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Defect relaxation and coarsening exponents
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Coarsening exponents describing the growth of long-range order in systems quenched from a disordered to
an ordered phase are discussed in terms of the decay fl}eor the relaxation of a distortion of wave vector
k applied to a topological defect. For systems described by order paramete® @jtkising) andO(2) (XY)
symmetry the appropriate defects are domain walls and vortex lines, respectively.dfrokt, we infer
L(t)~t for the coarsening scale, with the assumption that defect relaxation provides the dominant coarsen-
ing mechanism. Th&(2) case requires careful discussion due to infrared divergences associated with the far
field of a vortex line. Conserved, nonconserved, and intermediate dynamics are considered, with either short-
or long-range interactions. In all cases the results agree with an earlier energy scaling analysis.
[S1063-651%98)08108-3

PACS numbes): 64.60.Cn, 64.60.My

[. INTRODUCTION sion). In this paper, therefore, we will discuss a much
“cleaner” approach that addresses the dynamics of the to-
Coarsening is a characteristic property of a systenpological defects in a more direct way. Specifically we con-
quenched into an ordered phase from a disordered phase, afider a single plane domain wall, or straight vortex line, and
describes the establishment of long-range order over evéPPly & periodic perturbation of wave vectarThe pertur-
larger length scales as time increagék We concentrate bation then relaxes away, with an asymptotic relz_;\x_atlon rate
here on systems which exhibit the property of “dynamical @(k). A central assumption, as before, is the validity of the
scaling,” in which the pair correlation functior€(r,t) scaling hypothesis. If ther_e is a smgle characteristic length
=(¢(x,t) p(x+r,t)) of the order-parameter field(r,t) has scaleL (t), then the relaxation dyna_mlcs of the Qefect should
the scaling form C(r,t)=f[r/L(t)]. The characteristc Pe reflected in the coarsening dynamics, through
length scalel(t) generally has a power-law dependence onL/L~ (k) with k~1/L. So if w(k)~k?* for k—0, we ex-
time, L(t)~t'?, sometimes with logarithmic corrections, pect L(t)~t*2. More simply, one can seto~1t and
wherez is a kind of dynamic exponent for the coarseningk~1/L to obtain the same result.
process. This approach has been used before for systems with do-
Much effort in recent years has been devoted to the demain walls, and the conventionazk=2 and 3 for systems
termination of the exponert (and any additional logarith- with conserved and nonconserved order parameters, respec-
mic factors for a range of different models. Although the tively, have been recovered—9]. Here we generalize to
experimentally most relevant case of a scalar order parametsystems with “intermediate” dynamic&o be defined be-
has been understood for some time, through intuitive argulow), and/or long-range interactions, and extend the method
ments based on the scaling assumption, and through exactly systems wittO(2) symmetry. In this way we can confront
solved limits[2], a general approach has been lacking untilmost of the predictions of the energy-scaling method. Since
recently. The “energy-scaling” approach of Bray and Ruten-the present approach requires extended defects, however, it
berg[1,3,4] filled this gap by providing a very general ap- cannot treat th®(2) system ind=2 spatial dimensions, or
proach based on the role of the topological defects nucleatetie O(3) system ind= 3, for which the relevant topological
during the quench. These defects are simple domain walldefects (vortices and monopoles, respectivelgre points.
for a scalar field, vortices/vortex lines for a two-componentWe therefore restrict our attention to scalar systemdl in
vector field, and monopoles for a three-component vector=2 and 3, andO(2) systems ind=3. For these cases, all
field [where we are assuming rotational invariance for theour results agree with the energy-scaling predictions, al-
last two models; i.e., these models posg8$2) andO(3) though some subtleties arise in the case of@{2) system
symmetry, respectively The energy-scaling method is suit- due to infrared singularities associated with the far field of
able for any system for which the scaling hypothesis holdghe vortex line.
and the dynamics are purely dissipative. These include the The paper is organized as follows. Section Il deals with
standard model#A and Bof the Hohenberg and Halperin nonconserved dynamicgnodel A). The method is intro-
classification[5], describing the simplest systems with non- duced in the simple context of domain walls. The extension
conserved and conserved order parameters, respectively. to vortex lines is then discussed, followed by the generaliza-
the context of phase-ordering kinetics, the models are deion to long-range interactions. Section Il deals with con-
scribed by the time-dependent Ginzburg-Landau equatioserved(modelB) and “partially conserved” dynamics, for
(see Sec. )land the Cahn-Hilliard equatiofSec. ). domain walls and vortex lines with both long- and short-
Powerful though the energy-scaling method is, the argurange interactions. Detailed comparisons with the predictions
ments are not completely straightforward, and some care isf the energy-scaling method are made at each stage. In par-
required in its applicatiotsee Ref[1] for a detailed discus- ticular, the energy-scaling predictidr(t)~ (t In t)¥* for the
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conserved(2) model ind=3 (or, more generallyd=3) is  —Aexdikx—w¢]. Note that this simple interpretation is a
recovered. The paper concludes with a discussion and surdonsequence op=dd,/dz, which will not be true in gen-
mary. eral. Equation(4) has the formw,=k* with z=2, from
which we infer the coarsening growth lala(t) ~t?=t%2
Il. NONCONSERVED DYNAMICS for this, the simplest of our dynamical models.

A. Domain walls
) . B. Vortex lines
The simplest exemplar of the defect relaxation approach

is the dynamics of an interfaddomain wal) separating two If tt]e order-parameter field is the two-component vector

equilibrium phases. The time-dependent Ginzburg-Landafield ¢(x,t) of the O(2) model, the topological defects are

(TDGL) equation is a continuum dynamical model for such avortex lines. The analog of Egl) for this system is

process, R R R
dp=V?¢p—dVide, (5)

p=V2¢p—V'(¢), 1)

whereg(x,t) is the scalar order-parameter field, anap) is

a symmetric double-well potential, e.§/(¢)=(1— ¢?)?%/4, L _ - :

whose minimag= =+ 1 represent the two bulk phases. —[¢[*)*/4, with minima on the ground-state manifold
Consider first a single planar interface separating the tw¢|= 1, although the conclusions are completely general. For

phases. The normal to the interface defineszfdirection.  this potential, Eq(5) becomes

The order parameter depends only mnand satisfies the . . L.

time-independent version of Edl), d?¢/dZ?=V'(¢y), Hp=V2P+(1-|¢|?) ¢. (6)

with boundary conditionghg(*+ )= *=1. We now impose a .

small periodic perturbation to the interface in thelirection  This equation has a time-independent solutigyir), corre-

where the “wine-bottle” potential/(¢) is a function of| ¢|
only. For definiteness, we will use the forv()=(1

with wave vectork, sponding to a vortex line in the direction, where we have
) introduced the coordinate systery(r,z) of coordinates
B(X,2,1) = o(2) + Ad1(Z) explikx— wyt), (2)  normal and parallel to the vortex. This is a solution of E).

where the amplitudé\ is small. The relaxation rate, de- ~ S2Uisfying the boundary conditiony(0)=0, ¢o(r)—r for
fines the time scales, = 1/w,, for the relaxation of a pertur- |r|—c, wherer is a unit vector.

bation with characteristic length scalerZk. Substituting this By analogy with Eq/(2), we now perturb the vortex line
form into Eq.(1), and linearizing inA, gives the eigenvalue by adding a periodic modulation with wave vectoin the
equationH ¢, = wy ¢4, with the Hamiltonian form
d? d(r,2,) = do(r) + Ay (r)explikz— wyt). (7
H=——+Kk>+V" (o). 3
dz? Substituting in Eq(6), and linearizing iMA, gives the eigen-

This is conveniently thought of as a quantum mechanica\lallue equation

Hamiltonian operator. Note thaV”(¢,) is positive at 2 o\ 3 < 12\ 3 s -
z==+o (wWhere ¢o=+1), and negative az=0 (where (Vi= k) 1t (1= | ol )¢1_2(¢1'¢0)¢0__“’k¢1’(8)
$o=0). For the specific cas¥(¢)=(1— ¢?)?/4, one has

242 : _ : . .

V(o) =3¢(2) 1, which equals-1 atz=0, and tends t0 - yhereV? is the Laplacian operator in theplane. From the
+2 forz— * . It follows thatV"(¢,) represents a potential same physical considerations that we used for domain walls,
well which must have at least one bound state. In fact, sincge expect a null eigenfunction &=0, corresponding to a
k=0 corresponds to a uniform translation of the interfaceniform displacement of the vortex line transverse to its

we know thatwy_,=0, with eigenfunction¢;=d¢y/dz o3 _ 7 v i . ;
Also, since this function has no nodes, it must be the groun(ljength' Smcaéo(r+a) <(50+a Vr‘_ﬁo’ EO first ord»er Ina, we
identify a family of null eigenfunctiong;=a- V, ¢, param-

state. Since th& dependence oH is simply the additive i e )
etrized by the direction ofa. For convenience we may

constantk? in this simple model, it follows thatl,/dz is h basi h i ; i
the ground state for ak, with eigenvalue choose a basis set of two such eigenfunctions corresponding
to a being a unit vector along th& andy axes[where
w, =k (4 r=}x,y)], rgspectively. The two basis functions are then
. ] dydo anddyo. They are orthogonal by symmetry. Substitu-
Higher eigenvalues are separated by a gap from the grounghn into Eq.(8) confirms that these are null eigenfunctions,
state, so any component of the corresponding eigenfunctionge wr_o=0. Since thek? term in Eq.(8) can simply be
in the initial displacement of the interface, relaxes quickly togpsorped intaw, , it follows that, just as for domain walls,

zero. For this_ reason, here we concentrate only on thghe smallest eigenvalue for amyis exactly given by
ground-state eigenfunction, which is the “slow mode.” Ne-

glecting any contribution from the other eigenfunctions, Eq. w, =K. 9
(2) can be written, correct to leading order in the amplitude

A, as ¢(z,x,t)=¢po(z+A exdgikx—wt]), corresponding We conclude that the dynamical exponent is agan?2.
simply to a modulated interface located a{x,t)= This agrees with the energy-scaling result.
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For future reference we note that the eigenfunctiopg, By 20(2) is justified fork§<1. The integral is then easily

N H 1+o
anddy ¢, are not normalizable in an infinite two-dimensional evzlazluatei ;0 ?r']Vé( | (up to ions'gagbsforgz?<l.t_ :
space, since the normalization integrals are Iogarithmicth{ or o I'd’ he ret%aqe{nen Iqﬁoth ya un;: lon 1S Nno
divergent(see below When the normalization is important, onger valid, since the integral in the numerator in EIp)

we will take the vortex line to lie along the symmetry axis of would not converge. The Fourier tran_sform@g falls Oﬁ at
an infinitely long cylinder of radiu. gé~1, however, to converge the integral. In this case

(o>1) the characteristic value af is of order 1£, instead
of k, and we can expand the integrand up to orkfeffor
ké<1. The numerator then becomes of ordégl™“ for

The above approach may readily be generalized to thg>1. A similar line of reasoning for the marginal case
case where the underlying interactions are long ranged ig-=1 leads to &? In(1/k&) behavior forké<1. The simple
space. Consider, for example, a ferromagnetic model, ik? dependence foo>>1 just renormalizes the amplitude of
which the exchange interactiat{|r —r’|) falls off with dis-  the leadingk? term in Eq.(12). The integral in the denomi-
tance agr —r’| "9+ for large|r —r'|. The long-range char- nator in Eq.(12) is a constant of order &/
acter of these interactions is typically only “relevantie., Putting it all together, retaining only the leading sniall-
affects the scaling behavipif o is smaller than a critical behavior, and discarding constant prefactors, gives the dis-
value o, [10]. In the present context, we will find that persion relation
o.<2, so we will consider only the cage<2 here. For this 1to
case, the term in the Ginzburg-Landau free-energy functional w~k7, o<1,
generated by long-range interactions has the Fourier-space 2 _
form F r=(9/2)Z k¢ ¢_. This can be formally repre- ~k*In(1kg), o=1, (13
sented in the TDGL dynamics,¢= — 6F/5¢, by replacing ~K2 o>1.
the usual Laplacian operator by(—V?)?”, to give '

C. Long-range interactions: Domain walls

We deduce that the dynamic exponent as1+ ¢ for
Gp=V2p—0(—V)"p—V'(¢), (100 ¢<1 andz=2 for o>1. The marginal case=1 gives
(with  k—1L, w—1ft as usugl the growth Ilaw
L~ (t Int)¥2 All these results are in accord with previous
results based on renormalization grol{0] and energy-
scaling[3,4] arguments.

instead of Eq(1). Expanding around a flat domain wall us-
ing Eq.(2), whereg, is now a stationary solution of the full
equation(10), gives the eigenvalue equation

(d2—K2—g[K2—d2]72=V"[ po]) 1= — wyepy, (11)

whered,=d/dz. The influence of long-range interactions on the dynamics
The function¢$,=d¢,/dz is again a null eigenfunction of a vortex line may be discussed in a similar way. Taking,
for k=0, sincek=0 corresponds to a simple translation of ;¢ pefore V($)=(1—|$|2)2/4 one obtains, analogous to
the interface. The term ik? in Eq. (11) simply shifts the Egs. () and (11) ’ ’
eigenvalue byk?, as before. However, the long-range part of ’
Eq. (11) modifies the eigenfunction. We can, nevertheless, (y2_2—g[k2—V?]72+ 1—|g|2) by~ 2( b1~ do) do
compute the desired smdl-behavior of the ground-state
eigenvalue perturbatively, using the unperturbed ground- = _wk(;sl_ (14)
state eigenfunctiod ¢q/dz= ¢((2):

D. Long-range interactions: Vortex lines

The long-range part can be treated perturbatively for sknall
fw dz &' K2 2172 42172 4! as in the scalar case. Since the perturbation is isotropic, the
92402 21" 11" do(2) unperturbed eigenfunctiorig$, andd, ¢, are not mixed by
the perturbation. It follows that, to leading order in perturba-

wk=k2+g

J d7[ ¢o(2)1? tion theory,
(12) f d2r d; ¢Oj([k2_Vr2]0/2_[_vr2]0/2)0—,i¢0j
The integral in the numerator is conveniently evaluated in ¢, =k?+g ,
Fourier space. The functiog(z) is sharply peaked at the f d2r[ 4, ¢0j]2
interface, with a width of ordeg, the interfacial thickness,
and a peak height of orderél/Its Fourier transform, there- (15

fore, is very broadwith width 1), and forgé<1 is equal  \here the result has been written in a rotationally invariant
10 () — ¢o(—)=2. The integral in the numerator in form, i.e., there are implicit summations over the indices

Eq. (12) becomes, therefore, andj.
= dg We again evaluate the integral in the numerator in Fourier
4f 2—([k2+ a?17?—q|%) space. In the smak-limit only small wave vectog, corre-
— o0 aa

sponding to largdr|, will be important. For largdr|, ¢,
for smallk, provided the integral converges. The latter con-—T, giving d;¢o;= (8 —rir;)/|r|. The Fourier transform of
dition requireso<<1. In this regime, the important values of this quantity is (2r/q)(6;—q;q;). Inserting this into Eq.
g in the integral are of ordekt, so our replacement ap(2) (15), the integral in the numerator becomes, up to constants,



PRE 58 DEFECT RELAXATION AND COARSENING EXPONENTS 1511

d2q where
fl @ (k24 g2 g ) ~k” In(kR)  (16)

d>1RrR ¢

Gu(z—2')= fjc da exliaz=2)] _ exd—kz=2')

2 2
for ¢<<2, this condition ensuring the convergence of the in- » 2m k"+q 2k

tegral at largey. The lower cutoff afj=1/R, where we recall

thatR is the radius of the system in the plane normal to th§s the Green’s function for the operatde- d?).

vortex line, is necessary to regulate the logarithmic singular- ¢ before, ¢, = #} is a null eigenfunction fok=0. For

ity at smallq.. . . . small k, the term in the second square bracket in &%),
Now consider the mtegri’:ll in the denominator of ELp). which vanishes fokk=0, can be treated perturbatively to

Using the large- form of ¢, everywhere gives the result give

fd?r/r?, i.e., alogarithmically divergent integral. At small

(21)

this can be cut off at the vortex core siZze where the as- * d , 2

sumed large- form no longer holds. The large cutoff is o 4 do(2)]

againR. The need for a large-distance cutoff is associated w=k2— — . (22
with the non-normalizability of the null eigenfunctions, as j dzf dz'G(z—2') p4(2) ph(2")
discussed in Sec. Il B. The upshot is that the denominator is — -

of order InR/¢), and the leading smak-form of the disper-

sion relation is The integral in the numerator defines the surface tension,

y=[7.dz(¢p})?~1/¢. The function ¢y(z) acts like a
In(kR) smeareds function of width ¢ and strength 2. Foké<1,
v o<2. (17)  therefore, we can replad®,(z—z') by its small-argument
limit 1/2k in the denominator, to give the resulk2in this
limit, therefore,

K in(RIE)

Some discussion of this result is in order. If we take the
limit R—o in Eq. (17), we obtain the well-defined limit wp= 1% yk3. (23
w~k? for a vortex line in an infinite system. We argue,
however, that this is not the appropriate limit in which to The dynamic exponent &= 3, in accord with the expected
discuss the implications of Eq17) for the coarsening dy- Lifshitz-Slyozov scalingL ~t*3. A more careful derivation
namics. In a system with many vortex lines, a characteristiof this result was given by Shinozaki and Odrdg.
scaleL can be associated with the line density (equal to The generalization to “intermediate” dynamics, or “non-
the length of the vortex line per unit volumeia py,=1/L2. integer derivative modelsT12], in which the leading— V?
Since the far field of a given vortex line is screened out orin the Cahn-Hilliard equation is replaced by §2)“? (i.e.,
this scale, it id rather tharR which is the appropriate cutoff by |k|# in Fourier space, instead &F) is straightforward.
in the coarsening system. ReplaciRdy L in Eq.(17), and  One simply has to insert into Eq22) the Green’s function
making the usual identifications~1/L and w,~ 1/, gives  for (k2—dZ2)*”2, given by
the coarsening growth law~ (t/In t)*. This agrees again
with the predictions of the energy-scaling approach. Similar , ~ dg exdiq(z—2')]
arguments concerning the nature of the momentum cutoffs Gu(z=2")= fﬁm ZW
will be necessary for the conserve@2) model in Sec. Il B. q

(24)

For u=2 our previous result is obtained, while far=0 one
I1l. CONSERVED DYNAMICS gets Gy (z—2z')=48(z—2'), giving the nonconserved result
w,=k?. For generalu, Eq. (24) gives the scaling form
Gy(z—2')=k' #f(k|z—2'|). From the discussion of the
The standard continuum model for the time evolution of acaseu=2, it is clear that we require the result only in the

A. Domain walls

conserved scalar field is the Cahn-Hilliard equation limit k|z—2z'|<1, i.e., we need the small-argument form of
o2 , the scaling functionf(x). Straightforward analysis gives
hp=—VIVig—V'(d)]. (18 f(0)=const for u>1, and f(x)~x*"1 for u<1, with

) i , f(X)~In(1/x) for w=1. Thus there is a change of behavior
For present purposes, this may be conveniently rewritten iy —1 “For ,>1, G (z—2')~k' # gives (with y~1/&)
the form w~ & kET#, For <1, the double integralfdzfdz'|z
o2 , Cu2-1g 4 —2'|*71p4(2) po(2’) is of orderé“ 1, giving the dispersion
VitV +(=VT) "ad=0. (19 relation w,~& #k?, while for w=1 one obtains
w~ £ Kk?/In(1/kéE). For convenience we summarize these

Inserting the form2) and linearizing inA leads to the eigen-
g m?2) g g results below, dropping prefactors involvigg

value equation
(O] s k1+’u', ,u> 1

k2¢l(z) k2

T In(1Kké)’

[—d2+V"(po) ] a(2) +

wn=1 (25
=0, (20

—‘"kf, 47 Gz-7')$s(2)) K, <1
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These results have been derived previously by ORLR]. .
The dynamic exponent ig=1+u for u>1 andz=2 for j d?r(V o)?
pu<1l. For u<1, the exponent is the same as for the non- =k?
conserveq system: the_conservation law is “irrelevant,” in f d?r J A2t Gy(|r—r'|)Veho(r) - Vpo(r")
accord with a renormalization group arguméht].
Using w~1/t and k~1/L gives the growth laws R
L(t)~tYA+» for u>1, (t/Int)¥? for u=1, and the usual f d2q q?|do()|?
nonconserved result(t)~t*? for u<1. These results are =k2
again in Compl_ete accqrd with the e_nergy-scallng argument. J' d2q[ g%/ (K2+q2)]| do(a) |2
Long-range interactions can be included for a conserved
order parameter in a straightforward way. Omitting the de- . . ]
tails, the final result is a rather obvious combination of Eqs.The Fourier-space form is more convenient for present pur-

(30

(12) and(22). For generalu, it reads poses. From the resuItZ)0—>F for r>¢ it follows that
| o(q)|2— (27)2/q* for q¢<1. Using this result for alby,
o , 5 2 o2 2 ol21n ot and introducing ultraviolet and infrared cutoffstldnd 1R,
f_w dz ¢o(2) (k" +gL(k"—d3) 7= (—=d3)7"]) $o(2) respectively, as required, the result fog can be written as
W= - - .
f_m dz f A2 G(z~2') $i(2) bo(2') g g
(26) 1R

wk=k p”
_ _ _ f q dd/[9*(k*+0?)]
Note that the numerator and denominator contain the infor- 1R
mation about the interactions and the conservation law, re- In(R/ &)
spectively. It follows that the dynamic exponentz&r, 1) =K4
=min(1+0,2)+max(u—1,0). This clean separation of the In(kR)
roles of the interactions and the conservation law is mirrored ) o
in the energy-scaling approach to calculating growth expo!© l€ading logarithmic accuracy. _ _
nents, where the energy depends only on the interactions Once again this result requires careful interpretation. Tak-

. . . . _ 4 .
(o), and the energy dissipation rate only on the conservatiofi'd the limit R—ce at fixedk gives wy = k*, suggesting the
law (). coarsening growth lav.(t) ~t**. The R dependence enters

Eqg. (31, however, from the requirement to cut off infrared
) divergences associated with the far field of the vortex. In the
B. Vortex lines phase-ordering context, the far field is cut off at sdalby
The treatment of vortex lines in a consen@(®) model  other vortex lines. This means we should repl&by L in
follows the same pattern. Consider first the case of “simple”’Ed. (31) [see the parallel discussion after E47)]. With
conservationu=2. The starting point is the Cahn-Hilliard k~1/L and o,~1/ as usual, this leads to the coarsening

(31)

equation for vector fields: growth law L(t)~(t In t)¥4 in perfect agreement with the
energy-scaling resu[B,4].
(=V)19,=V2¢p+(1—|d|?) ¢. 27) The extension to intermediate dynamics, controlled by an

exponentu, is again straightforward. We simply replace

R 24 42 24 q2\ul2 ; ;
Expanding around the stationary vortex solutigg using (k*+07) by (k*+g%)*= in Eq. (31), with the resuit
Eq. (7) gives the eigenvalue equation In(R/£)

=K2tm
o=k In(kR) ’

(32
{=VE-[1=[o(N]T} ¢1(r) +2[ do(r) - $1(r) 1o
to leading logarithmic accuracy, for amy>0. The coarsen-
+{k2¢1(r)—wa’ d2r'G(r—r')d,(r')|=0, (28  ing growth law becomek~ (tint)*(2*#),
Finally, long-range interactions can be included. The ex-
pression forw, combines the numerator from E(L.5) with

where the denominator from Eq(30). Replacing k*+q?) by
(k?+g%)*2 in the denominator, and, using E(.6) for the
d?q expig-r) numerator, gives the result for genegaland o<2:
Gk(r—ur')zf—zﬁ (29
(2m)? k’+q o~k (33

is the Green’s function fork?—V?). Strictly, the numerator and denominator generate factors
For smallk, the eigenvaluan, can again be calculated In(aekR) and InBkR) (with a+# B in general which we have

using first-order perturbation theory. Rotational invariancecanceled in Eq(33). The cancellation is strictly valid in the

ensures, as before, that the unperturbed eigenfuncéighs  limit R—c at fixedk. In the coarsening context, wheke

are not mixed by the perturbation. The result can be writtemr~1/L andR~L, these factors are of order unity so E§3)

in the form still holds, to givez=o+ u.
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IV. CONCLUSION numerically, topological defects in the form of disclinations.

. It is not yet clear whether the coarsening is described by a
We have discussed a general method, based on the relg ngle growing length scale in these systems, as different

ation of a sinusoidally perturbed topological deféetg., a measures of this scale give different res{its, 19

domain Wa"_ or vortex ling for '”fe""?g growth Ia_ws In An analysis, along the lines presented here, of the dynam-
phase-ordering systems. The underlying assumption is that

there is a single characteristic length scagnamical scal- Ics of a modulated lamellar structure for the Swift
. 9 Istic ieng ¥ . ohenberg equation gives the relaxation rate
ing), so that defect relaxation is either the sole or dominant ~ 2 4 ;

. : = (e/256)k“+k*, wheree is measure of the quench depth
coarsening mechanism, or occurs at the same rate as t

. . . . 6]. For shallow quenches, therefore, one has-k*, sug-
underlying coarsening process. If this assumption does n . 14 .
hold, there need be no connection between the relaxatiofeSung a " growth at ”9",200"ate times, eventually cross-
! g over to an asymptotit'/? growth. The same crossover,

spectrum and the coarsening exponent. An example whe!. . ;
P g exp P fom t* to tY2 can be inferred from a calculation of the

the present approach fails was recently giVeg). lamellar velocity as a function of the local curvature, both for

In this paper we have considered only systems wit . .
purely dissipative dynamics. These systems can also be a 1€ SW|ft.-Hohenberg syster[ﬁ?] and .d'b|OCk copolymer
stems in the weak segregation regifi€]. By contrast,

dressed using energy-scaling arguments, which involv y . .
equating two independent estimates of the energy dissipatio, etgro_wthl rate (l_nf(?[rr]red fgom the iV?AUI'On IOf tf;e;t;Lljgture
rate [3,4]. In all cases, the results from the two different actor i1s_closeriin the absence ol hermal nojs
approaches agree. As yet, however, it has not proved po 17,18. Topological defects in the lamellar structure are not,
sible to extend the energy-scaling technique beyond purel owever, incorporated into these approaches, and it IS pos-
dissipative systems. The defect relaxation method, howeve ible that these d?feCtS coarsen more S.IOWIY than the inter-
does not suffer from this limitation. Indeed, Shinozakd] aces. More work is needed to clarify this point.

studied the interfacial relaxation spectrum in an incompress-. In summary, a stu_dy of defect relaxatlor_l prowdes_a
ible binary fluid, including hydrodynamic effects, and ob- simple way to determine growth exponents in coarsening

tained w,~k for k—0, consistent with the linear growth, systems. This approac_h should be rel_iaple when the coarsen-

L(t)~t, of the coarsening scale predicted by Sigdif] for ing is descnbed by a single characte_rlsuc Iength s_cale. In the

bicontinuous phases cases studied here, the results obtained are identical to those
: derived using the energy-scaling method. While the underly-

Another recent application of this approach is to the'n assumptiongdynamical scalingare the same for both
coarsening of systems which exhibit lamellar structures in"9 P y

equilibrium, such as Rayleigh-Rard convective rolls as de- method;, the ideas involved in .the present approach are
scribed by the Swift-Hohenberg equatiph6], or diblock ra_1th¢r s_|mpler, anq the method is not_restncted to purely
copolymers in the weak segregation regime. The dynamicg'S’s"p""t'\/e Qynamlcs. 'The energy-scaling method,_on the
of these systems has attracted much recent atteftiag, other hand, is not re_strlcte_:d to extended _defects, i.e., itcan be

In the coarsening regime the lamellae do not form parallepﬁed for systems with point defects or, indeed, no defects at
stripes, but rather exhibit a globally isotropic, but locally all.
striped, structure with a characteristic length sdale mea-
sured, for example, by the typical radius of curvature of the
stripeg which increases with time, and gives the length scale The author thanks Jacob Christensen and Thomas Prell-
over which the stripes are locally roughly parallel. The stripeberg for discussions. This work was supported by the Engi-
pattern itself has, in the two-dimensional systems studietheering and Physical Sciences Research ColdcK.).
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