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Defect relaxation and coarsening exponents

A. J. Bray
Department of Physics and Astronomy, The University, Manchester M13 9PL, United Kingdom

~Received 15 January 1998!

Coarsening exponents describing the growth of long-range order in systems quenched from a disordered to
an ordered phase are discussed in terms of the decay ratev(k) for the relaxation of a distortion of wave vector
k applied to a topological defect. For systems described by order parameters withZ(2) ~Ising! andO(2) (XY)
symmetry the appropriate defects are domain walls and vortex lines, respectively. Fromvk;kz, we infer
L(t);t1/z for the coarsening scale, with the assumption that defect relaxation provides the dominant coarsen-
ing mechanism. TheO(2) case requires careful discussion due to infrared divergences associated with the far
field of a vortex line. Conserved, nonconserved, and intermediate dynamics are considered, with either short-
or long-range interactions. In all cases the results agree with an earlier energy scaling analysis.
@S1063-651X~98!08108-2#

PACS number~s!: 64.60.Cn, 64.60.My
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I. INTRODUCTION

Coarsening is a characteristic property of a syst
quenched into an ordered phase from a disordered phase
describes the establishment of long-range order over
larger length scales as time increases@1#. We concentrate
here on systems which exhibit the property of ‘‘dynamic
scaling,’’ in which the pair correlation functionC(r ,t)
[^f(x,t)f(x1r ,t)& of the order-parameter fieldf(r ,t) has
the scaling form C(r ,t)5 f @r /L(t)#. The characteristic
length scaleL(t) generally has a power-law dependence
time, L(t);t1/z, sometimes with logarithmic correction
wherez is a kind of dynamic exponent for the coarseni
process.

Much effort in recent years has been devoted to the
termination of the exponentz ~and any additional logarith
mic factors! for a range of different models. Although th
experimentally most relevant case of a scalar order param
has been understood for some time, through intuitive ar
ments based on the scaling assumption, and through ex
solved limits@2#, a general approach has been lacking u
recently. The ‘‘energy-scaling’’ approach of Bray and Rute
berg @1,3,4# filled this gap by providing a very general ap
proach based on the role of the topological defects nucle
during the quench. These defects are simple domain w
for a scalar field, vortices/vortex lines for a two-compone
vector field, and monopoles for a three-component vec
field @where we are assuming rotational invariance for
last two models; i.e., these models possessO(2) andO(3)
symmetry, respectively#. The energy-scaling method is sui
able for any system for which the scaling hypothesis ho
and the dynamics are purely dissipative. These include
standard modelsA and Bof the Hohenberg and Halperi
classification@5#, describing the simplest systems with no
conserved and conserved order parameters, respective
the context of phase-ordering kinetics, the models are
scribed by the time-dependent Ginzburg-Landau equa
~see Sec. II! and the Cahn-Hilliard equation~Sec. III!.

Powerful though the energy-scaling method is, the ar
ments are not completely straightforward, and some car
required in its application~see Ref.@1# for a detailed discus-
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sion!. In this paper, therefore, we will discuss a mu
‘‘cleaner’’ approach that addresses the dynamics of the
pological defects in a more direct way. Specifically we co
sider a single plane domain wall, or straight vortex line, a
apply a periodic perturbation of wave vectork. The pertur-
bation then relaxes away, with an asymptotic relaxation r
v(k). A central assumption, as before, is the validity of t
scaling hypothesis. If there is a single characteristic len
scaleL(t), then the relaxation dynamics of the defect shou
be reflected in the coarsening dynamics, throu
L̇/L;v(k) with k;1/L. So if v(k);kz for k→0, we ex-
pect L(t);t1/z. More simply, one can setv;1/t and
k;1/L to obtain the same result.

This approach has been used before for systems with
main walls, and the conventionalz52 and 3 for systems
with conserved and nonconserved order parameters, res
tively, have been recovered@6–9#. Here we generalize to
systems with ‘‘intermediate’’ dynamics~to be defined be-
low!, and/or long-range interactions, and extend the met
to systems withO(2) symmetry. In this way we can confron
most of the predictions of the energy-scaling method. Si
the present approach requires extended defects, howev
cannot treat theO(2) system ind52 spatial dimensions, o
theO(3) system ind53, for which the relevant topologica
defects ~vortices and monopoles, respectively! are points.
We therefore restrict our attention to scalar systems ind
52 and 3, andO(2) systems ind53. For these cases, a
our results agree with the energy-scaling predictions,
though some subtleties arise in the case of theO(2) system
due to infrared singularities associated with the far field
the vortex line.

The paper is organized as follows. Section II deals w
nonconserved dynamics~model A!. The method is intro-
duced in the simple context of domain walls. The extens
to vortex lines is then discussed, followed by the generali
tion to long-range interactions. Section III deals with co
served~model B! and ‘‘partially conserved’’ dynamics, for
domain walls and vortex lines with both long- and sho
range interactions. Detailed comparisons with the predicti
of the energy-scaling method are made at each stage. In
ticular, the energy-scaling predictionL(t);(t ln t)1/4 for the
1508 © 1998 The American Physical Society
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conservedO(2) model ind53 ~or, more generally,d>3) is
recovered. The paper concludes with a discussion and s
mary.

II. NONCONSERVED DYNAMICS

A. Domain walls

The simplest exemplar of the defect relaxation appro
is the dynamics of an interface~domain wall! separating two
equilibrium phases. The time-dependent Ginzburg-Lan
~TDGL! equation is a continuum dynamical model for such
process,

] tf5¹2f2V8~f!, ~1!

wheref(x,t) is the scalar order-parameter field, andV(f) is
a symmetric double-well potential, e.g.,V(f)5(12f2)2/4,
whose minimaf561 represent the two bulk phases.

Consider first a single planar interface separating the
phases. The normal to the interface defines thez direction.
The order parameter depends only onz, and satisfies the
time-independent version of Eq.~1!, d2f0 /dz25V8(f0),
with boundary conditionsf0(6`)561. We now impose a
small periodic perturbation to the interface in thex direction
with wave vectork,

f~x,z,t !5f0~z!1Af1~z!exp~ ikx2vkt !, ~2!

where the amplitudeA is small. The relaxation ratevk de-
fines the time scale,tk51/vk , for the relaxation of a pertur
bation with characteristic length scale 2p/k. Substituting this
form into Eq.~1!, and linearizing inA, gives the eigenvalue
equationHf15vkf1, with the Hamiltonian

H52
d2

dz2
1k21V9~f0!. ~3!

This is conveniently thought of as a quantum mechan
Hamiltonian operator. Note thatV9(f0) is positive at
z56` ~where f0561), and negative atz50 ~where
f050). For the specific caseV(f)5(12f2)2/4, one has
V9(f0)53f0

2(z)21, which equals21 atz50, and tends to
12 for z→6`. It follows thatV9(f0) represents a potentia
well which must have at least one bound state. In fact, si
k50 corresponds to a uniform translation of the interfa
we know thatvk5050, with eigenfunctionf15df0 /dz.
Also, since this function has no nodes, it must be the gro
state. Since thek dependence ofH is simply the additive
constantk2 in this simple model, it follows thatdf0 /dz is
the ground state for allk, with eigenvalue

vk5k2. ~4!

Higher eigenvalues are separated by a gap from the gro
state, so any component of the corresponding eigenfuncti
in the initial displacement of the interface, relaxes quickly
zero. For this reason, here we concentrate only on
ground-state eigenfunction, which is the ‘‘slow mode.’’ N
glecting any contribution from the other eigenfunctions, E
~2! can be written, correct to leading order in the amplitu
A, as f(z,x,t)5f0(z1A exp@ikx2vkt#), corresponding
simply to a modulated interface located atz(x,t)5
m-
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e
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2A exp@ikx2vkt#. Note that this simple interpretation is
consequence off5df0 /dz, which will not be true in gen-
eral. Equation~4! has the formvk5kz with z52, from
which we infer the coarsening growth lawL(t);t1/z5t1/2

for this, the simplest of our dynamical models.

B. Vortex lines

If the order-parameter field is the two-component vec
field fW (x,t) of the O(2) model, the topological defects ar
vortex lines. The analog of Eq.~1! for this system is

] tfW 5¹2fW 2dV/dfW , ~5!

where the ‘‘wine-bottle’’ potentialV(fW ) is a function ofufW u
only. For definiteness, we will use the formV(fW )5(1
2ufW u2)2/4, with minima on the ground-state manifol
ufW u51, although the conclusions are completely general.
this potential, Eq.~5! becomes

] tfW 5¹2fW 1~12ufW u2!fW . ~6!

This equation has a time-independent solutionfW 0(r ), corre-
sponding to a vortex line in thez direction, where we have
introduced the coordinate systemx5(r ,z) of coordinates
normal and parallel to the vortex. This is a solution of Eq.~6!

satisfying the boundary conditionsfW 0(0)50, fW 0(r )→ r̂ for
ur u→`, wherer̂ is a unit vector.

By analogy with Eq.~2!, we now perturb the vortex line
by adding a periodic modulation with wave vectork in the
form

fW ~r ,z,t !5fW 0~r !1AfW 1~r !exp~ ikz2vkt !. ~7!

Substituting in Eq.~6!, and linearizing inA, gives the eigen-
value equation

~¹ r
22k2!fW 11~12ufW 0u2!fW 122~fW 1•fW 0!fW 052vkfW 1 ,

~8!

where¹ r
2 is the Laplacian operator in ther plane. From the

same physical considerations that we used for domain w
we expect a null eigenfunction atk50, corresponding to a
uniform displacement of the vortex line transverse to
length. SincefW 0(r1a)5fW 01a•¹ rfW 0, to first order ina, we
identify a family of null eigenfunctionsfW 15a•¹ rfW 0, param-
etrized by the direction ofa. For convenience we may
choose a basis set of two such eigenfunctions correspon
to a being a unit vector along thex and y axes @where
r5(x,y)], respectively. The two basis functions are th
]xfW 0 and]yfW 0. They are orthogonal by symmetry. Substit
tion into Eq.~8! confirms that these are null eigenfunction
i.e., vk5050. Since thek2 term in Eq. ~8! can simply be
absorbed intovk , it follows that, just as for domain walls
the smallest eigenvalue for anyk is exactly given by

vk5k2. ~9!

We conclude that the dynamical exponent is againz52.
This agrees with the energy-scaling result.
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For future reference we note that the eigenfunctions]xfW 0

and]yfW 0 are not normalizable in an infinite two-dimension
space, since the normalization integrals are logarithmic
divergent~see below!. When the normalization is importan
we will take the vortex line to lie along the symmetry axis
an infinitely long cylinder of radiusR.

C. Long-range interactions: Domain walls

The above approach may readily be generalized to
case where the underlying interactions are long range
space. Consider, for example, a ferromagnetic model
which the exchange interactionJ(ur2r 8u) falls off with dis-
tance asur2r 8u2(d1s) for largeur2r 8u. The long-range char
acter of these interactions is typically only ‘‘relevant’’~i.e.,
affects the scaling behavior! if s is smaller than a critica
value sc @10#. In the present context, we will find tha
sc<2, so we will consider only the cases,2 here. For this
case, the term in the Ginzburg-Landau free-energy functio
generated by long-range interactions has the Fourier-s
form FLR5(g/2)(kk

sfkf2k . This can be formally repre
sented in the TDGL dynamics,] tf52dF/df, by replacing
the usual Laplacian operator by2(2¹2)s/2, to give

] tf5¹2f2g~2¹2!s/2f2V8~f!, ~10!

instead of Eq.~1!. Expanding around a flat domain wall u
ing Eq.~2!, wheref0 is now a stationary solution of the fu
equation~10!, gives the eigenvalue equation

~dz
22k22g@k22dz

2#s/22V9@f0# !f152vkf1 , ~11!

wheredz[d/dz.
The functionf15df0 /dz is again a null eigenfunction

for k50, sincek50 corresponds to a simple translation
the interface. The term ink2 in Eq. ~11! simply shifts the
eigenvalue byk2, as before. However, the long-range part
Eq. ~11! modifies the eigenfunction. We can, neverthele
compute the desired small-k behavior of the ground-stat
eigenvalue perturbatively, using the unperturbed grou
state eigenfunctiondf0 /dz[f08(z):

vk5k21g

E
2`

`

dz f08~z!~@k22dz
2#s/22@2dz

2#s/2!f08~z!

E
2`

`

dz@f08~z!#2

.

~12!

The integral in the numerator is conveniently evaluated
Fourier space. The functionf08(z) is sharply peaked at th
interface, with a width of orderj, the interfacial thickness
and a peak height of order 1/j. Its Fourier transform, there
fore, is very broad~with width 1/j), and forqj!1 is equal
to f0(`)2f0(2`)52. The integral in the numerator i
Eq. ~12! becomes, therefore,

4E
2`

` dq

2p
~@k21q2#s/22uqus!

for small k, provided the integral converges. The latter co
dition requiress,1. In this regime, the important values o
q in the integral are of orderk, so our replacement off08(z)
ly

e
in
in

al
ce

f
,

-

n

-

by 2d(z) is justified for kj!1. The integral is then easily
evaluated to givek11s ~up to constants! for s,1.

For s.1, the replacement off08 by a d function is no
longer valid, since the integral in the numerator in Eq.~12!
would not converge. The Fourier transform off08 falls off at
qj'1, however, to converge the integral. In this ca
(s.1) the characteristic value ofq is of order 1/j, instead
of k, and we can expand the integrand up to orderk2 for
kj!1. The numerator then becomes of orderk2j12s for
s.1. A similar line of reasoning for the marginal cas
s51 leads to ak2 ln(1/kj) behavior forkj!1. The simple
k2 dependence fors.1 just renormalizes the amplitude o
the leadingk2 term in Eq.~12!. The integral in the denomi-
nator in Eq.~12! is a constant of order 1/j.

Putting it all together, retaining only the leading smallk
behavior, and discarding constant prefactors, gives the
persion relation

vk;k11s, s,1,

;k2 ln~1/kj!, s51, ~13!

;k2, s.1.

We deduce that the dynamic exponent isz511s for
s,1 and z52 for s.1. The marginal cases51 gives
~with k→1/L, vk→1/t as usual! the growth law
L;(t ln t)1/2. All these results are in accord with previou
results based on renormalization group@10# and energy-
scaling@3,4# arguments.

D. Long-range interactions: Vortex lines

The influence of long-range interactions on the dynam
of a vortex line may be discussed in a similar way. Takin
as before,V(fW )5(12ufW u2)2/4, one obtains, analogous t
Eqs.~8! and ~11!,

~¹ r
22k22g@k22¹ r

2#s/2112ufW 0u2!fW 122~fW 1•fW 0!fW 0

52vkfW 1 . ~14!

The long-range part can be treated perturbatively for smak
as in the scalar case. Since the perturbation is isotropic,
unperturbed eigenfunctions]xfW 0 and]yfW 0 are not mixed by
the perturbation. It follows that, to leading order in perturb
tion theory,

vk5k21g
E d2r ] if0 j~@k22¹ r

2#s/22@2¹ r
2#s/2!] if0 j

E d2r @] if0 j #
2

,

~15!

where the result has been written in a rotationally invari
form, i.e., there are implicit summations over the indicei
and j .

We again evaluate the integral in the numerator in Fou
space. In the small-k limit only small wave vectorq, corre-
sponding to largeur u, will be important. For largeur u, fW 0

→ r̂ , giving ] if0 j5(d i j 2 r̂ i r̂ j )/ur u. The Fourier transform of
this quantity is (2p/q)(d i j 2q̂i q̂ j ). Inserting this into Eq.
~15!, the integral in the numerator becomes, up to consta
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E
uqu.1/R

d2q

q2
~@k21q2#s/22uqus!;ks ln~kR! ~16!

for s,2, this condition ensuring the convergence of the
tegral at largeq. The lower cutoff atq51/R, where we recall
that R is the radius of the system in the plane normal to
vortex line, is necessary to regulate the logarithmic singu
ity at smallq.

Now consider the integral in the denominator of Eq.~15!.
Using the large-r form of fW 0 everywhere gives the resu
*d2r /r 2, i.e., a logarithmically divergent integral. At smallr ,
this can be cut off at the vortex core sizej, where the as-
sumed large-r form no longer holds. The larger cutoff is
againR. The need for a large-distance cutoff is associa
with the non-normalizability of the null eigenfunctions, a
discussed in Sec. II B. The upshot is that the denominato
of order ln(R/j), and the leading small-k form of the disper-
sion relation is

vk;ks
ln~kR!

ln~R/j!
, s,2. ~17!

Some discussion of this result is in order. If we take t
limit R→` in Eq. ~17!, we obtain the well-defined limit
vk;ks for a vortex line in an infinite system. We argu
however, that this is not the appropriate limit in which
discuss the implications of Eq.~17! for the coarsening dy-
namics. In a system with many vortex lines, a characteri
scaleL can be associated with the line densityrV ~equal to
the length of the vortex line per unit volume! via rV51/L2.
Since the far field of a given vortex line is screened out
this scale, it isL rather thanR which is the appropriate cutof
in the coarsening system. ReplacingR by L in Eq. ~17!, and
making the usual identificationsk;1/L and vk;1/t, gives
the coarsening growth lawL;(t/ ln t)1/s. This agrees again
with the predictions of the energy-scaling approach. Sim
arguments concerning the nature of the momentum cut
will be necessary for the conserved0(2) model in Sec. III B.

III. CONSERVED DYNAMICS

A. Domain walls

The standard continuum model for the time evolution o
conserved scalar field is the Cahn-Hilliard equation

] tf52¹2@¹2f2V8~f!#. ~18!

For present purposes, this may be conveniently rewritte
the form

2¹2f1V8~f!1~2¹2!21] tf50. ~19!

Inserting the form~2! and linearizing inA leads to the eigen
value equation

@2dz
21V9~f0!#f1~z!1Fk2f1~z!

2vkE
2`

`

dz8Gk~z2z8!f1~z8!G50, ~20!
-

e
r-

d

is

e

ic

n

r
fs

in

where

Gk~z2z8!5E
2`

` dq

2p

exp@ iq~z2z8!#

k21q2
5

exp~2kuz2z8u!
2k

~21!

is the Green’s function for the operator (k22dz
2).

As before,f15f08 is a null eigenfunction fork50. For
small k, the term in the second square bracket in Eq.~20!,
which vanishes fork50, can be treated perturbatively t
give

vk5k2

E
2`

`

dz@f08~z!#2

E
2`

`

dzE
2`

`

dz8Gk~z2z8!f08~z!f08~z8!

. ~22!

The integral in the numerator defines the surface tens
g5*2`

` dz(f08)
2'1/j. The function f08(z) acts like a

smearedd function of width j and strength 2. Forkj!1,
therefore, we can replaceGk(z2z8) by its small-argument
limit 1/2k in the denominator, to give the result 2/k. In this
limit, therefore,

vk5 1
2 gk3. ~23!

The dynamic exponent isz53, in accord with the expected
Lifshitz-Slyozov scalingL;t1/3. A more careful derivation
of this result was given by Shinozaki and Oono@9#.

The generalization to ‘‘intermediate’’ dynamics, or ‘‘non
integer derivative models’’@12#, in which the leading2¹2

in the Cahn-Hilliard equation is replaced by (2¹2)m/2 ~i.e.,
by ukum in Fourier space, instead ofk2) is straightforward.
One simply has to insert into Eq.~22! the Green’s function
for (k22dz

2)m/2, given by

Gk~z2z8!5E
2`

` dq

2p

exp@ iq~z2z8!#

~k21q2!m/2
. ~24!

For m52 our previous result is obtained, while form50 one
gets Gk(z2z8)5d(z2z8), giving the nonconserved resu
vk5k2. For generalm, Eq. ~24! gives the scaling form
Gk(z2z8)5k12m f (kuz2z8u). From the discussion of the
casem52, it is clear that we require the result only in th
limit kuz2z8u!1, i.e., we need the small-argument form
the scaling functionf (x). Straightforward analysis give
f (0)5const for m.1, and f (x);xm21 for m,1, with
f (x); ln(1/x) for m51. Thus there is a change of behavi
at m51. For m.1, Gk(z2z8);k12m gives ~with g'1/j)
vk;j21k11m. For m,1, the double integral*dz*dz8uz
2z8um21f08(z)f0(z8) is of orderjm21, giving the dispersion
relation vk;j2mk2, while for m51 one obtains
vk;j21k2/ln(1/kj). For convenience we summarize the
results below, dropping prefactors involvingj:

vk;k11m, m.1

;
k2

ln~1/kj!
, m51 ~25!

;k2, m,1.
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These results have been derived previously by Onuki@12#.
The dynamic exponent isz511m for m.1 andz52 for
m,1. For m,1, the exponent is the same as for the no
conserved system: the conservation law is ‘‘irrelevant,’’
accord with a renormalization group argument@11#.

Using v;1/t and k;1/L gives the growth laws
L(t);t1/(11m) for m.1, (t/ ln t)1/2 for m51, and the usua
nonconserved resultL(t);t1/2 for m,1. These results are
again in complete accord with the energy-scaling argum

Long-range interactions can be included for a conser
order parameter in a straightforward way. Omitting the d
tails, the final result is a rather obvious combination of E
~12! and ~22!. For generalm, it reads

vk5

E
2`

`

dz f08~z!~k21g@~k22dz
2!s/22~2dz

2!s/2# !f08~z!

E
2`

`

dz E
2`

`

dz8Gk~z2z8!f08~z!f08~z8!

.

~26!

Note that the numerator and denominator contain the in
mation about the interactions and the conservation law,
spectively. It follows that the dynamic exponent isz(s,m)
5min(11s,2)1max(m21,0). This clean separation of th
roles of the interactions and the conservation law is mirro
in the energy-scaling approach to calculating growth ex
nents, where the energy depends only on the interact
(s), and the energy dissipation rate only on the conserva
law (m).

B. Vortex lines

The treatment of vortex lines in a conserved0(2) model
follows the same pattern. Consider first the case of ‘‘simp
conservation,m52. The starting point is the Cahn-Hilliar
equation for vector fields:

~2¹2!21] tfW 5¹2fW 1~12ufW u2!fW . ~27!

Expanding around the stationary vortex solutionfW 0 using
Eq. ~7! gives the eigenvalue equation

$2¹ r
22@12ufW 0~r !u2#%fW 1~r !12@fW 0~r !•fW 1~r !#fW 0

1Fk2f1~r !2vkE d2r 8Gk~r2r 8!fW 1~r 8!G50, ~28!

where

Gk~r2r 8!5E d2q

~2p!2

exp~ iq–r !

k21q2
~29!

is the Green’s function for (k22¹ r
2).

For small k, the eigenvaluevk can again be calculate
using first-order perturbation theory. Rotational invarian
ensures, as before, that the unperturbed eigenfunctions] if0 j
are not mixed by the perturbation. The result can be writ
in the form
-

t.
d
-
.

r-
e-

d
-

ns
n

’’

e

n

vk5k2
E d2r ~¹fW 0!2

E d2r E d2r 8Gk~ ur2r 8u!¹fW 0~r !•¹fW 0~r 8!

5k2
E d2q q2ufW 0~q!u2

E d2q@q2/~k21q2!#ufW 0~q!u2

. ~30!

The Fourier-space form is more convenient for present p
poses. From the resultfW 0→ r̂ for r @j it follows that
ufW 0(q)u2→(2p)2/q4 for qj!1. Using this result for allq,
and introducing ultraviolet and infrared cutoffs 1/j and 1/R,
respectively, as required, the result forvk can be written as

vk5k2

E
1/R

1/j

q dq/q2

E
1/R

`

q dq/@q2~k21q2!#

5k4
ln~R/j!

ln~kR!
~31!

to leading logarithmic accuracy.
Once again this result requires careful interpretation. T

ing the limit R→` at fixedk gives vk5k4, suggesting the
coarsening growth lawL(t);t1/4. The R dependence enter
Eq. ~31!, however, from the requirement to cut off infrare
divergences associated with the far field of the vortex. In
phase-ordering context, the far field is cut off at scaleL by
other vortex lines. This means we should replaceR by L in
Eq. ~31! @see the parallel discussion after Eq.~17!#. With
k;1/L and vk;1/t as usual, this leads to the coarseni
growth law L(t);(t ln t)1/4, in perfect agreement with the
energy-scaling result@3,4#.

The extension to intermediate dynamics, controlled by
exponentm, is again straightforward. We simply replac
(k21q2) by (k21q2)m/2 in Eq. ~31!, with the result

vk5k21m
ln~R/j!

ln~kR!
, ~32!

to leading logarithmic accuracy, for anym.0. The coarsen-
ing growth law becomesL;(t lnt)1/(21m).

Finally, long-range interactions can be included. The
pression forvk combines the numerator from Eq.~15! with
the denominator from Eq.~30!. Replacing (k21q2) by
(k21q2)m/2 in the denominator, and, using Eq.~16! for the
numerator, gives the result for generalm ands,2:

vk;ks1m. ~33!

Strictly, the numerator and denominator generate fac
ln(akR) and ln(bkR) ~with aÞb in general! which we have
canceled in Eq.~33!. The cancellation is strictly valid in the
limit R→` at fixed k. In the coarsening context, wherek
;1/L andR;L, these factors are of order unity so Eq.~33!
still holds, to givez5s1m.
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IV. CONCLUSION

We have discussed a general method, based on the r
ation of a sinusoidally perturbed topological defect~e.g., a
domain wall or vortex line!, for inferring growth laws in
phase-ordering systems. The underlying assumption is
there is a single characteristic length scale~dynamical scal-
ing!, so that defect relaxation is either the sole or domin
coarsening mechanism, or occurs at the same rate as
underlying coarsening process. If this assumption does
hold, there need be no connection between the relaxa
spectrum and the coarsening exponent. An example w
the present approach fails was recently given@13#.

In this paper we have considered only systems w
purely dissipative dynamics. These systems can also be
dressed using energy-scaling arguments, which invo
equating two independent estimates of the energy dissipa
rate @3,4#. In all cases, the results from the two differe
approaches agree. As yet, however, it has not proved
sible to extend the energy-scaling technique beyond pu
dissipative systems. The defect relaxation method, howe
does not suffer from this limitation. Indeed, Shinozaki@14#
studied the interfacial relaxation spectrum in an incompre
ible binary fluid, including hydrodynamic effects, and o
tained vk;k for k→0, consistent with the linear growth
L(t);t, of the coarsening scale predicted by Siggia@15# for
bicontinuous phases.

Another recent application of this approach is to t
coarsening of systems which exhibit lamellar structures
equilibrium, such as Rayleigh-Be´nard convective rolls as de
scribed by the Swift-Hohenberg equation@16#, or diblock
copolymers in the weak segregation regime. The dynam
of these systems has attracted much recent attention@17,18#.

In the coarsening regime the lamellae do not form para
stripes, but rather exhibit a globally isotropic, but loca
striped, structure with a characteristic length scale~as mea-
sured, for example, by the typical radius of curvature of
stripes! which increases with time, and gives the length sc
over which the stripes are locally roughly parallel. The str
pattern itself has, in the two-dimensional systems stud
ax-

at

t
the
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d

numerically, topological defects in the form of disclination
It is not yet clear whether the coarsening is described b
single growing length scale in these systems, as differ
measures of this scale give different results@16,19#.

An analysis, along the lines presented here, of the dyn
ics of a modulated lamellar structure for the Swi
Hohenberg equation gives the relaxation ra
vk5(e/256)k21k4, wheree is measure of the quench dep
@16#. For shallow quenches, therefore, one hasvk.k4, sug-
gesting at1/4 growth at not-too-late times, eventually cros
ing over to an asymptotict1/2 growth. The same crossove
from t1/4 to t1/2, can be inferred from a calculation of th
lamellar velocity as a function of the local curvature, both f
the Swift-Hohenberg system@17# and diblock copolymer
systems in the weak segregation regime@16#. By contrast,
the growth rate inferred from the evolution of the structu
factor is closer~in the absence of thermal noise! to t1/5

@17,18#. Topological defects in the lamellar structure are n
however, incorporated into these approaches, and it is
sible that these defects coarsen more slowly than the in
faces. More work is needed to clarify this point.

In summary, a study of defect relaxation provides
simple way to determine growth exponents in coarsen
systems. This approach should be reliable when the coar
ing is described by a single characteristic length scale. In
cases studied here, the results obtained are identical to t
derived using the energy-scaling method. While the unde
ing assumptions~dynamical scaling! are the same for both
methods, the ideas involved in the present approach
rather simpler, and the method is not restricted to pur
dissipative dynamics. The energy-scaling method, on
other hand, is not restricted to extended defects, i.e., it ca
used for systems with point defects or, indeed, no defect
all.
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