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Probabilistic approach to time-dependent load-transfer models of fracture
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A probabilistic method for solving time-dependent load-transfer models of fracture is developed. It is
applicable to any rule of load redistribution, i.e., local, hierarchical, etc. In the new method, the fluctuations are
generated during the breaking process~annealed randomness! while in the usual method, the random lifetimes
are fixed at the beginning~quenched disorder!. Both approaches are equivalent.@S1063-651X~98!09708-6#

PACS number~s!: 64.60.Ak, 64.60.Fr, 05.45.1b, 91.60.Ba
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I. INTRODUCTION

The modelization of fracture in disordered systems i
subject of great interest in natural and artificial materials@1#.
A time-dependent method to describe the failure of mater
under stress, within the fiber-bundle paradigm, was propo
by Coleman@2#. In this model a set~bundle! of elements
~fibers! is considered with each element having a prescri
lifetime when subject to an applied stress~load!. When ele-
ments fail, their load is redistributed to other elements of
set according to a prescribed rule of transfer. As a con
quence of the load transfer, the lifetime of the receptors
actually reduced and the question is: How long does it t
for the whole set to collapse? These fiber-bundle models
called dynamical, or time dependent@2–4#, as opposed to
their static counterparts, which have also been intensiv
studied@5–7#. The rule for redistributing the load of faile
elements can be wide, but there are two limiting cases. In
first, the stress of the failed element is transferred equall
all surviving elements~ELS, for equal load sharing!. In the
second, the load of the failed element is transferred to
nearest surviving element~s! ~LLS, for local load sharing!.
Hierarchically organized transfer~HLS! criteria are also of
great interest@7–9#. Recently, these models have receiv
much attention in the geophysical literature@10#, because
one would reasonably expect the emergence of unive
scaling laws of the type observed in seismology@11,12#. In
this field, the bundle is a representation of a fault, and
individual elements or fibers represent asperities on the f
plane.

In Ref. @12#, the ELS case is formulated in terms of
differential equation of the radioactive decay type. We ha
followed this perspective to devise a numerical probabilis
method to deal with any type of transfer rule. In Sec. II, w
explain in detail the differences between the usual appro
and the new probabilistic approach. In Sec. III, we comp
results and present a brief discussion.

II. THE METHODS

Suppose a set ofN0 elements identified on the sites of
supporting lattice. This information is contained in a l
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$xW i ,t%[$xW% t , 1< i<N0 . This list is necessary, except in th
ELS case, in order to know how to distribute the load of t
failed elements. The broken elements are marked by$xW% t . At
t50, all the elements of the set are loaded with a refere
value s051. At any time, the total load acting on the su
viving elements is constant, equal toN0s0 .

To each elementi one assigns a random lifetime,t i ,0 ,
under the unity of stress:

ni512e2t i ,0, ~2.1!

whereni are random numbers between 0 and 1. This cho
implies a logarithmic distribution of lifetimes. A more gen
eral distribution function for the failure time of a single el
ment subjected to a known load historys~t! is ~see, for ex-
ample@4,11#!

ni512expF2CS E
0

t i ,0
n@s~t!#dt D G , ~2.2!

whereC~x! is the shape function. The time integral in Eq.
~2.2! introduces a hazard raten~s! known generally as the
breakdown rulein terms of the instantaneous load level. E
perimental and theoretical work@2,4# favors a shape function
C~x! of the form

C~x!5xb, ~2.3!

known as the Weibull shape function, with the particu
choiceb51 giving the exponential shape function.

As for the breakdown rule, two special forms are wide
used in the literature: the exponential breakdown rule,

ne5feh~s/s0!, ~2.4!

and the power-law breakdown rule,

np5n0S s

s0
D r

, ~2.5!

with f, h, r, n0 , s0 all positive constants.r is called the
Weibull exponent because inserting Eq.~2.3! and Eq.~2.5! in
Eq. ~2.2! mimics the static Weibull distribution for the fail
ure load of a single element. This parameter typically var
between 2 and 5. The exponential breakdown rule, Eq.~2.4!,

y
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PRE 58 1529PROBABILISTIC APPROACH TO TIME-DEPENDENT . . .
has a characteristic failure rate, whereas the power-
breakdown rule is scale free and can be regarded as a
approximation to the former. Following@12#, we will use Eq.
~2.5! as the individual breakdown rule in order to be able
compare the performance of the two approaches for lo
transfer models. For further insights into the theoretical a
experimental basis of the Weibull shape function see@2#, and
for the breakdown rules see Refs.@4# and @11#.

Without losing generality one can choosen05s051 in
Eq. ~2.5!, which means thatsr is a measure of the failure
rate ~i.e., a unit failure rate under the unity of load is a
sumed!. As n0 is actually a frequency,n0t is a dimensionless
time variable and because of the particular choicen051, t
will hereafter stand for nondimensional time.

If one substitutes Eq.~2.3! and Eq.~2.5! in Eq. ~2.2! with
the particular set of constantsb5n05s051, we obtain

ni512expS 2E
0

t i ,0
sr~t!dt D , ~2.6!

which can be integrated for constant unit loads(t)5s051
to give Eq.~2.1!.

When loads of failed elements are redistributed, the lo
acting on each element will no longer be the constants0 but
will depend on times i(t)>s051. Thus we introduce a re
duced time to failure for each element,Ti , f , given by

t i ,05E
0

Ti , f Fs i~ t !

s0
Gr

dt. ~2.7!

In the case of independent elements,s i(t)5s051 and t i ,0
5Ti , f . However, load transfer occurs, and hence the ac
time to failure of elementi, Ti , f is reduced to belowt i ,0 . By
imposing the fulfillment of Eq.~2.7!, the successive order o
breaking of theN0 elements, one after the other, is eas
identified and the total time of collapse is theTi , f of the
longest lasting element. Thus, in this approach the rand
ness, that is the population of lifetimes, is fixed att50
~quenched disorder!, and the breaking process is complete
deterministic. Henceforth, we will refer to this approach
the usual one.

In the new probabilistic approach presented here, the fl
tuations are generated during the breaking process and h
it is an example of so-called annealed randomness. An in
esting question is whether the two types of disorder, nam
quenched and annealed disorder, in these models lead to
ferent results, as has been observed for some critical
nomena@1#.

In Ref. @12#, Newmanet al. formulated the ELS mode in
terms of a differential equation of the radioactive decay ty
Denoting the number of surviving elements asNs(t), its dif-
ferential change is given by

dNs

dt
52Nss

r, ~2.8!

hencesr represents the decay rate. But in the ELS modes
5(N0 /Ns), hence

Ns~ t !5N0@r~Tf2t !#1/r ~2.9!
w
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andTf51/r. In this setting, fluctuations do not exist and o
simply obtains mean values for the failure rate.

Following the perspective of the previous differenti
equation in which a group of elements, supporting the sa
load s, fail at a ratesr or, in other words, have a mean lif
1/sr, one can devise a probabilistic method for any trans
rule. The scenario would be a set ofN0 elements identified in
$xW% t , like a sample of radioactive nuclei fixed on a lattice,
having initially a decay rates0

r51. As time passes, failure
~disintegrations! occur and this does not merely imply th
effective disappearance of the failed elements, but also
modification of the decay rate of other surviving elemen
The modification comes from the redistribution of load
accorded in the rule of transfer~ELS, LLS, etc.!, and the
assumption that the decay rate of any element is given by
sr value. As in this strategy of calculation one has to p
ceed at discrete time intervals,d j , j 51,2, . . . , theinforma-
tion of loads in the set will be contained in a list denoted
$s i , j%[$s% j . The list is updated at each time step, togeth
with $xW% j . After j time steps, there will have appeared su
sets of elements. Each subset is formed by all the surviv
elements bearing the same load. We organize these su
into sublists identified by the subindexl, and denote the cor
responding load byYl and the number of elements belongin
to the sublistl by Nl . This information, which is obtained
from $s% j , will be denoted by$Yl ,Nl% j and updated simul-
taneously. At the beginning, as the load of all elements is
the sublists are

Yl ,05 H 1,
0,

Nl ,05N0

Nl ,050
if l 51,
if lÞ1.

Now, it is clear that the simultaneous existence of seve
sublists in the sample, each with a different decay rateYl

r ,
poses a difficulty for an accurate description of the dec
process of the whole set@13#. The key point is the choice o
the length of the time intervals,d j . To illustrate this prob-
lem, in Fig. 1 we have plotted the detailed evolution
breaking of a hierarchical set ofN051024, coordination
number equal to 2, andr54. In abscissas one represen
time, from 0 toTf . In ordinates the spatial position of theN0
elements of the set is represented. Att50 all elements are
sound. As time evolves, breakings~represented by smal
crosses! are produced and therefore the accumulated num
of failed elements, represented by the continuous line, gro
At t5Tf the number of failures isN0 . The height of the
vertical spikes represents the load supported by an eleme
the time of failing. For short times, ruptures appear disper
across the set and the rate of breaking is small. Progress
though, there appear cracks formed by the failures of ne
boring elements, and this makes the continuous line ad
steeper slopes. Finally, the final breakdown occurs relate
a big crack of a size similar to the whole system. This sta
is also related to the high values of the spikes. The prog
sive acceleration of the breaking process is thus clear f
this figure.

Therefore the time interval used in the probabilistic a
proach must be variable with time. Otherwise, if one tak
for d a reasonable value for the beginning, the final part
the breaking will be badly described: in eachd, many ele-
ments will fail and the prediction ofTf will be very inaccu-
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rate. On the other hand, if one chooses ad typical of the final
stages, it will be so short that although the calculation wo
be extremely good, at the beginning one would beco
bored awaiting the outcome of a breaking event. That is
say, these small intervals are not realistic for practical us

It is for this reason that when one tries to devise an e
cient numerical method to accurately describe the time e
lution of the system, the choice of the time interval must
adjusted to the characteristic scale at which individual e
ments break in the process. This characteristic time scald,
as mentioned before changes with time,d j , and is imple-
mented through the following definition

d j5minimum of H 1

Nl , jYl , j
r

1

nJ , ~2.10!

wheren is a constant>1, independent ofl and of j; we will
call it the time resolution parameter. The length ofd j as
defined in Eq.~2.10! points, at eachj, to a specific sublist
whosel will be denoted askj . Now we define a probability
of failure for each sublist,

pl , j5Yl , j
r d j . ~2.11!

As Yl , j
r is the failure rate for elements in sublistl, Yl , j

r d j is
the expected number of casualties per element in sublil,
i.e., the probability of failure for sublistl. The product
Nl , j pl , j is maximum for the sublistkj , in this caseNk, j pk, j
51/n, which means that when the comparisons below
~2.12! are performed, elements belonging tokj are the most
likely to fail. In particular if n51, one element of thekth
sublist is likely to fail. For the other sublists, the probabili
of an individual failure is lower than one. However, an
element of anyl j has a nonzero chance of failing in th
probabilistic approach. We have calledn the time resolution
parameter because if it grows the time intervalsd j are
smaller and therefore it is obvious that the process of fail
is more finely resolved. Then the probabilitypl , j is com-
pared, for each element belonging to the sublistl, with a
random number,n, 0<n<1.

FIG. 1. Accumulated number of failed elements~continuous
line! vs time of a hierarchical set. Small crosses represent the p
tion of local fractures. The height of the vertical spikes indicates
load of an element at the time of its failure. Read the text for deta
d
e
o
.
-
o-
e
-

.

e

If pl , j.n the element fails. ~2.12a!

If pl , j,n the element survives. ~2.12b!

The elements that fail in any of the sublists transfer th
load according to the rule of transfer and the informati
contained in the list$xW% j . In the case that no element fails,
new time intervald j 11 equal tod j is added and the sam
probabilities,pl , j 115pl , j , are compared with random num
bers. This is repeated until at least one failure occurs
modifies$xW% j , $s% j , $Yl ,Nl% j , and henced j . The total time
to failure,Tf , is the sum of thed j up to the disappearance o
all the elements.

In the ELS case,d j can be explicitly written. After~j21!
steps and assuming one failure per step, the number of
viving elements forming the unique sublist
Nj5N02~j21!, and the individual load isYl5(N0 /Nj ).
Then

d j5
1

N02~ j 11! S N02~ j 21!

N0
D r

5
~N0112 j !r21

N0
r .

~2.13!

si-
e
s.

FIG. 2. Tf results using probabilistic method for variousn. The
two horizontal lines show the prediction of the usual method.

FIG. 3. Comparison of the two methods, for a hierarchic
model.
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Note that we have usedn51 to be in accordance with the on
failure per step assumption. In Eq.~2.13! one observes that
in the first step,d151/N0 , and in the last step,dN0

51/N0
r .

Now we proceed to sum up all the time intervals. In t
continuous limit, we find

Tf5E
1

N0 ~N0112x!r21

N0
r dx5

1

r F12
1

N0
rG , ~2.14!

which tends to the correct result 1/r in the limit of largeN0 .

III. RESULTS AND DISCUSSION

For the ELS case,r52, N05100, we plot in Fig. 2 the
average ofTf after the number of simulations expressed
the abscissas, for variousn. The horizontal lines comprise
the extremes of the values obtained in 10 averages of 32
simulations each by means of the usual method. One
observe,~a! the actualTf of this set is not 1/r as predicted by
the differential equation, this being a finite-size effect; a
~b! n54 is already sufficient in this method to reproduce t
result of the usual approach. For the HLS case,r52 and
coordination number of the Cayley tree,c52, we show in
Fig. 3 the dispersion ofTf emerging from the usual metho
~squares! and from the new method~circles! with n51. Note
the slight shift rightwards of the center of the Gaussian, i
the values are longer. This is in agreement with what is s
in Fig. 2. A greater value ofn would move the Gaussian t
the left up to the coincidence. In Fig. 4, the averaged rate
breaking of a set ofN05128 are plotted under the HLS rule
c52, for two values of the Weibull exponentr54 andr
56. We compare the habitual method and the new met
for n51. In Table I, a set of values ofTf and their intrinsic
width is shown for the HLS case,c52, by varyingN0 andn.

FIG. 4. Evolution ofNs over time for both methods.
-
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Data for N05128, andN05512 are averages over 32 00
and 10 000 realizations, respectively. The errors quoted
one standard deviation of the mean. Perhaps the most ab
rule of transfer that one can imagine is that of the lo
one-dimensional unilateral model@14#, where the load of
failed elements is transferred to the nearest neighbor in
row going in one direction. This implies the almost immed
ate opening of big cracks and hence a great instability. T
probabilistic approach for this model has been tested
again both methods coincide.

Note that in the probabilistic method, there can bed j in
which no element fails, and others in which several eleme
do. In contrast to the usual method, here no disorder is fi
at the start: we begin withN0 elements, all with the same
mean life; the random successive failures are responsible
the fluctuations, i.e., this is an example of annealed disor
For a small value ofn, the results emerging from the proba
bilistic method are already indistinguishable from those
riving from the usual method. So, we have numerica
proved the equivalence of the two approaches. Ifn is greater,
the method demands more effort but the results reach a s
ration point. Comparing the respective disadvantages
computing: in the probabilistic approach it is necessary
deal with larger sets of random numbers while in the us
method the set of stored data is much bigger.

We conclude by quoting Feynman who, in his origin
paper on path integral formalism@15#, writes ‘‘although it
does not yield new results there is a pleasure in recogniz
old things from a new point of view.’’
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TABLE I. Comparison of the two methods~HLS, c52! ~see
text for details!.

Method

r52 r54

N05128a N05512b N05128 N05512

Prob(n51) 0.3890 0.3614 0.0992 0.0750
Prob(n54) 0.3807 0.3577 0.0907 0.0718
Prob(n510) 0.3781 0.3573 0.0901 0.0710
Usual 0.3776 0.3565 0.0888 0.0705

aSimulations withN05128 elements are averages over 32 000
alizations. Standard deviation of the mean value is62 units in the
least significant digit.
bSimulations withN05512 elements are averages over 10 000
alizations. Standard deviation of the mean value is61 unit in the
least significant digit.
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