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From individual to collective pinning: Effect of long-range elastic interactions
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We study the effect of long-range elastic interactions in the dynamical behavior of an elastic chain driven
quasistatically in a quenched random pinning potential. This is a generic situation occurring in solid friction,
crack propagation, wetting front motion, etc. In the strong pinning limit, the dynamic of the chain is controlled
by individual instabilities of each site of the chain. Long-range correlations in the displacement field and in the
force field develop progressively. The system self-organizes to a steady state where the propagation of the
instabilities is described by scaling laws with characteristic critical exponents. These exponents are numerically
estimated through the analysis of the spatio-temporal correlation in the activity map. Tuning the exponenta of
the algebraic decay of the elastic interaction with the distance is shown to give rise to three regimes: a
mean-field~MF! regime valid fora,1 ~very slow decay!, a Laplacian regime fora.3 ~rapid decay of
interactions!, and an intermediate regime 1,a,3 where the critical exponents interpolate continuously be-
tween the MF and Laplacian limit cases. The latter regime is shown to display, in the range 1,a,2, a
mean-field-type character only for time correlations but not for space. The effect of the driving mode on the
avalanche statistics is also analyzed.@S1063-651X~98!10808-5#

PACS number~s!: 05.40.1j, 74.60.Ge, 64.60.Ht, 64.60.Lx
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I. INTRODUCTION

Multistability of elastic media in a pinning potential i
responsible for the complex dissipative behavior observe
various physical situations such as motion of vortices
type-II superconductors@1#, dynamics of a ferromagnetic do
main wall driven by an external magnetic field through
random medium @2#, charge-density-waves~CDW! @3#,
roughening of crack fronts in fracture@4#, or solid friction
@5#.

In the latter case, the dynamic of the slider can be redu
to that of the asperities at the surfaces of the solid@6#. The
role of the elastic body is to mediate the interactions betw
asperities and with the pulling machine. It has been sho
recently that the competition between the elastic resto
force due to the bulk and the nonlinear pinning force, due
the contact between asperities of different solids, gives
to multiple stable equilibrium positions when the pinnin
forces are sufficiently strong, or when the system is su
ciently large. This multistability is responsible for hystere
behavior of asperities, when they are driven quasistatic
over the set of pinning centers belonging to the surface of
other solid. Dissipation arises from this hysteretic behav
and it takes place in the solid, which plays as well the role
thermal bath. In the case of spreading of a partially wett
liquid on a heterogeneous plane@7#, the evolution of the
contact line depends on the competition between a ‘‘pinn
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PRE 581063-651X/98/58~2!/1577~14!/$15.00
in
n

d

n
n
g
o
e

-

ly
e
r
f
g

g

force’’ due to surface heterogeneities, and an elastic res
ing force resulting from surface tension. In fact, a distorti
of wavelengthl of the three-phase front modifies the liquid
vapor interface over the same distance away from the w
thus resulting, after integration over the whole liquid-vap
surface, in a effective elastic restoring force

f ~x!52kE u~x!2u~x1!

ux2x1ua
dx1 ~1!

with a52. The local capillary force is a nonlocal function o
the entire contact line position. The same effect holds
crack propagation@8#, where the stress intensity factor e
hibits a nonlocal dependence on the front geometry, witha
52 as well. In the case of solid friction, the couplings due
the three-dimensional elasticity are scale invariant and t
translationaly invariant part has the same form~1!, with a
52D21 for a D-dimensional lattice of asperities couple
via a three-dimensional solid~thus a51 for D51 and a
53 for D52, as can be checked by Fourier transforming
usual relations@9#!. Expression~1! is also compatible with
dipolar interactions (a53) in the case of a ferromagneti
domain wall (D52), and we will see that it also takes int
account the usual Laplacian couplings of vortex lattic
charge-density waves, etc.

The effect of the long-range coupling on the dynamics
the system has been little studied since each event involv
large part of the system and can generally not be sol
perturbatively. However, it is known@10# to have a strong
influence on the behavior of the system as well as on
stability properties. Here, we focus on the behavior of
1577 © 1998 The American Physical Society
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1578 PRE 58ANNE TANGUY, MATTHIEU GOUNELLE, AND STÉPHANE ROUX
elastic line (D51) with long-range interactions, driven qua
sistatically on a substrate with quenched disorder, and in
strong pinning limit. We want to show the effect of the lon
range elastic couplings on the fluctuations accompanying
average behavior of the line.

By analogy with friction, we will call ‘‘asperity’’ each
point of discretization of the elastic line. In general, tw
situations may hold: if the couplings are small in comparis
to the distortions of the pinning potential, then the motion
the chain is controlled by the motion of each asperity. This
thestrong-pinninglimit. In this case, when the local stiffnes
is sufficiently weak, the stable local equilibrium position
an asperity may disappear, and the ‘‘unstable’’ asperity
vances suddenly to the next equilibrium position. In contra
in theweak-pinninglimit, when the couplings are sufficientl
strong, the line behaves in a first approximation as a wh
In such a case, a separation in domains may occur fo
sufficiently large system size@1#. Thus a coarse-graining o
the system at large enough scales leads to a simple str
pinning regime. The latter case thus appears to be the
sible relevant limit in the thermodynamic limit of an infinite
sized system.

In this paper, we investigate the effect of the range
elastic interactions in thestrong-pinning case, where the
fluctuating dynamics of the system results from the de
ministic propagation of local instabilities. More precisely, w
focus our attention on the interactions between asperities
we consider only the elastic displacement field compone
whose wavelength is greater than the distance between
perities.’’ This approach is complementary to that of cons
ering individual jumps without couplings@7#. We show how
the nature of the elastic interactions allows us to interpo
between a ‘‘delocalized’’~or mean-field! regime and a ‘‘lo-
cal’’ regime analogous to the Laplacian case. The driv
mode is shown to affect the velocity of propagation of t
instabilities and the avalanche statistics.

In the first part of the paper, we propose a discrete mo
of the dynamics that will be compared to the continuous o
Then we study in a systematic way the dependence on
decay of elastic interactions,a in Eq. ~1!, of the propagation
of instabilities, of the organization of the dynamic and of t
kinetic roughening. The last section is devoted to a disc
sion about the universality of our model, and on the u
formization due to elastic interactions.

Let us recall briefly thata51 for an elastic one-
dimensional chain with ‘‘three-dimensional’’ couplings, b
a522 for an elastic string with bending elasticity@9#,
a52 for fracture dynamics in infinite solids@8# or wetting
experiments in a free surface geometry@7#, and a50 in
propagating capillary fronts due to the fluid flow behind t
front @11#.

It is important to note that, for a given physical system,a
may be changed experimentally by changing the geometr
the apparatus. This is, for example, the case of wett
wherea52 in a free surface geometry, but where the co
plings are Laplacian at large scales in a Hele-Shaw cell~at
vanishing capillary number! @12#.

II. MODEL

Our aim is to single out the effect of interactions in t
propagation of instabilities in an elastic chain (D51) driven
e
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quasistatically along its transversal direction over a rou
surface. We consider here a discrete one-dimensional el
chain of sizeL. The chain of sizeL is discretized intoL/d
blocks. d represents the distance between asperities in
strong-pinning limit, and more generally the distance b
tween ‘‘sites.’’ In the case of wetting, for example, it will b
at least on the order of the distance between pinning cen
It is not possible to have access to information belowd in
our model;d is the lower cutoff of our model andL is the
upper cutoff.

We callx the current site, which is the position of the si
evaluated in the nondeformed geometry. The position of
site in the deformed geometry isx85x1u„x…, whereu„x… is
the displacement field of the chain in the laboratory fram
We will refer as well tou„x… as the difference in the actua
positionx8 of site x to any homogeneous motion of the u
deformed geometry. We consider only the large wavelen
components of the displacement field (l.d), thusu„x… cor-
responds to the displacement averaged over a cell of sizedD.
In the following, we take account only for the displaceme
in the direction of pulling,j , transversal to the chain, and w
neglect the displacement along the chain. The displacem
field is a scalar and it will be notedu(x), as shown in Fig. 1.

Each site of the chain is subjected to a driving force
random pinning force~from the interface!, and a long-range
elastic force describing the coupling to the other sites of
chain. The continuous equation of motion for this syste
could thus be written in the overdamped limit

g
]u~x,t !

]t
5FFext~ t !1h„x,u~x!…2kE u~x!2u~x1!

ux2x1ua
dx1G ,

~2!

FIG. 1. ~a! Schematic motion of the elastic chain in the for
field h„x,u(x)… betweent ~hatched! andt1Dt ~grey!. The redistri-
bution of the elastic forces via the long-range interactions is
visualized in this picture.~b! Schematic description of the pinnin
force for one sitex. The abscissa is now the average position of
line.
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PRE 58 1579FROM INDIVIDUAL TO COLLECTIVE PINNING: . . .
whereFext stands for the driving force andh„x,u(x)… for the
quenched pinning force. The left-hand side of the equa
contains a phenomenological damping term.

The long-range elastic force has been already introdu
in the previous part of this paper. Let us remark that it m
be described by three fundamental properties:~i! it is linear
in u(x) ~linear elasticity!, ~ii ! it is scale invariant~despite the
lower cutoffd and the upper cutoffL), and~iii ! it is ‘‘trans-
lationaly invariant.’’ This latter property is due to the fa
that we call ‘‘coupling forces’’ only internal forces. Thes
forces do not contribute to the average over the entire
dium. This is compatible with the fact that the elastic ene
of the chain~in the absence of pinning! is translationally
invariant. Any uniform displacement of the chain does co
tribute to anaveragerestoring force, which has to be com
pensated for at equilibrium by a pinning force, but contra
to the definition used by Caroliet al. @5#, it does not contrib-
ute to the elasticcouplings. These couplings have an infinit
range due to their algebraic decay. For the sake of simplic
we will refer to a as therange of the interaction. Asa
increases, the interaction tends to be concentrated d
nantly on the nearest neighbors. On the contrary, for a sm
a the interaction tends to be more evenly distributed over
system. We will see later how to adjust the external driv
force to take into account the average dynamic of the syst
The quenched pinning force,h, represents the interactio
between the heterogeneous surface and the elastic cha
case of solid friction, it may have various physical origi
~Hertzian contact between asperities of different surfaces,
hesion, etc.! but it is always nonlinear. Moreover, a larg
scale description of the contact problem supposes that
basic interaction is already the combination of multiple
ementary processes, giving rise to discontinuities and m
valuation @5#. At a sufficiently coarse-grained level, the e
fective force of the interaction will lose its continuity. I
order to be able to describe the possible fixed point o
renormalized description of the surface interactions,
choose to use a discontinuous pinning force, described
by its statistical properties. This force is quenched and r
dom. We will restrict ourselves in the following to whit
noise. Moreover, we anticipate that the fluctuations of
amplitude of the pinning force are small when the slid
moves forward, and not sufficiently high to allow backwa
motion of the slider. This is also the case whenspatial dis-
tortions of the pinning forces are strong. In this case, it is s
possible to use the expression~2! but with the reservation
that only thepositivepart of the right-hand side is consid
ered. Thus, the system is supposed to move only forward
the pinning force may be described for each sitex only by a
position coordinatei (x) and a threshold valueh i (x)(x), as
shown in Fig. 1~b!. In such a manner, our model contains t
main features of the dynamics of an elastic chain, driv
over a pinning surface in thestrong-pinninglimit. It is also
believed to capture the large-scale behavior of any pinn
potential. But, considering deliberately the strong-pinning
gime, we cannot address the interesting question of
crossover scale from weak to strong pinning.

We are interested in the quasistatic limit of the motion
the chain. In this case, the damping is supposed to be s
ciently strong to allow each site to reach instantaneously
local equilibrium position. In the quasistatic approximatio
n
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it is well known that, in the stationary regime and in th
strong-pinning limit, the main contribution to the global di
placement is due to hysteretic jumps of each element of
chain, resulting from the multistability of the site and of th
delay rule@13#. For a given external driving, the initiation o
a jump is a local instability and thus the dynamics cannot
controlled simply by that of the center of mass. To avoid t
explicit introduction of the dynamic of the system~with in-
ertia and viscous damping!, and thus the necessity to inte
grate the equation of motion, we assume the following c
ditions. First, the system evolves from one local equilibriu
position to the next closest one. Second, we monitor
driving forceFext(t) actively so that we always maintain th
system at the edge of stability. More precisely,Fext(t) is
adjusted so that only one mode is metastable~only one site
jumps at each time step!. Let us emphasize that in contrast
many approaches based on continuum equations such a
~2!, we do not consider a constant force but rather a cons
but infinitesimal mean velocity. In solid friction, it corre
sponds to a uniform average imposed displacementv on the
top side of the solid. In wetting experiments, it will corre
spond to motion at an imposed slow rate of flow. Altern
tively, v may be deduced from a motion where a force
imposed on the top side of the solid~given pressure in wet-
ting experiments!. v is related, via shear of the solid, to th
average position of asperities of the chain. When the d
placement is imposed, the discrete version of our model
studied below, belongs to the class of extremal models~such
as invasion percolation@14#, fracture models@15# or more
recently introduced growth models@16#!. With the second
assumption, the motion will consist in a series of equilibriu
points, and the equation of motion does not have to be in
grated. Under the assumption of the overdamped natur
the motion, we will discuss a possible extrapolation of t
obtained results to different driving modes. This discuss
will allow us to relate the avalanche statistics to the obse
able intermittency of the motion of the chain.

The above introduced model is discretized to allow
numerical simulations. The string is described as a o
dimensional, periodic array of sites. The unit length alo
the chain is given by the distance between the sites of
chain, and the unit time by the time stepdt elapsed between
subsequent jumps. Our ‘‘time’’ count in fact the number
jumps ~that is, the main traveled distance!. When one site
depins from one asperity, it jumps by a distancedu, whose
maximum value gives the unit length in the direction
propagation. The pinning potential is described by a se
discrete centers, with a random spatial distribution. We
sume that the amplitude of each pinning force is identi
throughout the medium. Alternatively, we could have chos
a uniform distribution~on a regular lattice! but with a ran-
dom magnitude. We checked that these two variants~and
their combination! give the same results, as soon as so
randomness is introduced. For a periodic array of pinn
centers with the same amplitude, as could have b
guessed, the chain motion finally locks on a periodic mot
of little interest.

The model runs as follows. We start with a uniform fl
front, u(x)50, for each cell. We suppose that these positio
correspond to equilibrium positions in the absence of an
ternal driving force@that is, for eachx, h(x,0)50#. The
external driving forceFext is applied progressively. The elas
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FIG. 2. Activity map showing the location of the active sites as a function of time for various couplingsa51 ~a!, a52 ~b!, anda
53 ~c!. The system size isL51024.
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a-
tic displacement is negligible, thus only the pinning for
increases first@h„x,u(x,t)…52Fext(t)#. When the load is
sufficiently high, one cell overcomes its threshold, a
jumps. The maximum load is in this case

Fext5minx„2h0~x!….

The cell x* , which overcomes its threshold, then jumps
the next basini (x* ), thus

u~x* !→u~x* !1du.

During the jump, the external driving force is constant. T
linearity of the problem allows us to calculate the new elas
couplings. The elastic forces along the chain are modifie

f ~x!→ f ~x!1duG~x,x* !,

whereG(x,y) results from the interaction kernel discuss
above. The external driving force is then reduced to zero
order to prevent another jump, and the external load may
increased until

Fext5minx„2h i ~x!~x!2 f ~x!…

in order to allow the next jump. The discrete interaction k
nel is chosen as the simplest expression that captures
required periodic boundary condition, and follows t
power-law decay of Eq.~1!:

G~x,x* !5FsinS p
ux2x* u

L D G2a

for xÞx* , ~3!

G~x* ,x* !52SxÞx* G~x,x* !. ~4!
c
to

in
e

-
the

In the particular case ofa52, such an expression~3! is the
exact result of the summation of interactions for a perio
chain.

This describes one elementary step of the model. We s
from a uniform flat front and run a long sequence of su
steps until the system reaches a statistically stationary s
Condition Eq. ~4! stands for the average conservation
forces along the chain. We usedG(x* ,x* )[1, thus the stiff-
ness for neighboring sites is unity. This sets the scale
forces. The jump sizedu thus reflects simply the distanc
between asperities on the track@13#. The dynamic is ‘‘ex-
tremal’’ in the sense that only the site submitted to the ma
mum forcef (x* ) advances at each time step.

Figure 2 shows examples of the space-time distribution
‘‘active sites’’ x* in the medium for various couplings,a.
Figure 3 shows the time evolution of the displacement fr
along the chain for the same values ofa. It appears clearly
from these figures that the system organizes in a statistic
stationary state, and that for largea ~local couplings!, the
evolution is spatially inhomogeneous.

We compared several statistical distributions fordu, e.g.,
uniform in the interval@a,1#. Our results at sufficiently large
times and scales did not display any dependence ona as long
asaÞ1. As noted above, whena51, the pinning centers are
periodically distributed, with the same strength, and
chain motion ends up being periodic with no interesting fe
tures.

Similar models have already been studied@17# in the case
a52 and in the limit asa→`, which is the discrete version
of the Laplacian one@18,19# and we will refer to them in the
following. Similarly, the casea50 corresponds clearly to a
FIG. 3. Displacement front at different time intervals and for various couplingsa51 ~a!, a52 ~b!, anda53 ~c!. The system size is
L51024.
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mean-field situation and it admits a simple analytical so
tion that is quite similar to the situation solved by Flyvbje
et al. @20#.

As far as one is interested only in the effect of the lon
range elastic interactions, it appears convenient to consida
as a continuous parameter of the model, albeit in most ph
cal cases only integer values can be found.

III. KINETIC ROUGHENING

Starting with an uncorrelated distribution of forces, t
system organizes, after a transient, into a highly correla
statistically stationary state. One manifestation of these lo
range correlations is the roughening of the displacem
front of the chain. The roughness of the chain is charac
ized by the scaling of the correlation function,

^@u~x1q!2u~q!#2&q}x2z ~5!

or in Fourier space

^uũ~k!u2&}k2122z. ~6!

Such a power-law behavior of the power spectrum of
front position is shown on Fig. 4 fora52. z is called the
‘‘roughness exponent’’ of the front. From Fig.~4! we deter-
mine z50.3560.02, in good agreement with a previous d
termination of this exponent by Schmittbuhlet al. @17#.

As can be seen in Fig. 5,z depends ona. The largera,
the larger the roughness exponent, i.e., the more persi
the front fluctuation. Note that for largea, the roughness
exponent exceeds 1, and thus Eq.~5! is inappropriate. Either
one should use such a correlation function computed on
slopeof the front~and measuredz21), or revert to the spec
tral method for determining the roughness exponent. Foa
53, we obtainz'1.2, again consistent with previous dete
minations@18#. The latter case, i.e., for local couplings,
equivalent to the Edwards-Wilkinson growth model@21#
however, the quenched nature of the noise induces a m
change in the roughness exponentz, from z50.5 for an an-
nealed noise to 1.2 for a quenched noise.

Fisheret al. @22# proposed a renormalization-group ana
sis of this problem and obtained

FIG. 4. Average power spectrum of the displacement front
sition in log-log scale for ana52 coupling. The continuous line
shows a power-law fit that corresponds to the roughness expo
z50.35. The system size isL51024.
-

-
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d
g-
nt
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e
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e
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zF5
2a23D

3
, ~7!

where D is the space dimension, i.e., in our caseD51.
Expression~7! has been obtained by replacing the Laplac
propagator 1/q2 by 1/qa2D in the original calculation in or-
der to take into account the long-range coupling. This th
retical prediction is plotted as a dotted line in Fig. 5. W
observe a fairly good agreement for 1,a,3. However, we
observe a marked difference for the Laplacian case, wh
the theoretical predictionzF51 lies outside of the error bar
of our measurement.

The ‘‘roughness exponent’’ can be measured experim
tally. In the case of wetting on heterogeneous surfaces
Hele-Shaw geometry, Patersonet al. @12# reportedz50.77.
Above a scale equal to the aperture of the cell, the prob
should be described by the casea53. However, gravity
plays a significant role in this problem, introducing an ad
tional confining term cutting down large-scale front fluctu
tions. It is interesting to note that when gravity effects a
suppressed~horizontal cell!, the geometry of the invading
fluid is similar to that of invasion percolation. The relatio
between invasion percolation and the quenched Edwa
Wilkinson problem has been discussed by Roux and Han
@18#, in relation with a model of this process proposed
Čieplack @23#. It may be that the expected scaling is r
stricted to a rather narrow window limited from below by th
cell thickness, and from above by the capillary length~mea-
suring the effect of gravity as compared to the surface t
sion!. In case of wetting in a free surface geometry (a52),
Rolley et al. @24# have foundz'1/3, in very good agreemen
with our numerical result (z50.35). Contrary to the expla
nation proposed by Robbinset al. @25#, using Imry and Ma
arguments, our explanation takes into account the local
namics of the chain, and may be extended in the same wa
any range of the couplings. Another experimental situat
that might be compared to our computation is the propa
tion of an interfacial crack. Such a situation between t
PMMA plates has been studied recently by Schmittbuhlet al.
@26#. They measuredz'0.55, a value that is much highe
than the above-mentioned valuez50.35 for a52. The vis-
coelastic mechanical behavior ofPMMA, or the initiation of

-

nt

FIG. 5. Roughness exponentz versus coupling rangea, mea-
sured from the power-law fits of the displacement correlation fu
tion.
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1582 PRE 58ANNE TANGUY, MATTHIEU GOUNELLE, AND STÉPHANE ROUX
cracks ahead of the front, which merge with the front givi
rise to a tortuous geometry where higher-order terms ma
relevant, may be responsible for this difference. Not also
Ref. @27# is irrelevant in our case because the crack is
interfacial there.

IV. DYNAMICAL ORGANIZATION

Starting with an uncorrelated distribution of forces, t
system organizes after a transient into a correlated sta
cally stationary state. In particular, the memory of the init
state is lost and the distribution of forcesf (x) reaches a
stationary distribution shown in Fig. 6. The forces have
critical valueFmax depending on the value ofa. The distri-
bution is asymmetric. The higher the value ofa, the more
peaked is the distribution close toFmax. This distribution
depends on the spatial correlations present along the f
and on the distribution of force increments following an
ementary move. The latter aspect can be taken into acc
@28# in a mean-field model, expected to hold fora,1 as
shown below. The maximum depinning forcef (x* ) as well
@related to the external force byf (x* )52h i (x* )(x* )

FIG. 6. ~a! Statistical distributionn( f ) of forces along the chain
in the stationary regime, for various couplingsa. The scale for
forces is given by the maximum of forcesuG(x* ,x* )max(u)u. The
pinning threshold is taken arbitrarily ash i (x* )(x* )[21. ~b! Con-
tribution of the maximum depinning forcesf (x* )512Fext(t)
~little L) in the distributionn( f ) for a51. The dashed line stand
for a fit of n„f (x* )… near the thresholdf (x* )c512Fc /L with b
51.
e
at
t

ti-
l

a

nt

nt

2Fext(t)# has a lower critical value corresponding to th
maximalexternalforce for the whole system,Fc . For a uni-
form constant depinning threshold, for example@h i (x* )(x* )
[hc521#, the lower critical value of the maximum depin
ning force is (12Fc /L). This has been drawn in Fig. 6.Fc
increases witha.

V. PROPAGATION OF INSTABILITIES

A. Spatiotemporal map of activity

As shown in Fig. 2, the active sites are spatially and te
porally correlated. These correlations can be trivial as wh
a50, or more complex fora.1. In order to analyze thes
correlations for various values ofa, it is of interest to study
the probability distribution@29# p(r ,Dt) of having a distance
r between the sites active at timet andt1Dt ~i.e., the spatial
distribution of the Dtth active site!. From the numerical
simulations, we observe that it is possible to describe
entire dependence ofp(r ,Dt) for a.1 through a scaling
form

p~r ,Dt !5Dt21/zfS r

Dt1/zD ~8!

with a dynamic exponentz, which describes the spreading o
the activity with time over a zone of sizej}Dt1/z. For a
→`, z52, as for a diffusive system. Figure 7 shows
data collapse forDt ranging from 1 to 64 and fora52. The
exponentz is determined from this collapse and it varie
continuously witha. The scaling functionf displays the
following behavior:

f~x!}H x2b for x@1

x0 for x!1.
~9!

For distances larger than the active lengthj, the decay of the
scaling function is characterized by an exponentb, which
also depends ona. Figure 8 summarizes the dependence ob
andz on a.

Let us first propose some arguments that allow us to
derstand the different observed regimes as a function ofa.

FIG. 7. Data collapse of seven different probability distributio
p(r ,Dt) for a52 and time intervals ranging from 1 to 64. Th
system size isL5512. The redistribution exponent isb51.95, and
the best data collapse is obtained forz51.30.
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First, it is possible to link the dynamical roughness exp
nent z to the dynamical exponentz in our model. Let us
consider a starting point (x0 ,t0). After a timeDt, the activity
as spread over a distancej(Dt) aroundx0. The number of
moves that have been necessary to cover the area bet
the crack fronts at timet0 and t01Dt scales asDxDu. The
front has a self-affine geometry with a roughness exponenz,
henceDu}Dxz. As a result, we get the scaling of the tim
difference with the extentDx5j as

Dt5j11z, ~10!

hence

z511z. ~11!

This scaling relation is accurately obeyed in our numeri
simulations as long as 0<z<1. For larger values ofz, the
above scaling breaks down, andDu}Dx, hence the effective
exponentz52 appears.

Second, if we make the assumption that in the steady s
there are only weak spatial distortions in the force distrib
tion, then p(r ,Dt51) should essentially reflect the loa
sharing rule due to the elastic coupling. This argument s
ply predicts

b5a ~12!

FIG. 8. ~a! Plot of theb exponent.~b! Plot of thez exponent
obtained for different values ofa. The dotted and dashed lines a
the proposed asymptotic behavior discussed in the text. The do
line (2a/3) takes account of the relationz511z and the expres-
sion proposed forz by Fisheret al.
-

een

l

te
-

-

as found in the numerical simulations fora,3. An analo-
gous relation has been found in the propagation of initia
localized perturbation in the elastic map, without pinni
@30#.

Third, as a increases, the load redistribution is muc
higher for the nearest neighbors than for the rest of the ch
More precisely, whena53 the interaction force

f ~x!52kE u~x!2u~x8!

ux2x8u3
dx8

contains a singular part proportional to

f sing~x!}S d2u

dx2D ~13!

plus a regular part. The same holds for any higher value
a, up toa tending to infinity, wheref (x)}d2u/dx2. Hence,
the dynamics of the chain is essentially controlled by t
singular part, and thus is no longer expected to depend oa
but rather should be equivalent to the casea53 or a5`,
i.e., the simple Laplacian~local! kernel, or the Edwards-
Wilkinson equation with quenched noise universality cla
This regime will be referred to as the Laplacian regime in
following.

Let us now return to the distribution of distances betwe
active sites at a time intervalDt. We observed the existenc
of a region of extentj}Dt1/z centered on the initiation site
where most of the activity is confined. We call this regio
‘‘cluster’’ —although it is not connected in the space-tim
map. These clusters have a self-affine structure. Their sca
is indeed given byDx}j}Dt1/z. We note that whenr .j,
the last occupied site is not part of the cluster that origina
on the former site. The way the activity is distributed
space and time is controlled by the statistical distribution
the elementary jumps between two consecutive active s
which displays a very wide distribution, and the tempo
correlations in those jumps. There are two limit cases t
have been thoroughly explored, and that may serve as gu
in the analysis. One case focuses on temporal correlat
with a narrow ~say Gaussian! distribution of elementary
jumps, and the absence of a typical time scale would ind
that the activity can be described as a self-affine profile
time, with a roughness exponent 1/z. The other limit case
corresponds to the absence of temporal correlations focu
on the power-law distribution of elementary jump, and whe
the space-time map of activity can be seen as a Levy w
We do not know of any theoretical attempt to combine the
two aspects to get a general picture. Due to the nature of
elementary jump distribution, it is natural to explore the se
ond limit case as a reference, and check its domain of va
ity. Thus we now consider the crude hypothesis that tem
ral correlations can be neglected. The probabilityp(r ,t) can
thus be written as the convolution ofp(r ,1) with itself t
times. For larget, the distribution ofp(r ,t) will therefore
converge to a statistical distribution that is stable for ad
tion. If the distributionp(r ,1) has a finite second momen
thenp(r ,t) should converge to a Gaussian law as a resul
the central limit theorem. However, this is never the ca
since the above scaling implies that this would be obtain
for a.3, and we have seen that this case is similar toa

ed
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53. In the intermediate case where 1<a<3, we have seen
above thatp(r ,t) decays asr 2b}r 2a, and hence, the secon
moment ofr would diverge in an infinite system size. As
result, the central limit theorem does not apply, but rat
p(r ,t) converges to a stable Levy law characterized b
power-law decay asr 2a for all t. Hence, the power-law tai
will be preserved, for large distances, i.e., as long as
correlation length is smaller than the system size,j,L. This
is indeed what is observed fora.1. Still, in the case where
we neglect time correlations, we can relate the dynamic
ponentz to the large distance power-law decay through

z5b215a21. ~14!

We see from Fig. 8 that away from the valuea53, where
z'2, the above relation is poorly satisfied. This indica
that temporal correlations becomes more and more impor
asa decreases, and cannot be neglected.

When a approaches 1, all moments of the distributi
become controlled by the system size, and hence after a
time steps,p(r ,Dt) is smeared out over the entire doma
size and no more power-law tail survives. The scaling giv
by Eq. ~8! indeed breaks down fora<1. As a natural con-
sequence, time correlations also vanish, and we ente
mean-field~MF! regime, which is independent ofa.

From these arguments, we arrive at a classification of
ferent regimes depending on the value ofa: ~i! a>3, the
Laplacian regime, or the Edwards-Wilkinson regime with
quenched noise, where the kernel is equivalent to a sec
derivative;~ii ! 1,a,3, an intermediate regime, where th
critical exponents that are measured depend continuousl
a, ~iii ! a<1, the mean-field regime, where spatial corre
tions are lost in a few time steps, and where—as in the
placian regime—the value ofa does not influence the critica
exponents.

B. Activity recurrence

In the critical steady state, the activity map is highly co
related and exhibits scale-invariant features in both time
space. We studied previously the spatial distribution of
tivity after a fixed time lagDt. We now turn to a comple-
mentary description, focusing on a single site as a functio
time. More precisely, if sitei is active at timet0, we study
the distribution,pfirst(t), of the time delayt, such that the
next move at sitei occurs at timet01t. Figure 9 shows such
a distribution fora51,1.5,2,3 and̀ . The very early time
behavior is dependent on the distribution of displacemenu
that is chosen. If the displacement is distributed over
interval @a,b#, for largea, we prevent the recurrence of a
tivity immediately after a move. However, this effect las
only for a time much lower than the maximum timeT* when
a.1. It does not affect the distribution over a large interv
depending on the system size, and thus can be disca
from the analysis. Then fora.1, we observe a power-law
decay

pfirst~ t !}t2tfirst, ~15!

wheretfirst,2. This power law terminates at an upper cuto
that scales as the time necessary for a cluster to span
r
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entire system size,T* 5Lz. Let us now summarize our ob
servations for variousa values.

~i! a.3. Consistent with the previous discussion, t
value of the exponenttfirst is independent ofa and amounts
to tfirst'1.5, in good agreement with previous studies.

~ii ! 2,a,3. The distribution drops rapidly~faster than
any power law! above the cutoff scaleT* . The exponenttfirst
progressively increases and reaches the value 1 asa tends to
2.

~iii ! 1,a,2. The exponenttfirst saturates to 1, for times
up to T* , but in contrast to the previous cases, the distrib
tion then reaches a plateau fromT* to T** before dropping
faster than any power law. The scaling of this second ti
scale ~Fig. 10! is identical to that ofT* , T** }Lz. The
relative importance of the 1/t region and of the plateau ca
be estimated by the ratioT* /T** , which goes from 1~no
plateau! to 0 ~no power law! asa decreases from 2 to 1.

~iv! a,1. We enter the mean-field regime wherepfirst is
constant for times up toT** , which is proportional to the
system sizeL. Again this is consistent with the mean-fie
regime previously discussed.

It is interesting to note that the intermediate regime is n
split in two cases, with a short and long time behavior d

FIG. 9. Log-log plot of the first return probability distributio
pfirst(t) as a function of the timet for various coupling rangesa
51, a51.5, a52, a53, and Laplacian. The system size
L5512.

FIG. 10. Data collapse of the first return probability distributio
for various system sizes fora51.5. The upper cutoff scales asLz as
well as the extent of the plateau.
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fering for 1,a,2 rather than a continuous evolution wi
an exponenttfirst going from 1 to 0. The flat plateau regim
observed forT* ,t,T** and 1,a,2 is similar to the
mean-field regime fora,1, and thus the transition to th
MF regime appears not to be as brutal ata51 as proposed
from the scaling of the distance, but rather it turns out to
gradual, with a mixed regime displaying nontrivial correl
tion for a ‘‘macroscopic’’ timeT* , before reaching a mean
field behavior at later times. The surprising feature is t
space and time correlations do not disappear simultaneo
It might be interesting to note that themeandistance be-
tween active sites separated by a delayDt also changes fora
smaller or larger than 2. Fora.2, it follows from the pre-
vious spatio-temporal analysis~Sec. V A! that the mean dis-
tance between active sites scales as the correlation lengj
sinceb.2. On the contrary, fora,2, it scales as the system
sizeL.

Let us consider an active sitei at time t0. After a timet,
the number of timesn(t) that the sitei has been active ca
be estimated as the total number of individual steps prop
tional to t divided by the number of sites where most of t
activity is concentrated, i.e.,t1/z, or

n~ t !}t121/z. ~16!

Let us now estimate the same number using the distribu
of activity recurrenceT. From the power-law distribution o
T, we can estimate the maximum amongn(t) numbers—
supposed to be uncorrelated—from

E
Tmax~n!

`

pfirst~T!dT}
1

n~ t !
~17!

or Tmax(n)}n1/(tfirst21). Using the fact thattfirst is always
smaller than 2, we can compute the mean time between
tivity recurrence^T&}Tmax

22tfirst}n(22tfirst)/(tfirst21). This same
average time is also equal tôT&5t/n(t). Equating these
two estimates gives

n~ t !}ttfirst21. ~18!

Comparing Eqs.~16! and ~18!, we arrive at the following
expression fortfirst :

tfirst5
2z21

z
. ~19!

This estimate is based on the fragile assumption that t
correlations can be neglected. We have seen above th
similar hypothesis leads toz5a21, from which we deduce

tfirst5
2a23

a21
. ~20!

This expression, however, requires that the distribution oT
is not governed by the upper cutoffLz, and thustfirst.1
strictly, or a.2 in the above formula. Figure 11 shows th
measured value oftfirst as a function ofa, together with the
above relation. We observe a reasonable agreement f
,a,3.
e
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C. Avalanche dynamic

Up to now, we have considered an ideal driving where
front displacement is controlled by adjusting instantaneou
the driving force. Assuming an overdamped dynamics,
can reconstruct a different type of driving.

In order to proceed, it is useful to introduce the notion
avalanches or bursts. Let us consider the sequence of e
nal forceFext(t). Any forceF will split the signal into con-
secutive intervals with alternatingF,Fext domains~or ‘‘ob-
stacles’’!, andF.Fext intervals~or ‘‘bursts’’!. Each burst is
thus the front motion that would result from a constant for
F being imposed to the system.

Avalanches were introduced initially@31# in order to un-
derstand some features of invasion percolation@29#. How-
ever, in Ref.@31#, some approximations were unjustified
unfounded. A complete solution of the avalanche statis
applied to invasion percolation and other extremal model
presented in Paczuskiet al. @19#. The key property is that it
is possible to relate the avalanches in the external forcin
the cluster statistics in some extremal models such as in
sion percolation. The avalanche size distribution at fixedF is
a power-law distribution up to a maximum avalanche si
which diverges asF approaches to a critical valueFc . This
mapping allows us to derive geometrical information on t
activity from a simply accessible external signal, the drivi
force. One amazing feature is that the latter is on
dimensional but encodes multidimensional information.

In our case, it is unfortunately impossible to establi
such a direct mapping because of the nonlocal nature of
interaction. Hence, the connectedness of the clusters is
or equivalently, the clusters to be defined from the drivi
force avalanches do not have a straightforward geometr
interpretation. Nevertheless, the maximum external forceFc
encountered in the external driving can still be identifi
with a critical point where the correlation length diverge
This critical point is a depinning transition. For a consta
driving F strictly smaller thanFc , the front will advance
only over a finite distance and stop when it encounter
pinning force larger thanF. Similarly, if F.Fc , the front
will never be stopped.

FIG. 11. Plot of thetfirst exponent obtained for different value
of a. Two different exponents appear for 1,a,2 in the mixed
regime. They correspond to the distribution below and abovetc .
The dotted lines are the proposed asymptotic behavior discuss
the text.
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It is also possible to use the time evolution of the syst
to define two distributions of avalanches that do not requ
the precise identification of the critical threshold. At ea
time step,t, one can construct the avalanches that corresp
precisely to the loadingF(t). In fact, two such avalanche
can be considered, for times either larger or slower that,
the forward and backward avalanches, respectively, a
shown in Fig. 12. Figure 13 shows both cumulative a
lanche distributions for our model witha.1. They behave
as power laws,

Nf ,b~ t !}t12t f ,b, ~21!

with no upper cutoff apart from the system size.
Maslov @32# showed that for a variety of models, the e

ponentt f was superuniversal, and equal to 2. Consequen
forward avalanches do not reveal much information on

FIG. 12. External loadingFext(t) as a function of time. From
this signal, on can define avalanches either by prescribing a fi
value of f , and considering the intervals wheref remains below this
limit, or by constructing these avalanches starting from all forc
valuesFext(t) with the statistics issued from the model, and cho
ing either a forward or backward time direction.

FIG. 13. Spectral amplitude of the time fluctuation of the tim
integration of the threshold forceFext(t) for various couplingsa
ranging from 0 to 3. The straight line represents a power law
exponent22.2, which implies a roughness exponent of the dir
time force signal of20.4 fora.1. The full line represents a powe
law of exponent24, which implies a roughness exponent10.5.
e

nd

-

y,
e

model. However, in the extremal models studied in Paczu
et al. @19#, the backward avalanche exponent is not superu
versal and it does give rise to a nontrivial critical expone
t f .

In our numerical results, the universal resultt f52 is ob-
served fora.1. The backward value is also measured to
tb52 for the same values ofa.

Such power laws with exponentst f5tb52 also appear
in a series of uncorrelated random numbers picked from
same distribution, however we cannot infer from this res
that the forces are uncorrelated. They are indeed stron
correlated as can be seen from the power spectrum of
signalFext(t) ~Fig. 14!, which shows a power law extendin
over long time intervals~yet smaller than the time needed
span the systemLz). If we were to interpret this signal a
self-affine, we would estimate from such a graph a self-affi
Hurst exponentzF520.4, a negative exponent that mea
that the signal is strongly anticorrelated. The same po
law appears for all values ofa larger than 1. One has to b
cautious while manipulating Hurst exponents that are ne
tive, since most properties relying on the self-affine nature
a signal break down in this case. In fact, for most propert
such functions behave as if the Hurst exponent was actu
zero~white noise!. ~Otherwise, in order to reach reliable con
clusions, one may consider the time-integrated force sig
i.e., the energy dissipated during the front motion. More p
cisely, the mean force can be substracted fromF before in-
tegration so that only the fluctuating part of the energy
considered. Fora.1, this signal has a self-affine expone
zF11'0.6, which can be measured using standard too!
The avalanches are thus expected to behave as if the f
signal was a white noise, hencet f5tb52. For small expo-
nent a,1, there is a short time~high frequency! behavior
that seems to follow a similar power-law behavior. The p
teau appearing for very small times is probably due only
numerical accuracy and does not have to be considered.
at large times, the power spectrum of the force crosses o
to anv22 regime, which is the signature of azF50.5 self-
affine signal, analogous to a random walk. The avalan
exponents are consequently changed tot f ,b51.560.05 for
a,1.

Although the previous analysis of avalanches can in p

ed

-

f
t

FIG. 14. Instantaneous loadingFext(t) as a function of time and
external elastic load of stiffnesse.
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ciple be accessed experimentally, it requires one to be ab
switch from a displacement-controlled to a force-control
mode, which is in general a rather difficult requireme
There is another, more natural, way to have access to
fluctuating driving force through the intermittent front m
tion. We have seen that a constant force control for a fin
size system either leads to a stop or a constant motion
transition between the two regimes corresponding to
maximumFext. Thus a single configuration will determin
the threshold, and for a finite-size system, this single po
generally is not representative of the critical behavior, an
contains rather poor information. A way to circumvent th
difficulty is to introduce a small but nonzero stiffnesse in the
control ~Fig. 15!, so that as the front advances, the drivi
force is progressively decreased by a quantitye^u&. This
insures that the motion will never be unlimited. As soon
the front is pinned, then the driving force is slowly increas
up to the depinning limit. Ife is small enough, only the
forces close to the pinning threshold will be probed. In a
dition, the statistics of the front advance between two pinn
configuration gives some information on either the corre
tions of Fext, or on its statistical distribution close to th
critical threshold.

We performed such an analysis for various values ofa.
We observed that the avalanches have a maximum sizs*
that depends one as

s* }e2k ~22!

with

k'0.65 ~23!

for all values ofa investigated from 1 to 4. This maximum
size can be used to scale the avalanche sizes ~Fig. 16!, and
thus it allows us to account for the distribution in a
e-independent manner,

ne~s!}
1

s* r
cS s

s* D , ~24!

FIG. 15. Log-log plot of the distribution of the forward an
backward avalanches fora.1. The straight lines are power-law fit
of exponents22.
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where c is a power-law distribution for small argumen
c(x)}x2u for x!1, and decays rapidly to zero forx@1.
And s* r is a normalization factor.

There are different features that may contribute to
statistics ofs. We focus here on one aspect of the proble
namely the statistical distribution of the pinning force clo
to the depinning critical point. Note that the results that co
be derived from the self-affine structure of the signalFext(t)
are not valid due to the asymmetry of the distribution
forces,p(Fext) ~Fig. 6!.

Let us note

p~Fext!5~Fc2Fext!
b[db, ~25!

the distribution of external forces near the thresholdFc . Af-
ter n events, the system has lost an elastic forced,

d5ne.

The maximum force encountered follows:

d2~11b!5n.

Balancing the two expressions leads to

e5n21/~11b!215n2~21b!/~11b!,

hence

k5
11b

21b
. ~26!

From numerical data, we haveb'1. It leads to

k'0.66,

in good agreement with Eq.~23!, although temporal correla
tions have not been considered here.

VI. DISCUSSION

We have presented in this paper a study on the corr
tions induced by the dampened motion of a finite-size ela
chain with long-range interactions and driven along its tra
versal direction on a surface with quenched disorder.

We have shown that the system organizes after a trans
in a stationary state with long-range correlations. T
memory of the initial state is lost. The final state does n
depend on the initial state, but its characteristics depend
a. We have pointed out three regimes: for very long-ran
couplings (a<D), a regime controlled by finite-size effect
and analogous to a mean-field one; for very short-range c
plings (a>D12), a regime controlled by small distanc
singularities of the Green function and displaying the sa
characteristics as Laplacian couplings; and in betweenD
,a,D12) an intermediate regime where characteristic
ponentsb, z, andz evolve continuously witha. The tran-
sition between the three regimes of the activity map is a n
one. It is summarized in Fig. 17. The transition to a mea
field uniform regime does not appear simply fora53D/2, as
has been proposed by Fisheret al. @3# by functional-
renormalization group analysis, but it appears clearly fr
the simulations that spatial and temporal correlations do
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disappear simultaneously. The transition to the mean-fi
regime is characterized by a crossover time lengthtc grow-
ing with a, above which the uniform distribution is valid an
below which the power-law behavior with a nontrivial exp
nent is observed. Even if the strong-pinning assumption
sures that the instabilities are local, whentc reaches smal
times, the behavior of the system becomes ‘‘delocalize
The ‘‘delocalized’’ behavior refers to a uniform spreading
activity over the system abovetc . For a.2, the system
exhibits ‘‘collective’’ organization~characterized by long
range correlations! but ‘‘localized’’ behavior. Fora,1, the
system exhibits a uniform ‘‘delocalized’’ behavior analogo
to the mean-field one. For 1,a,2, the system exhibits col
lective organization with distortions at small scales but ‘‘d
localized’’ behavior at large scales~abovetc). Moreover, the
time tc goes to infinity in the thermodynamic limit: it scale
as the activity spreading timeLz and does not introduce
new scaling. Its origin remains unclear to us. An analog
transition appears in the external force fora,1 ~see Fig.
14!.

Modifying the parameters of the system, a combination
the above behavior can also be found. For a mix of vari
couplings, for example, the system exhibits a crossover

FIG. 16. Log-log plot of the distribution of external avalanch
for a52 and for ten different stiffnessese ranging from 1024 to
1023. The straight line is a power-law fit of exponent21.09. The
upper cutoff scales likes* }e20.65.

FIG. 17. Schematic transition between the three apparent
namical regimes. The dotted line separates the classical powe
regime and a new one with a ‘‘local’’ behavior at short time and
‘‘delocalized’’ behavior at large time. The mixed regime stands
a regime with mean-field-type character only for time correlatio
and at large times.
ld
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tween a regime controlled by the short-range coupling~at
small time and small length! and a regime controlled by th
long-range coupling~at large time and large length!. The
transition between these two regimes is size independent
the spatial and the temporal transition are related by the
namical exponent of the shortest couplings.

The results presented above have been obtained wi
discretized system and periodic boundary conditions.
have checked that the same results are obtained, far a
from the boundaries, without periodic boundary conditio
Particularly, the exponents obtained are the same in this c
The temporal discretization and the breakdown of the tra
lational invariance~because only one site is allowed to jum
at each time step! are not limiting. They are consistent wit
the ‘‘strong-pinning assumption.’’ At this stage, the simul
tions do not allow us to justify this assumption mo
strongly. We know, however@28#, that there exists a transi
tion from weak to strong pinning that could be used to just
a modeling at larger scales. But for very long range~small
a) and small system size, we may encounter a situation
weak pinning, a case out of reach for our model. We supp
that the local curvature of the pinning potential is alwa
sufficiently high to maintain the system in the strong-pinni
limit. In this limit, the results presented here appear to
universal, provided some quenched disorder is introduc
the choice made for the distributionu and for the time step
only affects short distances. As has been mentioned, they
important in the mean-field regime, in agreement with R
@3#, but they do not affect thepositionof the transition to the
mean-field behavior. When no disorder is introduced,
system evolves toward a limit cycle of periodL. The bound-
ary conditions affect the distributions only at the proximi
of the upper cutoff scale,L or Lz, and the displacement field
near the borders. When disorder is present, it is possible f
our numerical results to find intermediate scales where
behavior of the system is characterized in space and in t
by power-law distributions. The critical exponents of the d
tributions only depend ona, as discussed above. More su
prisingly, due to the temporal anticorrelation in the thresh
force, the internal avalanche distribution seems to be in
pendent ofa and does not reflect the correlations of t
external force. A better accuracy is restored with the help
an elastic external driving. This gives rise to external a
lanches. Let us mention that velocity has to be defined c
fully in the case of driving with constant external force@33#.

Let us turn to the notion of multistability. For a one
particle system, the multistability is due to the nonlinear co
current effect of the elastic force and of the pinning forc
The condition of multistability can be given by a linear st
bility analysis. The particle is unstable when the negat
curvature of the pinning potential overcomes the elastic s
ness. It leads to hysteretic behavior@5#. The energy dissi-
pated at very low velocity is related to the area of the h
teretic cycle. For anN-particle system, the instability
involves more than one particle, due to the coupling betw
asperities. The size of the domain involved in the instabi
depends on the distortions in the curvature of the pinn
potential and on the range of the elastic interactions. In
‘‘weak-pinning limit,’’ the one-particle instability condition
is not effective, but multistability can occur at larger sca
The minimal size giving rise to multistability is usually com
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puted by the ‘‘Larkin method’’@1#. This length is associate
with a dynamic by blocks whose existence remains con
versial in the literature. In the ‘‘strong pinning limit,’’ the
one-particle case is effective, but the elastic coupling m
propagate the instability to an avalanche of larger size.
showed here that the system thus organizes into a ‘‘crit
state.’’ There is no intrinsic length scale in such states,
spite the lowest cutoff and the system size. This effect g
rise to ‘‘kinetic roughening’’ in finite systems and has be
well studied in the case of short-range elastic interactions
various types of pinning@34#. It does not induce block mo
tion involving more than one asperity. An interesting que
tion would be, is the ‘‘block dynamics’’ of the weak-pinnin
limit analogous to the strong-pinning dynamics? This qu
tion remains open.

VII. CONCLUSION

We have shown in this paper that in the strong-pinn
limit and for a quasistatic driving, a finite elastic syste
driven on a disordered surface exhibits long-range dynam
correlations. This can be shown by the roughening of
surface, in agreement with spreading or crack front propa
tion experiments. It can be studied numerically by the sta
tical analysis of the activity map. The rangea of the inter-
action allows us to interpolate between a Laplac
dynamical regime~for a.ac2) and a mean-field dynamica
regime ~for a,ac1). In our one-dimensional simulations
with quenched decorrelated disorder,ac151(5D) andac2
a

y

Ph

dy

tt.
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e
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al
e
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n

53(5D12). The transition to the mean-field regime appe
to take place progressively from the large times whena
,2. Space and time correlations do not disappear simu
neously.

The internal avalanche size distribution seems to be ‘‘
peruniversal’’ ~independent ofa) because it does not pre
serve information on the temporal correlations in the thre
old force and exhibits the simple 1/f 2 behavior characteristic
of jumps. The dependence ona is recovered by an elasti
external loading.

This study shows one example of physical systems wh
microscopic disorder leads to large-scale structures as ca
revealed by kinetic roughening~large-scale displacemen
fluctuations! or avalanche distributions. The algebraic dec
of the interactions determines the critical exponents but o
details are unimportant in the scaling behavior. The lar
scale power-law behavior is a signature of the se
organization of the system.

This study was designed to describe a ‘‘strong-pinnin
limit. It would be of interest to extend the model to th
weak-pinning case.
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