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Properties of the two-dimensional random-bond=xJ Ising spin glass

J. A. Blackman and J. R. Goalves
Department of Physics, University of Reading, Whiteknights, P.O. Box 220, Reading RG6 6AF, United Kingdom

J. Poulter
Department of Mathematics, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
(Received 11 March 1998

We develop an exact gauge-invariant method for studying the two-dimensiahapin glass. It is applied
to the case of an arbitrary concentration of(ft) positive andp negative bonds and is thus a generalization
of the more commonly studieg=50% model. The ground-state properties are examined and in particular it
is shown that the spin correlation exponemtremains constant over the range<p<50%. The value
obtained is»=0.34+0.02. A wide range of values fog is quoted in the literature. We indicate possible
reasons for the discrepancies and indicate that there are potential advantages in doing calculations at concen-
trations markedly lower than 50%S1063-651X98)07708-3

PACS numbegps): 05.50-+q, 64.60.Cn, 75.10.Nr

I. INTRODUCTION centration rangep.<p<0.5. However, an exotic ground-
state configuratiofrandom antiphase statat concentrations
It is now more than 20 years since the introduction of thejust abovep, has also been proposét9,20.
Edwards-Anderson Hamiltonidd], and this remains the ba- TheT=0 transition app=0.5 is characterized by algebra-
sis for most theoretical work on spin glasses, ically decaying correlations between spins,
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w with various estimatef9,12,21—-23 of the value ofz. Scal-
The J;; are quenched random variables and ¢heare Ising  ing theories of “droplet” excitation$22,24,2§ indicate that
spins on a lattice. The status of our understanding of spithe =J model constitutes a special universality class.
glasses is covered in a number of revig®&s5|. For infinite Two-dimensional Ising systems have the special property
range interaction§6], the model is well understood; it ex- of allowing exact solutions—at least for large but finite sys-
hibits a rich structure of states related by an ultrametric totems in the absence of a magnetic field. There have been a
pology[4]. The relevance of the mean-field results to modelsnumber of calculations of this typ26—29 and these are
with short-range interactions is not clear, however. generally based on the combinatorial or Pfaffian method

One of the extensively studied models of a short-rang¢30,31]. Although the combinatorial method is applicable to

spin glass is thexJ system[7]. The model comprises both the Gaussian and thel models, it takes a particularly
nearest-neighbor bonds of fixed magnitude but random sigrsimple form for the latter. Saul and Kardg6,27] develop
with an equal probability for the sign being positive or nega-an algorithm using integer arithmetic, and study defects,
tive. In this paper we consider the two-dimensional generallow-lying excitations, and the zeros of the partition function
ized version of this model in which the signs can have dif-in the complex plane.

ferent probabilities determined by a parameder An alternative approach based on the combinatorial
method was taken by Blackman and Poul28]. The focus
P(Jij)=pa(Jij+I)+(1—p)é(Jdi;—J). (1.2 was on the Pfaffian matrix that allows the combinatorial

method to be expressed in closed form. It was shown that,
For p=0.5, there is a phase transition at zero temperaturgarticularly in the zero temperature limit, its eigenstates ex-
The properties around the transition have been studied blyibit behavior that is ideally suited to characterizing the
high-temperature expansiofi8], Monte Carlo simulations physics of frustrated systems. In addition, the algorithm en-
[9-11], and transfer matrix method42,13. A valuep=0  ables certain quantities such as the ground-state free energy
in Eq. (1.2) corresponds to the pure ferromagnet. pds  and entropy to be calculated exactly for very large lattices.
increased from zero, the ferromagnetic critical temperature These approaches are attractive methods for obtaining ex-
decreases and at a concentragrferromagnetic order dis- act results at zero temperature, which is, of course, a difficult
appears. The best estimates pgitat about 0.1112,14-117. limit to access by Monte Carlo methods. The added motiva-
There is evidencgl8] that theT=0 critical behavior exhib- tion for the work is the structure in the theory, which appears
ited by thep=0.5 system is maintained throughout the con-to capture the essence of the physics of at least one class of

short-range frustrated systems.

In the present paper our earlier wdrk8] will be devel-
*Present address: Departemento de Fisica, Universidade da Ceagped to study the two-dimensionald model over the con-

Caixa Postal 6030, 60450 Fortaleza, Brazil. centration rang@.<p=<0.5. The theoretical development on
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which the method is based will be summarized in Sec. I, and
the results of calculations of the energy and entropy over a
range ofp will be given in Sec. Ill. Importance was attrib-
uted to the spatial extent of the eigenstates of the Pfaffian
matrix. This feature is explored in Sec. IV, and the relation —_—
to correlations between spins will be developed in Sec. V.
There have been very few previous studies of the system o
away fromp=50%. We evaluate the exponemtn Eq. (1.3

and show that it remains constant over the concentration
range fromp. to 50%.

[u—
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1. BACKGROUND FIG. 1. Example of an elementary two frustrated plaquette con-

. figuration to illustrate definition of spatial extension. Broken lines
We summarize here the key features of the method. Thgre negative bonds and and g label the frustrated plaquettes.

reader is referred to the earlier pag@s] for fuller details.  Numbers indicatex andy separations.

New developments in the theory are given in this section and

in Sec. V. apparently simple result in E¢2.4) involves some subtlety
In the Pfaffian method, the partition function for the 2D [28]. The ground-state energf for N spins is —2NJ

Ising model on arN site square lattice is writtef28,30,3] | AF.

In addition to the eigenvalues of the FS, it was postulated
(detD)¥2, 2.1) [28] that the form of the eigenstates themselves has physical
significance. There are indications that all FS are localized
for p<p. while, for p>p., a proportion of the FS is ex-
D is the Pfaffian matrix referred to in the preceding sectiontended. The detailed behavior abopg relates closely to
Writing in terms of the skew-symmetric determinant ratherphysical properties such as spin-spin correlations.
than the Pfaffian itself means thBtis the full square array One needs to take some care in the definition of the spa-
(of order AN). The elements oD are either 0,+1, or tial extent of the FS, and this point will now be developed in
*tanh(; /kT). We prefer to multiply all the elements hyso ~ a more rigorous fashion. It is instructive to consider initially
that one is dealing with a Hermitian matrix and real eigen-a simple defect configuration in which only two frustrated
values. The determinant is, of course, unchanged. plaquettes are present. An example is shown in Fig. 1. In this
The physics is contained id and the formalism is appli- case thela) and |8) basis states are localized on the
cable to an arbitrary set of nearest neighigr With frus-  plaquettes as indicated, aedis given by Eq.(2.2) with X
trated systems there is a nice separation of the eigenstates ©3.0 andr=3. The eigenstates corresponding e are
D into those associated with frustration and the rest. At zerda)*i|3).
temperature the decoupling is complete for the “frustration It is reasonable to use the Manhattan distance as a mea-
states” (FS). The number of FS is equal to the number of sure of the extension of this pair of frustration states, namely
frustrated plaquettes and the FS are completely localized otfie sum of thex andy separation of ther and 8 plaquettes
the frustrated plaquettes. The FS occur in pairs+i|g)  (2+1=3 in units of lattice spacings i i
with eigenvalueste. To formalize this, we introduce operatoxsandy that
This decoupling of the FS occurs for any two-dimensionalrepresent the coordinates of the plaquettes, and define expec-
frustration modele.g., Gaussian atJ). For the=J model tation values
there is further simplification because the eigenvalues of the

z=2N/TI costJ;; /kT)

uy

FS can be written in th&—0 limit in the form (1y=KBIF|1B)—(alf|a)l, (2.9
£=1X exp(— 2rJ/KT), 2.2 yvhgrer is eitherx ory. The Manhattan spatial extehthen
is given by
wherer is an integer anc is a real number. 1=(X)+(9) (2.6)
The change in ground-state energy and entropy resulting ' '
from the frustration can be written There is an ambiguity, however, due to an arbitrary phase
factor ¢. Eigenstatesa’)*=i|8') defined as
= + . . .
AF=202"rr, 23 o) xi|B) =expzid)a)=ilg)] (2.7

would be equally valid in association withe. Although for
S=k> "In X;, (2.4y  simple configurations like that shown in Fig. 1, the phase to
f use is obvious by inspection, this is no longer true for a
complex configuration of frustration at arbitrary concentra-
where the notation indicates a summation over the positivéion p. One needs a definition of spatial extent that is not
members of pairs of FS. Equivalent to Ef.4), of course, is  dependent on an arbitrary phase factor.
writing the ground-state degeneraby as M=II; X;. The This difficulty is resolved if Eq(2.5) is replaced by the
derivation of Eq(2.3) is almost trivial whereas obtaining the following definition:
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TABLE I. Ground-state energl (in units ofJ) and entropyin 10°
units ofk) per spin for selected values pf
p (%) F s 10
5 —1.8024+0.0005 0.01030.0002 102
8 —1.6924+0.0005 0.02520.0003
10 —1.6274+0.0003 0.0363 0.0004 .
11 —1.5994+0.0003 0.040% 0.0004 x 10
12 —1.5750+0.0003 0.0446:0.0004
15 —1.5182+0.0003 0.0528 0.0005 10’
20 —1.4590¢ 0.0005 0.062€:0.0003
50 —1.4021+0.0002 0.070%0.0004 10"+ + o
S\ (P24 02)12 29 10° | 11 L1 !
(r)y=(P*+ Q%)™ (2. 1 5 10 50 100 500

where P=(B|f[8)—(alf|a) and Q=(a|f|B)+(Bl7|a).
The extensiot is now independent of the phase facipand FIG. 2. DistributionN(l) (normalized to a 258256 sample
the overall formalism is invariant with respect to gaugesize as a function ofl for p=50% for samples with. =64 (x),
transformations. Further, the definition retrieves the intuitive128 (+), 256 (0). A straight line fit to theL =256 data points is
definition of size in the limit of simple pairs of frustrated also shown.
plaguettes and no alpha-beta overlap.
lated to the transition from localized to extended states dis-
cussed in the next section with the sign changg@ iexactly
matching the transition.
Numerical calculations of the attributes of the FS can be
done on large finite I{;\ttices. The procedure is one of degen- IV. EXTENDED AND LOCALIZED STATES
erate state perturbation theory. The small quantity that ap-
pears in the perturbation expansion is expy/kT). If the It was suggested earli¢R8] that p. marks a transition
perturbation theory is carried out to ordey,, [the largest between localized and extended states. Our earlier y&gk
value ofr that occurs among the set of FS—see By2)], is now updated by the more rigorous definition of spatial
then anexactsolution for that configuration of disorder is extent given by Eq(2.8). Some modifications are found in
obtained. Obviously ., Will vary between configurations our earlier description, which produce a more complete pic-
but, for the sizes of lattice considered, it seldom is largeiture. It is also suggested that the nature of these states in the
than 12. Averages are performed over many configurationp>p. regime relate to spin-spin correlation functions. This
of disorder. For further details about the implementation ofwill be explored in the following section.
the perturbation theory, see RE28]. We find that, forp>p., the distribution function for the
Square lattices of siz& XL were considered. Calcula- “size” of the FS can be described by a power law charac-
tions were performed with = 64,128,256 and the results for terized by an exponent
the energy and entropy extrapolated to an infinite lattice us-
ing the forms N(I)~L4L,l". 4.1

Ill. ENERGY AND ENTROPY

F(L)=F+alL %, (3.1) N(l) is the n_umber of FS whose size is I_arger tHafor a
sample of sizel;XL,. For a square latticeL(XL), the
number of FS whose size is comparable to that of the lattice

S(L)=S+BL" Y, (32 js~L2». This approaches zero or infinity &s-c accord-
ing to whetherp>p. or p<p., wherep,=2. We thus take

whereF (L) andS(L) are the values for ab X L lattice and  the conditionp<p. as the criterion for the presence of ex-
F and S are theL—x limits. The results obtained for a tended states while, > p., all states are localized.
selection of values op are shown in Table |. Between 300  The data folN(l) are plotted in Figs. 2—4 for three values
and 1000 samples are used for each configurational averagd. p (50%, 20%, and 12%, respectivelgnd, in each dia-
Estimates fopp=50% were reported previous|28]. There  gram, three values df (64, 128, and 256 The full lines are
is a minor change in the best estimate, which is due to théeast-squares fits to the=256 data and are the best esti-
improved statistics used here, but the results are in agreenates of the asymptotic behavior. The slope of the lines is
ment within the error bars. the same for each value pfwithin error bars. From this we
We observe interesting behavior in the coefficiemtand are able to deduce a value for the exponent in @dl) of
Bin Egs.(3.1) and(3.2). For small values op bothewand8  p=1.66+=0.02. This applies over the concentration range
are negative. A9 is increased both become positive. The 11.5%<p=<50%. A number of other values g in this
change of sign occurs far at around 15% while, foB, itis  range besides those displayed were checked to confirm the
at about 11%i.e., atp.). This behavior is presumably re- constancy.
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FIG. 3. Same as Fig. 2 fqy=20%. FIG. 5. DistributionN(l) for L=256 samples as a function bf
for p=11% (O), 10%(+), 8% (X), 5% (A). Straight lines obtained
Figure 5 shows the data for four valuespfrom 5% to  from fitting L =256 data are also shown: uppésr p=50%, as in
11%. It also shows the straight line fit at 50%om Fig. 2 Fig. 2 and lower(for p=11.5%).
and atp=11.5%. This latter value opf is the smallest for
which p=1.66 applies. A small deviation can be observed at V. SPIN-SPIN CORRELATIONS

11%, for whichp=1.73+0.02, while at 10.5% a straight line Much of the information about short-range spin glasses
fit is still possible withp=1.91 but with much larger error has been obtained by examining “droplet’ excitations
bars. Forp<10.5%, a straight line fit is no longer feasible, [22,24,29. One considers a closed contour in the lattice con-
but clearly there is a fast fall-off itN(I) with increasingl ain,ing, of the ordet 2 spins; the effective block couplingy
gnd the states in this concentration range are certainly Ioca%n a length scalé is obtair’1ed from the energy cost of re-
ized. . : versing all spins within that contour. In practice, the block
Th_e conclusion then is that we have extended states Cha&'oupling is usually studied by fixing the width of a strip and
acter!z_ed by an exponeptof 1'667: 0.01 for p>p., anq a evaluating as a function of length the energy difference of
transition from extended. to localized pt. The transition system with two different boundary conditions. Thé
occurs over a concentration range of about 1% appuand  q4g| js special and the issue to be studied in this case is
IS pres_urr_lably a finite size effect_. . whether or not the block coupling is zero. One defines the
Prehmmary_ work{28] at p<p. indicated that the. form Of probability Pg(L) as the fraction ol X L blocks for which
Eq. (4.1) applied there as well. The purrent stud_|es_, wh|ch‘],¢0_ Scaling arguments suggest tiRg(L)~L 7, where
take the work to larger values &f indicate that this is not i the exponent that characterizes the power-law decay in
the case. Fop<pc, Tc occurs at nonzero temperatures andy,e ;ero temperature spin-spin correlation function in Eq.
there is no particular reason to expect special behavidr at (1.3.
=0 in this region. A relation between the present work and the droplet ap-
proach can be made as follows. As discussed in the preced-

'
10 g ing section, the mean number of extended frustration states
in anL XL region scales ak? ”. We defineP(n,L) as the
10° probability that the number of extended states in the region is
n. Demanding that the probability function is normalized to
108 unity and that the mean number-d_2"" yields by the usual
scaling arguments
S
< 0k P(n,L)=L"@ Pf(nL= @), (5.1
10° wheref(x) is some analytic function of.
Now the occurrence of frustration extended over a region
10k of sizeLXL is associated with multiple ground-state con-
figurations, and there will be at least one contour that can be
o drawn of a similar size such that the energy cost of reversing
10° 1 Lo+ | spins within that region will be zero. This can be seen in a
1 5 10 50 100 500 trivial example in Fig. 1. Obviously for larde the details are
) much more complex and involve the cooperative effect of

many frustrated plaquettes. FS that are extended determine
FIG. 4. Same as Fig. 2 fgg=12%. the scale, however.
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Important for the present discussion is the converse of thi;mg smaller values ok in the fit, however, produced values
situation. In the absence of extended states, there will be aof p lying between 1.72 and 1.82. This would yield a corre-
energy cost in such a spin reversal. It is reasonable, therepondingzn between 0.18 and 0.28 closer to values reported
fore, to expect thaPg(L) andP(n=0,L) scale withL in the by a number of other authors.

same way. This leads us to make the identification
VI. CONCLUSIONS

n=2-p- (52 The present approach is one of a number of exact methods

It should be emphasized that we are not requiring the ablo" treating the=J spin glass problem. Such methods are
sence of FS within thé X L region: simply the absence of complementary to the numerical transfer matrix and Monte
those whose size is-L SmaIIer.ones will influence the Carlo techniques, and together with scaling theories have an

magnitude of a concentratiorp) dependent prefactor that important role to play in providing an insight into the under-

) ; . .1 lying physics of these systems.
\évg:ea;pmpiﬁ;m Eq.(1.9), butitis the extended ones that wil Although the method will certainly not remain exact if

The conclusion of the present work then is that0.34 attempts are made to include magnetic fields or to extend it
+0.02 over the concentration range 11.5%<50%. THere to higher dimensions, developments can be made in the exact

is also improved accuracy over our earlier re$a8] for the treatment of other short-range systems. There are of course

50% case. The only other work that we are aware of tha’["dqmonal features W'Fhm thet J model that we have ex-
ploited fully here and in the previous wofRS8].

Icul hi i is th S i .
attempts to calculate over this concentration range is that The new work in this study is the exploration of the full

of Morgensterrj18]. He uses Monte Carlo methods to obtain trai <0=50% A £ val for th
the spin correlations directly and also obtains a constant®Ncen r? |orr]1 rangbpc\p\ to.d brange_o va uesk or te
value that, at 0.40.1, agrees with ours within error bars. exponents have been reported Dy various wOrkers A

With all other work in whichy is evaluated, the focus is on =50%. _In view of_the comments in thg preceding section
p=50%. Again within error bars, there is agreement withconcerning a possible reason for this discrepancy, it would

McMillan’s [9] value of 0.28-0.04. However, the other re- be interesting to see what values would be obtained by alter-
sults reported10,22,23 2('5 2]7a}e éll around O > native methods at concentrations other than 50%.

The reason for the wide range of values reported may lie Preliminary calculations on a frustraped triangular lattice
in the fact that nearly all of the calculations considermd'cate a range of parameters over which gvalua Gind .
p=50%. Referring to Figs. 2—4, we see that the approach tQ?nCGU) occurs _that is S|mllar tp that obtamed_ here._Th|s
asymptotic behavior is slower at 50%. For lower valueg of will be further evidence for a distinct J model universality
(see Figs. 3 and)4there is an excellent straight line fit to the class.
data over the range &f of 5-100. At 50%(Fig. 2), however,
one has to get abovie~30 before being in an asymptotic
regime. We attempted fits to a straight line over different One of us(J.R.G) acknowledges support from the Brazil-
ranges ofL and found for the lower values ¢, the calcu- ian agency CNPqg. We also thank the National Electronics,
lated p was virtually independent of the range used. This isthe Computer Technology Cent(BlIECTEQ, and the Na-
in sharp contrast to the behavior at 50%. Fotaange from tional Science and Technology Development Agency
~30 upwards, the (=1.66 obtained was fully consistent (NSTDA), Thailand, for use of their high performance com-
with its value calculated at the lower concentrations. Includ-puting facilities.
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