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The statistics of earthquakes in a heterogeneous fault zone is studied analytically and numerically in a
mean-field version of a model for a segmented fault system in a three-dimensional elastic solid. The studies
focus on the interplay between the roles of disorder, dynamical effects, and driving mechanisms. A two-
parameter phase diagram is found, spanned by the amplitude of dynamical wedkerimgershoot”) effects
€ and the normal distande of the driving forces from the fault. In general, smaland smallL are found to
produce Gutenberg-Richter type power law statistics with an exponential cutoff, whiledargklargel. lead
to a distribution of small events combined with characteristic system-size events. In a certain parameter regime
the behavior is bistable, with transitions back and forth from one phase to the other on time scales determined
by the fault size and other model parameters. The implications for realistic earthquake statistics are discussed.
[S1063-651%98)07508-4

PACS numbe(s): 05.40+j, 91.30.Px, 62.20.Mk, 68.35.Rh

I. INTRODUCTION tions only for small events, which occur in the time intervals
between roughly quasiperiodic earthquakes of a much larger
The statistics of earthquakes has been a subject of récharacteristic” size which rupture the entire fault. There
search for a long time. One spectacular feature is the widare practically no observed earthquakes of intermediate mag-
range of observed earthquake sizes, spanning over ten deitudes on such geometrically regular fault systems. Distri-
cades in earthquake moment magnitatich is defined to  butions of this type are called “characteristic earthquake”
scale as the logarithm of the integral of slip along the faultdistributions. _
during the earthquakiL]). Gutenberg and Richtéf] found _ In previous work 3,4] it was demonstrated that a class of
in the 1950s that the size distribution of regional earthquake§'_'m?Ie moderlls of ruptl;res r?long a meterogeneolus fault Izone
follows a power law over the entire range of observedd'Sp.ays bot 'types of behavior. T € universal power-law
events. The exponebtof the power-law distribution appears scaling behavior of earthquake statistics was seen to be due

to be universal, i.e., it is approximately the sarvathin to an underlying critical point, which becomes mean-field-

statistical errors and possible secondary dependency on trilée for fault geometries with more than two spatial dimen-

tectonic d infor all studied regi This t ¢ fons. In the limit ofweakdynamical effects, the mean-field
ectonic domaipor at studie “reglons. IS type ,? power- approximation to the two-dimensional fault provides a more
law distribution is called the “Gutenberg-Richter” distribu-

; appropriate approximation than, for example, traditionally
tion. Recently, enough data has been collected to extract stay,qied one-dimensional approximations to the models. In

tistics on individual systems of earthquake faults, or morgyct exactresults for the scaling exponerttsp to logarith-
precisely on systems of narrow fault zones. Interestingly, ityic corrections could be obtained from mean-field theory.
was found that the distribution of earthquake magnitudesthe reason is that the elastic stresses along the fault are
may vary substantially from one fault system to another. Ineffectively long rangédecaying like the inverse cube of the
particular, Wesnousky and co-worke] found that fault  distancé, such that in two and higher dimensions the fluc-
systems with highly irregular geometry, such as the San Jauations due to interaction with other points on the fault de-
cinto fault zone in California, which have many offsets andcrease as the fault size is increased—on long length scales
branches, display “power-law” statistics over the whole the behavior becomes the same as that of a system with
range of observed magnitudes. Not all fault systems, howinfinite ranged elastic interactiorfap to logarithmic correc-
ever, display a power-law distribution on all scales up to thetions in two dimensions In other words, the upper critical
largest earthquakes. The available d2fandicates that fault dimension is equal to the physical dimension of the fault,
systems with more regular geomefigresumably generated which is 2[5,6]. (Some of the static mean-field exponents
progressively with increasing cumulative glipuch as the turned out to be the same as in other quasistatic m¢&g)s
San Andreas fault in California display power-law distribu- In the presence of small but nonzero weakening effects of
amplitude € a critical rupture size(slipping area ng, for
“runaway” or “characteristic fault size” events was calcu-
*Present address: Exxon Research and Engineering, Clintolated perturbatively4] and was found to scale aset/ Faults
Twp., Route 22 East, Annandale, New Jersey 08801. Electroniof larger area than this size are expected to display the char-
address: mdertas@erenj.com acteristic earthquake distribution, with small events up to
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sizeng, and no events of intermediate size betwagrand =Ju+ K ot— (K +Jd)u;, )
the characteristic fault size events. For faults of smaller total
area tham,, only the power-law scaling region of the small whereu; is the total fault offset of cell in the horizontal X)

events is seen, so the distribution is of the Gutenberg-Richte&fjrection,u= (Z;u;)/N, JIN is the elastic coupling between
type. cells in the mean-field approximation, alg is the effective

In this paper we examine a mean-field model with a ranggoading stiffness of the bulk material surrounding the fault
of dynamical weakening effects from weak to strong, andyatch.

different levels of disorder in the brittle properties. Specifi-* |njtially, the fault is in a relaxed configuration, i.e., all
cally, we study the model of Ben-Zion and RiE#], which  stresses are less than a lossdtic failure threshold stress

involves simple approximations of dynamic frictional weak- - |n the absence of brittle failures the stresses at the cells
ening (similar to static versus dynamic frictignbut replace

the physical long range elastic interactions with infiniteIncrease uniformly due to the ex.ternal Ioadmg ane KLv.
range interactions. In addition to exhibiting both “power- AS 10ng as no cell reaches its failure threshalgr0 every-
law” and “characteristic” scaling of event sizes, this model Where. When the stress at a cell becomes larger tganthe
exhibits the possibility oEoexistencef these two types of Cell slips by an amoundu;= (7~ 7,)/(K_ +J), to reduce
behavior. That is, for a given set of model parameters, thdS Stress fromrg; to an arrest stress, ;. (The nonunifor-
system hagwo distinct persistent stationary statels an mity of fallur_e and arrest st_resses across the fault plane mod-
infinitely large system it will depend on the initial conditions €!S the spatial heterogeneity of real fault zop@f) Conse-
whether the system displays Gutenberg-Richter or charactefiuently, during failure cell stresses change[bly Eq. (1)]

istic earthquake type behavior. Faultsfioiite size can spon- Sr=r T 24
taneously switch from one state to the other on time scales bortal Tsh

that are exponentially large in system size. The switching
times(or “persistence times)’ are determined by nucleation

processes from one state to the other, similar to flips baclherec=J/(K, +J) is a “conservation parameter” giving
and forth at coexistence in finite thermally equilibrated sys+he fraction of the stress drop of the failing cell retained in
tems. Many of the qualitative features seem to be sufficiently,o system after the slip. As pointed out in Ré#12], for
robust to be applicable to real fault zones. Interesting to Not&g 1t zones with characteristic linear dimensions@fL),
such f‘svvjtching” behavior appears to characterize long pape “loading spring constant” i&, ~ 1/L, provided that the
leoseismic records observed along the Dead Sea transforgyess oading of the fault is either due to uniformly moving
fault system in Israef7], and is compatible with other pa- (creeping boundaries or applied forces at distance©6E )
leoseismic[8] and geologic[9] data. In addition, qualita- away from the fault plane. For the casé=L2, (1—c)
tively similar switching has been recently found in regionalwo(ll\/ﬁ)_ A value c<1 for a large system would be

models of dlsordered fa}ult syster_ﬁﬂ)]. . physically realized if the external drive is closer to the fault
The remainder of this paper is organized as follows. | han its linear extent

Sec. Il we define the model and provide a summary of the During the failure process, the slipped cell is assumed to

main results. In_ Sec. lll we present a detaﬂgd a”?'ys's .Of th?)e weakened by the rupture, such that its failure strength is
model along with comparisons with numerical S'mU|at'°nS'reduced to aynamicalvalue 7y =7, — (7o — 74;), With
A= s S,i a,i/»

Ir_1 Sec. IV we compare our re;ults W".[h earlier studies 0f0< e<1 parametrizing the relative importance of dynamical
similar models and discuss their potential relevance to nat

: l\iveakening effects in the system. If the failure stress transfer
ra_1| fault_ systems '_“Ode'ed as a narrow fault zone in a threeE)rings other cells to their failure threshold, an avalanche of
dimensional elastic surrounding medium. cell failures, i.e., “rupture propagation,” occurs according to
Egs. (2) until all cells are at stresses<r7g; [13]. It is as-

Il. THE MODEL AND SUMMARY OF RESULTS sumed that these avalanches happen on time scales short
. . compared to the external loading tirtiee., v is adiabatically

Ben-Zion and Rice[3] suggested that a heterogeneoussmall, so that the external load is kept constant during an
fault system with offsets and branches may be represented k3arthquake. In time intervals between earthquakes, all cells
an array of discrete cells in a two-dimensional plane, withare assumed to heal completely, thus failure thresholds are
spatially varying “macroscopic” constitutive parameters reset to their static values; and the external loading re-
that model the heterogeneity of the original fault systemgumes until the next cell failure.
This model fault on theX,z) plane can be considered as a |n order to simplify notation, it is useful to introduce
collection of brittle patches mapped onto the interface berescaled stress variables
tween two tectonic blocks, which move witemal)) relative

transverse velocityx far away from the fault. In the simple Ts,i— Ti

o7y =(cIN)(7si=7a;), |#i (2b)

realizations used in Ref§3,4], and hergas in related mod- s=1- (Tsi— Tai)’ &
els[11]), the fault plane is segmented inkb geometrically
equal cells. In the mean-field approximation of infinite range Tsi ™ Tali
elastic interactions, the local stregson celli is given by Sai=1- (Tsi= Ta,i)’ @
Ts,i ™ Td,i
n=JINY (u;—u)+K(ot—uy) Sgi=l— 7 —=1—e(1-5,)), (5)
]

- <7's,i_ 7'a,i> B
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FIG. 1. Schematic phase diagram of the system. There is a “co-
existence” of two persistent stationary states called Gutenberg-
Richter and runaway phases, in a finite region of parameter space , “7?1-%",};%-5 ‘ ‘ 4
marked region (2) metastable.” For region 1 given bg<c* T 00=08, =58 )
=1/(1+¢€) (line AB) one finds only small avalanches, i.e., the sys- \ [ ‘ngf;‘Yh:ffg)ls 2
tem is always in the Gutenberg-Richter phase. \ (n,"=12.5)
. 107 % 0
such that cell failure always occurs whep=1, and(s,) 0.0 05 10

“(n)

=0. (Here, ( ) symbolizes averaging over all cells in the &
fault zone) The arrest stress, ; is uncorrelated from cell to
cell, and is picked once for each segment from a probability o« |
distribution p(s,) with mean 0 and a compact support
(—WI2W/2) of width 0sW=2, which characterizes the
heterogeneity of the fault systerfin our simulations we ®
have used the parabolic distributiorp(s,)=3(W? 107
—4s%)/(2W?), for —W/2<s,<W/2 and 0 otherwisé.Un- n
less stated otherwise, the focus is on the small disorder limit
W<1 and moderate Values f@rwhlch are Cons|dered flxed, FIG. 2. HiStOgramS of event size distributions in the two station-
and the properties of the system are analyzed as a function 8y states (phasej for W=2/19, e=0.5, N=400. (a) The
varying conservation parameterand system sizal. (In the “Gutenb_erg—th_:hter’i phase, charac_terlzed by a_po_wer-law (_earth-
last section of the paper we discuss the effects of larger Vaguake dlsFrlbutlon W|th_ an expone_nt_lal cutoff. Solid Ilnes_ are fits to
ues of W as well) The size of an earthquake refers to thethe analytllc forn.'(lS) Wlttrf]; Nt as.a fitting paramete.r. Also |nd|c§teq
number of cells that failedi.e., the “area” on the fault that '€ analytic estimatas(” . The inset shows a typical stress distri-
slips in an earthquake bution of this phase _foc:0.7._The solid line is a fit to the analytic
For N—o, depending on relative values of the systemform (8). The nonuniform region nea=0 extends from—W/2 to

. . W/2. (b) The * ” phase, with imilar back d distri-
parameters, there are in general two possible steady—state\/(?}ﬁj— (b) The "runaway” phase, with a similar background distri

ibuti f cell d of h K itud tion and large characteristic events. The inset shows a typical
tributions of ce S‘I‘I’ESSES an of earthquake magnitudes. W&ess gistribution foc=0.8. The solid line is a fit to the analytic
refer to these as “phases.

g . . . form (10). The nonuniform region nea= 0 extends from-W/2 to
(A) The “Gutenberg-Richter” (GR) phaselhis phase, /2. Nears=« it extends frome(1—W/2) to e(1+W/2).
possible in both regions 1 and 2 of Fig. 1, is characterized by

a distribution of earthquake sizg§’(n) of power-law form.

p
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In infinite systems l— ), it is given by which is uniform and equal tﬁz((l—sa)‘l) in the interval
' (W/2)<s=<1 [see Fig. 2a), insef. In this phase each cell
p"(n)~Ain~%exp—n/ng), n<N (6) fails at most once during an earthquake, and therefore dy-

namical effects are largely irrelevant. An infinitely large sys-
with a characteristic cutoff size;~2(1—c) 2 that di- tem which started in the GR phase will remain in this phase.
verges ag 1. [Finite-size corrections are given in E4.5) In finite systemdN <o, with parameters in region 2 of Fig.
below]. The stresss; at a given cell is independent of all 1, however, a very large earthquake of size-@N/c or
others and is equally likely to take any allowable value, i.e. greater occasionally triggers dynamical effects that lead to a
catastrophic “runaway” event in which all cells eventually
7) fail and cause a substantial change in the stress distribution
and subsequent evolution of the system, as outlined next.
(B) The “runaway” phaseThis phase is characterized by
Thus the stress distribution in the GR phase is given by 3 quasiperiodic occurrence of system wide earthquakes in
which all cells fail. As a result of dynamical effects, the
P(Sa) (8) stresss; in a cell immediately after such a “runaway” event
1_

Sa is independent of other cells and is equally likely to take any

Prolfs<s;<s+ds)= Sai=s<1.

1-s,;’

S
dW9=J ds,
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value between its arrest stress and dynamical failure stress 003

ie., k
O%%R%fgﬁf
ds 0| %P .

Prolfsssi=s+ds)= ————, s;;<5<Sg;. (9 oo e

Sd,i — Sa,i @Q@%

The stress distribution is thus given by W00 |

s (Sa)
(N(s)= f ds,o—r, 10 o
pr(s)=1— ooy RS, (10) ©

0.00 @&&f Q@
which is uniform and equal t@/(1—e¢) in the interval %EBE\K’BB@%

(WI2)ss<1—¢€—(eW/2) [see Fig. &), insel. The run- ) , , ,
away event is followed by a quiescent period during which 0 10 20 30 40 50
stresses on the cells build back up from their dynamic failure "

value to near their static failure value. Subsequent small FIG. 3. The procesZ,}, which shows the incremental amount
events are followed by the next runaway event, at whichof stress needed to keep an earthquake g(irg text for the pre-
point the stress distribution is reset to Efj0). These back- cise definition. Each failure event corresponds to a segment of the
ground small events have a size distribution similar to eventgrocess that starts out from a maximum up to that point and ends
in the GR phase, but with a different cutoff size. In an infi- when it exceeds that level, and is marked as alternating circles and

nite systenffor finite-size corrections see E(L8) below]: squares. The sample shown here, which corresponds to the stress
distribution shown in the inset of Fig.(®, depicts events of size
NN~ -3/ _ < 6,14,2,1,1,... . Théault is loaded adiabatically between these
py(n)~A,n"*%exp—n/ny), n<N (11)

events, during the intervals whefiz,,} moves monotonically up
from one maximum to the next. These are shown as dotted lines

- 2(1- 5)2 12 connecting consecutive events.
(1—e—c)?’

ncr

A. Gutenberg-Richter phase

which diverges ag\ (1—¢€). However, this divergence is Let us first focus on the GR phase. At some instant
never observed, as the runaway phase becomes unstalihemediately preceding a cell failure, consider the sequence
against breakup into the GR phase whenc*=(1+¢) ! 1Xh=1-Sjn+1)}, Wherei(n) is the index of the cell that has
for the following reason: If the background small events dur-the nth largest stress in the systdisee Fig. 3. For a large

ing a cycle involve at least a fraction. of the cells, the system, the stress gafés,=X,_1—X,} are(almos} inde-
subsequent large event is unable to cause all of the cells fgendent of each other, drawn from an exponential probability
fail, since the cells that failed during background activity aregjstribution, i.e., Prob§s,=s)=exp(—pNs), with p=((1
farther away from their failure stress. This typically causes a s,)~1. For n>1, X, resembles a biased random walk
spontaneous breakup of the bunched stress distribution an

— /(T ; 2
resumption of the GR phase. The fraction of cells needed to h @ Zmean rx(n) n/(pN)' and variance oy(n)

cause this breakup is given by.=1+e—c t=(c*)"* =n/(pN)“ . As long as dynamical effects are absent, the
—c ! as is derived in Sec. lIL. V(\:Ihen\c* the size of Stress redistributed to each cell following the failure of the

background events necessary to cause breakup vanishes 4§t n cells is given by a random variablé, with mean
the runaway phase becomes unstable, i.e.cfoc* the GR  uv(n)=nc/(pN) and variance o§(n)~n(cW/pN)?
phase is the only persistent phase, regardless of the initiak cr)z((n). A triggered earthquake can sustain itself only if the
conditions. Forc>c*, the GR phase and the runaway phaseredistributed stresses exceed the stress gaps. TheiZfore
are both persistent in an infinite system. In an infinite systene=X,,—Y,,<0 during an earthquake and it immediately fol-
the initial conditions determine which one the system disdows that the distribution of earthquake sizesforn>1 is
plays. In a finite system, however, exponentially rare earthgiven in terms of the distribution of first passage times of
guakes can lead to nucleation from the GR phase into thbiased random walks. Approximating the continuous prob-
runaway phase and vice versa. Equati¢h® and (20) be-  ability distribution of the step sizes ¢¥,} with a Bernoulli
low give estimates of the times spent in the respective phasggocesgwhere steps of equal size are taken up or down with
between such nucleatidior “switching”) events. probability p and 1-p, respectively, we can utilize results
available for Bernoulli trial§14],

Il. ANALYSIS OF THE MODEL Proz,=0)
The results quoted above have been obtained by mapping Prol(Z;<0,0<i<n;Z,=0)= n . (13
earthquakes in the model to corresponding events in a sto-

chastic process, which is approximated by a series of Ber-e., the probability for thdirst return to the origin aften
noulli trials [14] in order to be able to obtain analytical esti- steps equals the total probability of reaching the origin after
mates for the various quantities of interest, such as steps divided byn. ProjZ,=0] can easily be calculated
distributions of earthquake sizes and persistence times fdi4] for N>n>1. One obtains Eq(6) with ng;=2(u?

the two phases. + 0?)/ u?, whereu ando? are the mean and variance of the
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step size for the process, respegtively. Substituting the
valuesu = (1—c)/(pN) ando?~1/(pN)?, the cutoff length
is given by

1.0

&
net=2[1+(1-c) %)= >{11+0((1-0)?)}, Y '
(1—c) & 10° T, -~
14 8% Sy ad 1
o 10° | ﬁ‘m _________ 1
where the last approximation is justified since treatfigas , é’/ >
10

a Bernoulli process is expected to yield relative errors of
O(u?lo?).

For finite-sized systems, when the fraction of failed cells
r=n/N is no longer small, E6) needs to be modified since
the stress gaps are not entirely independent: In order to cor-
rectly reflect the fact thaZy=1-c to within O(1/N), the FIG. 4. Distribution of persistence tim@_, andT,_; for W
Bernoulli process should be constrained to return to its mean /19, ¢=0.5, N=100, c=0.73. The lines are fits of the cumula-

value afterN steps. This can be achieved by calculating thetive probabilities to the Poisson distributiofSimulations for sys-

10000 15000 20000
/T,

corresponding conditional probabilities: tems with other parameters that allowed for many more switches
during the simulated times clearly also gave Poisson distributions
" Pro(Z,=0) ProhZy_,=1-c) for the distribgtion of persistencel timgsnset: The. dependence of
pe'(N)= Proh 7 — 1= persistence times on conservation parametetriangles T;_,,,
n roZy= c) circlesT,_ ;) for the same values diV, ¢, andN. Statistical errors
’Af n(1+n/N) are comparable to symbol sizes.
= expl - ——— 1, (15
n Ney

B. Runaway phase

_ Let us next consider the runaway phase. Immediately
which reduces to EJ6) in the limitn<N. (A; is a constant  preceding the first cell failure after a runaway event, the
fixed by normalization).Figure 2a) shows the distribution of  stress gap$ds,=X,_,—X,} have the probability distribu-
event sizes for numerical simulations of the model with 4, Prob(&snzs)zexp:—Hst(l—e)]. Hence, {X,} has a
=400, for valuesc=0.6, 0.7, and 0.8(In all presented _ — . 2, N
simulation results W=2/19 and e=0.5) The continuous mea; ﬁx(r;)—n(l—e)/(pN) an_d variance ox(n) =n(1
lines are one-parameter fits to the fofi®). The discrepancy —€)“/(PN)“. As long as dynamical effects are absent, the
between the fitted and theoretidélom Eq. (14)] values of ~ Stress redlstrl_buteo_l to _each cell folIowmg the failure of the
ne is consistent with the expected relative error. first n cells is still given by{Y.} with mean wy(n)

As mentioned earlier, the failure of all the remaining cells=nc/(pN) and variance a2(n)~n(cW/pN)2<oZ(n).
becomes very likely once (2€)N/c cells have failed, since Thus the mean and variance of the step size{#y} are u
the initially failed cells reach their dynamical failure stress. = (1—e—c)/(pN) and o2~ (1— €)% (pN)2. The probabil-
The mean event size is roughly equalriff’, therefore the ity for an earthquake to terminate aftercell failures isfin-

mean time between events iEOng?IN, where To=(7s; cluding finite-size corrections in analogy with E4.5)]
— 74,10/ (K_v) is the characteristic time over which a cell is

loaded from its arrest stress to its failure stress. The typical " R n(1+n/N)
waiting time to see a switch to the runaway phase yigtds Pe (M)~ 2P T T ' (17)
Eqg. (15)]
2
CuN¥2  [(1-e)(1—e+0) __ 279 2
T ~T ex Nt, 16 Ne= {1+0(c—(1-¢€)])}, c>1-e
T ni ?ne; (10 " [e-(1-oP? -

with Cy, a factor of order unity which varies weakly with _ o -

andc in the region of interest, provided that each attempt isSince u<<0 for 1—e<c, Z,<<0 with finite probability for
statistically independent of each other. We verified that ir@ll n and a runaway event occurs. In fact, a runaway event is
our simulations indeed no time correlations of event sizednevitable sinceZy<0 and the runaway event will com-
were present, out to many times the characteristic fipe Mence oncgZ,} reaches its maximum. The total number of
(see also the Discussion sectiofihe distribution of persis- Cells that fail before a runaway event is given by the position
tence times should then obey Poisson statistics with mea@f the maximum of{Z,}, whose probability distribution is
T._.,. Figure 4 depicts the distribution of persistence timesproportional ton, p{’(n) for n>n,,. The mean number of
(with a fit to Poisson statisticsfor N=400 andc=0.73. these “precursor” cells is of ordenl?, which remains a
Mean persistence times depend very sensitively on the corfinite constant alN— o, i.e., for big systems almost all the
servation parametar, as shown in the inset of Fig.[45]. slip happens during the runaway evefis].
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The remaining cells will all fail during the runaway event.
Imagine a situation where a fraction-(1—€)/c of the cells
have failed. At that point, the total redistributed stress peLg 800
cell is

1000 | =

° °
60.0 - e *
o S o
B

40.0

S=c

Earthquake Size (Nu

r+(r—¥){c+cz+-~-}}

_cdr-(1-e] (19 00

1-c ’

where the second term arises from repeat failures of som‘g8
cells. S=1 is needed to ensure that small event cells fail £ -0s
again and recreate the stress distributigk0). This is

4000 6000 8000 10000 12000

achieved if Time TIT,
1 FIG. 5. Sample time series of earthquake sigep), plotted
r=r*=——e. together with the conformational entrof8,{(t) (bottom for W
c =2/19,e=0.5,N=100,c=0.73. [For the calculation ofS., (1),

the simulated stress distribution was approximated by a ten bin
Thus the large event cannot recreate the stress distributidristogram of the stress values, which was evaluated immediately
(10) if more than (-r*)N=r/N cells fail during back- after each earthquakeThe earthquake size distribution changes
ground activity. This usually leads to a breakup of thedrastically every timeS;,; toggles from O to In(% ¢), indicating a
bunched stress distribution and subsequent evolution towardkansition from one phase to the other. A failed switching attempt
the GR stress distributiof8). The typical persistence time of from the GR phase to the runaway phase is seen at abuf
the runaway phase before a switch to the GR phagess =10 900.

T,.i=To Crfl;l3/2 Seon({P})=— j ds p(§)|n[p(~s)] (21)

cr
For the GR phaseS(f) =0, indicating that a “generic”
_ % _ % * conf
><exp| (c=c)i+(c=cT)/(c"e)IN stress distribution characterizes the GR phase. On the other
c*cng hand, in the runaway phase

c>c* (20 B B B
Ston— —f ds p"(s)in[p"(s)]=In(1—¢), (22
provided that all attempts are statistically independent of

each other(We have explicitly checked in the simulations i gicating that the stress distribution is highly organized in
that in the runaway phase, the particular realizations of stresg ¢ phase. For discreté the stress distribution is approxi-
Q|strlbgtlons immediately following a large event are statis- i 5teq by a histogram of the stress values, and the integral is
tically independent of each othft7]). T, _.; becomes com-  anjaced by the sum over all bins of the histogram.

paraEIe to the typical time between runaway events when ‘the time evolution of the configurational entropy of the
c\.c*, as expecte{l18]. Figure 4 depicts the distribution of gyress distribution, calculated with a ten bin histogram, is
persistence tlmes_ and a fit to Poisson statisticsNfer100 depicted in Fig. 5 along with event sizes. It is clear that
andc=0.73. The inset shows the dependence of mean Pek_ (t) can be used as an “order parameter,” a number that

sistence times ow for N=100. Although agreement with gjstinguishes the GR phase and the runaway phase, with the
Egs.(16) and(20) is rather poor, the strong exponential de- 5qyantage that it can be determined at any instant. Histo-

pendence as a function of conservation parameter is evidenjrams of event sizes require a finite time interval to collect,

and there is always the danger of mixing events from one
IV. DISCUSSION phase with the other, thereby confusing the picture: The cu-
mulative event size distribution over many persistence times
The persistence times in both the GR phase and the runs a weighted average of two entirely different event distri-
away phase diverge exponentially with system size for (Iputions, which obscures the underlying physical phenomena.
+€) '<c<1, and the system remains in either phase fors_ . provides a reliable way to separate the two phases and
extremely long times, thus the phase space has two almogiakes it possible to accumulate accurate event size distribu-
stable attractors. Clearly, the runaway phase representstins for both of them. Unfortunately, such a quantity cannot
more “ordered” stress distribution. Indeed, the basin of at-he determined from existing field data since the spatial dis-
traction for the runaway phase is extremely small. In order tQribution of stress is unknown.
quantify this aspect, consider the “configurational entropy”  So far, the discussion has centered aroundikel limit,
for a given stress distributionp(s), with s,=(r; and the main role played by the heterogeneities has been the
= Ta i) (75— Ta): “randomization” of the stress distribution at time scales
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over which all cells fail a few times. The distribution of brittle seismogenic zone has a finite width. Our assumption
loading times, over which the cells are loaded from the indi-is justified by observations and the context of the mdslizie
vidual arrest stress to the failure stress, has a nian of assumed fault In general, earthquakes with magnitude
=(75;— 7a,i)/(Kjv) and standard deviation of ord&¥T,,. about M6.3 break the entire seismogenic zone. Up to this
Therefore the “randomization” time, over which the stresssize it is accepted that events are roughly two dimensional.
variabless; become roughly uncorrelated, is of ordey/W. When the aspect ratio of the rupture dimensions width/length
Thus, even for smallV, for large enougiN this will be small  is much less than 1 the event is expected intuitively to be-
compared to the persistence times, which scale exponentialsbme more 1D-like. For very large earthquakes a corre-
in N [see Eqs(16) and(20)]. This ensures the consistency of sponding change in the slope of earthquake statistics was
the assumption that the earthquakes are basically StatiStica|Efedictec[20] and claimed to have been obseryed]. This,

independent of each other. The validity of this assumption o owever, is controversial. Kagd@2] has argued that those

statistical independence can be explicitly verified by examsnterences are not supported by a more robust analysis. Thus

qhere is no conclusive evidence that the dimensionality
Utt:hanges from 2D to 1D at a certain event size. The lack of a

to many times the randomlza_mon tiriy /W. Likewise, we clearly observed transition in the available data suggests that
have explicitly checked that in the runaway phase, the Pala ents penetrate deeper than the width of the seismogenic
ticular realizations of stress distributions immediately fol- P P 9

lowing a large event are statistically independent of eactfone, into the underlying viscoelastic substrate, and continue
other[17] to grow in width as they increase in length. Also, in our

For finite values ofV<2, we expect most of the features simulations[4] of a two-dimensional fault with length and

to remain qualitatively unchanged: In the GR phase, the ex¥Vidth of computational grid 70 and 17.5 km, embedded in a
ponential cutoff size still diverges as,~(1—c) 2, and three-dimensional elastic half space, the largest events are

althoughc* in general depends aN and the shape gf(s,), about _M6.5. The aspect _ratio of tho§e ryptgrg areas is not
there is still a persistent runaway phase @ c<1. How-  Very different from 1, so in the quasistatic limit we expect
ever, the situation is likely to change qualitatively once arresthean-field theory to apply roughly up to the largest events.
stresses can be arbitrarily close to failure stresses, i.efhis is confirmed by comparing the corresponding simula-
W= 2, andnew values for the arrest stresses are picked everijon results with mean-field theory predictiof#.
time a cell fails[19]. This corresponds to the situation dis- An important result is the possibility that a fault system
cussed in Ref[4] for finite-dimensional systems. Immedi- might switch spontaneously from a “Gutenberg-Richter”
ately upon introduction of dynamical weakenitg>0), ng¢ earthquake distribution to a “characteristic” earthquake dis-
~ €2 when ¢ approaches 1, i.e., the cutoff size no longertribution, as in the mean-field model. We note that calcula-
diverges. Furthermore, far=1 the GR phase is no longer tions based on an entirely different model, simulating the
persistent since the persistence tiffie,, remains finite for  coupled evolution of regional earthquakes and faults in a
large N. rheologically layered 3D solifi10], show similar behavior.
Some of the results presented for the mean-field modelClear observation of such mode switching in nature requires
especially the qualitative phase diagram, calculated expadata sets spanning many thousands of years. Paleoseismic
nents for the power-law earthquake distributions, and the distudies attempt to construct long histories of seismic events
vergence of the cutoff length scale, can be expected to applt given locations from sequences of displaces and highly
to models with realistic interactions, up to logarithmic cor- disturbed rock layers. Remarkably, the longest available pa-
rections. This is because the underlying critical points thateoseismic records, documenting large earthquake activity
control these exponents remain mean-field-like down to twoalong the Dead Sea transform in Isrd&l, appear to be
dimensional(2D) faults. This result is firmly established for characterized by alternating phases of intense seismic activ-
the e=0 casg4,6]. At finite e one expects the nucleation size jty lasting a few thousands of years, and periods of compa-
for the runaway phase, which equals<{#)N/c in mean- rable length without large seismic events. Other, qualita-
field theory, to become independent of the system size, sinagvely similar alternating deformation phases have been
elastic forces in the fault plane concentrate stresses along th@cumented in the eastern California shear Z@jend the
earthquake rupture front as the earthquake progresses. Eartbreat Basin Province in the western U[S].
guakes bigger than a finite nucleation siXe . become Another intriguing possibility might arise in a fault sys-
unstoppable in the presence of dynamic weakening effectem of weakly coupled segments driven under similar condi-
and small disordef3], and rupture the entire fault. Never- tions. The seismic response of such systems might exhibit a
theless, fomg(<N.c the mean-field scaling results may sort of “coexistence,” i.e., a fraction of the patches might
still apply at finitee, provided thatvV<<2, i.e., there is a finite  follow characteristic scaling whereas the others obey
minimum stress drop associated with each cell failure. FoGutenberg-Richter scaling, giving rise to a hybrid event size
systems withN . N, this range will extend all the way to distribution. This may explain examples in the data of Ref.
the fault size. In this case, one remarkable consequence [ig], where the characteristic “bump” in the distribution was
that since generically (2c)~1/y/N [4,5], the cutoff size in  not very pronounced. Finally, we note that part or all of the
the GR phase;~(1—c) 2~N, i.e., earthquakes on indi- low magnitude seismicity in the GR phase may be too small
vidual fault zones obey power-law statistics for events up tdo be detected by a seismic network. In this case the sponta-
a finite fraction of the entire system size. neous switching between the runaway and GR phases may
In this paper we have implicitly assumed that all earth-be interpreted as transitions from seismic response of a fault
quakes are effectively two dimensional, even though thesystem to creeplike behavior.
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