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Probabilistic approach to time-dependent load-transfer models of fracture
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A probabilistic method for solving time-dependent load-transfer models of fracture is developed. It is
applicable to any rule of load redistribution, i.e., local, hierarchical, etc. In the new method, the fluctuations are
generated during the breaking procéssnealed randomnesshile in the usual method, the random lifetimes
are fixed at the beginnin@quenched disordirBoth approaches are equivalef$1063-651X98)09708-§

PACS numbg(s): 64.60.Ak, 64.60.Fr, 05.45.b, 91.60.Ba

I. INTRODUCTION {Xi 4={X};, 1<i<Ng. This list is necessary, except in the
ELS case, in order to know how to distribute the load of the
The modelization of fracture in disordered systems is dailed elements. The broken elements are markefkby. At

subject of great interest in natural and artificial mateiffidls  t=0, all the elements of the set are loaded with a reference

A time-dependent method to describe the failure of materialgalue op=1. At any time, the total load acting on the sur-

under stress, within the fiber-bundle paradigm, was proposegying elements is constant, equal Ko .

(fibers is considered with each element having a prescribednger the unity of stress:

lifetime when subject to an applied strggsad). When ele-

ments fail, their load is redistributed to other elements of the ni=1—etio, (2.1

set according to a prescribed rule of transfer. As a conse-

quence of the load transfer, the lifetime of the receptors isvheren; are random numbers between 0 and 1. This choice
actually reduced and the question is: How long does it tak@nplies a logarithmic distribution of lifetimes. A more gen-
for the whole set to collapse? These fiber-bundle models argrg| distribution function for the failure time of a single ele-
called dynamical, or time dependef#—4], as opposed t0 ment subjected to a known load histasft) is (see, for ex-
their static counterparts, which have also been intensivelémme[‘l 11))
studied[5-7]. The rule for redistributing the load of failed '
elements can be wide, but there are two limiting cases. In the tio

n=1- ex;{ —\If( f V[O'(T)]dT)

0

300

first, the stress of the failed element is transferred equally to
all surviving elementsELS, for equal load sharingln the

second, the load of the failed element is transferred to the . . . . .
nearest surviving elemest (LLS, for local load sharing whereW(x) is the shape functionThe time integral in Eq.

Hierarchically organized transféHLS) criteria are also of (2.2) introduces a hazard rat&o) known generally as the
great interes{7-9]. Recently, these models have receivedbregkdown rulen terms_ of the instantaneous load Ievel._ Ex-
much attention in the geophysical literatui®0], because Perimental and theoretical wofR,4] favors a shape function
one would reasonably expect the emergence of universd¥(X) of the form

scaling laws of the type observed in seismol¢dg,12. In

: 2.2

this field, the bundle is a representation of a fault, and the W (x)=x", (2.3
individual elements or fibers represent asperities on the fault ) ) . .
plane. known as the Weibull shape function, with the particular

In Ref. [12], the ELS case is formulated in terms of a choice =1 giving the exponential shape function.
differential equation of the radioactive decay type. We have AS for the breakdown rule, two special forms are widely
followed this perspective to devise a numerical probabilisticused in the literature: the exponential breakdown rule,
method to deal with any type of transfer rule. In Sec. Il, we _ . n(olog)
explain in detail the differences between the usual approach ve= € ' 2.9
and the new probabilistic approach. In Sec. lll, we compar

C oo . %nd the power-law breakdown rule,
results and present a brief discussion.

o \P
Il. THE METHODS Vo= ,,O(U_O) , (2.5
Suppose a set dfl; elements identified on the sites of a
supporting lattice. This information is contained in a listwith ¢, 5, p, v, o all positive constantsp is called the
Weibull exponent because inserting E8.3) and Eq.(2.5) in
Eqg. (2.2 mimics the static Weibull distribution for the fail-
*On leave from Department of Physics, Technological Universityure load of a single element. This parameter typically varies
of Havana(ISPJAB, Havana 19390, Cuba. between 2 and 5. The exponential breakdown rule,(Ed),
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has a characteristic failure rate, whereas the power-lawandT;=1/p. In this setting, fluctuations do not exist and one
breakdown rule is scale free and can be regarded as a locsimply obtains mean values for the failure rate.
approximation to the former. Followirid 2], we will use Eq. Following the perspective of the previous differential
(2.5 as the individual breakdown rule in order to be able toequation in which a group of elements, supporting the same
compare the performance of the two approaches for loadead o, fail at a rates” or, in other words, have a mean life
transfer models. For further insights into the theoretical andl/o”, one can devise a probabilistic method for any transfer
experimental basis of the Weibull shape function[sdeand  rule. The scenario would be a seth§ elements identified in
for the breakdown rules see Refd] and[11]. {X};, like a sample of radioactive nuclei fixed on a lattice, all
Without losing generality one can choosg=o,=1 in  having initially a decay ratey=1. As time passes, failures
Eg. (2.5, which means that” is a measure of the failure (disintegrations occur and this does not merely imply the
rate (i.e., a unit failure rate under the unity of load is as- effective disappearance of the failed elements, but also the
sumed. As v, is actually a frequencyy,t is a dimensionless  modification of the decay rate of other surviving elements.
time variable and because of the particular chaige1,t  The modification comes from the redistribution of load as

will hereafter stand for nondimensional time. accorded in the rule of transféELS, LLS, etc), and the
If one substitutes Eq2.3) and Eq.(2.5) in Eq.(2.2) with  assumption that the decay rate of any element is given by its
the particular set of constang= vy=0y=1, we obtain o” value. As in this strategy of calculation one has to pro-
ceed at discrete time intervalg;,, j=1,2, ..., thenforma-
n-=1—exr{ B Jti'oop(r)d7> 2.6 tion of loads in the set will be contained in a list denoted by
! 0 ' ' {oi,;}={0};. The list is updated at each time step, together

with {X};. After j time steps, there will have appeared sub-
which can be integrated for constant unit loat)=o,=1  Sets of elements. Each subset is formed by _aII the surviving
to give Eq.(2.1). _elements_ be_anng_ Fhe same Ioad_. We organize these subsets
When loads of failed elements are redistributed, the loadnto sublists identified by the subindéxand denote the cor-
acting on each element will no longer be the constanbut ~ esponding load by, and the number of elements belonging
will depend on timeo;(t)=o,=1. Thus we introduce a re- 0 the sublistl by N,. This information, which is obtained

duced time to failure for each elemeitt,;, given by from {o};, will be denoted byY,N;}; and updated simul-
’ taneously. At the beginning, as the load of all elements is 1,
Tif| oy () |? the sublists are
ti,O:j dt. 2.7
o [ %o 1, Njo=No if I=1,

, Y0510, Np=0 if I#1,
In the case of independent elemenig(t) =oo=1 andt; o ’
=Ti . However, load transfer occurs, and hence the actual Now, it is clear that the simultaneous existence of several
time to failure of element, T; ; is reduced to below . By  gyplists in the sample, each with a different decay Mte
imposing the fulfillment of Eq(2.7), the successive order of 4ges a difficulty for an accurate description of the decay
breaking of theN, elements, one after the other, is easily process of the whole sgt3]. The key point is the choice of
identified and the total time of collapse is g of the  the Jength of the time intervalsy; . To illustrate this prob-
longest lasting element. Thus, in this approach the randomgam, in Fig. 1 we have plotted the detailed evolution of
ness, that is the population of lifetimes, is fixedt&0  preaking of a hierarchical set dfl,=1024, coordination
(quenched disordgrand the breaking process is completely y,mper equal to 2, ang=4. In abscissas one represents
deterministic. Henceforth, we will refer to this approach astme from 0 toT; . In ordinates the spatial position of the
the usual one. . elements of the set is represented.tAtO all elements are

In the new probabilistic approach presented here, the flucsqnd. As time evolves, breakingsepresented by small
tuations are generated during the breaking process and hengg,ssesare produced and therefore the accumulated number
itis an example of so-called annealed randomness. An intef tiled elements, represented by the continuous line, grows.
esting question is whether_the two _types of disorder, namerAt t=T, the number of failures i&,. The height of the
quenched and annealed disorder, in these models lead to difatica| spikes represents the load supported by an element at
ferent results, as has been observed for some critical pPhere time of failing. For short times, ruptures appear dispersed
nomena( 1]. _across the set and the rate of breaking is small. Progressively

In Ref.[12], Newmanet al. formulated the ELS mode in 4,41, there appear cracks formed by the failures of neigh-
terms _ofad|fferent|al equauo_n_of the radioactive d_ecay typeboring elements, and this makes the continuous line adopt
Denoting the number of surviving elementshagt), its dif-  gieeper slopes. Finally, the final breakdown occurs related to

ferential change is given by a big crack of a size similar to the whole system. This stage
is also related to the high values of the spikes. The progres-
dNs _ o sive acceleration of the breaking process is thus clear from
=—Ngo?, (2.9 L
dt this figure.

Therefore the time interval used in the probabilistic ap-
hencec” represents the decay rate. But in the ELS mode proach must be variable with time. Otherwise, if one takes
=(Ng/Ng), hence for & a reasonable value for the beginning, the final part of

the breaking will be badly described: in eaéhmany ele-
Ng(t)=Ng[ p(T;—1)]*° (2.9 ments will fail and the prediction of; will be very inaccu-
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FIG. 2. T; results using probabilistic method for variousThe

FIG. 1. Accumulated number of failed elemer{tontinuous . . -
. ; - . two horizontal lines show the prediction of the usual method.
line) vs time of a hierarchical set. Small crosses represent the posi-

tion of local fractures. The height of the vertical spikes indicates the )
load of an element at the time of its failure. Read the text for details. If p;;>n the element fails. (2.123

rate. On the other hand, if one choosestgpical of the final If p;;<n the element survives. (2.12h
stages, it will be so short that although the calculation would
be extremely good, at the beginning one would become The elements that fail in any of the sublists transfer their
bored awaiting the outcome of a breaking event. That is tdoad according to the rule of transfer and the information
say, these small intervals are not realistic for practical use.contained in the lisfx}; . In the case that no element fails, a
It is for this reason that when one tries to devise an effinew time intervals;,; equal tod; is added and the same
cient numerical method to accurately describe the time evoprobabilities,p, ;,1=p, j, are compared with random num-
lution of the system, the choice of the time interval must bebers. This is repeated until at least one failure occurs that
adjusted to the characteristic scale at which individual elemodifies{x};, {o};, {Y;,N;};, and hence; . The total time
ments break in the process. This characteristic time séale, to failure, Ty, is the sum of the5; up to the disappearance of
as mentioned before changes with tin%&, and is imple- all the elements.
mented through the following definition In the ELS caseg; can be explicitly written. Aftelj—1)
steps and assuming one failure per step, the number of sur-

- 1 1 viving elements forming the unique sublist is
&j=minimum Of{,\h_—ylp_;]' (210 N,=No—(j~1), and the individual load isY,=(Ng/N;).
d L Then
wherewv is a constant=1, independent of and ofj; we will . R
call it the time resolution parameter. The length &f as _ 1 (No—(J—1)>p:(No+ 1-j)?
defined in Eg.(2.10 points, at each, to a specific sublist ' "No—(j+1) No N§ '
whosel will be denoted a%;. Now we define a probability (2.13
of failure for each sublist,
p|,J:Y|p,]5J (21]) [ T T T T T T T T T T ]
= — = Gaussian fit to 7, (probabilistic method, v=1)

As Y[, is the failure rate for elements in sublistf; 5 is 3 101 (center=0.385, widih=0.08) ) ]
the expected number of casualties per element in sublist Gaussian fitto T, (usual method)5 ]
i.e., the probability of failure for sublist. The product > 0.8 (Conter=0.375, idth=0.09) g
N, ;p;; is maximum for the sublisk;, in this caseN, ;py ; o 1
=1/v, which means that when the comparisons below Eq. o 08 [ 2 usualmethod 7

. o o probabilistic method (v=1)
(2.12 are performed, elements belongingkioare the most ~ * § i
likely to fail. In particular if =1, one element of théth T 04r N
sublist is likely to fail. For the other sublists, the probability £ -
of an individual failure is lower than one. However, any 2 0.2 |- HLS model .
element of anyl; has a nonzero chance of failing in this p p=2, c=2, N,=128
probabilistic approach. We have calledhe time resolution 0.0 —1 : —
parameter because if it grows the time intervals are 00 01 02 03 04 05 06
smaller and therefore it is obvious that the process of failure T,
is more finely resolved. Then the probabilify ; is com-
pared, for each element belonging to the subliswith a FIG. 3. Comparison of the two methods, for a hierarchical

random numbem, 0=n<1. model.
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100 £ | B b bl T T - a ] TABLE |. Comparison of the two methodd1LS, c=2) (see
] \ u‘:salam:f;fdme‘ od (v=1)3 text for detail3.
. : p=2 p=4
- . Method No=128 Ny=512 Ny=128 Ny=512
2"’ 10 3 3 Prob(r=1) 0.3890 0.3614 0.0992 0.0750
C ] Prob(r=4) 0.3807 0.3577 0.0907 0.0718
] Prob(y=10) 0.3781 0.3573  0.0901  0.0710
1 Usual 0.3776 0.3565 0.0888 0.0705
HLS mlodel, C=I2’ No=1"|28 \ Simulations withN,=128 elements are averages over 32 000 re-
1 A L 1 1 1 | 1

alizations. Standard deviation of the mean valuec&Bunits in the

0 2 4 6 8 10 12 least significant digit.
-log, (T -t) PSimulations withN,=512 elements are averages over 10 000 re-
alizations. Standard deviation of the mean value-is unit in the
FIG. 4. Evolution ofNg over time for both methods. least significant digit.

] . Data for Np=128, andN,=512 are averages over 32 000,
Note that we have usee=1 to be in accordance with the one and 10 000 realizations, respectively. The errors quoted are
failure per step assumption. In E@.13 one observes that, gne standard deviation of the mean. Perhaps the most abrupt

in the first step,6;=1/No, and in the last stepy,=1/Ng.  rule of transfer that one can imagine is that of the local
Now we proceed to sum up all the time intervals. In theone-dimensional unilateral modgl4], where the load of
continuous limit, we find failed elements is transferred to the nearest neighbor in the

row going in one direction. This implies the almost immedi-

_— f’\'o (No+1-x)P* 1 } (2.14 ate opening of big cracks and hence a great instability. The
f— ’ .

1—

1 N§ = p N§ probabilistic approach for this model has been tested and
again both methods coincide.
which tends to the correct resultplih the limit of largeNg. Note that in the probabilistic method, there canden
which no element fails, and others in which several elements
IIl. RESULTS AND DISCUSSION do. In contrast to the usual method, here no disorder is fixed

o at the start: we begin witiN, elements, all with the same

For the ELS casep=2, No=100, we plot in Fig. 2 the mean life; the random successive failures are responsible for
average ofT; after the number of simulations expressed intne fluctuations, i.e., this is an example of annealed disorder.
the abscissas, for various The_horizpntal lines comprise For a small value of, the results emerging from the proba-
the extremes of the values obtained in 10 averages of 32 00Qjistic method are already indistinguishable from those de-
simulations each by means of the usual method. One Ca’i\/ing from the usual method. SO, we have numerica”y
observe(a) the actuall; of this set is not 3 as predicted by  proved the equivalence of the two approaches.i#f greater,
the differential equation, this being a finite-size effect; andihe method demands more effort but the results reach a satu-
(b) v=4is already sufficient in this method to reproduce theration point. Comparing the respective disadvantages of
result of the usual approach. For the HLS cgse,2 and  computing: in the probabilistic approach it is necessary to
coordination number of the Cayley tree==2, we show in  deal with larger sets of random numbers while in the usual
Fig. 3 the dispersion of ; emerging from the usual method method the set of stored data is much bigger.
(squaresand from the new methogtircles with v=1. Note We conclude by quoting Feynman who, in his original
the slight shift rightwards of the center of the Gaussian, i.e.paper on path integral formalisfi5], writes “although it

the values are longer. This is in agreement with what is seefloes not yield new results there is a pleasure in recognizing
in Fig. 2. A greater value of would move the Gaussian to old things from a new point of view.”

the left up to the coincidence. In Fig. 4, the averaged rates of
breaking of a set oNy=128 are plotted under the HLS rule,
c=2, for two values of the Weibull exponept=4 andp

=6. We compare the habitual method and the new method This work was supported in part by the Spanish DGICYT,
for v=1. In Table |, a set of values df; and their intrinsic  under Grant No. PB93-0378. Y.M. thanks the AECI for their
width is shown for the HLS case=2, by varyingNy, andv.  financial support.
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