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Gutenberg-Richter and characteristic earthquake behavior in simple mean-field models
of heterogeneous faults

Karin Dahmen and Deniz Ertas¸*
Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138

Yehuda Ben-Zion
Department of Earth Sciences, University of Southern California, Los Angeles, California 90089-0740

~Received 17 February 1998!

The statistics of earthquakes in a heterogeneous fault zone is studied analytically and numerically in a
mean-field version of a model for a segmented fault system in a three-dimensional elastic solid. The studies
focus on the interplay between the roles of disorder, dynamical effects, and driving mechanisms. A two-
parameter phase diagram is found, spanned by the amplitude of dynamical weakening~or ‘‘overshoot’’! effects
e and the normal distanceL of the driving forces from the fault. In general, smalle and smallL are found to
produce Gutenberg-Richter type power law statistics with an exponential cutoff, while largee and largeL lead
to a distribution of small events combined with characteristic system-size events. In a certain parameter regime
the behavior is bistable, with transitions back and forth from one phase to the other on time scales determined
by the fault size and other model parameters. The implications for realistic earthquake statistics are discussed.
@S1063-651X~98!07508-4#

PACS number~s!: 05.40.1j, 91.30.Px, 62.20.Mk, 68.35.Rh
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I. INTRODUCTION

The statistics of earthquakes has been a subject of
search for a long time. One spectacular feature is the w
range of observed earthquake sizes, spanning over ten
cades in earthquake moment magnitude~which is defined to
scale as the logarithm of the integral of slip along the fa
during the earthquake@1#!. Gutenberg and Richter@1# found
in the 1950s that the size distribution of regional earthqua
follows a power law over the entire range of observ
events. The exponentb of the power-law distribution appear
to be universal, i.e., it is approximately the same~within
statistical errors and possible secondary dependency on
tectonic domain! for all studied regions. This type of powe
law distribution is called the ‘‘Gutenberg-Richter’’ distribu
tion. Recently, enough data has been collected to extract
tistics on individual systems of earthquake faults, or m
precisely on systems of narrow fault zones. Interestingly
was found that the distribution of earthquake magnitu
may vary substantially from one fault system to another.
particular, Wesnousky and co-workers@2# found that fault
systems with highly irregular geometry, such as the San
cinto fault zone in California, which have many offsets a
branches, display ‘‘power-law’’ statistics over the who
range of observed magnitudes. Not all fault systems, h
ever, display a power-law distribution on all scales up to
largest earthquakes. The available data@2# indicates that fault
systems with more regular geometry~presumably generate
progressively with increasing cumulative slip! such as the
San Andreas fault in California display power-law distrib
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tions only for small events, which occur in the time interva
between roughly quasiperiodic earthquakes of a much la
‘‘characteristic’’ size which rupture the entire fault. The
are practically no observed earthquakes of intermediate m
nitudes on such geometrically regular fault systems. Dis
butions of this type are called ‘‘characteristic earthquak
distributions.

In previous work@3,4# it was demonstrated that a class
simple models of ruptures along a heterogeneous fault z
displays both types of behavior. The universal power-l
scaling behavior of earthquake statistics was seen to be
to an underlying critical point, which becomes mean-fie
like for fault geometries with more than two spatial dime
sions. In the limit ofweakdynamical effects, the mean-fiel
approximation to the two-dimensional fault provides a mo
appropriate approximation than, for example, traditiona
studied one-dimensional approximations to the models
fact, exactresults for the scaling exponents~up to logarith-
mic corrections! could be obtained from mean-field theor
The reason is that the elastic stresses along the fault
effectively long range~decaying like the inverse cube of th
distance!, such that in two and higher dimensions the flu
tuations due to interaction with other points on the fault d
crease as the fault size is increased—on long length sc
the behavior becomes the same as that of a system
infinite ranged elastic interactions~up to logarithmic correc-
tions in two dimensions!. In other words, the upper critica
dimension is equal to the physical dimension of the fau
which is 2 @5,6#. ~Some of the static mean-field exponen
turned out to be the same as in other quasistatic models@5#.!
In the presence of small but nonzero weakening effects
amplitude e a critical rupture size~slipping area! ncr for
‘‘runaway’’ or ‘‘characteristic fault size’’ events was calcu
lated perturbatively@4# and was found to scale as 1/e2. Faults
of larger area than this size are expected to display the c
acteristic earthquake distribution, with small events up
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PRE 58 1495GUTENBERG-RICHTER AND CHARACTERISTIC . . .
sizencr , and no events of intermediate size betweenncr and
the characteristic fault size events. For faults of smaller to
area thanncr only the power-law scaling region of the sma
events is seen, so the distribution is of the Gutenberg-Ric
type.

In this paper we examine a mean-field model with a ran
of dynamical weakening effects from weak to strong, a
different levels of disorder in the brittle properties. Spec
cally, we study the model of Ben-Zion and Rice@3#, which
involves simple approximations of dynamic frictional wea
ening ~similar to static versus dynamic friction!, but replace
the physical long range elastic interactions with infin
range interactions. In addition to exhibiting both ‘‘powe
law’’ and ‘‘characteristic’’ scaling of event sizes, this mod
exhibits the possibility ofcoexistenceof these two types of
behavior. That is, for a given set of model parameters,
system hastwo distinct persistent stationary states.In an
infinitely large system it will depend on the initial condition
whether the system displays Gutenberg-Richter or chara
istic earthquake type behavior. Faults offinite size can spon-
taneously switch from one state to the other on time sc
that are exponentially large in system size. The switch
times~or ‘‘persistence times’’! are determined by nucleatio
processes from one state to the other, similar to flips b
and forth at coexistence in finite thermally equilibrated s
tems. Many of the qualitative features seem to be sufficie
robust to be applicable to real fault zones. Interesting to n
such ‘‘switching’’ behavior appears to characterize long p
leoseismic records observed along the Dead Sea trans
fault system in Israel@7#, and is compatible with other pa
leoseismic@8# and geologic@9# data. In addition, qualita-
tively similar switching has been recently found in region
models of disordered fault systems@10#.

The remainder of this paper is organized as follows.
Sec. II we define the model and provide a summary of
main results. In Sec. III we present a detailed analysis of
model along with comparisons with numerical simulation
In Sec. IV we compare our results with earlier studies
similar models and discuss their potential relevance to n
ral fault systems modeled as a narrow fault zone in a th
dimensional elastic surrounding medium.

II. THE MODEL AND SUMMARY OF RESULTS

Ben-Zion and Rice@3# suggested that a heterogeneo
fault system with offsets and branches may be represente
an array of discrete cells in a two-dimensional plane, w
spatially varying ‘‘macroscopic’’ constitutive paramete
that model the heterogeneity of the original fault syste
This model fault on the (x,z) plane can be considered as
collection of brittle patches mapped onto the interface
tween two tectonic blocks, which move with~small! relative
transverse velocityv x̂ far away from the fault. In the simple
realizations used in Refs.@3,4#, and here~as in related mod-
els @11#!, the fault plane is segmented intoN geometrically
equal cells. In the mean-field approximation of infinite ran
elastic interactions, the local stresst i on cell i is given by

t i5J/N(
j

~uj2ui !1KL~vt2ui !
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5Jū1KLvt2~KL1J!ui , ~1!

whereui is the total fault offset of celli in the horizontal (x)
direction,ū5(( juj )/N, J/N is the elastic coupling betwee
cells in the mean-field approximation, andKL is the effective
loading stiffness of the bulk material surrounding the fa
patch.

Initially, the fault is in a relaxed configuration, i.e., a
stresses are less than a localstatic failure threshold stress
ts,i . In the absence of brittle failures the stresses at the c
increase uniformly due to the external loading andṫ i5KLv.
As long as no cell reaches its failure threshold,u̇i50 every-
where. When the stress at a cell becomes larger thants,i , the
cell slips by an amountdui5(ts,i2ta,i)/(KL1J), to reduce
its stress fromts,i to an arrest stressta,i . ~The nonunifor-
mity of failure and arrest stresses across the fault plane m
els the spatial heterogeneity of real fault zones@3#.! Conse-
quently, during failure cell stresses change by@cf. Eq. ~1!#

dt i5ta,i2ts,i , ~2a!

dt j5~c/N!~ts,i2ta,i !, j Þ i ~2b!

wherec[J/(KL1J) is a ‘‘conservation parameter’’ giving
the fraction of the stress drop of the failing cell retained
the system after the slip. As pointed out in Refs.@4,12#, for
fault zones with characteristic linear dimensions ofO(L),
the ‘‘loading spring constant’’ isKL;1/L, provided that the
stress loading of the fault is either due to uniformly movi
~creeping! boundaries or applied forces at distances ofO(L)
away from the fault plane. For the caseN5L2, (12c)
;O(1/AN). A value c,1 for a large system would be
physically realized if the external drive is closer to the fa
than its linear extent.

During the failure process, the slipped cell is assumed
be weakened by the rupture, such that its failure strengt
reduced to adynamicalvalue td,i[ts,i2e(ts,i2ta,i), with
0<e<1 parametrizing the relative importance of dynamic
weakening effects in the system. If the failure stress tran
brings other cells to their failure threshold, an avalanche
cell failures, i.e., ‘‘rupture propagation,’’ occurs according
Eqs. ~2! until all cells are at stressest i<ts,i @13#. It is as-
sumed that these avalanches happen on time scales
compared to the external loading time~i.e.,v is adiabatically
small!, so that the external load is kept constant during
earthquake. In time intervals between earthquakes, all c
are assumed to heal completely, thus failure thresholds
reset to their static valuets,i and the external loading re
sumes until the next cell failure.

In order to simplify notation, it is useful to introduc
rescaled stress variables

si[12
ts,i2t i

^ts,i2ta,i&
, ~3!

sa,i[12
ts,i2ta,i

^ts,i2ta,i&
, ~4!

sd,i[12
ts,i2td,i

^ts,i2ta,i&
512e~12sa,i !, ~5!
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1496 PRE 58KARIN DAHMEN, DENIZ ERTAŞ, AND YEHUDA BEN-ZION
such that cell failure always occurs whensi51, and ^sa&
50. ~Here, ^ & symbolizes averaging over all cells in th
fault zone.! The arrest stresssa,i is uncorrelated from cell to
cell, and is picked once for each segment from a probab
distribution r(sa) with mean 0 and a compact suppo
(2W/2,W/2) of width 0<W<2, which characterizes th
heterogeneity of the fault system.@In our simulations we
have used the parabolic distributionr(sa)53(W2

24sa
2)/(2W3), for 2W/2<sa<W/2 and 0 otherwise.# Un-

less stated otherwise, the focus is on the small disorder l
W!1 and moderate values fore, which are considered fixed
and the properties of the system are analyzed as a functio
varying conservation parameterc and system sizeN. ~In the
last section of the paper we discuss the effects of larger
ues ofW as well.! The size of an earthquake refers to t
number of cells that failed~i.e., the ‘‘area’’ on the fault that
slips in an earthquake!.

For N→`, depending on relative values of the syste
parameters, there are in general two possible steady-state
tributions of cell stresses and of earthquake magnitudes.
refer to these as ‘‘phases.’’

~A! The ‘‘Gutenberg-Richter’’ (GR) phase.This phase,
possible in both regions 1 and 2 of Fig. 1, is characterized
a distribution of earthquake sizespe

( f )(n) of power-law form.
In infinite systems (N→`), it is given by

pe
~ f !~n!'Afn

23/2exp~2n/nc f!, n!N ~6!

with a characteristic cutoff sizenc f'2(12c)22 that di-
verges asc↗1. @Finite-size corrections are given in Eq.~15!
below#. The stresssi at a given cell is independent of a
others and is equally likely to take any allowable value, i

Prob~s<si<s1ds!5
ds

12sa,i
, sa,i<s<1. ~7!

Thus the stress distribution in the GR phase is given by

p~ f !~s!5E
2`

s

dsa

r~sa!

12sa
, ~8!

FIG. 1. Schematic phase diagram of the system. There is a ‘
existence’’ of two persistent stationary states called Gutenb
Richter and runaway phases, in a finite region of parameter sp
marked region ‘‘~2! metastable.’’ For region 1 given byc,c*
51/(11e) ~line AB) one finds only small avalanches, i.e., the sy
tem is always in the Gutenberg-Richter phase.
y

it
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l-
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e
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which is uniform and equal top̄[^(12sa)21& in the interval
(W/2)<s<1 @see Fig. 2~a!, inset#. In this phase each cel
fails at most once during an earthquake, and therefore
namical effects are largely irrelevant. An infinitely large sy
tem which started in the GR phase will remain in this pha
In finite systemsN,`, with parameters in region 2 of Fig
1, however, a very large earthquake of size (12e)N/c or
greater occasionally triggers dynamical effects that lead
catastrophic ‘‘runaway’’ event in which all cells eventual
fail and cause a substantial change in the stress distribu
and subsequent evolution of the system, as outlined nex

~B! The ‘‘runaway’’ phase.This phase is characterized b
a quasiperiodic occurrence of system wide earthquake
which all cells fail. As a result of dynamical effects, th
stresssi in a cell immediately after such a ‘‘runaway’’ even
is independent of other cells and is equally likely to take a

o-
g-
ce,

-

FIG. 2. Histograms of event size distributions in the two statio
ary states ~phases!, for W52/19, e50.5, N5400. ~a! The
‘‘Gutenberg-Richter’’ phase, characterized by a power-law ea
quake distribution with an exponential cutoff. Solid lines are fits
the analytic form~15! with nc f as a fitting parameter. Also indicate
are analytic estimatesnc f

(th) . The inset shows a typical stress distr
bution of this phase forc50.7. The solid line is a fit to the analytic
form ~8!. The nonuniform region nears50 extends from2W/2 to
W/2. ~b! The ‘‘runaway’’ phase, with a similar background distr
bution and large characteristic events. The inset shows a typ
stress distribution forc50.8. The solid line is a fit to the analytic
form ~10!. The nonuniform region nears50 extends from2W/2 to
W/2. Nears5e it extends frome(12W/2) to e(11W/2).



e

ich
ur
a

ic

n
fi-

s
ta

ur

ls
re
s
n

d

s

it
s
e
is
rth
th

as

pi
st
e

ti-
a
f

t
nce
s

ility

lk

he
he

he
e
l-

of
b-

ith

fter

e

t

the
nds
and
tress

se

ines

PRE 58 1497GUTENBERG-RICHTER AND CHARACTERISTIC . . .
value between its arrest stress and dynamical failure str
i.e.,

Prob~s<si<s1ds!5
ds

sd,i2sa,i
, sa,i<si<sd,i . ~9!

The stress distribution is thus given by

p~r !~s!5
1

12eE@s2~12e!#/e

s

dsa

r~sa!

12sa
, ~10!

which is uniform and equal top̄/(12e) in the interval
(W/2)<s<12e2(eW/2) @see Fig. 2~b!, inset#. The run-
away event is followed by a quiescent period during wh
stresses on the cells build back up from their dynamic fail
value to near their static failure value. Subsequent sm
events are followed by the next runaway event, at wh
point the stress distribution is reset to Eq.~10!. These back-
ground small events have a size distribution similar to eve
in the GR phase, but with a different cutoff size. In an in
nite system@for finite-size corrections see Eq.~18! below#:

pe
~r !~n!'Arn

23/2exp~2n/ncr!, n!N ~11!

ncr'
2~12e!2

~12e2c!2
, ~12!

which diverges asc↘(12e). However, this divergence i
never observed, as the runaway phase becomes uns
against breakup into the GR phase whenc,c* [(11e)21

for the following reason: If the background small events d
ing a cycle involve at least a fractionr c of the cells, the
subsequent large event is unable to cause all of the cel
fail, since the cells that failed during background activity a
farther away from their failure stress. This typically cause
spontaneous breakup of the bunched stress distribution a
resumption of the GR phase. The fraction of cells neede
cause this breakup is given byr c511e2c215(c* )21

2c21 as is derived in Sec. III. Whenc↘c* , the size of
background events necessary to cause breakup vanishe
the runaway phase becomes unstable, i.e., forc,c* the GR
phase is the only persistent phase, regardless of the in
conditions. Forc.c* , the GR phase and the runaway pha
are both persistent in an infinite system. In an infinite syst
the initial conditions determine which one the system d
plays. In a finite system, however, exponentially rare ea
quakes can lead to nucleation from the GR phase into
runaway phase and vice versa. Equations~16! and ~20! be-
low give estimates of the times spent in the respective ph
between such nucleation~or ‘‘switching’’ ! events.

III. ANALYSIS OF THE MODEL

The results quoted above have been obtained by map
earthquakes in the model to corresponding events in a
chastic process, which is approximated by a series of B
noulli trials @14# in order to be able to obtain analytical es
mates for the various quantities of interest, such
distributions of earthquake sizes and persistence times
the two phases.
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A. Gutenberg-Richter phase

Let us first focus on the GR phase. At some instant
immediately preceding a cell failure, consider the seque
$Xn[12si (n11)%, wherei (n) is the index of the cell that ha
the nth largest stress in the system@see Fig. 3#. For a large
system, the stress gaps$dsn5Xn212Xn% are ~almost! inde-
pendent of each other, drawn from an exponential probab
distribution, i.e., Prob(dsn5s)5exp(2p̄Ns), with p̄[^(1
2sa)21&. For n@1, Xn resembles a biased random wa
with a mean mX(n)5n/( p̄N) and variance sX

2(n)

5n/( p̄N)2 . As long as dynamical effects are absent, t
stress redistributed to each cell following the failure of t
first n cells is given by a random variableYn with mean
mY(n)5nc/( p̄N) and variance sY

2(n)'n(cW/ p̄N)2

!sX
2(n). A triggered earthquake can sustain itself only if t

redistributed stresses exceed the stress gaps. ThereforZn
[Xn2Yn,0 during an earthquake and it immediately fo
lows that the distribution of earthquake sizes forN@n@1 is
given in terms of the distribution of first passage times
biased random walks. Approximating the continuous pro
ability distribution of the step sizes of$Zn% with a Bernoulli
process~where steps of equal size are taken up or down w
probability p and 12p, respectively!, we can utilize results
available for Bernoulli trials@14#,

Prob~Zi,0,0, i ,n;Zn50!5
Prob~Zn50!

n
, ~13!

i.e., the probability for thefirst return to the origin aftern
steps equals the total probability of reaching the origin a
n steps divided byn. Prob@Zn50# can easily be calculated
@14# for N@n@1. One obtains Eq.~6! with nc f52(m2

1s2)/m2, wherem ands2 are the mean and variance of th

FIG. 3. The process$Zn%, which shows the incremental amoun
of stress needed to keep an earthquake going~see text for the pre-
cise definition!. Each failure event corresponds to a segment of
process that starts out from a maximum up to that point and e
when it exceeds that level, and is marked as alternating circles
squares. The sample shown here, which corresponds to the s
distribution shown in the inset of Fig. 2~a!, depicts events of size
6, 14, 2, 1, 1, . . . . Thefault is loaded adiabatically between the
events, during the intervals when$Zn% moves monotonically up
from one maximum to the next. These are shown as dotted l
connecting consecutive events.
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1498 PRE 58KARIN DAHMEN, DENIZ ERTAŞ, AND YEHUDA BEN-ZION
step size for the processZn , respectively. Substituting th
valuesm5(12c)/( p̄N) ands2'1/(p̄N)2, the cutoff length
is given by

nc f'2@11~12c!22#5
2

~12c!2
$11O„~12c!2

…%,

~14!

where the last approximation is justified since treatingZn as
a Bernoulli process is expected to yield relative errors
O(m2/s2).

For finite-sized systems, when the fraction of failed ce
r 5n/N is no longer small, Eq.~6! needs to be modified sinc
the stress gaps are not entirely independent: In order to
rectly reflect the fact thatZN512c to within O(1/N), the
Bernoulli process should be constrained to return to its m
value afterN steps. This can be achieved by calculating
corresponding conditional probabilities:

pe
~ f !~n!5

Prob~Zn50!

n

Prob~ZN2n512c!

Prob~ZN512c!

5
Ãf

n3/2
expH 2

n~11n/N!

nc f
J , ~15!

which reduces to Eq.~6! in the limit n!N. (Ãf is a constant
fixed by normalization.! Figure 2~a! shows the distribution of
event sizes for numerical simulations of the model withN
5400, for valuesc50.6, 0.7, and 0.8.~In all presented
simulation results,W52/19 and e50.5.! The continuous
lines are one-parameter fits to the form~15!. The discrepancy
between the fitted and theoretical@from Eq. ~14!# values of
nc f is consistent with the expected relative error.

As mentioned earlier, the failure of all the remaining ce
becomes very likely once (12e)N/c cells have failed, since
the initially failed cells reach their dynamical failure stres
The mean event size is roughly equal tonc f

1/2, therefore the
mean time between events isT0nc f

1/2/N, where T0[^ts,i

2ta,i&/(KLv) is the characteristic time over which a cell
loaded from its arrest stress to its failure stress. The typ
waiting time to see a switch to the runaway phase yields@cf.
Eq. ~15!#

Tf→r'T0

Cf rN
1/2

nc f
1/2

expH ~12e!~12e1c!

c2nc f

NJ , ~16!

with Cf r a factor of order unity which varies weakly withe
andc in the region of interest, provided that each attemp
statistically independent of each other. We verified that
our simulations indeed no time correlations of event si
were present, out to many times the characteristic timeT0
~see also the Discussion section!. The distribution of persis-
tence times should then obey Poisson statistics with m
Tf→r . Figure 4 depicts the distribution of persistence tim
~with a fit to Poisson statistics! for N5400 andc50.73.
Mean persistence times depend very sensitively on the
servation parameterc, as shown in the inset of Fig. 4@15#.
f

s

r-

n
e

.

al

s
n
s

an
s

n-

B. Runaway phase

Let us next consider the runaway phase. Immediat
preceding the first cell failure after a runaway event, t
stress gaps$dsn5Xn212Xn% have the probability distribu-
tion Prob(dsn5s)5exp@2p̄Ns/(12e)#. Hence, $Xn% has a
mean mX(n)5n(12e)/( p̄N) and variance sX

2(n)5n(1

2e)2/( p̄N)2. As long as dynamical effects are absent, t
stress redistributed to each cell following the failure of t
first n cells is still given by $Yn% with mean mY(n)
5nc/( p̄N) and variance sY

2(n)'n(cW/ p̄N)2!sX
2(n).

Thus the mean and variance of the step size for$Zn% arem

5(12e2c)/( p̄N) and s2'(12e)2/( p̄N)2. The probabil-
ity for an earthquake to terminate aftern cell failures is@in-
cluding finite-size corrections in analogy with Eq.~15!#

pe
~r !~n!'

Ãr

n3/2
expH 2

n~11n/N!

ncr
J , ~17!

ncr5
2~12e!2

@c2~12e!#2
$11O„@c2~12e!#2

…%, c.12e.

~18!

Since m,0 for 12e,c, Zn,0 with finite probability for
all n and a runaway event occurs. In fact, a runaway even
inevitable sinceZN,0 and the runaway event will com
mence once$Zn% reaches its maximum. The total number
cells that fail before a runaway event is given by the posit
of the maximum of$Zn%, whose probability distribution is
proportional toncr pe

(r )(n) for n@ncr . The mean number o
these ‘‘precursor’’ cells is of orderncr

1/2, which remains a
finite constant asN→`, i.e., for big systems almost all th
slip happens during the runaway events@16#.

FIG. 4. Distribution of persistence timesTf→r andTr→ f for W
52/19, e50.5, N5100, c50.73. The lines are fits of the cumula
tive probabilities to the Poisson distribution.~Simulations for sys-
tems with other parameters that allowed for many more switc
during the simulated times clearly also gave Poisson distributi
for the distribution of persistence times.! Inset: The dependence o
persistence times on conservation parameterc ~triangles Tf→r ,
circlesTr→ f) for the same values ofW, e, andN. Statistical errors
are comparable to symbol sizes.
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The remaining cells will all fail during the runaway even
Imagine a situation where a fractionr .(12e)/c of the cells
have failed. At that point, the total redistributed stress
cell is

S5cF r 1S r 2
12e

c D $c1c21•••%G
5

c@r 2~12e!#

12c
, ~19!

where the second term arises from repeat failures of s
cells. S>1 is needed to ensure that small event cells
again and recreate the stress distribution~10!. This is
achieved if

r>r * [
1

c
2e.

Thus the large event cannot recreate the stress distribu
~10! if more than (12r * )N5r cN cells fail during back-
ground activity. This usually leads to a breakup of t
bunched stress distribution and subsequent evolution tow
the GR stress distribution~8!. The typical persistence time o
the runaway phase before a switch to the GR phase is@15#

Tr→ f'T0

Cr f N
3/2

ncr
2

3expH ~c2c* !@11~c2c* !/~c* c!#N

c* cncr
J ,

c.c* ~20!

provided that all attempts are statistically independent
each other.~We have explicitly checked in the simulation
that in the runaway phase, the particular realizations of st
distributions immediately following a large event are stat
tically independent of each other@17#!. Tr→ f becomes com-
parable to the typical time between runaway events w
c↘c* , as expected@18#. Figure 4 depicts the distribution o
persistence times and a fit to Poisson statistics forN5100
andc50.73. The inset shows the dependence of mean
sistence times onc for N5100. Although agreement with
Eqs.~16! and ~20! is rather poor, the strong exponential d
pendence as a function of conservation parameter is evid

IV. DISCUSSION

The persistence times in both the GR phase and the
away phase diverge exponentially with system size for
1e)21,c,1, and the system remains in either phase
extremely long times, thus the phase space has two alm
stable attractors. Clearly, the runaway phase represen
more ‘‘ordered’’ stress distribution. Indeed, the basin of
traction for the runaway phase is extremely small. In orde
quantify this aspect, consider the ‘‘configurational entrop
for a given stress distributionp( s̃), with s̃i[(t i
2ta,i)/(t f ,i2ta,i):
r

e
il

on

ds

f

ss
-

n

r-

nt.

n-
1
r
st
a

-
o
’

Sconf~$p%![2E ds̃ p~ s̃!ln@p~ s̃!#. ~21!

For the GR phase,Sconf
( f ) 50, indicating that a ‘‘generic’’

stress distribution characterizes the GR phase. On the o
hand, in the runaway phase

Sconf
~r ! 52E ds̃ p~r !~ s̃!ln@p~r !~ s̃!#5 ln~12e!, ~22!

indicating that the stress distribution is highly organized
that phase. For discreteN the stress distribution is approx
mated by a histogram of the stress values, and the integr
replaced by the sum over all bins of the histogram.

The time evolution of the configurational entropy of th
stress distribution, calculated with a ten bin histogram,
depicted in Fig. 5 along with event sizes. It is clear th
Sconf(t) can be used as an ‘‘order parameter,’’ a number t
distinguishes the GR phase and the runaway phase, with
advantage that it can be determined at any instant. Hi
grams of event sizes require a finite time interval to colle
and there is always the danger of mixing events from o
phase with the other, thereby confusing the picture: The
mulative event size distribution over many persistence tim
is a weighted average of two entirely different event dis
butions, which obscures the underlying physical phenome
Sconf provides a reliable way to separate the two phases
makes it possible to accumulate accurate event size distr
tions for both of them. Unfortunately, such a quantity cann
be determined from existing field data since the spatial d
tribution of stress is unknown.

So far, the discussion has centered around theW!1 limit,
and the main role played by the heterogeneities has been
‘‘randomization’’ of the stress distribution at time scale

FIG. 5. Sample time series of earthquake sizes~top!, plotted
together with the conformational entropySconf(t) ~bottom! for W
52/19,e50.5,N5100,c50.73. @For the calculation ofSconf(t),
the simulated stress distribution was approximated by a ten
histogram of the stress values, which was evaluated immedia
after each earthquake.# The earthquake size distribution chang
drastically every timeSconf toggles from 0 to ln(12e), indicating a
transition from one phase to the other. A failed switching attem
from the GR phase to the runaway phase is seen at aboutT/T0

510 900.
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over which all cells fail a few times. The distribution o
loading times, over which the cells are loaded from the in
vidual arrest stress to the failure stress, has a meanT0
[^ts,i2ta,i&/(Klv) and standard deviation of orderWT0.
Therefore the ‘‘randomization’’ time, over which the stre
variablessi become roughly uncorrelated, is of orderT0 /W.
Thus, even for smallW, for large enoughN this will be small
compared to the persistence times, which scale exponent
in N @see Eqs.~16! and~20!#. This ensures the consistency
the assumption that the earthquakes are basically statisti
independent of each other. The validity of this assumption
statistical independence can be explicitly verified by exa
ining the time correlations of event sizes numerically; inde
no trace of any correlation was found in our simulations,
to many times the randomization timeT0 /W. Likewise, we
have explicitly checked that in the runaway phase, the p
ticular realizations of stress distributions immediately f
lowing a large event are statistically independent of e
other @17#.

For finite values ofW,2, we expect most of the feature
to remain qualitatively unchanged: In the GR phase, the
ponential cutoff size still diverges asnc f;(12c)22, and
althoughc* in general depends onW and the shape ofr(sa),
there is still a persistent runaway phase forc* ,c<1. How-
ever, the situation is likely to change qualitatively once arr
stresses can be arbitrarily close to failure stresses,
W52, andnew values for the arrest stresses are picked ev
time a cell fails@19#. This corresponds to the situation di
cussed in Ref.@4# for finite-dimensional systems. Immed
ately upon introduction of dynamical weakening~e.0!, nc f
;e22 when c approaches 1, i.e., the cutoff size no long
diverges. Furthermore, forc51 the GR phase is no longe
persistent since the persistence timeTf→r remains finite for
largeN.

Some of the results presented for the mean-field mo
especially the qualitative phase diagram, calculated ex
nents for the power-law earthquake distributions, and the
vergence of the cutoff length scale, can be expected to a
to models with realistic interactions, up to logarithmic co
rections. This is because the underlying critical points t
control these exponents remain mean-field-like down to tw
dimensional~2D! faults. This result is firmly established fo
thee50 case@4,6#. At finite e one expects the nucleation siz
for the runaway phase, which equals (12e)N/c in mean-
field theory, to become independent of the system size, s
elastic forces in the fault plane concentrate stresses alon
earthquake rupture front as the earthquake progresses. E
quakes bigger than a finite nucleation sizeNcrack become
unstoppable in the presence of dynamic weakening eff
and small disorder@3#, and rupture the entire fault. Neve
theless, fornc f,Ncrack, the mean-field scaling results ma
still apply at finitee, provided thatW,2, i.e., there is a finite
minimum stress drop associated with each cell failure.
systems withNcrack.N, this range will extend all the way to
the fault size. In this case, one remarkable consequenc
that since generically (12c);1/AN @4,5#, the cutoff size in
the GR phasenc f;(12c)22;N, i.e., earthquakes on indi
vidual fault zones obey power-law statistics for events up
a finite fraction of the entire system size.

In this paper we have implicitly assumed that all ear
quakes are effectively two dimensional, even though
i-

lly

lly
f
-
d
t

r-

h

x-

t
e.,
ry

r

l,
o-
i-
ly

t
-

ce
the
rth-

ts

r

is

o

-
e

brittle seismogenic zone has a finite width. Our assumpt
is justified by observations and the context of the model~size
of assumed fault!. In general, earthquakes with magnitud
about M6.3 break the entire seismogenic zone. Up to
size it is accepted that events are roughly two dimensio
When the aspect ratio of the rupture dimensions width/len
is much less than 1 the event is expected intuitively to
come more 1D-like. For very large earthquakes a cor
sponding change in the slope of earthquake statistics
predicted@20# and claimed to have been observed@21#. This,
however, is controversial. Kagan@22# has argued that thos
inferences are not supported by a more robust analysis. T
there is no conclusive evidence that the dimensiona
changes from 2D to 1D at a certain event size. The lack o
clearly observed transition in the available data suggests
events penetrate deeper than the width of the seismog
zone, into the underlying viscoelastic substrate, and conti
to grow in width as they increase in length. Also, in o
simulations@4# of a two-dimensional fault with length an
width of computational grid 70 and 17.5 km, embedded in
three-dimensional elastic half space, the largest events
about M6.5. The aspect ratio of those rupture areas is
very different from 1, so in the quasistatic limit we expe
mean-field theory to apply roughly up to the largest even
This is confirmed by comparing the corresponding simu
tion results with mean-field theory predictions@4#.

An important result is the possibility that a fault syste
might switch spontaneously from a ‘‘Gutenberg-Richte
earthquake distribution to a ‘‘characteristic’’ earthquake d
tribution, as in the mean-field model. We note that calcu
tions based on an entirely different model, simulating t
coupled evolution of regional earthquakes and faults in
rheologically layered 3D solid@10#, show similar behavior.
Clear observation of such mode switching in nature requ
data sets spanning many thousands of years. Paleose
studies attempt to construct long histories of seismic eve
at given locations from sequences of displaces and hig
disturbed rock layers. Remarkably, the longest available
leoseismic records, documenting large earthquake acti
along the Dead Sea transform in Israel@7#, appear to be
characterized by alternating phases of intense seismic a
ity lasting a few thousands of years, and periods of com
rable length without large seismic events. Other, qual
tively similar alternating deformation phases have be
documented in the eastern California shear zone@8# and the
Great Basin Province in the western U.S.@9#.

Another intriguing possibility might arise in a fault sys
tem of weakly coupled segments driven under similar con
tions. The seismic response of such systems might exhib
sort of ‘‘coexistence,’’ i.e., a fraction of the patches mig
follow characteristic scaling whereas the others ob
Gutenberg-Richter scaling, giving rise to a hybrid event s
distribution. This may explain examples in the data of R
@2#, where the characteristic ‘‘bump’’ in the distribution wa
not very pronounced. Finally, we note that part or all of t
low magnitude seismicity in the GR phase may be too sm
to be detected by a seismic network. In this case the spo
neous switching between the runaway and GR phases
be interpreted as transitions from seismic response of a f
system to creeplike behavior.
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