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Anomalous transport in external fields: Continuous time random walks
and fractional diffusion equations extended
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The continuous time random wallCTRW) in a homogeneous velocity field and in arbitrary force fields is
studied. Within the extended CTRW scheme, anomalous transport properties due to long-tailed waiting time or
jump length distributions are consistently introduced. The connections with generalised diffusion equations in
a potential field are discussed, these equations being of fractional order. In particular, the problems of a
constant and a Hookedtinear force, i.e., of a linear and a parabolic potential, are worked out.
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[. INTRODUCTION with y# 1, deviating from the linear Fickeansp. Note that
we use((Ax)?) instead of(x?), as we will encounter cases
In connection with the growing interest in the physics of where the first moment does not vanighis a generalized
complex systems, anomalous transport properties and thaiiffusion coefficient of the dimension lengttime”. Such a
description have received considerable interest. They findcaling of((Ax)?) as given in Eq(1) can be found in a rich
application in a wide field ranging from physics and chem-variety of physical casdd—3|. Here we restrict ourselves to
istry to biology and medicind1-4]. Among others, two one dimension. Similar considerations, however, can easily
powerful schemes have been established to account for th®e used to generalize our approach to higher dimensions.
typical features of transport in complex systemsvy statis- The CTRW scheme is characterised by a jupmg for a
tics, and non-Gaussian propagators, i.e., processes whaandom walker on a regular lattice. This jurpr (x,t) is
Fick’s second law is no longer valid. On the one hand, datinghe probability density that the walker makes a jump after
back to the 1960s, there is the continuous time random walkome waiting time of the lengthx. Here we mainly consider
(CTRW) theory, which allows one to extend classical the case where the jump length and the waiting time are
Brownian random walks to variable jump lengths and wait-decoupled, (x,t) = ¢(t)\(x). The coupled casay(x,t)
ing times between successive jumps, both drawn from appro= X (x)p(t|x) is applied in Sec. II. For a detailed discussion
priatg probability density function®DF's), that may belong of both cases, see Ref8,14,15. Here i(t) is the waiting
to Levy stable laws and therefore do not possess a finitgime PbF and A (x) is referred to as the jump lengt#pF.
variance or even a first momef$—-8]. The CTRW with  p(t|x) denotes a conditional probability relating the jump
long-tailed waiting timerDF's had originally been launched |ength and waiting time. One can then show that, in Fourier-
for the description of anomalous charge carrier transport inaplace space, thebr ¢ (x,t), to find the walker at a given
semiconductorg6,9]. On the other hand, there have beenplacex at timet, is given by[8]
generalizations of the diffusion equation including deriva-
tives of arbitrary order, so-called fractional diffusion equa- 1—¢(u) 1
tions[10]. In particular, the careful study of fractional relax- etku)=—1—7= sk’ (2
ation equations[11] was a considerable initiator in the '

promotion of fractional equations. Whereas the CTRWWhere here and in the following we indicate transforms by

thhe(?sri)éarlllasnigﬁvgtz?jr ;Orl]\(/ja(‘)r:;a%vealif S?:E;]'ngebssﬁde ?‘Irraecct:gngg_‘eir explicit dependence on the appropriate variables, these
phy. y ' eingk for the wave variable in Fourier space, améor the

equation is often introduceakl hocand is thus of a phenom- Laplace variable corresponding to the time. The simplest

enological character. Fractional equations can often b%hoice of a Poissonian waiting time and a Gaussian jump

solved analytically in a closed form, thus a[so enabling Onqength distribution leads directly back to Fick’s second law,
to calculate the spectral function42,13 which are, e.g., the standard diffusion equation. In E€), the term[1

important in NMR or dynamic scattering. Here we will in- : T -
vegtigate the interrela’?i/on between C?RW processes and $(u)}/uis the Laplace transformed sticking probability

generalized fractional equations in a comparative sense, the .

meaning of which will be explained below. (D(t):l_f dt’ g(t'), 3
Anomalous diffusion is characterized by a mean squared 0

displacemen{mMsD)

the probability of not having made a jump until tinte
CTRW processes are characterized by the existence, or non-
((AX)2) () =(x?)(t) —(x)?(t)~Dt”, (1)  existence, of a characteristic time
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flow picture in Ref.[23]. In this modified version, the par-
<T>:J dt ty(t), (4)  ticles get stuck while they await the next jump. This may be
reasonable in a flow through a porous medium where the
and the second moment particles can be trapped in pores. However, in the physical

problem of a freely moving fluid, one would expect that the
particles should be dragged along the velocity field while
02=f dtf dx *(x,t). (5)  they wait. In this section, we present an exact model within
the framework of the CTRW, and also discuss two different
§ cases of partial sticking in a laboratory matrix.
For a uniform homogeneous velocity field we intro-
duce the similarity variablé=x—uvt for the moving frame.
This reduces the problem to the standard CTRW problem

~(t/7) "7, 0<y<1[2,3,8,d, leads to memory effects in which simply has to be transformed to the laboratory frame.

time, characterized through the temporal fractional differen- " the rest frame of the fluid, the frame moving with ve-

tial operator in the corresponding generalized diffusion equal-OCity v relative to the laboratory frame, the junmDF is

tions. The notion of memory effects is widespread in com-91ven by the standard CTRW expressig(x,t). Therefore,
plex systems: see, e.g. Ref3,16,17 and references following the Galilei transformation to the laboratory frame,
therein. the jumpPDF there, $(x,t), can be expressed as

The CTRW theory was developed for regular lattices, _ _
sometimes augmented with a boundary condit{@-8]. XD =g(x—vtt). ©)

There has been little attempt to generalize _it to the Case see the consequences to the CTRW process in the labo-
where the random walk takes place under the influence of aﬂ;\tory frame, we need to calculate the Fourier-Laplace trans-

external pote_ntlal. .Here we develop_ an extended CTR.V\form of Eq.(6). Employing the standard theorems of Fourier
scheme and investigate several special cases, these beln% Laplace transformf4], one finds

homogeneous velocity field, a constant force, and a Hookean
force (harmonic potential The consequences of the occur- sk, =e" "%y (k1) )
ring biases are discussed through the shape of the distribu-
tion function in Fourier-Laplace space(k,u), and the mo- in Fourier time space, and
ments(x) and(x?). We find interesting dependencies of the
moments on time. Especially in the harmonic potential case, d(k,u)=(k,u+ivk) (8)
the results elucidate the competition of the diffusive spread-
ing and the restoring force, trying to confine the motion.  in Fourier-Laplace space. Here we note the difference when

There has also been a recent effort to investigate the resompared to the approach in R€f22,23. There, due to the
lationship between the CTRW and the fractional diffusionchoice of ¢(k,u), the variables K,u) remain uncoupled,
equation approachdd8-21,5Q. Here we use the CTRW whereas, in our approach, and k are coupled viaw. The
scheme, in order to establish fractional order diffusion equameaning of the Galilei transformation in E() within the
tions consistently in a potential field. The equations we findCTRW framework is the following. After a waiting timg
are unique, as via the derivation the Riemann Liouville cal-drawn from the waiting time>DF (t), the jump length of
culus in the integral form is determined. Also, each term ofthe particle is corrected by the distance covered by the mov-
the equations has a fixed fractional order. In this sense thimg environment during that time. That is, the particle is
fractional equations may be viewed as extensions of theffectively dragged along with the fluid.
CTRW approach for smak andt [18].

The paper is organized as follows. In Sec. Il we discuss A. Brownian motion in a constant velocity field
the CTRW process in a homogeneous and uniform velocity _ ! .
field. The case of a constant force acting upon the random First, consider the case where e find a finite character-
walk is shown to differ from this case in the anomalous!Stic time 7 and a finite variancer®. In the (k,u)—(0,0)
regimes. Here we also introduce the concepts of differenfMit, we have
weights moving to the left or to the right, which we will use
in Sec. IV to introduce nonconstant forces. The Fourier-¢(k,u)=
Laplace representation turns out to be operator valued. In

Sec. V we deal with the special and physically important the i h dac L
case of an harmonic potential field, i.e., a linear Hookear{Or € Jump PDF, where we assumed a {aussian jump

force. Finally, we draw our conclusions, and summarize frac-ength’ and a Poissonian waiting time distribution. From Eq.

tional calculus and the estimation of a summation, in the(z) and ¢(k,u), we obtain

Appendices.

Diverging (7 or o> comes about due to the introduction o
broad distributions of either the waiting time or the jump
length distributions. Especially the divergence (ef, inti-
mately related to the asymptotic behavioki(t)

,O_2k2~ - . 2,2
—1+(u+ivk)7'e 1-(u+ivk)r—o%k= (9

e(k,u)=— —, (10
Il. CONSTANT VELOCITY: utivk+o?r k2

DIFFUSION-ADVECTION PROBLEM .
which leads to

A modified CTRW scheme in a velocity field(x) was
introduced in Ref[22], and applied to an extended Taylor ue—1=—ivke —DK?p, (11



PRE 58 ANOMALOUS TRANSPORT IN EXTERNAL FIELDS. .. 1623

with D=0¢?/7. Assuming the initial conditiong(x,0)

2.2
= 8(x), the following partial differential equation is derived: ~ ¢(k,u)= 1+(urtivrk)? R

— g

~1-(un)”

e(x,t)+ve’'=De" (12 ~1
x 1+iyvu_1k—%v2u_2k2 — 022,

in (x,t) space, which is the diffusion-advection equation

[25,26. The moments of thebrF g(x,t) can be calculated (19

directly from o (k,u) via the relation ] ]
and thus arrive at the Fourier-Laplace propagator

d"e
XM(u)=i" lim K (13 1 1 1
k=0 Q(k’u)_u+ivk 1+DK2u?  u+ivk+DKauI”
and a Laplace inversion. One thus arrives at the well-known (19)
resuilts in the k—0 andu—0 limits.
(x)(t)=vt, (149 We again compute the moments, and find
(x?)(t)=2Dt+v??, (14b) (x)(t)=vt, (209
<(AX)2>(I)=2Dt (14C) <X2>(t): 2D t7+v2t2 (ZOb)
r'1+y '

with a linearmsp. In Eq. (14b) we recognize the sum of the
“molecular” diffusion and the contribution of the velocity
field. In his notation, Ley calls the equivalent t® the ve- (A% ()= Tty . (200
locity of spreadingvitesse de dispersignand the equivalent
to v the probable velocityvitesse probable(Ref.[25], p.  That is, we have the simple result that the particle moves
66). dispersively in the rest frame and the distribution is shifted
by the dragging. We will see belo¢@ec. Il D) that this case
B. Dispersive motion in a constant velocity field is significantly different from the case of partial sticking in

&he laboratory matrix. Of course, for the limig—1, we
come back to the standard diffusion-advection problem.

The corresponding generalized diffusion equation to the
result in Eq.(19) can easily be establish¢l8,2q, the result

Next let us consider the case of a diverging characteristi
time (7)—o and a finite variancer<o. This case can be
modeled via a waiting time distributiong(u)=1/[1
+(u7)?] in Laplace space and a Gaussian jump lerrgiR .
as before. We encounter a situation where the Laplace tranQ—elng
form of the sticking probability[Eqg. (3)] is o=

. , yg//
1— y(u) o(x,t)+ve'=D

F. (21)

d(u)= ~7(ur)? ! (15
Here, on the right-hand side, we find a fractional differentia-

in the rest frame, which is explicitly dependent anTo tion of order (1-y), whereas the left-hand side preserves

preserve the Galilei invariance the shape of the standard diffusion-advection equation. In the
dispersive case underlying E@1), this fractional differen-
e(k,u)— o (k,u+ikv) (16)  tial equation, together with the initial conditio@y(x)

o _ = §(x), and assuming natural boundary conditions, contains
of the propagator which is defined through E(®.and(3),  the same information as the CTRW formalism, leading to

we now have to choose Eqg. (19). For both approaches we find a stretched Gaussian
) iyl solution in the asymptotic limit. Note that ER1) can be
P(u)—P(utivk)~7"u recast in the forni27]
: (y=1D(y=2) - —1
_ A A N 1V o tTYS(x) IV w
X 1+|(’y 1)UU k 2 veu “k (% ( e :DQ”, (22)

+
Y TI'(l—y)  oatr1

1

(7) where now the initial condition is directly incorporated. Both
for the sticking probability in the laboratory frame, expand-Eqs.(21) and(22) reduce to Eq(12) for y—1.
ing up to second order ik. This means that we have to
assume that the particle is dragged along with the velocity
field while it awaits a jump. The choice ofP(u) o ) )
= ¢(k,U)|¢—o, in accordance withy(u)=(k,u)|x_o in Let us now come to the case qf f|n|te§cfo an_d dlvergmg
standard CTRW theory, would violate the Galilei invariance”==. Here we take a Poissonian waiting time andry.e
of the problem, leading to a partial sticking in the laboratoryiump length distribution which we write in Fourier space in
matrix, as we will discuss in Sec. Il D. the form)\(k)=e*"ﬁ‘k‘5. In the same spirit as before, we are

We combine Eq(17) with led to the result

C. Enhanced motion in a constant velocity field
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2+ 2= p)

o(k,u)= (23 ((Ax)?)(t)=2D T (300

u+ivk+DJk|?’ (3+v[2—u])
with the generalized diffusion constant®/7. The diver- describing enhanced transport between the linear and ballis-
gence of the second moment underlying E2B) is due to tic cases. The corresponding fractional equation takes on the
the possible occurrence of very long jumps which are sdorm

characteristic forLevy flights In (x,t) space, the fractional

diffusion equatior{18] g L= vlu=2)]pn

o+vp'=D , (31)

. ot [L-v(k-2)]
o+ve'=DRFPp, (24
) ] ] ] where the fractional operator on the right-hand side repre-
is found corresponding to Eq23), whereR? is the Riesz  gents an integral operation; see Appendix A. The fractional
derivative defined via diffusion equation(31) leads to a modified Gaussi@F in
Tl the long distance long time limif19,20. The CTRW
FIRFO0:KI=i1 K P (K), 25 scheme, however, leads to a power law behavior, and to

see Ref[28]. Here, we choose thig?!*1 prefactor to pre- peaks afx|=t" [31-33. o
serve the standard differentiation theorem of the Fourier 1he sécond and third cases refer to an infinite character-
transform - ]=int(-) denotes the Landau bracket taking the!St¢ ime, i.e., kvu<2. The first possible choice(u
integer value of its argument. —2)>1 leads to the dispersive case

Dealing with these kinds of stable distributions, one often _1_ vpu—1_ 2.2
calculates the fractionallower ordej moments[29]. Re- wk,w)=1-(u7) 77K (32
stricting ourselves, for example, to the range <2, how-  matching the problem already discussed in Ha9)ff. The
ever we can calculate the mean third and last case follows fromr(x—2)<1. This choice

(x)(D) =0t 26 leads to the jumpbDF

_ _ o p(k,u)=1—(un " 1=Dk*(un)"»2-1 (33
which turns out to be the same as in the normal diffusion
advection case. Thux)(t) describes the dragging alomg  and consequently to the propagator in Fourier-Laplace space:
The random motion is symmetric and thus cannot affect the
first moment. Again, choosing— 2, the normal diffusion- 1 1
advection equation is recovered. e= U+ivk 1+DKU 2" u+ivk+DK2ur2v

The divergingmsD, as seen from Eq(23), makes the
calculation of transport properties problematic. This can beavhich is to be compared with E@¢43) in Ref. [8]. For the
overcome by introducing finite velocities of the walkers moments we end up with
[8,30. To account for a finite speed of propagation, one

(39

often introduces thd.evy walk model with a coupling of (x)(t)=wot, (359
waiting time and jump lengtirDF leading to a time “cost” D12
of long jumps. A usual choice i8] 2\ /1) — 2,2
(x)(t) Ta+2n) +v°t?, (35b
P(x,0)=C[x| " #&(|x| —t"). (27) ,
Dt
Three interesting cases that stem from the choice of ). ((Ax)?)(t)= (350

can be distinguished. I'(1+2v)
The first case involves a finite) caused by the inequality g4 that in this case we again have a part ballistic fontse

vu>2. Assuming furtherr(u—2)<1, one arrives at the 55 in the dispersive caga9)ff. Now, however, 2 can be
jump PDF larger or smaller than 1, describing enhanced or dispersive
motion, respectively. Finally, the corresponding fractional

o1 21,2y (u—2)—1
Pk, u)~1-ru—oku"* : (28) equation is of the form
Following the above procedure, we calculate the propagator 1-2p
o(x t)+vQ’=D—Q (36)
1 ! atl—ZV !
o(k,u) (29)

- 2 w(u—2)—1" . . : ;
u+ivk+Dkou"# similar to Eq.(21), where now the right-hand side can either

which is to be compared with E¢38) in Ref. [8]. From Eq. be a fractional integration or differentiation, according to the

(29), we deduce the moments value of v.
(X)(t)=wvt, (303 D. Partial sticking in the dispersive case
24 (2 ) In the above discussion we have seen that, for diverging
(x3)(t)=2D #_,_Uztz (30b) (), we have to be careful preserving the Galilei invariance

I(3+v[2—u]) when we write down the sticking probabili (u) in the
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laboratory frame. On the other hand, if we consider a casagain reducing to the standard case fior— 2.
where the diffusing particle becomes temporarily stuck in the Let us discuss the differences to the model in Refs.
laboratory matrix, we should observe deviations from the[22, 23]. Starting off from the diffusion-advection equation
moments in Eqs(20a—(200). (12), an extended jump lengthoF of the form A(k)=1
We can model partial sticking in such a way that, while —i kv — 7Dk?, k—0 is assumed, which takes into account
the particle awaits its next jump, it is not to be moved alongthe shift due to the velocity in an effective way, via the
with the velocityv, but instead is trapped in the laboratory mean timer of the Brownian process. For the generalized
matrix. This means that, unlike E¢L7), we have to choose model, a finite “advection time scale?, is assumed, lead-
®(u) according to Eq(15), which leads to a Galilei variant ing to a modified jumpPDF ¢(x,t)=¢(Xx—v 7,,t), which
propagator clearly differs from our approacteg. (6)]. In the Brownian
case both models lead back to the diffusion-advection prob-
1 1 lem. For a case with divergingr), however, we encounter
y(y—1) the temporal evolution of the moments according to

2

e(k,u)y=u .
02U 2k2+Du " 7k?

Avt?
37 000 =y (41a

1+ yivku™1—

The results for the moments are now
2DtY  2A%3%%Y

(O =yot, (383 OOO=F155 T Tir2y) (41b)
2 y(y+1)
(X3 ()= 7+ v’?, (38D _ 2btY 2 1
[(1+y) 2 ((A02)(0=Fr757 A F 3y T )
2D y(1-v) (419
((ax)%)(t)= I'(1+vy) v 2 v*t%. (389 with A= 7,/77. The introduction of the microscopic advec-

tion time scaler, in Refs.[22,23, the physical mechanism
In this case, the velocity dependence does not cancel oudf which is unclear, causes a sublinear dependence of the
quite similar to the results in Ref23]. Here, a ballistic be- mean(x) on t. This might imply some kind of countermo-
havior is found, in contrast to the resait?” in [23]. How-  tion, which might be of relevance for molecular machines

ever, the velocity is scaled by the factox@<1. moving actively against the velocity.
Regarding the generalized equation corresponding to Eq. In this section we have shown that the diffusion-advection
(37), problem with a homogeneous velocity field can be treated in
the same way as a standard CTRW problem in the rest frame,
, y(l-y) L0 7" and can be exactly mapped back to the laboratory frame. Via
Qtve =% v =1 +D g7 B9 this method, a straightforward generalization to anomalous

transport is possible. The walkers are dragged along the ve-
we recognize the division of the transport process into twdocity field while awaiting their next jump, and thus we have
different mechanisms: a dispersive part characterize®by found a more direct generalization in comparison to the ex-
and a “ballistic” part. In this process, the particles that jump tension presented in Ref®2,23).
often are separated more efficiently from those which are

stuck. IIl. CONSTANT FORCE PROBLEM
The consequences of a comparison of the results in Egs. , . ,
(203 and (200 with Egs. (389 and (380 is interesting in Here we start off from a different point of view. Let us

respect to experimental measurements. Consider, for efégard the master equation approgct8] in a biased envi-
ample, the measurement of the moments in a ground watéPnment. By this we mean that for each step we
flow or the flow through a porous system. Our calculationh@ve a different probability to go left or right, that is,
shows explicitly that a distinction between free dragging and® constant force. Similar considerations may be found in
partial sticking is, at least in principle, easily possible by theRefs.[26,29,30,34 We will see that this approach leads, in

measurement of theisp of the quantity of interest. gene_ral, to a different result than the constant velocity prob-
Similarly, corresponding to the model of E¢B3), we lem in _Sec. I, as we expect. In the constantcase the

calculate the moments system is already in a stationary state, whereas, for a constant
force, the particle is accelerated before reaching a steady

(X)(t)=(vu—1)ut, (409 state. This difference will in the fractional case lead to results

where memory effects are important, and stationarity is only

2Dt2” vu(v—1) reached for very long times.
(x?)(t)= + v2t?,  (40b Let us assume a process with a nondiverging variance, so
I'(1+2v) 2 that we can write the jumpDFin the form
2y 2DU Buv—(un)?-2 o, PO = PHONE(X), (42
(A0S O=rr32,) " 2 v

(400  with
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A =[AT(X)O(X)+ N~ (X)O(—x)], (43

where ©(x) is Heaviside's jump function. For a constant

bias, let us choose\™=\a/7 exp—ax} and \~
= b/ exp{—bxX?}. The choice of Eq(43) becomes clear
when we regard the master equation in its integral form

t
Q(X,t)=J dx’J dro(X',7)(x—x",t—7)+ (1) 8(X),
0
(44)
the continuum version of Eql9) in Ref. [7]. If x’, the
starting point of the jump leading tg lies to the left ofx,

then of coursex—x’>0; thus A" determines the jump
length for a jump to the right, and vice versa' and\~
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(AX)2)(H) = (Ja— Vb)? 2C%(1+y) —T(1+2y) (E)zy

47ab F(1+2y)I%(1+7y)

a+b (t/7)”
4ab T(1+7y)

T

(480

Note the transition from the anomalous behavior propor-
tional t” to the t2” régime. This result differs from Egs.
(209—-(20¢), but is very similar to Egs.(413—-(410.
Whereas we find some kind of stationary problem in the
constant velocity model, here we have an accelerating force.
In the standard casg=1, both results become the same. In
the fractional case, however, the memory effects in the force
term do not allow us to reach a truly stationary velocity case;

have different widths. This means that the probability to2!SC See the discussions in Reff85,36. This may also be

jump to the left is weighted differently from that to jump to

the right, and so each jump is biased.

To calculate the Fourier-Laplace transforptk,u), we
have to compute the Fourier transforms)of. Due to the
Heaviside functions, this becomes

AR =[N (K +Ag (KI+HINE (K —A5(K)], (45

the indicesC/S denoting the Fourier cosine and sine trans-

forms[24].
In the above case, we calculate

p(k,u)=[1-(ur)”+0(u?)]

([1 K2 1 K2 }
X[ | 2= ==+ =— — + O(k%

k k
i| ——— ——+0(k®
Y 2var 290 ’)
k? (a+b
’V[l—(UT)y] 1—§ W
+i L\/E—\/E)
27 ab
kXa+b  k Ja—\b
~1—(UT)7—§ ab —i 2lm  Jab (46)
Thus we end up with
:(UT)7 1 47
u  k Ja—+vb K2a+b

(ur)”+i 20w ab +§ b
for the PDF, from which we can calculate the moments
Va—yb (t/n)”
2\JmJab I'(1+7)
atb (Un” (Va—\b)? (t/7)?”

dab I'(1+ ) 2rab  T'(1+2y)’
(48b

)= (483

(x3(t)=

seen in the corresponding fractional diffusion equation in a
field:

o tY8(x) dFe 9°D
7o s e Do -
a?” T'(l—-y) ox X
with the force term
a—+b
S o CO =0
277\/m\ab
and the generalized diffusion constant
B a+b 51
~ 87%ab’ (52)

Compare this result to Eq21). Here there is no fractional
integral operator acting upon the advection term. This causes
the first moment to scale likg' instead linearly in time, as in
Eq. (21). Clearly, for the symmetric walk, i.ea=b, we are
led back to the fractional diffusion equation, or Fick’s sec-
ond law (y=1), respectively.

Let us now regard a generalization for a finite character-
istic time (7), but a Levy-type jump lengthPDF. We choose

N
+ . a
A (X)_ 1+axa+l’ (52)
o Ny
AN (x)= Topx (53
with a €(0,2), and where
1 .m
(1+a)sin 1ta
Na: al/(l+a), (54)

2

and an analogous expression g, are the normalization
constants. In the following we give the results of the inter-
mediate steps only in terms of". The Fourier sine and
cosine transforms of = can be calculated exactly in terms of
Fox functions[37-39:
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N k [(LU1+a]),(1,3)
N =Ty K HEY g oL 59
+a a (1,),(1,1[1+a]),(1,3)
L gt/ ta)-1 [(-a) sinﬂ'1 T e
27 2 ’
o7 (56)
where the expansion is valid in the smkllimit, and
Nam kK [(LUL+al), (3.3
)\;r-: a k ng: Tt a) 11 (57
1+a a (1,D,(L,1[1+a]),(5,3)
—(te 18I0 T
~ ) ST g
251nm (58)
N —
0-

Thus, we end up with thebr in Fourier-Laplace space develop a generalized picture within the CTRW scheme. Let

(assuming a Poissonian waiting tirrer), us recall the diffusion equation in a potenti&(x) [40],
- 59 2
¢~ U=iFk—Dk® ©9 o= Ve #*D(9e 3
X x>
with the force term
F=Q (a Y1ta) _p-Ulra) (60)  which leads back to our previous problem for a linear poten-
- tial, i.e., a constant force and a constant diffusion coefficient
and the diffusion constant D. It can be seen, expanding the foflgééx)=—V'(x) in a
D= (alli+ @14 pli+a-1) 61) Taylor seriedand similarly forD(x) ],
Equation(59) refers again to a hey flight. With the Riesz 9
fractional operatofR“ [28], the corresponding fractional dif- F(x)= > = fx".,  f,=FM(0), (64)
fusion equation can be written as follows: n=0 Tt
. dFp . L .
Q+TX=DR“Q (62  that the corresponding equation in Fourier-Laplace space

takes on the form

where we find that only the diffusive part of the spatial de-
rivatives is affected by the procedure of introducing ay-e

— 2
type jump lengthrPDF, and thus we end up with the same ue—1 IkF(kle—kDk)e 69
equation as in Sec. ll, Eq24). The reason stems from the
difference of Fourier sine and cosine transforms. The sine ()
transformation turns the everFinto an odd function where =—ik 2 — f oM
the smallk expansion starts with a pow&t; under the co- n=0 n!
sine transformation it stays even, and the lowest order term ©  in
in k is constant. As in both cases, the zeroth term does not k2> ﬂ d.o™ (66)
show a dependence of the powerkodn the Lary index «; izo n! "

there is no influence of it on the Fourier sine transform. For

a discussion of the coupled CTRW mechanism, we refer to ] ]
sec. |I. Thus the Fourier transform of the junmprF becomes an op-

erator valued function.
To see a possible generalization of this problem, we start
by introducing a waiting time distribution, and avoid going
Problems involving external force fields are usually for-to Fourier space. In the same spirit as in Weiss’ tred29¢
mulated in terms of a Fokker-Planck approa#D,41].  we start off from the master equati¢h9) introduced in Ref.
Within this framework, however, the generalization to[8], and restrict ourselves to nearest neighbor jumps, but with
anomalous transport properties remains equivocal. Here we waiting time distributiony(t):

IV. NONCONSTANT FORCE
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t
pj(t):fodT[Ajflpjfl(T)_}'Bj+1pj+1(7)]

Xp(t— 1)+ 8y 0P (1), (67)

whereA;_; (Bj4) is the probability to jump from sitg
—1 (j+1) to sitej, andd(t)=1—[{dt #(t") is the stick-
ing probability [Eq. (3)]. A and B fulfill the local condition
A(j)=1-B(j). Introducing the expansions

JA(X)p(X,t)

Aj_1pj-1(D)~A(X)p(X,t) — AX X

(AX)? 9?A(X)p(X,t)
T X2

(68) FIG. 1. Sketch of the random walk problem in a harmonic po-
tential V(x)=V,/2x? (dashed ling The peak is approximately a
Gaussian, whereas the flat curve is the stationary solution for a

and Laplace transforming E(G7), we arrive at Brownian random walk in the potentil.

L p(x,u)— 5)(01_(#(11) Of course, we could also have used the direct generaliza-
(u) ' u tion of our procedure in Sec. Ill. That is, the direct assump-
ILA(X)—B(X)]p(x,u) tion of a continuous\ = (x) as in Eq.(43), and knowing that
=p(x,u) —Ax the Fourier sine transformation will always deliver a first

X order term proportional tk. The result is the same, and
(AX)2 G A(X)+B(X)]p(x,u) therefore we do not explicitly give the derivation. We also

> pv , (69  note in passing that with higher order termskinve would
end up with higher order derivatives in the corresponding
generalised diffusion equation, thus reaching some kind of
Kramers-Moyal expansiof%0,41].

which can be recast to give

1-4(u) D(X,U)— 8(X) 1-(u)
_W(U) , ug(u) V. SPECIAL CASE: HARMONIC POTENTIAL
IF(X)P(X,U) #D(X)p(x,u) In_ this secFion we cons_ider the potentM{x)=V0x2/2,
=—77 o + 77 g (700 leading to a linear force fieldF(x)=—Vx directed at the

origin. We would thus expect to findnasp growing in time

in the continuum limit. We have assumed a waiting timeVery slowly. Especially interesting will be to see the changes
due to generalized transport mechanisms, {.e)—o~ or

distribution of the formy(u)~1—(u7)? for u—0. For the 5 T e X o
limit we have considered the expressiomsx/7” and 7 % A schematic picture is drawn in Fig. 1. The model
(Ax)%/ 77 [29]. Thus developed herein is not only of relevance in random walk

theory. It is closely related to the problem of a molecule

AX trapped in the cul-de-sac-like structure of a large protein
F(x)= lim — [A(x)—B(x)] (7))  molecule, where an escape is only possible through a fluctu-
ax—o0 7 ating bottleneck42]. There is also an intimate relation to a
problem where the movement is confined by reflecting walls,
and and a trap is centered in between these waB. It may
(Ax)2 also be interes_ting f_or rt_aaction ki_netics.
D(x)= lim S [A(X)+B(x)]. (72) The paralleling diffusion equation
Ax—0
. dVpxe ,
Returning to time space, after choosing an appropriate wait- e= IX +De (74)

ing time distribution, results in a generalized diffusion equa-
tion in a potential field. Especially for the choice of a long- shows that the underlying process corresponds to a competi-
tailed distribution fory, ¢(u)~1—(u7)” for u—0, we find, tion between a part responsible for the spreading of an initial

the fractional generalized diffusion equation, population, characterized by the diffusion constBniand a
part of strengthVy which tends to confine it. For very small
d’%¢ t778(x)  dF(x)e  #*D(X)e D, the equation can be viewed as an inhomogeneous relax-
Y T(l—-9) X a2 (73 ation equation with a parametric dependencexohoosely

speaking, this energy-entropy competition, characterized by
which reduces to the result in R¢R9] for y—1. Actually, the relationD/V,, can also be thought of as a temperature-
the forceF is normalized in such a way that it has the di- controlled process. It is here where we profit from our dis-
mension of a generalized velocity, length/timeimilar to  cussion involving the connections of the CTRW scheme and
the introduction of mass forces in hydrodynamics. fractional equations, as the operator-valued expression
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A= (k) makes the treatment in Fourier-Laplace space intri- 1 = 1 X ,
cate. Let us therefore start with the diffusion equation inan p=—— > ——E (—nt")H,(0)H,| —|e *"2

. . . . . 2 =0 2nn| Y n n ‘/?
harmonic potentialEq. (74)]. The fractional generalization Ve n= :
of Eq. (74) is, in analogy to the preceding cases, (85

e tTY8(X)  dVoxe The fa}c'.[oan(O) refers to the initia! gonditiqn of starting in
T T(=y)  ox +Do". (75  the origin[44]. In the case ofy=1, it is possible to rewrite
Y Eq. (85) using Mehler's summation formula6]:

The solution is obtained via a separation an$d#] (a dif- 2

ferent method is .shown in Ref[_26~]), i.e., o(xt) o= /Zw(l—e‘Z‘) -1 ex;{ _ (1+cotht)). (86)
=T(t)X(x). Introducing the rescaled time=V,t and coor- 4

dinatex=/V,/Dx, this gives the two ordinary differential

equationgfor simplicity, we drop the tildes _ For very shprt t!mes we would expect _the potential to
influence the diffusion process weakly, as it has a zero de-
T t7 rivative at the origin. This can be seen directly from Ef),
G T(1—y) A0 (76)  from which we find
2
X"+ xX"+ (A +1)X=0 (77) 1 p( X )
~——exp ——|, t<l, 87)
e Vart 4t (

as (x,0)=X(x)T(0)=X(x) for T(0)=1. The solution of
Eq. (76) is well known, and given by the Mittag-Leffler the standard Gaussian. At long times, the potential should
function [24]: dominate, trying to confine the random motion. To see this,
_ let us calculate the moments. From the symmetry of the
T =Ey(=At), (78) problem it is clear that this time there is no first moment. A

which reduces to the exponential fop—1, E4(—At) closed expression can be found for the casel:

=exp(—At), as it should. The asymptotic properties are ot t<1

2 = ——
1, t=A &AM 1+ cotht [1, t>1,
)\*lt*‘}/ t>)\l/‘y (79)

(88)
E(—At")~
which states that the variance cannot grow larger than a
and the series expansion re4@d] given threshold. Note that the result is still written in the
reduced variables. In the original variables this result reads
* k

D=3 o (80)

. 2Dt, t<V
k=o I'(yk+1) 2

<X2>(t)”[ DIV,, t5V,. (89

For the solution of Eq(77) we introduce the ansatz The steeper the potential in comparison to the diffusivity, the

more hindered the random walk process becomes.

In the case of 8y<<1 the sum cannot be expressed in a
closed form. The convergence makes it possible to exchange
integration and summation, so that we can calculate a sum-
mation representation fqx?) in this case24,47. For short
times we have to use a trick to evaluate the summation, as

X2 we cannot simply take the expansiB(—t)~1, t<1, due
N+ 57 Z)Yzo. (82 to the occurrence of the summation indein the argument
of the Mittag-Leffler function. With a small error, however,
we evaluateEy(—t)~e*t in the initial region. On the other
hand, for long times, we have to take care that the first sum-

X(x)=e Y (x), (81)
which is well known from the harmonic oscillator problem in

guantum mechanics. This leads to an equationYfor) as
follows:

Y+

Here we find the differential equation defining the Hermite

olynomials[45
holy [45] mand =0) is independent of time. The remaining summa-
X tion can then be approximated numerically, and reveals a
Yn(x)=e"‘2’4Hn(—) , (83) negative term, so that we end up with the limiting cases for
V2 the MSD:
with the corresponding eigenvalugrg=n. Thus we end up ) 2t7, t<1
with the solution for the spatial part, (X))~ 1-dt™”, t>1, (90
X() = e~ X (84 Where the constani= |2\msr_,(nC([1-n]/2)7Y is
"2/’ positive (see Appendix B Again, we find that in the frac-

tional case the limit is only reached asymptotically via a
so that the general solution of E5) is given via the sum- power law. In the original variables, we find the limiting
mation of independent solutiond4]: behavior
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olz,t)
3

2.5
2
1.5

1

0.5
Py t rid x
1 2 3 4 -2 -1 1 2 3
FIG. 2. Probability density functiorp(x,t) for the timest FIG. 4. Nonsymmetric case where the walker is released some
=2(—) andt=4(---). The upper line in both cases correspondsdistancex, away from the origin. The dashed line is again the
to the dispersive random walker, witi;a:%. Note that for the potentialV(x)=Vx?/2. The full lines correspond to the propagator
Brownian walker we are almost in the stationary regime. for increasing times. The last curve is the steady state solution

coinciding with the centered case.
2DVY MY, V3

2 — /
VO~ prvel1-d(Vet) 7], VI, -

1 (xe"“—xqe
= exp — — s
e 2a(l—e %) 2(e'-e™)

The propagators for the standard and dispersive cases &fgjich s, for short times<1 equivalent to the translated
displayed in Fig. 2. Figure 3 shows the normally diffusive ggyssian

(y=1) and dispersive ¥=3) results, including the
asymptotic behaviors.

Finally, let us make some remarks on the nonsymmetric o=
case, when the initial distribution of the random walk pro- 4t
cess is concentrated at some coordingjeoff the origin.
This asymmetry in respect to the origin leads to a drift vis-
ible in a nonvanishing first moment, and driving the diffus-
ing particle toward the origin. This situation is graphed in (x)(t)=x0e ", (953
Fig. 4. The general solution becomes

(92) 1122

(93

e(x—xo)zl(4t) (94)

without a field. Calculating the moments for the solution in
Eqg. (93), one arrives at

(X%)(t)= x2e 2, (95h)

— 4+
1+cotht

1 & 1 Xo X 2
— Ho| —|Hal = |E(—nt")e X7,
2 o ( ) (Vz) (=nt”)

V2
(92 ((AX)%)(1)= (950

1+cotht’

For the standard casg— 1, one finds, with Mehler's for- Thus the I_-lookean force field restores the equilibrium situa-

mula[29,46, tion, pushing theeDF of the random walk back to the center
where energy and entropy are balanced. For small times, we

can calculate the moments for the anomalous case, resulting

log(x?) ' in
(X)(1)=xo, (96
(X3 (t)=2t"+x3, (96b)
((Ax)2)(1)=2t7 (960

for t<1. For larger times, the integratigitix ox? cannot be
evaluated analytically. Theisp should, however, reach the
same asymptotic fractal behavior as given in E{).

4 0 9 3 logt VI. CONCLUSIONS

FIG. 3. Graph of the second momemariancé of the Brownian We have considered an extension of the continuous time
and dispersive 1= 3) case in a decadic log-log scale. The dashedrandom walk scheme to random walks in external fields, and
lines indicate the asymptotes and 2. The left-hand side asymp- studied the effects upon the corresponding generalized diffu-
tote was interpolated by 1 minus a small powet.of sion equation. For the case of transport in a homogeneous



PRE 58 ANOMALOUS TRANSPORT IN EXTERNAL FIELDS. .. 1631

uniform velocity field, we showed a direct generalizationvolume by Miller and Ros$§48]. The whole entity of defini-

employing the similarity variable of the wave variable type.tions, including applications, is collected in the compendium

As a consequence of the Galilei invariance condition im-by Samko, Kilbas, and Marichg\28]. Here we give a short

posed upon the propagator, the CTRW could be consistentlgerivation of the Riemann-Liouville calculus; the basic prop-

extended. The resulting motion is a sum of an anomalousrty of the Riesz derivative was already given in E2p),

“molecular” diffusion and a usual drift. Two different par- and we do not go into more detail here. A briefing of appli-

tial sticking mechanisms were discussed in detail, offeringcations was given in Ref49].

interesting consequences for possible experimental realiza- The most common definition, the Riemann-Liouville defi-

tions. Physically speaking, the difference between the partiatition, goes back to Cauchy’s multiple integral

sticking and the situation, where the particles are constantly

dragged along the velocity field, lies in the dismissal of the _n t th-1 t

Galilei invariance. This may be encountered in those situa- P T(O= ft dtn—lft dtn—Z"'ft dof (to)

tions, where the transported particles can become trapped in 0 0 0

pores, cul-de-sac’s off the main transport direction, on sur- 1 t o, e er

faces, or in vortices. G ft dt’(t—t)" ("), (A1
The problem of transport in a constant force has been 0

calculated using the_ persistent ranc_iom_ walk model. Thi?eplacing the factorial by a gamma function

model allows for a direct generalization in terms of a long-

tailed distribution in either the waiting time or the jump t f(7)
lengthPDF. As a consequence, the probabilities to go to the tOD{pf(t)z T dr = (A2)
left or right are different, causing a bias in the random walk. (P) Jyg (t=17)

The results of the constant velocity and constant force prob- ] ] ]

lems do not coincide in the general case of anomalous trandor arbitrary complexp with Re(p)>0, and withto=0,

port. Only for the Brownian case do both models turn out to

be the same. D Pf _Lft _f0_

.. . .. oYt (t)— dr i-p-

In the same spirit as above, assuming an asymmetric jump I'p) Jo  (t—7)*7°P

picture, the problem of a nonconstant force has been intro-

duced. In this generalization, the algebraic equatiorofam A derivative of ordeig, q>0, is consequently established via

Fourier-Laplace space becomes a differential equation of thghe definition

same order, as the force is expanded in powens dhere-

fore, the solution within the CTRW scheme becomes more da q d" a4-n

intricate, and for certain cases the parallel approach via gen- g F(W=0D{f() =57 oDy (1), (A4)

eralized diffusion-type equations becomes helpful, as it en-

ables one to employ certain techniques established for thgneren=q is a natural number. Here, also, we introduce the
solution of partial differential equations. _short-hand notatiod?/dt® used in the text which we use for
The special case of a harmonic potential has been studigg, q<0 andq>0, in the above spirit.

in some detail. It is here where we find stationary solutions. e | aplace transform of a fractional integral expression
The restoring Hookean force confines the random motion, s very convenient

that for long times an equilibrium between the “entropic” '
diffusive spreading and the “energetic” potential term is ob- o d-d
tained. In the dispersive case, however, this stationarity be- f dte Ut TS f(t)y=u"9%(u), (A5)
havior is reached only for very large times. TiteD conse- 0

guently shows a transition from a purely diffusive regime to ]
a constant value. wheref(u) is the Laplace transform df(t) [27]. Note that

we deal with initial value problems, according to the gener-
alization of the differentiation theorem of the Laplace trans-
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In Eg. (90) we introduced the constamt>0 Here we
show, that it is indeed positive. To this end, we have to
evaluate the surtnote that due to the Gamma function in the
denominator only even terms remain

APPENDIX A: FRACTIONAL INTEGRATION AND

i 1 1 ad 1
DIFFERENTIATION g = = + .
. - . . 2g:nf([l —-n]/2)  2I(-1/2) ;nf([l —n]/2)
There exists a number of definitions of fractional calculi, —OT’
~-0. =r

e.g., Riemann, Erdg-Kobler, or the Riemann-Liouville and
Riesz fractional operators we encounter in the main part. An (B1)
overview over fractional calculus is the famous book by Old-

ham and Spanig27], or the more mathematically oriented We know, on the other hand, that
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Now we see that
=¢g[l—erf(1)]~0.428 (B2)

” 1
=2 T([1-nJi2) - 1

Irl= ; nC([1-n]/2)
This proves thafr|<|[2I'(—1/2)]"}|, so thats<0. This
—e[1—erf(1)] again proves the result given in E§0), i.e. the approaching
of the constant value from below. Note thsitcannot be
evaluated numerically in an easy way, due to the huge sum-
~0.145. (B3) mation terms occurring. It is therefore much easier to prove
above inequalities.

1
<Z [r'|~0.036. (B4)
and

” 1
=2 T([1-nli2)

1
(12 T(-1/2
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