-

da

A

-

. A

C.

er
Now we see that

ur u5U(
4

`
1

nG~@12n#/2!U,1

4
ur 8u'0.036. ~B4!

This proves thatur u,u@2G(21/2)#21u, so thats,0. This
again proves the result given in Eq.~90!, i.e. the approaching
of the constant value from below. Note thats cannot be
evaluated numerically in an easy way, due to the huge s
mation terms occurring. It is therefore much easier to pro
above inequalities.
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