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From individual to collective pinning: Effect of long-range elastic interactions
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We study the effect of long-range elastic interactions in the dynamical behavior of an elastic chain driven
guasistatically in a quenched random pinning potential. This is a generic situation occurring in solid friction,
crack propagation, wetting front motion, etc. In the strong pinning limit, the dynamic of the chain is controlled
by individual instabilities of each site of the chain. Long-range correlations in the displacement field and in the
force field develop progressively. The system self-organizes to a steady state where the propagation of the
instabilities is described by scaling laws with characteristic critical exponents. These exponents are numerically
estimated through the analysis of the spatio-temporal correlation in the activity map. Tuning the expohent
the algebraic decay of the elastic interaction with the distance is shown to give rise to three regimes: a
mean-field(MF) regime valid fora<1 (very slow decay, a Laplacian regime for>3 (rapid decay of
interactiong, and an intermediate regime<la<3 where the critical exponents interpolate continuously be-
tween the MF and Laplacian limit cases. The latter regime is shown to display, in the rahge 2, a
mean-field-type character only for time correlations but not for space. The effect of the driving mode on the
avalanche statistics is also analyzE81063-651X98)10808-5

PACS numbg(s): 05.40:+j, 74.60.Ge, 64.60.Ht, 64.60.Lx

[. INTRODUCTION force” due to surface heterogeneities, and an elastic restor-
ing force resulting from surface tension. In fact, a distortion
Multistability of elastic media in a pinning potential is of wavelength\ of the three-phase front modifies the liquid-
responsible for the complex dissipative behavior observed ivapor interface over the same distance away from the wall,
various physical situations such as motion of vortices inthus resulting, after integration over the whole liquid-vapor
type-Il superconductofd], dynamics of a ferromagnetic do- surface, in a effective elastic restoring force
main wall driven by an external magnetic field through a

random medium[2], charge-density-wavesCDW) [3], u(x) —u(xy)
roughening of crack fronts in fractufe], or solid friction f(x)= —kf Wdh (1)
[5]. X

In the latter case, the dynamic of the slider can be reduced
to that of the asperities at the surfaces of the sidid The  with a=2. The local capillary force is a nonlocal function of
role of the elastic body is to mediate the interactions betweethe entire contact line position. The same effect holds for
asperities and with the pulling machine. It has been showerack propagation8], where the stress intensity factor ex-
recently that the competition between the elastic restorindibits a nonlocal dependence on the front geometry, with
force due to the bulk and the nonlinear pinning force, due to=2 as well. In the case of solid friction, the couplings due to
the contact between asperities of different solids, gives riséhe three-dimensional elasticity are scale invariant and their
to multiple stable equilibrium positions when the pinning translationaly invariant part has the same fofth with «
forces are sulfficiently strong, or when the system is suffi-—=2D—1 for a D-dimensional lattice of asperities coupled
ciently large. This multistability is responsible for hysteretic via a three-dimensional soli¢thus a=1 for D=1 and «
behavior of asperities, when they are driven quasistatically=3 for D=2, as can be checked by Fourier transforming the
over the set of pinning centers belonging to the surface of thasual relationg9]). Expression(1) is also compatible with
other solid. Dissipation arises from this hysteretic behaviodipolar interactions ¢=3) in the case of a ferromagnetic
and it takes place in the solid, which plays as well the role ofdomain wall ©=2), and we will see that it also takes into
thermal bath. In the case of spreading of a partially wettingaccount the usual Laplacian couplings of vortex lattices,
liguid on a heterogeneous plafg&], the evolution of the charge-density waves, etc.
contact line depends on the competition between a “pinning The effect of the long-range coupling on the dynamics of
the system has been little studied since each event involves a
large part of the system and can generally not be solved
*Permanent address: Center de Specittdmede Nuclaire et de  perturbatively. However, it is knowfil0] to have a strong
Spectromiie de Masse Bi#ment 104, 91485 Orsay Campus, influence on the behavior of the system as well as on its
France. stability properties. Here, we focus on the behavior of an
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elastic line O =1) with long-range interactions, driven qua-
sistatically on a substrate with quenched disorder, and in the g \ )
strong pinning limit. We want to show the effect of the long- /4 v P G
range elastic couplings on the fluctuations accompanying thelie X/ - N
average behavior of the line. f )
By analogy with friction, we will call “asperity” each ’ ——
point of discretization of the elastic line. In general, two ’ i 4
situations may hold: if the couplings are small in comparison
to the distortions of the pinning potential, then the motion of
the chain is controlled by the motion of each asperity. This is
the strong-pinninglimit. In this case, when the local stiffness
is sufficiently weak, the stable local equilibrium position of
an asperity may disappear, and the “unstable” asperity ad-
vances suddenly to the next equilibrium position. In contrast,
in theweak-pinnindimit, when the couplings are sufficiently
strong, the line behaves in a first approximation as a whole.
In such a case, a separation in domains may occur for ¢
sufficiently large system sizel]. Thus a coarse-graining of
the system at large enough scales leads to a simple stronc
pinning regime. The latter case thus appears to be the pos
sible relevant limit in the thermodynamic limit of an infinite-
sized system.

nxy) X

y=<y>+u(x)

(b)

<y>

4 . . FIG. 1. (a) Schematic motion of the elastic chain in the force
In_thl_s paper, we Investigate t.he _effect of the range Offield n(x,u(x)) betweert (hatchedl andt+ At (grey). The redistri-
elastic _|nteract|on_s in thestrong-pinning casewhere the bution of the elastic forces via the long-range interactions is not

fluctuating dynamics of the system results from the deters;gjized in this picture(b) Schematic description of the pinning

ministic propagation of local instabilities. More precisely, We force for one sitex. The abscissa is now the average position of the
focus our attention on the interactions between asperities anghe.

we consider only the elastic displacement field components = | , .

whose wavelength is greater than the distance between “aguasistatically along its transversal direction over a rough
perities.” This approach is complementary to that of consig-Surface. We consider here a discrete one-dimensional elastic
ering individual jumps without couplindg]. We show how chain of sizeL. The chain Qf sizd is discretized |ntq_/q

the nature of the elastic interactions allows us to interpolat®!0cks. d represents the distance between asperities in the
between a “delocalized’{or mean-field regime and a “lo-  Strong-pinning limit, and more generally the distance be-
cal” regime analogous to the Laplacian case. The drivingiwee” sites.” In the case of_wettlng, for example,.lt will be
mode is shown to affect the velocity of propagation of theat least on the order of the distance between pinning centers.
instabilities and the avalanche statistics. It is not possible to have access to information belbn

of the dynamics that will be compared to the continuous oneUPPer cutoff. _ o . _

of instabilities, of the organization of the dynamic and of theSite in the deformed geometry ¥8=x+u(x), whereu(x) is
kinetic roughening. The last section is devoted to a discusthe displacement field of the chain in the laboratory frame.
formization due to elastic interactions. positionx’ of sitex to any homogeneous motion of the un-

Let us recall briefly thata=1 for an elastic one- deformed geometry. We consider only the large wavelength
dimensional chain with “three-dimensional” couplings, but components of the displacement fieki% d), thusu(x) cor-
a=—2 for an elastic string with bending elasticif@],  responds to the displacement averaged over a cell ofiSize
a=2 for fracture dynamics in infinite solids] or wetting N the following, we take account only for the displacement
experiments in a free surface geomef], and «a=0 in  in the direction of pullingj, transversal to the chain, and we
propagating capillary fronts due to the fluid flow behind theneglect the displacement along the chain. The displacement
front [11]. field is a scalar and it will be noted(x), as shown in Fig. 1.

It is important to note that, for a given physical system, ~ Each site of the chain is subjected to a driving force, a
may be changed experimentally by changing the geometry d@ndom pinning forcéfrom the interfacg and a long-range
wherea=2 in a free surface geometry, but where the cou-Chain. The continuous equation of motion for this system
plings are Laplacian at large scales in a Hele-Shaw (eell  could thus be written in the overdamped limit
vanishing capillary numbgf12].

Il. MODEL u(x,t) Fo ()4 POLUC0) kf u(X) —u(xy) g
—= X,u(x))—k | ——————dx |,

Our aim is to single out the effect of interactions in the Tat & 7 [X—Xq|® !

propagation of instabilities in an elastic chald€1) driven 2)
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whereF ., stands for the driving force angl(x,u(x)) for the it is well known that, in the stationary regime and in the
quenched pinning force. The left-hand side of the equatiorstrong-pinning limit, the main contribution to the global dis-
contains a phenomenological damping term. plac_ement isg due to hysteretiq jumps of each _element of the
The long-range elastic force has been already introducegin, resulting from the multistability of the site and of the
in the previous part of this paper. Let us remark that it may2€laY rule[13]. For a given external driving, the initiation of
be described by three fundamental propertigsit is linear ajumpisa _IocaI instability and thus the dynamics cannot be
) ) NN, : . ) controlled simply by that of the center of mass. To avoid the
in u(x) (linear elasticity, i) itis scale |nvar.|.an'(d.es“p|te the explicit introduction of the dynamic of the systefwith in-
lower cutoffd and the upper cutoft), and(iii) it is “trans-  erjg and viscous dampilgand thus the necessity to inte-
lationaly mvanant.”_ This latter property is due to the fact grate the equation of motion, we assume the following con-
that we call “coupling forces” only internal forces. These (ditions. First, the system evolves from one local equilibrium
forces do not contribute to the average over the entire meposition to the next closest one. Second, we monitor the
dium. This is compatible with the fact that the elastic energydriving force Fo,(t) actively so that we always maintain the
of the chain(in the absence of pinnings translationally system at the edge of stability. More precisef,(t) is
invariant. Any uniform displacement of the chain does con-adjusted so that only one mode is metastdbledy one site
tribute to anaveragerestoring force, which has to be com- jumps at each time stgp_et us emphasize that in contrast to
pensated for at equilibrium by a pinning force, but contrarymany approaches based on continuum equations such as Eg.
to the definition used by Cardfit al.[5], it does not contrib-  (2), we do not consider a constant force but rather a constant
ute to the elasticouplings These couplings have an infinite but infinitesimal mean velocity. In solid friction, it corre-
range due to their algebraic decay. For the sake of simplicitysponds to a uniform average imposed displacemeont the
we will refer to @ as therange of the interaction. Asa  top side of the solid. In wetting experiments, it will corre-
increases, the interaction tends to be concentrated domspond to motion at an imposed slow rate of flow. Alterna-
nantly on the nearest neighbors. On the contrary, for a smatively, v may be deduced from a motion where a force is
« the interaction tends to be more evenly distributed over thémposed on the top side of the soligiven pressure in wet-
system. We will see later how to adjust the external drivingting experiments v is related, via shear of the solid, to the
force to take into account the average dynamic of the systenaverage position of asperities of the chain. When the dis-
The quenched pinning forcey, represents the interaction placement is imposed, the discrete version of our model, as
between the heterogeneous surface and the elastic chain. $tudied below, belongs to the class of extremal mo¢iish
case of solid friction, it may have various physical originsas invasion percolatiofl4], fracture model§15] or more
(Hertzian contact between asperities of different surfaces, adecently introduced growth mode[46]). With the second
hesion, etg. but it is always nonlinear. Moreover, a large assumption, the motion will consist in a series of equilibrium
scale description of the contact problem supposes that theoints, and the equation of motion does not have to be inte-
basic interaction is already the combination of multiple el-grated. Under the assumption of the overdamped nature of
ementary processes, giving rise to discontinuities and multithe motion, we will discuss a possible extrapolation of the
valuation[5]. At a sufficiently coarse-grained level, the ef- obtained results to different driving modes. This discussion
fective force of the interaction will lose its continuity. In will allow us to relate the avalanche statistics to the observ-
order to be able to describe the possible fixed point of able intermittency of the motion of the chain.
renormalized description of the surface interactions, we The above introduced model is discretized to allow for
choose to use a discontinuous pinning force, described onlgumerical simulations. The string is described as a one-
by its statistical properties. This force is quenched and randimensional, periodic array of sites. The unit length along
dom. We will restrict ourselves in the following to white the chain is given by the distance between the sites of the
noise. Moreover, we anticipate that the fluctuations of thechain, and the unit time by the time stép elapsed between
amplitude of the pinning force are small when the slidersubsequent jumps. Our “time” count in fact the number of
moves forward, and not sufficiently high to allow backward jumps (that is, the main traveled distancé&Vhen one site
motion of the slider. This is also the case whspatial dis-  depins from one asperity, it jumps by a distartg whose
tortions of the pinning forces are strong. In this case, it is stillmaximum value gives the unit length in the direction of
possible to use the expressi@®) but with the reservation propagation. The pinning potential is described by a set of
that only thepositive part of the right-hand side is consid- discrete centers, with a random spatial distribution. We as-
ered. Thus, the system is supposed to move only forward anglme that the amplitude of each pinning force is identical
the pinning force may be described for each sienly by a  throughout the medium. Alternatively, we could have chosen
position coordinaté(x) and a threshold valugy,,(x), as  a uniform distribution(on a regular latticebut with a ran-
shown in Fig. 1b). In such a manner, our model contains thedom magnitude. We checked that these two varidats
main features of the dynamics of an elastic chain, drivertheir combination give the same results, as soon as some
over a pinning surface in thetrong-pinninglimit. It is also ~ randomness is introduced. For a periodic array of pinning
believed to capture the large-scale behavior of any pinningenters with the same amplitude, as could have been
potential. But, considering deliberately the strong-pinning re-guessed, the chain motion finally locks on a periodic motion
gime, we cannot address the interesting question of thef little interest.
crossover scale from weak to strong pinning. The model runs as follows. We start with a uniform flat
We are interested in the quasistatic limit of the motion offront, u(x) =0, for each cell. We suppose that these positions
the chain. In this case, the damping is supposed to be suffeorrespond to equilibrium positions in the absence of an ex-
ciently strong to allow each site to reach instantaneously it¢ernal driving force[that is, for eachx, #%(x,0)=0]. The
local equilibrium position. In the quasistatic approximation, external driving force= ., is applied progressively. The elas-
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FIG. 2. Activity map showing the location of the active sites as a function of time for various couplirds(a), «=2 (b), and «
=3 (¢). The system size ik =1024.

tic displacement is negligible, thus only the pinning forceln the particular case ak=2, such an expressidid) is the
increases firsf n(x,u(x,t))=—Fg(t)]. When the load is exact result of the summation of interactions for a periodic
sufficiently high, one cell overcomes its threshold, andchain.

jumps. The maximum load is in this case This describes one elementary step of the model. We start
F o= min, (= 70(X)) from a uniform flat front and run a long sequence of such
ex= MiN(= 70(X)). steps until the system reaches a statistically stationary state.

The cellx*, which overcomes its threshold, then jumps to Condition Eq.(4) stands for the average conservation of
the next basin (x*), thus forces along the chain. We us€dx*,x*)=1, thus the stiff-
ness for neighboring sites is unity. This sets the scale for
u(x*)—u(x*)+éu. forces. The jump sizeSu thus reflects simply the distance
. ) o . between asperities on the trafk3]. The dynamic is “ex-
During the jump, the external driving force is constant. Theyemal” in the sense that only the site submitted to the maxi-
Ilnear_lty of the proble_m allows us to calculat_e the new _el_astlcmum forcef (x*) advances at each time step.
couplings. The elastic forces along the chain are modified to Figure 2 shows examples of the space-time distribution of

£(x)—F(X) + SUG(X,x*), “active sites” x* in the medium for variou_s couplings.
Figure 3 shows the time evolution of the displacement front
where G(x,y) results from the interaction kernel discussedalong the chain for the same valuesaf It appears clearly
above. The external driving force is then reduced to zero ifrom these figures that the system organizes in a statistically
order to prevent another jump, and the external load may bstationary state, and that for large (local couplingg, the
increased until evolution is spatially inhomogeneous.
. We compared several statistical distributions éor, e.g.,
Fex=Mine(= 770 (X) = 1(x)) uniform in the interva[ a,1]. Our results at sufficiently large

in order to allow the next jump. The discrete interaction ker-iimes and scales did not display any dependence aslong

nel is chosen as the simplest expression that captures ti@§a# 1. As noted above, whem=1, the pinning centers are
required periodic boundary condition, and follows the Periodically distributed, with the same strength, and the

power-law decay of Eq(1): chain motion ends up being periodic with no interesting fea-

tures.

S A . Similar models have already been studi&d] in the case

G(x.x™)=|sin = L for x#x*, (3 a=2 and in the limit asx— o, which is the discrete version

of the Laplacian ongl18,19 and we will refer to them in the

G(X* X*) = =3, s G(X,X*). (4)  following. Similarly, the casexr=0 corresponds clearly to a

u(x) i T " " u(x)
o=1 (@ v o=2 ®) o=3 ©
X X X

FIG. 3. Displacement front at different time intervals and for various couplingd (a), a=2 (b), anda=3 (c). The system size is
L=1024.
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FIG. 4. Average power spectrum of the displacement front po- .
sition in log-log scale for anv=2 coupling. The continuous line FIG. 5. Roughness exponeitversus coupling range, mea-
shows a power-law fit that corresponds to the roughness exponeﬁt”ed from the power-law fits of the displacement correlation func-
£=0.35. The system size Is=1024. tion.
mean-field situation and it admits a simple analytical solu- 2a—3D
tion that is quite similar to the situation solved by Flyvbjerg §F:—3 ' @)
et al.[20].

As far as one is interested only in the effect of the long-, here D is the space dimension, i.e., in our caBe=1.

range elastic interactions, it appears convenient to conaider Expression(7) has been obtained by replacing the Laplacian
asa continuous_, parameter of the model, albeit in most physbropagator 12 by 1/4*~° in the original calculation in or-
cal cases only integer values can be found. der to take into account the long-range coupling. This theo-
retical prediction is plotted as a dotted line in Fig. 5. We
observe a fairly good agreement foxkr<<3. However, we
Starting with an uncorrelated distribution of forces, theobserve a .marked Q|fference for the I'_apIaC|an case, where
system organizes, after a transient, into a highly correlatefe theoretical predictiogi-=1 lies outside of the error bars
statistically stationary state. One manifestation of these long2f OUr measurement. ., .
range correlations is the roughening of the displacement The “roughness exponent™ can be measured experimen-
front of the chain. The roughness of the chain is character@!ly- In the case of wetting on heterogeneous surfaces in a

ized by the scaling of the correlation function, Hele-Shaw geometry, Patersenal. [12] reported{=0.77.
Above a scale equal to the aperture of the cell, the problem

([u(x+ ) —u(9)]?) goex (5)  should be described by the case=3. However, gravity
plays a significant role in this problem, introducing an addi-
or in Fourier space tional confining term cutting down large-scale front fluctua-
tions. It is interesting to note that when gravity effects are
<|1](k)|2>ock*1*2§_ (6) suppressedhorizontal cell, the geometry of the invading
fluid is similar to that of invasion percolation. The relation
Such a power-law behavior of the power spectrum of thebetween invasion percolation and the quenched Edwards-
front position is shown on Fig. 4 fox=2. { is called the Wilkinson problem has been discussed by Roux and Hansen
“roughness exponent” of the front. From Fi¢4) we deter-  [18], in relation with a model of this process proposed by
mine {=0.35+0.02, in good agreement with a previous de- Cieplack [23]. It may be that the expected scaling is re-
termination of this exponent by Schmittbugd al. [17]. stricted to a rather narrow window limited from below by the
As can be seen in Fig. %, depends orx. The largera, cell thickness, and from above by the capillary lengtiea-
the larger the roughness exponent, i.e., the more persistestiring the effect of gravity as compared to the surface ten-
the front fluctuation. Note that for large, the roughness sion). In case of wetting in a free surface geometay=(2),
exponent exceeds 1, and thus Eg).is inappropriate. Either Rolley et al.[24] have found,=~ 1/3, in very good agreement
one should use such a correlation function computed on theith our numerical result {=0.35). Contrary to the expla-
slopeof the front(and measured— 1), or revert to the spec- nation proposed by Robbiret al. [25], using Imry and Ma
tral method for determining the roughness exponent. d&or arguments, our explanation takes into account the local dy-
=3, we obtain{~1.2, again consistent with previous deter- namics of the chain, and may be extended in the same way to
minations[18]. The latter case, i.e., for local couplings, is any range of the couplings. Another experimental situation
equivalent to the Edwards-Wilkinson growth mod@l] that might be compared to our computation is the propaga-
however, the quenched nature of the noise induces a majtion of an interfacial crack. Such a situation between two
change in the roughness exponénfrom /=0.5 for an an- PMMA plates has been studied recently by Schmitttifdl.
nealed noise to 1.2 for a quenched noise. [26]. They measured~0.55, a value that is much higher
Fisheret al.[22] proposed a renormalization-group analy- than the above-mentioned valde=0.35 fora=2. The vis-
sis of this problem and obtained coelastic mechanical behavior BMMA, or the initiation of

lll. KINETIC ROUGHENING
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FIG. 7. Data collapse of seven different probability distributions
0.20 p(r,At) for «=2 and time intervals ranging from 1 to 64. The
o=1 system size i4 =512. The redistribution exponentlis=1.95, and
the best data collapse is obtained fs+ 1.30.
o 0.15 | All forces
E —Fo(t)] has a lower critical value corresponding to the
g maximalexternalforce for the whole systent;.. For a uni-
g 010 ¢ _ form constant depinning threshold, for examphg (x*)
@ Depinnion Force ! = .= — 1], the lower critical value of the maximum depin-
=4 \ f ning force is (:-F./L). This has been drawn in Fig. 6
0.05 increases withy.
------------------------------------------------ (b)
0.00 s . . V. PROPAGATION OF INSTABILITIES
: (- /L ;
0.30 0.35 2'43) 0.45 0.50 A. Spatiotemporal map of activity
X

As shown in Fig. 2, the active sites are spatially and tem-
porally correlated. These correlations can be trivial as when
a=0, or more complex forw>1. In order to analyze these
correlations for various values of, it is of interest to study
the probability distributiori29] p(r,At) of having a distance
r between the sites active at tihandt+ At (i.e., the spatial
distribution of the Atth active sit¢. From the numerical
simulations, we observe that it is possible to describe the
entire dependence qgi(r,At) for a>1 through a scaling

FIG. 6. (a) Statistical distributiom(f) of forces along the chain
in the stationary regime, for various couplings The scale for
forces is given by the maximum of forcéS(x* ,x*)max(u)|. The
pinning threshold is taken arbitrarily ag,«)(x*)=—1. (b) Con-
tribution of the maximum depinning forcef(x*)=1—Fgt)
(litttle <) in the distributionn(f) for «=1. The dashed line stands
for a fit of n(f(x*)) near the threshold(x*).=1—F./L with 8
=1.

cracks ahead of the front, which merge with the front givingform
rise to a tortuous geometry where higher-order terms may be
relevant, may be responsible for this difference. Not also that
Ref. [27] is irrelevant in our case because the crack is not
interfacial there.

r

p(r,At)=At‘1’Z¢(m) (8

with a dynamic exponert, which describes the spreading of
the activity with time over a zone of sizéxAt*?. For a
z=2, as for a diffusive system. Figure 7 shows a
Starting with an uncorrelated distribution of forces, thedata collapse foAt ranging from 1 to 64 and fog=2. The
system organizes after a transient into a correlated statistexponentz is determined from this collapse and it varies
cally stationary state. In particular, the memory of the initialcontinuously withe. The scaling functiong displays the
state is lost and the distribution of forcé¢x) reaches a following behavior:
stationary distribution shown in Fig. 6. The forces have a
critical valueF 5 depending on the value a@f. The distri-
bution is asymmetric. The higher the value ®f the more
peaked is the distribution close ... This distribution
depends on the spatial correlations present along the fromtor distances larger than the active lengtlthe decay of the
and on the distribution of force increments following an el-scaling function is characterized by an exponbntwhich
ementary move. The latter aspect can be taken into accountso depends oa. Figure 8 summarizes the dependenck of
[28] in a mean-field model, expected to hold farxxl as andz on a.
shown below. The maximum depinning foréex*) as well Let us first propose some arguments that allow us to un-
[related to the external force by (X*)=— 7;yx)(X*) derstand the different observed regimes as a functiom. of

IV. DYNAMICAL ORGANIZATION

4)00’

x P for x>1
P00 x? for x<1.

(C)
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4.0 ; ; ; as found in the numerical simulations far<3. An analo-
gous relation has been found in the propagation of initially
localized perturbation in the elastic map, without pinning
[30].
Third, as « increases, the load redistribution is much
higher for the nearest neighbors than for the rest of the chain.
More precisely, whermr=3 the interaction force

[x—x'|3

contains a singular part proportional to

d?u
fsing(x)oc(m) (13

plus a regular part. The same holds for any higher value of
a, up toa tending to infinity, wheref (x) «d?u/dx?. Hence,
the dynamics of the chain is essentially controlled by this
singular part, and thus is no longer expected to depend on
but rather should be equivalent to the case3 or a=,
i.e., the simple Laplaciarilocal) kernel, or the Edwards-
Wilkinson equation with quenched noise universality class.
This regime will be referred to as the Laplacian regime in the
following.
P (b) Let us now return to the distribution of distances between
0.01(; 2'0 3'0 20 active sites at a time intervalt. We observed the existence
: ' ) ) of a region of extentxAt'# centered on the initiation site
¢ where most of the activity is confined. We call this region
FIG. 8. (a) Plot of theb exponent.(b) Plot of thez exponent cluster” —although it is not connected in the space-time
obtained for different values af. The dotted and dashed lines are Map. These clusters have a self-affine structure. Their scaling
the proposed asymptotic behavior discussed in the text. The dottd@ indeed given by\xec = At We note that whem> ¢,
line (2a/3) takes account of the relation=1+¢ and the expres- the last occupied site is not part of the cluster that originates
sion proposed for by Fisheret al. on the former site. The way the activity is distributed in
space and time is controlled by the statistical distribution of
First, it is possible to link the dynamical roughness expo-the elementary jumps between two consecutive active sites,
nent { to the dynamical exponert in our model. Let us which displays a very wide distribution, and the temporal
consider a starting poinkg,to). After a timeAt, the activity ~ correlations in those jumps. There are two limit cases that
as spread over a distanééAt) aroundx,. The number of have been thoroughly explored, and that may serve as guides
moves that have been necessary to cover the area betweianthe analysis. One case focuses on temporal correlations
the crack fronts at timé, andt,+ At scales a’AxAu. The with a narrow (say Gaussiandistribution of elementary
front has a self-affine geometry with a roughness expofient jumps, and the absence of a typical time scale would induce
henceAuxAx¢. As a result, we get the scaling of the time that the activity can be described as a self-affine profile in

difference with the exterAx= ¢ as time, with a roughness exponentzl/The other limit case
corresponds to the absence of temporal correlations focusing
At=¢"¢, (100 on the power-law distribution of elementary jump, and where
the space-time map of activity can be seen as a Levy walk.
hence We do not know of any theoretical attempt to combine these

(11) two aspects to get a general picture. Due to the nature of the
elementary jump distribution, it is natural to explore the sec-
This scaling relation is accurately obeyed in our numericaPnd limit case as a reference, and check its domain of valid-
simulations as long as9/<1. For larger values of, the  ity. Thus we now consider the crude hypothesis that tempo-
above scaling breaks down, andixAx, hence the effective al correlations can be neglected. The probablify, 7) can
exponentz=2 appears. thus be written as the convolution @f(r,1) with itself =
Second, if we make the assumption that in the steady staf#mes. For larger, the distribution ofp(r,7) will therefore
there are only weak spatial distortions in the force distribu-CONVerge to a statistical distribution that is stable for addi-
tion, then p(r,At=1) should essentially reflect the load tion. If the distributionp(r,1) has a finite second moment,

sharing rule due to the elastic coupling. This argument simthenp(r,7) should converge to a Gaussian law as a result of
ply predicts the central limit theorem. However, this is never the case,

since the above scaling implies that this would be obtained
(12 for «>3, and we have seen that this case is similarto

z=1+¢.

o
Il
R
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=3. In the intermediate case wheresk<3, we have seen 10°
above thap(r,7) decays as Por~¢, and hence, the second
moment ofr would diverge in an infinite system size. As a 10°

result, the central limit theorem does not apply, but rather

p(r,7) converges to a stable Levy law characterized by a

power-law decay as™ “ for all 7. Hence, the power-law tail =
will be preserved, for large distances, i.e., as long as the E
correlation length is smaller than the system siéze].. This e L
is indeed what is observed fer>1. Still, in the case where
we neglect time correlations, we can relate the dynamic ex- 10' ¢
ponentz to the large distance power-law decay through

10
z=b—1=a—1. (14)

We see from Fig. 8 that away from the value=3, where FIG. 9. Log-log plot of thg first retur_n probabili_ty distribution
z~2, the above relation is poorly satisfied. This indicatesPris(t) as a function of the time for various coupling rangea
that temporal correlations becomes more and more importagtl  @=15, a=2, =3, and Laplacian. The system size is
as a decreases, and cannot be neglected. L=512.

When « approaches 1, all moments of the distribution gptire system sizel* =LZ Let us now summarize our ob-
become controlled by the system size, and hence after a feWgyations for various: values.
time steps,p(r,At) is smeared out over the entire domain j >3, Consistent with the previous discussion, the
size and no more power-law tail survives. The scaling given, i e of the exponenty,, is independent of and amounts
by Eq. (8) indeed breaks down fax<1. As a natural con- 5 - ~15 in good agreement with previous studies.
sequence, time correlations also vanish, and we enter a (jjy >« ,<3. The distribution drops rapidifaster than
mean-field(MF) regime, which is independent of. any power lay above the cutoff scal€* . The exponenty,

From these arguments, we arrive at a classification of dify 5 essively increases and reaches the valued. taads to
ferent regimes depending on the valueaf (i) @=3, the 5

Laplacian regime, or the Edwards-Wilkinson regime with a (i) 1< @<2. The exponent; saturates to 1, for times

quenched noise, where the kernel is equivalent to a secong y, T+t in contrast to the previous cases, the distribu-
derivative;(ii) 1<a<3, an intermediate regime, where the tion then reaches a plateau frof to T** before dropping

critical exponents that are measured depend continuously Hster than any power law. The scaling of this second time

a, (i) a<1, Fhe mean_—field regime, where spatial_ Correla'scale(Fig. 10 is identical to that ofT*, T** «LZ The
t|on§ are Iqst In a few time steps, andl where—as in Fhe I‘afelattive importance of the tLfegion and of the plateau can
placian regime—the value ef does not influence the critical . oqtimated by the rati®*/T** , which goes from 1(no
exponents. plateay to 0 (no power law as « decreases from 2 to 1.
(iv) a<1. We enter the mean-field regime wherg,; is
B. Activity recurrence constant for times up t@**, which is proportional to the
In the critical steady state, the activity map is highly cor- system sizd. Again this is consistent with the mean-field

related and exhibits scale-invariant features in both time anff9ime previously discussed.

space. We studied previously the spatial distribution of ac- LIS interesting to note that the intermediate regime is now
tivity after a fixed time lagAt. We now turn to a comple- split in two cases, with a short and long time behavior dif-

mentary description, focusing on a single site as a function of

3

10

time. More precisely, if sité is active at timetg, we study ' | ' ,'_.5,2
the distribution,p;(t), of the time delayt, such that the 10° e 1024
next move at sité occurs at time+t. Figure 9 shows such = X

a distribution fore=1,1.5,2,3 and=. The very early time 10' t
behavior is dependent on the distribution of displacenent
that is chosen. If the displacement is distributed over the g 10° ¢
interval[ a,b], for largea, we prevent the recurrence of ac- %
tivity immediately after a move. However, this effect lasts flo
only for a time much lower than the maximum timi&é when =
a>1. It does not affect the distribution over a large interval
depending on the system size, and thus can be discarded
from the analysis. Then fo#>1, we observe a power-law
decay o~

Prirst(t) ot Tfist, (15

_ ) FIG. 10. Data collapse of the first return probability distribution
whererg<2. This power law terminates at an upper cutoff for various system sizes far=1.5. The upper cutoff scales k3 as
that scales as the time necessary for a cluster to span thell as the extent of the plateau.
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fering for 1<a<2 rather than a continuous evolution with 20
an exponentry,; going from 1 to 0. The flat plateau regime

observed forT* <t<T** and 1<a<2 is similar to the Laplacian
mean-field regime fow<<1, and thus the transition to the =~ [~ 77T e— e
MF regime appears not to be as brutakat 1 as proposed o1 3

from the scaling of the distance, but rather it turns out to be -
gradual, with a mixed regime displaying nontrivial correla- 51-0 i e
tion for a “macroscopic” timeT*, before reaching a mean- ©
field behavior at later times. The surprising feature is that
space and time correlations do not disappear simultaneously.
It might be interesting to note that thmeandistance be-
tween active sites separated by a deldyalso changes faw VI S .
smaller or larger than 2. Faz>2, it follows from the pre- 0‘00,0 T 10 20 3.0 4.0
vious spatio-temporal analysiSec. V A that the mean dis- o

tance between active sites scales as the correlation léngth

sinceb>2. On the contrary, for<2, it scales as the system FIG. 11. Plot of ther;s; exponent obtained for different values
sizel of a. Two different exponents appear fok<<2 in the mixed

Let us consider an active siteat timet,. After a timet regime. They correspond to the distribution below and abigve

the number of times(t) that the sité has been active can The dotted lines are the proposed asymptotic behavior discussed in

. S the text.
be estimated as the total number of individual steps propor- e tex

tional tot divided by the number of sites where most of the
activity is concentrated, i.et'?, or

&
A 4

Mixed

Regime

Ml

C. Avalanche dynamic

Up to now, we have considered an ideal driving where the
n(t)=ti—12, (16)  front displacement is controlled by adjusting instantaneously
the driving force. Assuming an overdamped dynamics, we
Let us now estimate the same number using the distributiosan reconstruct a different type of driving.

of activity recurrencel. From the power-law distribution of In order to proceed, it is useful to introduce the notion of
T, we can estimate the maximum amon¢t) numbers— avalanches or bursts. Let us consider the sequence of exter-
supposed to be uncorrelated—from nal forceF.(t). Any force F will split the signal into con-

secutive intervals with alternatirfg<F,; domains(or “ob-

o stacles’), andF>F,; intervals(or “bursts”). Each burst is
Lmax(n)pfifst(T)dToc n(t) (7 thus the front motion that would result from a constant force
F being imposed to the system.
or Ta(n)n¥Tis— 1) Using the fact thatry is always Avalanches were introduced initial81] in order to un-

smaller than 2, we can compute the mean time between aderstand some features of invasion percolafi2@]. How-
tivity recurrence<T>o<T§1;XTﬁrsto<n(Z*Tﬁrst)/(rmsrl)_ This same  €Vver in Ref[31], some approximations were unjustified or
. . . unfounded. A complete solution of the avalanche statistics
average time is also equal {@)=t/n(t). Equating these applied to invasion percolation and other extremal models is
two estimates gives presented in Paczuski al. [19]. The key property is that it
is possible to relate the avalanches in the external forcing to
the cluster statistics in some extremal models such as inva-
sion percolation. The avalanche size distribution at fixad
a power-law distribution up to a maximum avalanche size,
which diverges a§& approaches to a critical vali&,. This
271 mapping aIIows_us to derive _geometrical in_formation on _the
Thirst= ——— . (19  activity from a simply accessible external signal, the driving
z force. One amazing feature is that the latter is one-

) . ) . ] ~ dimensional but encodes multidimensional information.
This estimate is based on the fragile assumption that time | oyr case, it is unfortunately impossible to establish

correlations can be neglected. We have seen above thatsgch a direct mapping because of the nonlocal nature of the
similar hypothesis leads @=a—1, from which we deduce jnteraction. Hence, the connectedness of the clusters is lost,
or equivalently, the clusters to be defined from the driving
- :2“ -3 (20) force avalanches do not have a straightforward geometrical
frst™ @ —1 " interpretation. Nevertheless, the maximum external férce
encountered in the external driving can still be identified
This expression, however, requires that the distributiofi of with a critical point where the correlation length diverges.
is not governed by the upper cutdff, and thusm;>1  This critical point is a depinning transition. For a constant
strictly, or >2 in the above formula. Figure 11 shows the driving F strictly smaller thanF., the front will advance
measured value ofy,; @s a function ofx, together with the only over a finite distance and stop when it encounters a
above relation. We observe a reasonable agreement for @nning force larger tharfr. Similarly, if F>F_, the front
<a<3. will never be stopped.

n(t)oct s, (18)

Comparing Egs(16) and (18), we arrive at the following
expression forrg.;
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FIG. 12. External loadind-.,(t) as a function of time. From loadi f . f i d
this signal, on can define avalanches either by prescribing a fixed FIG. 14. Instantaneous loadifig,(t) as a function of time an

value off, and considering the intervals whefreemains below this  €Xternal elastic load of stiffness

limit, or by constructing these avalanches starting from all forcingmqdel. However. in the extremal models studied in Paczuski
valuesF (1) with the statistics issued from the model, and choos-gt g|.[19], the backward avalanche exponent is not superuni-
ing either a forward or backward time direction. versal and it does give rise to a nontrivial critical exponent

It is also possible to use the time evolution of the systemTf In our numerical results, the universal resylt=2 is ob-
to define two distributions of avalanches that do not requirgened fore> 1. The backward value is also measured to be
the precise identification of the critical threshold. At each_ —5 for the same values af.
time stepft, one can construct the avalanches that correspond” g;ch power laws with exponents=r,=2 also appear

precisely to the loadingr(t). In fact, two such avalanches n g series of uncorrelated random numbers picked from the
can be considered, for times either larger or slower than same distribution, however we cannot infer from this result
the forward and backward avalanches, respectively, as that the forces are uncorrelated. They are indeed strongly
shown in Fig. 12. Figure 13 shows both cumulative avagyrelated as can be seen from the power spectrum of the
lanche distributions for our model with>1. They behave signalFo(t) (Fig. 14), which shows a power law extending
as power laws, over long time intervalgyet smaller than the time needed to
Nj (t)octt™ 7 1) span the systemh?). If we were to interpret this signal as
f.b ' self-affine, we would estimate from such a graph a self-affine
Hurst exponent=—0.4, a negative exponent that means

with no upper cutoff apart from the system size. ) i h
X that the signal is strongly anticorrelated. The same power
Maslov [32] showed that for a variety of models, the ex-
law appears for all values af larger than 1. One has to be

ponentr; was superuniversal, and equal to 2. Consequently

forward avalanches do not reveal much information on th ¢autious while manipulating Hurst exponents that are nega-
%ive, since most properties relying on the self-affine nature of

a signal break down in this case. In fact, for most properties,

0.80 : . :
such functions behave as if the Hurst exponent was actually
zero(white noise. (Otherwise, in order to reach reliable con-
070 | 1 clusions, one may consider the time-integrated force signal,
i.e., the energy dissipated during the front motion. More pre-
cisely, the mean force can be substracted fforefore in-
0.60 - | tegration so that only the fluctuating part of the energy is
considered. For>1, this signal has a self-affine exponent
{e+1~0.6, which can be measured using standard tpols.
0.50 L ] The avalanches are thus expected to behave as if the force
signal was a white noise, heneg= r,=2. For small expo-
nenta<1, there is a short timéhigh frequency behavior
that seems to follow a similar power-law behavior. The pla-
teau appearing for very small times is probably due only to
numerical accuracy and does not have to be considered. But

FIG. 13. Spectral amplitude of the time fluctuation of the time at large times, the power spectrum of the force crosses over
integration of the threshold forcE,(t) for various couplingse 0 @anw™? regime, which is the signature of&=0.5 self-
ranging from O to 3. The straight line represents a power law ofaffine signal, analogous to a random walk. The avalanche
exponent—2.2, which implies a roughness exponent of the directexponents are consequently changedrtg=1.5+0.05 for
time force signal of- 0.4 for@>1. The full line represents a power a<<1.
law of exponent—4, which implies a roughness exponen0.5. Although the previous analysis of avalanches can in prin-

F.(0

0.40 :
1100.0 1150.0 1200.0

t
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10 where ¢ is a power-law distribution for small arguments
Tonn p(x)cx~ Y for x<1, and decays rapidly to zero for>1.

107 1 And s*' is a normalization factor.
— 7 There are different features that may contribute to the
8 25 statistics ofs. We focus here on one aspect of the problem,
A 10 3 . L. L . L
“:é ~—— Laplacian namely the statistical distribution of the pinning force close
3, to the depinning critical point. Note that the results that could
i 10 be derived from the self-affine structure of the sighal(t)
o are not valid due to the asymmetry of the distribution of
< 10 forces,p(Fey) (Fig. 6).

Let us note
4 . ‘
A P(Fed=(Fo—Fe)= o, @9

the distribution of external forces near the thresheld Af-
ter n events, the system has lost an elastic fasce

FIG. 15. Log-log plot of the distribution of the forward and S=ne.
backward avalanches far>1. The straight lines are power-law fits
of exponents—2. The maximum force encountered follows:
ciple be accessed experimentally, it requires one to be able to 6 A =n,

switch from a displacement-controlled to a force-controlled

mode, which is in general a rather difficult requirement.Balancing the two expressions leads to

There is another, more natural, way to have access to the
fluctuating driving force through the intermittent front mo-
tion. We have seen that a constant force control for a finitey
size system either leads to a stop or a constant motion, the
transition between the two regimes corresponding to the
maximumF.,. Thus a single configuration will determine
the threshold, and for a finite-size system, this single point
generally is not representative of the critical behavior, and i
contains rather poor information. A way to circumvent this
difficulty is to introduce a small but nonzero stiffness the
control (Fig. 15, so that as the front advances, the driving

hence

€

=n‘1/<1+f”>‘1=n_(2+ﬁ)/(1+ﬁ),

_1+B
K—m.

%rom numerical data, we hayg~1. It leads to

k~0.66,

(26)

force is progressively decreased by a quangfy). This  in good agreement with E423), although temporal correla-

insures that the motion will never be unlimited. As soon asions have not been considered here.
the front is pinned, then the driving force is slowly increased

up to the depinning limit. Ife is small enough, only the

VI. DISCUSSION

forces close to the pinning threshold will be probed. In ad-

dition, the statistics of the front advance between two pinned We have presented in this paper a study on the correla-
configuration gives some information on either the correlations induced by the dampened motion of a finite-size elastic
tions of F, Or on its statistical distribution close to the chain with long-range interactions and driven along its trans-

critical threshold.

We performed such an analysis for various valuesof
We observed that the avalanches have a maximumssize

that depends oe as
S*oce ¥
with

k~0.65

for all values ofa investigated from 1 to 4. This maximum
size can be used to scale the avalanche sid&g. 16), and
thus it allows us to account for the distribution in an

e-independent manner,

e
ne(s)(x;l// S_* ’

(22

(23

(29)

versal direction on a surface with quenched disorder.

We have shown that the system organizes after a transient
in a stationary state with long-range correlations. The
memory of the initial state is lost. The final state does not
depend on the initial state, but its characteristics depend on
a. We have pointed out three regimes: for very long-range
couplings @<D), a regime controlled by finite-size effects
and analogous to a mean-field one; for very short-range cou-
plings («=D+2), a regime controlled by small distance
singularities of the Green function and displaying the same
characteristics as Laplacian couplings; and in betwd2n (
<a<D+2) an intermediate regime where characteristic ex-
ponentsb, z, and{ evolve continuously withe. The tran-
sition between the three regimes of the activity map is a new
one. It is summarized in Fig. 17. The transition to a mean-
field uniform regime does not appear simply tor3D/2, as
has been proposed by Fishet al. [3] by functional-
renormalization group analysis, but it appears clearly from
the simulations that spatial and temporal correlations do not
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10° . . ‘ tween a regime controlled by the short-range coupliag
small time and small lengjtand a regime controlled by the
long-range couplingat large time and large lengthThe
10' transition between these two regimes is size independent and
— the spatial and the temporal transition are related by the dy-
"‘% 1o namical exponent of the shortest couplings.
; The results presented above have been obtained with a
0 discretized system and periodic boundary conditions. We
107" have checked that the same results are obtained, far away
from the boundaries, without periodic boundary conditions.
Particularly, the exponents obtained are the same in this case.
10-21072 The temporal discretization and the breakdown of the trans-

lational invariancgbecause only one site is allowed to jump
at each time stepare not limiting. They are consistent with
the “strong-pinning assumption.” At this stage, the simula-
tions do not allow us to justify this assumption more

FIG. 16. Log-log plot of the distribution of external avalanches strongly. We know, howeye[128], that there exists a tra_msi.—
for «=2 and for ten different stiffnessasranging from 10 to tion from weak to strong pinning that could be used to justify

10-3. The straight line is a power-law fit of exponentL.09. The & Modeling at larger scales. But for very long rarigmall
upper cutoff scales like* o« e 065 a) and small system size, we may encounter a situation of

weak pinning, a case out of reach for our model. We suppose
at the local curvature of the pinning potential is always
ufficiently high to maintain the system in the strong-pinning
limit. In this limit, the results presented here appear to be
universal, provided some quenched disorder is introduced:
the choice made for the distributianand for the time step
n(')nly affects short distances. As has been mentioned, they are
jmportant in the mean-field regime, in agreement with Ref.
[3], but they do not affect thpositionof the transition to the
mean-field behavior. When no disorder is introduced, the
system evolves toward a limit cycle of peribd The bound-
ary conditions affect the distributions only at the proximity
of the upper cutoff scaléd, or L? and the displacement fields
) o near the borders. When disorder is present, it is possible from
to the mean-field one. Forla<2, the system exhibits col- o, hymerical results to find intermediate scales where the
lective organization with distortions at small scales but “de-pahavior of the system is characterized in space and in time
localized” behavior at large scaléabovet.). Moreover, the 1 nower-law distributions. The critical exponents of the dis-
time t; goes to infinity in th_e thermodynamic Iu_mt: it scales tiputions only depend ow, as discussed above. More sur-
as the activity spreading time* and does not introduce a pisingly, due to the temporal anticorrelation in the threshold
new scaling. Its origin remains unclear to us. An analogougce, “the internal avalanche distribution seems to be inde-
transition appears in the external force i@x1 (see Fig. pendent ofe and does not reflect the correlations of the
14). o L external force. A better accuracy is restored with the help of
Modifying the parameters of the system, a combination ofy, g|astic external driving. This gives rise to external ava-
the above behavior can also be found. For a mix of variouggnches. Let us mention that velocity has to be defined care-
couplings, for example, the system exhibits a crossover beyy in the case of driving with constant external for&s].

Let us turn to the notion of multistability. For a one-
particle system, the multistability is due to the nonlinear con-

s/e

disappear simultaneously. The transition to the mean-fiel
regime is characterized by a crossover time lerigtgrow-
ing with «, above which the uniform distribution is valid and
below which the power-law behavior with a nontrivial expo-
nent is observed. Even if the strong-pinning assumption e
sures that the instabilities are local, whegnreaches small
times, the behavior of the system becomes “delocalized.’
The “delocalized” behavior refers to a uniform spreading of
activity over the system abovk. For a>2, the system
exhibits “collective” organization(characterized by long-
range correlationsbut “localized” behavior. Fora<1, the
system exhibits a uniform “delocalized” behavior analogous

ME Laplacian current effect of the elastic force and of the pinning force.

o 1 : 3 The condition of multistability can be given by a linear sta-

3—2$—é — bility analysis. The particle is unstable when the negative

Delocalized ! Local curvature of the pinning potential overcomes the elastic stiff-
i ness. It leads to hysteretic behavi@j. The energy dissi-

E pated at very low velocity is related to the area of the hys-

teretic cycle. For anN-particle system, the instability
involves more than one particle, due to the coupling between
FIG. 17. Schematic transition between the three apparent dyaSPerities. The size of the domain involved in the instability
namical regimes. The dotted line separates the classical power-ladePends on the distortions in the curvature of the pinning
regime and a new one with a “local” behavior at short time and apotential and on the range of the elastic interactions. In the
“delocalized” behavior at large time. The mixed regime stands for ‘weak-pinning limit,” the one-particle instability condition
a regime with mean-field-type character only for time correlationsis not effective, but multistability can occur at larger scale.
and at large times. The minimal size giving rise to multistability is usually com-

Mixed regithe
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puted by the “Larkin method'{1]. This length is associated =3(=D+2). The transition to the mean-field regime appears
with a dynamic by blocks whose existence remains controto take place progressively from the large times when
versial in the literature. In the “strong pinning limit,” the <2. Space and time correlations do not disappear simulta-
one-particle case is effective, but the elastic coupling mayeously.
propagate the instability to an avalanche of larger size. We The internal avalanche size distribution seems to be “su-
showed here that the system thus organizes into a “criticaperuniversal” (independent ofx) because it does not pre-
state.” There is no intrinsic length scale in such states, deserve information on the temporal correlations in the thresh-
spite the lowest cutoff and the system size. This effect givesid force and exhibits the simpleff/behavior characteristic
rise to “kinetic roughening” in finite systems and has beenof jumps. The dependence enis recovered by an elastic
well studied in the case of short-range elastic interactions foexternal loading.
various types of pinning34]. It does not induce block mo- This study shows one example of physical systems where
tion involving more than one asperity. An interesting ques-microscopic disorder leads to large-scale structures as can be
tion would be, is the “block dynamics” of the weak-pinning revealed by kinetic rougheninglarge-scale displacement
limit analogous to the strong-pinning dynamics? This quesfluctuation$ or avalanche distributions. The algebraic decay
tion remains open. of the interactions determines the critical exponents but other
details are unimportant in the scaling behavior. The large-
VIl. CONCLUSION scale power-law behavior is a signature of the self-

. . . .. organization of the system.
We have shown in this paper that in the strong-pinning “This study was designed to describe a “strong-pinning”

limit and for a quasistatic driving, a finite elastic system iyt |t would be of interest to extend the model to the
driven on a disordered surface exhibits long-range dy”am'c%eak-pinning case.

correlations. This can be shown by the roughening of the
surface, in agreement with spreading or crack front propaga-
tion experiments. It can be studied numerically by the statis-
tical analysis of the activity map. The rangeof the inter- It is a pleasure to acknowledge fruitful discussions with J.

action allows us to interpolate between a LaplacianSchmittbuhl, B. Protas, P. Le Doussal, S. Krishnamurthy,
dynamical regimefor o> a.,) and a mean-field dynamical H.J. Herrmann, and M. Fermigier. This work is partly sup-

regime (for a<ac1). In our one-dimensional simulations, ported by the Groupement de Recherche “Physique des Mi-
with quenched decorrelated disordey;=1(=D) anda., lieux Heerogenes Complexes” of the CNRS.

ACKNOWLEDGMENTS

[1] A. I. Larkin and Yu. N. Ovchinnikov, J. Low Temp. Phy34, cesses, series editors H. E. Stanley and E. Gu¥gsevier
409(1979. For a review, see T. Giamarchi and P. LeDoussal, Science Publisher, North-Holland, 1990
in Spin Glasses and Random Fieldslited by A. P. Young [16] P. Bak and K. Sneppen, Phys. Rev. L&t, 4083(1993.

(World Scientific, Singapore, 1997 [17] J. Schmittbuhl, S. Roux, J.-P. Vilotte, and K. J.lilg Phys.
[2]S. Zapperi, P. Cizeau, G. Durin, and H. E. Stanley, Rev. Lett.74, 1787(1995.
cond-Mat/9803253. [18] S. Roux and A. Hansen, J. Phys4,1515 (1994).
[3] D. S. Fisher, Phys. Rev. B1, 1396(1985. [19] M. Paczuski, S. Maslov, and P. Bak, Phys. Rev5% 414
[4] J. P. Bouchaud, E. Bouchaud, G. Lapasset, and J. Planes, Ph)fs. (1995. .
Rev. Lett.71, 2240(1993 20] H. Flyvbjerg, K. Sneppen, and P. Bak, Phys. Rev. L24.
' o ' 4087(1993.

[5] C. Caroli and Ph. Nozres, inThe Physics of Sliding Frictign
edited by B. N. J. Persson, Vol. 311 of NATO Advanced Study
Institute Series B: Physia&luwer, Dordrecht, 1996

[21] S. F. Edwards and D. R. Wilkinson, Proc. R. Soc. London, Ser.
A 381, 17 (1982.
[22] T. Nattermann, S. Stepanow, L. H. Tang, and H. Leschhorn, J.

(6] P. Mazur and I. Oppenheim, Physi¢camsterdam 50, 241 Phys. Il 2, 1483 (1992; H. Leschhorn, T. Nattermann, S.
(1970. Stepanow, and L. H. Tang, cond-mat/9603114; O. Narayan
[7]3. F. Joanny and P. G. de Gennes, J. Chem. PBiys552 and D. S. Fisher, Phys. Rev. 48, 7030(1993.
(1984). _ [23] M. Cieplack and M. O. Robbins, Phys. Rev. Lef0, 2042
[8] H. Gao and J. R. Rice, J. Appl. Mech6, 828(1989. (1988; Phys. Rev. B41, 11 508(1990.
[9] L. Landau and E. LifchitzTheorie de I'Elasticite(Mir, Mos-  [24] E. Rolley, C. Guthmann, R. Gombrowicz, and V. Repain-
cow, 1990. publishedl.
[10] P. A. Lee and H. Fukuyama, Phys. Rev1B 542(1978. [25] M. O. Robbins and J. F. Joanny, Europhys. L&t729(1987).
[11] O. Zik, E. Moes, Z. Olami, and |. Webman, Europhys. Lett. [26] J. Schmittbuhl and K. J. May, Phys. Rev. Lett78 3888
38, 509(1997. (1999.
[12] A. Paterson, Ann. PhygParig 21, 337 (1996. [27] P. Daguier, B. Nghiem, E. Bouchaud, and F. Creuzet, Phys.
[13] A. Tanguy and S. Roux, Phys. Rev.55, 2166(1997. Rev. Lett.78, 1062(1997).

[14] D. Wilkinson and J. F. Willemsen, J. Phys.18, 3365(1983. [28] A. Tanguy, Ph.D. thesis, Universi®aris VIl (1998.
[15] H. J. Herrmann and S. Roux, iBtatistical Models for the [29] L. Furuberg, J. Feder, A. Aharony, and T. Jossang, Phys. Rev.
Fracture of Disordered MediaRandom Materials and Pro- Lett. 61, 2117(1998.



1590 ANNE TANGUY, MATTHIEU GOUNELLE, AND STEPHANE ROUX PRE 58

[30] A. Torcini and S. Lepri, Phys. Rev. &5, R3805(1997%. E. Medina, T. Hwa, M. Kardar, and Y. C. Zhanipid. 39,

[31] S. Roux and E. Guyon, J. Phys.2®, 3693(1989. 3053 (1989; K. Sneppen, Phys. Rev. Le#9, 3539 (1992);

[32] S. Maslov, Phys. Rev. Let74, 562 (1995. M. Kardar, G. Parisi, and Y. C. Zhanihid. 56, 889 (1986.

[33] E. Raphakand P. G. de Gennes, J. Chem. Ph98, 7577 For a review, see T. Halpin-Healy and Y. C. Zhang, Phys. Rep.
(1989. 254, 215(1995.

[34] T. Nattermann and L. H. Tang, Phys. Rev4B, 7156(1992;



